[go: up one dir, main page]

WO2017196092A1 - 검사용 소켓 및 도전성 입자 - Google Patents

검사용 소켓 및 도전성 입자 Download PDF

Info

Publication number
WO2017196092A1
WO2017196092A1 PCT/KR2017/004870 KR2017004870W WO2017196092A1 WO 2017196092 A1 WO2017196092 A1 WO 2017196092A1 KR 2017004870 W KR2017004870 W KR 2017004870W WO 2017196092 A1 WO2017196092 A1 WO 2017196092A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive
conductive particles
body portion
socket
device under
Prior art date
Application number
PCT/KR2017/004870
Other languages
English (en)
French (fr)
Inventor
정영배
Original Assignee
주식회사 아이에스시
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 아이에스시 filed Critical 주식회사 아이에스시
Priority to CN201780015074.4A priority Critical patent/CN108780116B/zh
Publication of WO2017196092A1 publication Critical patent/WO2017196092A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/04Housings; Supporting members; Arrangements of terminals
    • G01R1/0408Test fixtures or contact fields; Connectors or connecting adaptors; Test clips; Test sockets
    • G01R1/0416Connectors, terminals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/04Housings; Supporting members; Arrangements of terminals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R3/00Apparatus or processes specially adapted for the manufacture or maintenance of measuring instruments, e.g. of probe tips
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2801Testing of printed circuits, backplanes, motherboards, hybrid circuits or carriers for multichip packages [MCP]
    • G01R31/2806Apparatus therefor, e.g. test stations, drivers, analysers, conveyors
    • G01R31/2808Holding, conveying or contacting devices, e.g. test adapters, edge connectors, extender boards
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2855Environmental, reliability or burn-in testing
    • G01R31/286External aspects, e.g. related to chambers, contacting devices or handlers
    • G01R31/2863Contacting devices, e.g. sockets, burn-in boards or mounting fixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/16Non-insulated conductors or conductive bodies characterised by their form comprising conductive material in insulating or poorly conductive material, e.g. conductive rubber

Definitions

  • the present invention relates to test sockets and conductive particles, and to test sockets and conductive particles that can maintain conductivity for a long time even with frequent contact of a device under test.
  • the inspection socket is used in the inspection process for determining whether the manufactured device under test is defective. That is, the manufactured device under test performs a predetermined electrical test to determine whether there is a defect, wherein the device under test and the test device for the test are not in direct contact with each other but indirectly through the test socket. Will be connected.
  • the reason for this is that the inspection apparatus for inspection is relatively expensive, so that it is not easy to replace when worn or damaged due to frequent contact with the inspected device, and the replacement cost is high.
  • the inspection socket is replaceably mounted on the upper side of the inspection apparatus, and the device under test is electrically connected to the inspection apparatus by contacting the inspection socket instead of the inspection apparatus. Therefore, the test signal from the test apparatus is transmitted to the device under test through the test socket.
  • the inspection socket is disposed between the device under test 130 and the device 140 to be inspected and the terminal 131 and the device 140 of the device under test 130.
  • the conductive portion is disposed for each position corresponding to the terminal of the device under test and exhibits conductivity in the thickness direction, wherein the conductive portion 110 is elastic
  • an insulating support part 120 to insulate and support the respective conductive parts 110.
  • the test socket 100 is in contact with the pad of the test apparatus and the conductive portion in a state mounted on the test apparatus, the device under test is configured to be in contact with the conductive portion of the test socket.
  • the device to be inspected which is moved by the insert, is brought into contact with the conducting portion of the test socket, and seated in the test socket. Then, when a predetermined electrical signal is applied from the test apparatus, the signal passes through the test socket. The predetermined electrical inspection is performed by being delivered to the device under test.
  • the conductive portion of the inspection socket is composed of a plurality of conductive particles arranged inside the elastic insulating material, wherein the terminal of the device under test frequently contacts the conductive portion.
  • the conductive particles distributed in the insulating material may be easily separated to the outside.
  • the conductive particles are made of a spherical shape, so that the spherical conductive particles are easily separated from the insulating material.
  • the inspection socket including the columnar conductive particles is disclosed in the registered patent No. 1019721 filed by the applicant.
  • the inspection socket includes a conductive portion 210 in which a plurality of columnar conductive particles 211 are included in an insulating elastic insulating material, and an insulating support portion 220 supporting the conductive portion 210. ).
  • the inspection socket 200 has the columnar conductive particles 211 distributed inside the conductive portion 210 so that the contact area with the adjacent conductive particles 211 is increased, thereby reducing the overall electrical resistance and thereby allowing stable electrical connection. There is an advantage.
  • the columnar conductive particles have a larger surface area in contact with the elastic insulating material than the conventional spherical conductive particles, they are strongly adhered to the elastic material, thereby reducing the possibility of being separated from the elastic insulating material even in a repeated test process. .
  • the columnar conductive particles have improved conductivity compared to the spherical conductive particles, but when the conductive particles concentrated in the conductive portion are placed in a vertically staggered position, it is difficult to contact the upper and lower conductive particles while the conductive portion is pressed. There is a risk of causing unstable contact. In particular, such a problem becomes a more important problem in light of the recent trend that the distance between the conductive parts becomes smaller.
  • the present invention has been made to solve the above-mentioned problems, and more particularly, to prevent the conductive particles from being separated from the conductive portion during frequent contacting processes and to enable the conductive particles to be surely connected to each other during the compression and expansion of the conductive portion.
  • An object of the present invention is to provide a test socket and conductive particles.
  • the inspection socket for achieving the above object, in the inspection socket arranged between the device under test and the inspection device to electrically connect the terminals of the device under test and the pad of the inspection device,
  • a plurality of conductive parts spaced apart from each other in the plane direction at positions corresponding to the terminals of the device under test, and in which a plurality of conductive particles are arranged in the thickness direction in the elastic insulating material;
  • the angle between the inner surfaces facing each other in the adjacent protrusions may form an acute angle of less than 90 °.
  • the body portion may have a shape and dimensions such that each conductive portion can stand in the thickness direction when aligned in the elastic insulating material by a magnetic field.
  • h When the vertical length from the upper end to the lower end of the body portion is referred to as "h”, and the horizontal length perpendicular to the vertical length as "w", h / w may be greater than one.
  • w / d may be greater than one.
  • the conductive particles may be defined in the length of the protrusions and the shape of the grooves so that when the protrusions of the adjacent conductive particles are inserted into the grooves, they can be contacted at at least two points.
  • the end of the projection of one of the conductive particles and the end of the projection of the other conductive particle may be in contact with each other inner surfaces.
  • the surfaces facing the adjacent protrusions may be inclined surfaces inclined so that the distance between each other becomes narrower toward the body portion.
  • a side surface is provided between the upper end and the lower end of the body portion, and the side may be concavely recessed from the upper end toward the center.
  • a plurality of irregularities may be provided on the side of the body portion.
  • the protrusion may protrude at least two from the lower end of the body portion.
  • the protrusions disposed at the top and bottom of the body portion may have symmetrical shapes with respect to the body portion.
  • the inspection socket of the present invention for achieving the above object, in the inspection socket disposed between the device under test and the inspection device to electrically connect the terminal of the device under test and the pad of the inspection device,
  • a plurality of conductive parts spaced apart from each other in the plane direction at positions corresponding to the terminals of the device under test, and in which a plurality of conductive particles are arranged in the thickness direction in the elastic insulating material;
  • the angle between the inner surfaces facing each other in the adjacent protrusions is less than 90 degrees.
  • the electroconductive particle of this invention for achieving the objective mentioned above is arrange
  • the conductive particles are aligned in the thickness direction within the conductive portion of the inspection socket, a plurality of the conductive particles are disposed in the elastic insulating material, the conductive particles disposed therein are in contact with each other when the terminal of the device under test presses the conductive portion To make the conductive part conductive,
  • angles between the inner surfaces facing each other at adjacent projections form an acute angle of less than 90 °.
  • the body portion may be elongated in one direction so as to stand in the thickness direction when aligned in the elastic insulating material by a magnetic field.
  • the protrusion may protrude at least two from the lower end of the body portion.
  • Electroconductive particle of this invention for achieving the objective mentioned above,
  • the conductive particles are aligned in the thickness direction within the conductive portion of the inspection socket, a plurality of the conductive particles are disposed in the elastic insulating material, the conductive particles disposed therein are in contact with each other when the terminal of the device under test presses the conductive portion To make the conductive part conductive,
  • the angle between the inner surfaces facing each other in the adjacent protrusions is less than 90 degrees.
  • the conductive particles inside the conductive part provide a plurality of protrusions protruding from the ends of the columnar body, the conductive particles are coupled to each other even when the conductive parts are compressed during the electrical inspection process. This has the advantage of maintaining stable contact with each other.
  • the inspection socket according to the present invention forms an acute angle of less than 90 ° between the inner surfaces facing each other in the conductive particles, so that the mutually coupled conductive particles can maintain contact at two points, thereby providing excellent contact stability. There is an advantage.
  • FIG. 2 is a view showing the operation of FIG.
  • Figure 3 shows another inspection socket of the prior art.
  • FIG. 4 is a view showing a test socket according to an embodiment of the present invention.
  • FIG. 5 is a view showing the operation of FIG.
  • FIG. 6 is a perspective view of conductive particles disposed in a conductive portion of the inspection socket of FIG. 4.
  • FIG. 7 is a view illustrating an example in which the conductive particles of FIG. 6 are bonded to each other in a conductive portion.
  • FIG. 8 is an exemplary view showing a state in which the conductive particles of FIG. 6 operate inside the conductive portion.
  • FIG. 9 is a view of conductive particles according to another embodiment of the present invention.
  • FIG. 10 is a view of conductive particles according to another embodiment of the present invention.
  • 11 and 12 are views showing the bonding form of the conductive particles.
  • test socket according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings.
  • Inspection socket 10 is made in the form of a sheet having a predetermined thickness, the sheet does not have an electrical flow in the plane direction to enable only the electrical flow in the thickness direction
  • the terminal 131 of the device under test 130 and the pad 141 of the test device 140 may be electrically connected in the vertical direction.
  • This inspection socket 10 is used to perform an electrical inspection of the device under test 130.
  • the inspection socket 10 includes a conductive portion 20 and an insulating support portion 30.
  • the conductive portion 20 is extended in the thickness direction to enable electrical flow in the thickness direction while being compressed when pressed in the thickness direction, each conductive portion 20 is spaced apart from each other in the plane direction and insulated therebetween.
  • Insulating support portion 30 having a is disposed so that the electrical flow is blocked between the conductive portion (20).
  • Specific shapes of the conductive part 20 and the insulating support part 30 are as follows.
  • the conductive part 20 has an upper end thereof in contact with the terminal 131 of the device under test 130 and a lower end thereof in contact with the pad 141 of the inspection apparatus 140. Between the lower ends, a plurality of conductive particles 21 are formed to be oriented vertically in the elastic insulating material.
  • the plurality of conductive particles 21 perform a function of enabling electrical energization while contacting each other. That is, before being pressed by the device under test 130, the conductive particles 21 are finely spaced or contacted, and when the conductive part 20 is pressurized and compressed, the conductive particles 21 are surely contacted with each other, thereby causing electrical conduction. To make it possible.
  • the conductive portion 20 has a form in which a plurality of conductive particles 21 are densely arranged in the elastic insulating material in an up-down direction, and each conductive portion 20 is roughly formed of the device under test 130. It is arranged at a position corresponding to the terminal 131.
  • the elastic insulating material is preferably an insulating polymer material having a crosslinked structure.
  • Various materials can be used as the curable polymer material-forming material that can be used to obtain the crosslinked polymer material, and specific examples thereof include polybutadiene rubber, natural rubber, polyisoprene rubber, styrene-butadiene copolymer rubber, and acrylonitrile- Conjugated diene rubbers such as butadiene copolymer rubbers and their hydrogenated additives, block copolymer rubbers such as styrene-butadiene-diene block copolymers, styrene-isoprene block copolymers and their hydrogenated additives, chloroprene, urethane rubber, poly Ester rubber, epichlorohydrin rubber, silicone rubber, ethylene-propylene copolymer rubber, ethylene-propylene-diene copolymer rubber, and the like. Among them, it is preferable to use silicone rubber in
  • the liquid silicone rubber preferably has a viscosity of 10 5 pore or less at a shear rate of 10 ⁇ 1 sec, and may be any of condensed, added, containing vinyl groups and hydroxyl groups. Specifically, dimethyl silicone raw rubber, methyl vinyl silicone raw rubber, methylphenyl vinyl silicone raw rubber, etc. are mentioned.
  • the electroconductive particle 21 is comprised including the columnar trunk
  • the body portion 22 has a substantially columnar shape and specifically has a thin rectangular pillar shape.
  • the body portion 22 is illustrated as a rectangular pillar shape, but is not limited to this, of course, various polygonal pillar shape is possible.
  • the body portion 22 preferably has a shape and dimensions such that each conductive portion 20 can stand in the thickness direction when aligned in the elastic material by the magnetic field. That is, in the process of manufacturing the inspection socket 10, after filling the liquid silicone rubber in which a plurality of conductive particles 21 are distributed in a predetermined mold, the magnetic field is applied in one direction so that the conductive particles 21 are conductive parts 20. It is important to determine the dimensions of the body portion 22 so that the columnar body portion 22 can be erected in one direction. To this end, the body portion 22 may have a columnar shape extending in one direction.
  • w / d may be larger than 1 when the thickness of the trunk
  • the direction of the conductive particles 21 may be made in a specific direction. That is, the conductive particles 21 do not rotate randomly with respect to the central axis of the trunk portion 22 (the axis passing parallel to the vertical direction of the trunk portion 22 and passing through the center of the trunk portion 22) without being randomly rotated.
  • the coupling between the protrusions 23 between the upper and lower conductive particles 21 may be easier.
  • w / d is smaller than 1, as shown in FIG. 12, the conductive particles 21 are rotated to each other so that the coupling between the protrusions 23 becomes difficult.
  • w / d is preferably larger than 1, but preferably 2 or more, more preferably 5 or more.
  • the body portion 22 has the dimensions as described above, when the conductive particles 21 are aligned with each other, the protrusions 23 of the conductive particles 21 may be easily coupled to each other.
  • the side 221 is concavely recessed from the top toward the center. That is, the elastic insulating material may be filled in a portion in which the center of the side surface 221 of the body portion 22 is concave, thereby minimizing the detachment of the conductive particles 21 from the conductive portion 20.
  • the protrusions 23 protrude from the upper end of the body portion 22 and protrude at least two or more.
  • the protrusion 23 may protrude from the lower end of the body portion 22, and has a shape and shape corresponding to the protrusion 23 protruding from the upper end of the body portion 22.
  • between the protrusions 23 adjacent to each other is provided with a groove portion 232 recessed toward the body portion 22.
  • the angle ⁇ between the inner surfaces 231 facing each other disposed in the groove 232 in the adjacent protrusions 23 is an acute angle of less than 90 °.
  • the angle ⁇ between these inner surfaces 231 may be any angle as long as it is less than 90 °, but preferably 30 to 85 °, and more preferably 40 to 70 °.
  • the length of the projections and the shape of the grooves 232 are defined so that the protrusions 23 of the adjacent conductive particles 21 can be contacted at at least two points with each other when inserted into the grooves 232.
  • an end portion of the protrusion 23 of one of the conductive particles 21 and an end portion of the protrusion 23 of the other conductive particles 21 may be formed on the inner surfaces 231.
  • Each of the conductive particles 21 having the protrusions 23 is preferably in contact with each other, and when the conductive particles 21 having the protrusions 23 are aligned with each other in the conductive portion 20, the conductive particles 21 have the protrusions 23 as shown in FIG. 7. It can be aligned up and down in a coupled state.
  • the protrusion 23 of the conductive particles 21 disposed on the upper side of the two conductive particles 21 is naturally formed by the magnetic field of the conductive particles 21 disposed on the lower side. It may be inserted into the groove 232 between the projections (23).
  • the pad 141 of the device under test 130 pressurizes the conductive portion 20 from the upper side, as shown in FIG. 8, the upper side of the conductive particles 21 bonded in the conductive portion 20 is shown. While the conductive particles of are rotated at a predetermined angle, the bonding relationship with the lower conductive particles 21 is maintained as it is.
  • the inner surface 231 when the surfaces in which the adjacent protrusions face each other in the conductive particles 21 are referred to as the inner surface 231, when the adjacent conductive particles 21 are adjacent to each other, the protrusions 23 of the conductive particles 21 may be formed.
  • the ends and the ends of the protrusions 23 of the other conductive particles 21 come into contact with the inner surfaces 231, respectively, so that the overall electrical connection is good.
  • An angle between the inner surface 231 of the protrusion 23 forms an acute angle, and the groove 232 and the protrusion 23 form a structure in which the protrusion 23 is deeply coupled to each other so that the coupling force between the protrusions 23 is excellent.
  • the inner surfaces 231 facing the adjacent protrusions 23 have inclined surfaces that are inclined so that the distance from each other becomes narrower toward the body portion 22, so that the device under test 130 is inspected.
  • the conductive particles 21 may be rotated along the inclined surface to be in a state as shown in FIG. 7.
  • the material other than the shape of the electroconductive particle 21 is demonstrated as follows.
  • the material of the electroconductive particle 21 is used that exhibits magnetism so that the material can be oriented so as to be easily arranged in the vertical direction by applying a magnetic force line.
  • Specific examples of the conductive particles 21 include particles made of metals showing magnetic properties such as nickel, iron, and cobalt, particles made of these alloys, particles containing these metals, or core particles using these particles as core particles.
  • the plating of a conductive metal such as gold, silver, palladium, and rhodium, which are difficult to oxidize, may be used on the surface thereof.
  • a magnetic material as the core of the conductive particles 21, particles made of inorganic materials such as nonmagnetic metal particles, glass, carbon, or polymers such as polystyrene crosslinked with polystyrene or divinylbenzene.
  • Particles, elastic fibers, and glass fibers are produced by short fibers of less than a certain length through a pulverization process, and used as core particles, and plating of conductive magnetic materials such as nickel, cobalt, and nickel-cobalt alloy on the surface of the core particles. It is a matter of course that those having been coated with or coated with a conductive magnetic substance and a conductive metal which is hard to be oxidized can be used.
  • the insulating support part 30 supports each conductive part 20 while insulating each other, and preferably uses the same silicone rubber as the elastic insulating material of the conductive part 20, but is not limited thereto. On the other hand, it is not necessary to use the same material as the elastic insulating material, it is also possible to use a different insulating material.
  • Inspection socket 10 is manufactured as follows.
  • the molding material in which the electroconductive particle 21 is distributed in the fluid elastic material is prepared, and the molding material is inserted into a mold (not shown). Subsequently, a magnetic field is applied to the molding material in the vertical direction so that the conductive particles 21 can be arranged in the vertical direction parallel to the magnetic force line. After that, the molding material is cured to complete the manufacture of the test socket 10.
  • the inspection socket 10 is mounted on the inspection device 140.
  • the inspection apparatus 140 is disposed such that the lower end of each conductive portion 20 contacts the pad 141 of the inspection apparatus 140.
  • the terminal 131 of the device under test 130 contacts the upper end of the conductive portion 20 while lowering the device under test 130.
  • the device under test 130 pressurizes the conductive part 20, and the conductive particles 21 in the conductive part 20 are electrically connected at both ends thereof. You will be able to connect.
  • a predetermined electrical signal is applied from the inspection apparatus 140, the signal is transmitted to the device under test 130 through the inspection socket 10 and the test is performed.
  • test socket according to the preferred embodiment of the present invention has the following effects.
  • the aspect ratio (h / w) of the body portion 22 has a rod shape of 1: 1 or more has the advantage that the alignment in the vertical direction well in the manufacturing process of the inspection socket 10.
  • the upper and lower ends of the well-standing body 22 is provided with a protrusion 23 to facilitate the coupling between the conductive particles 21, the conductive particles 21 in the conductive portion 20 are mutually coupled.
  • the conductive particles 21 may maintain a constant contact, thereby maintaining conductivity.
  • the concave portion is provided in the center of the body portion 22, there is an advantage that the contact area with the elastic insulating material increases, so that there is little fear of leaving the conductive portion 20.
  • the thickness (d) of the particles of the body portion 22 of the conductive particles 21 is smaller than the width (w), which is advantageous for the alignment in the vertical up and down direction, thereby making it easier to bond between the conductive particles (21) There are advantages to it.
  • angles between the inner surfaces 231 facing each other in the adjacent protrusions 23 form an acute angle of less than 90 °, so that the grooves 232 and the protrusions 23 are deeply coupled to each other to form the conductive particles 21.
  • the bonding strength between the superior is an advantage that the bonding strength between the superior.
  • test socket according to the preferred embodiment of the present invention may be modified as follows.
  • the unevenness 222 may be provided on the side surface having the same width as the upper and lower sides of the conductive particles 21 ′. to be.
  • a plurality of irregularities 223 may be provided on a side surface of which the center of the conductive particles 21 ′′ is recessed. As such, when a plurality of irregularities are provided on the side surface, the elastic insulating material is filled between the irregularities, thereby providing an advantage of reliably preventing the separation of the conductive particles.
  • the angle between the inner surfaces facing each other in the adjacent protrusions is less than 90 °, but is not limited thereto, and the angle between the inner surfaces facing each other in the adjacent protrusions includes 90 °. Of course, it is possible to be 90 ° or less.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Environmental & Geological Engineering (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)
  • Measuring Leads Or Probes (AREA)

Abstract

본 발명은 검사용 소켓에 대한 것으로서, 더욱 상세하게는 피검사 디바이스와 검사장치 사이에 배치되어 상기 피검사 디바이스의 단자와 검사장치의 패드를 서로 전기적으로 접속시키는 검사용 소켓에 있어서, 상기 피검사 디바이스의 단자와 대응되는 위치마다 면방향으로 서로 이격되어 배치되며, 탄성 절연물질 내에 다수의 도전성 입자가 두께방향으로 정렬되어 있는 복수의 도전부와, 서로 이격된 복수의 도전부들 사이에 배치되어 각각의 도전부들을 지지하고 상기 도전부들을 면방향으로 절연시키는 절연성 지지부를 포함하되, 상기 도전성 입자는, 기둥형의 몸통부; 및 상기 몸통부의 상단으로부터 적어도 둘 이상 돌출되어 있는 돌기부를 포함하되, 서로 인접한 돌기부 사이에는 상기 몸통부를 향하여 오목하게 들어간 홈부가 마련되어 있고, 서로 인접한 돌기부에서 서로 마주보는 내면들 사이의 각도는 90°미만인 예각을 이루고 있는 검사용 소켓에 대한 것이다.

Description

검사용 소켓 및 도전성 입자
본 발명은 검사용 소켓 및 도전성 입자에 대한 것으로서, 빈번한 피검사 디바이스의 접촉에도 장기간 도전성을 유지할 수 있는 검사용 소켓 및 도전성 입자에 대한 것이다.
일반적으로 검사용 소켓은, 제조된 피검사 디바이스의 불량여부를 판단하기 위한 검사과정에서 사용되는 것이다. 즉, 제조된 피검사 디바이스는 불량여부를 판단하기 위하여 소정의 전기적 검사를 수행하게 되는데, 이때 검사가 요구되는 피검사 디바이스와 검사를 위한 검사장치는 서로 직접 접촉되는 것이 아니라 검사용 소켓을 통하여 간접적으로 접속되게 된다. 그 이유는 검사를 위한 검사장치는 비교적 고가이기 때문에 빈번한 피검사 디바이스와의 접촉으로 인한 마모 또는 손상시 교체가 용이하지 않고 교체비용이 많이 들기 때문이다. 이에 따라 검사용 소켓은 검사장치의 상측에 교체가능하게 장착되고 상기 피검사 디바이스는 검사장치가 아닌 검사용 소켓과 접촉함으로서 상기 검사장치와 전기적으로 연결되게 된다. 따라서, 검사장치로부터 나오는 검사신호는 상기 검사용 소켓을 통하여 상기 피검사 디바이스로 전달되게 되는 것이다.
이러한 검사용 소켓은, 도 1 및 도 2에 도시된 바와 같이, 피검사 디바이스(130)와 검사장치(140)의 사이에 배치되어 피검사 디바이스(130)의 단자(131)와 검사장치(140)의 패드(141)를 서로 전기적으로 연결시키는 검사용 소켓에 있어서, 상기 피검사 디바이스의 단자와 대응되는 위치마다 배치되고 두께방향으로의 도전성을 나타내는 도전부로서, 상기 도전부(110)는 탄성 절연물질(112) 내에 다수의 도전성 입자(111)가 두께방향으로 배열되어 배치되는 도전부(110); 및 상기 각각의 도전부(110)를 지지하면서 절연시키는 절연성 지지부(120)를 포함하여 구성된다. 이때, 상기 검사용 소켓(100)은 검사장치에 탑재된 상태에서 검사장치의 패드와 상기 도전부가 서로 접촉되어 있으며, 피검사 디바이스는 검사용 소켓의 도전부에 접촉될 수 있도록 구성된다.
인서트에 의하여 이동되어 오는 피검사용 디바이스는 상기 검사용 소켓의 도전부에 접촉됨으로서, 상기 검사용 소켓에 안착되고, 이후에 검사장치로부터 소정의 전기적인 신호가 인가되면 그 신호는 검사용 소켓을 거쳐서 피검사용 디바이스로 전달됨으로서 소정의 전기적인 검사가 수행된다.
한편, 검사용 소켓의 도전부는 탄성 절연물질 내부에 다수의 도전성 입자가 배열되어 구성되는데, 이때 피검사 디바이스의 단자가 빈번하게 상기 도전부에 접촉된다. 이와 같이 피검사 디바이스의 단자가 빈번하게 도전부에 접촉되면 절연물질 내에 분포되어 있는 도전성 입자는 쉽게 외부로 이탈될 수 있다. 특히, 도전성 입자는 구형으로 이루어지게 되는데, 이와 같이 구형의 도전성 입자는 쉽게 절연물질로부터 이탈되게 된다. 이와 같이 도전성 입자가 이탈되는 경우에는 전체적인 도전성능을 저해하게 되고 이에 따라서 전체적인 검사의 신뢰성에 영향을 미치게 되는 단점이 있다.
한편, 종래의 구형 도전성 입자의 문제점을 해결하기 위한 기술로서, 기둥형 도전성 입자를 포함한 검사용 소켓이 본 출원인에 의하여 출원하여 등록된 등록특허 제1019721호에 개시되어 있다. 이러한 검사용 소켓은 도 3에 도시된 바와 같이 다수의 기둥형 도전성 입자(211)이 절연성 탄성 절연물질 내에 포함되어 있는 도전부(210)과, 상기 도전부(210)를 지지하는 절연성 지지부(220)을 포함한다. 이러한 검사용 소켓(200)은 도전부(210) 내부에 기둥형 도전성 입자(211)가 분포되어 있어서 인접한 도전성 입자(211)와의 접촉면적인 증가되어 전체적인 전기적 저항이 감소하고 이에 따라 안정적인 전기적 접속을 가능한 장점이 있다. 또한, 각 기둥형 도전성 입자들은 종래의 구형 도전성 입자에 비하여 탄성 절연물질과 접하고 있는 표면적이 넓기 때문에 탄성 물질에 강하게 접착되어 있어 반복적인 테스트 과정에서도 탄성 절연물질로부터 이탈될 염려가 적은 장점이 있게 된다.
그러나 이러한 기둥형 도전성 입자는 구형 도전성 입자에 비하여 도전성능이 향상되는 점이 있으나, 도전부 내에 밀집되어 있는 도전성 입자들이 상하 엇갈린 위치에 놓이게 되는 경우에는 도전부가 가압되는 과정에서 상하 도전성 입자들의 접촉이 어렵게 되어 불안정한 접촉을 유발할 염려가 있게 된다. 특히 이러한 문제는 최근 도전부 간의 거리가 작아지는 경향을 보이는 최근 경향에 비추어볼 때 더욱 중요한 문제로 대두되게 되는 것이다.
본 발명은 상술한 문제점을 해결하기 이하여 창출된 것으로서, 더욱 상세하게는 빈번한 접촉과정에서 도전부로부터 이탈되는 것을 방지하고 도전부가 압축 및 팽창되는 과정에서 도전성 입자들이 상호 확실한 전기적 접속을 가능하게 할 수 있는 검사용 소켓 및 도전성 입자를 제공하는 것을 목적으로 한다.
상술한 목적을 달성하기 위한 검사용 소켓은, 피검사 디바이스와 검사장치 사이에 배치되어 상기 피검사 디바이스의 단자와 검사장치의 패드를 서로 전기적으로 접속시키는 검사용 소켓에 있어서,
상기 피검사 디바이스의 단자와 대응되는 위치마다 면방향으로 서로 이격되어 배치되며, 탄성 절연물질 내에 다수의 도전성 입자가 두께방향으로 정렬되어 있는 복수의 도전부와,
서로 이격된 복수의 도전부들 사이에 배치되어 각각의 도전부들을 지지하고 상기 도전부들을 면방향으로 절연시키는 절연성 지지부를 포함하되,
상기 도전성 입자는,
기둥형의 몸통부; 및
상기 몸통부의 상단으로부터 적어도 둘 이상 돌출되어 있는 돌기부를 포함하되,
서로 인접한 돌기부 사이에는 상기 몸통부를 향하여 오목하게 들어간 홈부가 마련되어 있고,
서로 인접한 돌기부에서 서로 마주보는 내면들 사이의 각도는 90°미만인 예각을 이룰 수 있다.
상기 검사용 소켓에서,
상기 몸통부는, 자장에 의하여 탄성 절연물질 내에 정렬될 때 각각의 도전부가 두께방향으로 세워질 수 있는 형상과 치수를 가질 수 있다.
상기 검사용 소켓에서,
상기 몸통부의 상단에서 하단까지의 상하방향 길이를 "h"라 하고, 상기 상하방향 길이와 직각인 좌우방향 길이를 "w"라고 할 때, h/w는 1보다 클 수 있다.
상기 검사용 소켓에서,
상기 몸통부의 두께를 "d"라고 하였을 때, w/d는 1보다 클 수 있다.
상기 도전성 입자는, 인접한 도전성 입자의 돌기부가 홈부에 삽입되었을 때 상호간 적어도 2점에서 접촉될 수 있도록 돌기의 길이 및 홈부의 형상이 규정될 수 있다.
상기 검사용 소켓에서,
서로 인접한 도전성 입자들이 상호결합되었을 때 어느 한 도전성 입자의 돌기부의 단부 및 다른 도전성 입자의 돌기부의 단부는 상호 내면들에 각각 접촉될 수 있다.
상기 검사용 소켓의 상기 도전성 입자에서, 서로 인접한 돌기부와 마주보는 면들은 몸통부와 근접한 방향으로 갈수록 서로간의 거리가 좁아지도록 경사진 경사면일 수 있다.
상기 검사용 소켓에서,
상기 몸통부의 상단과 하단 사이에는 측면이 마련되어 있으며, 상기 측면은 상단으로부터 중앙으로 갈수록 오목하게 패여질 수 있다.
상기 검사용 소켓에서,
상기 몸통부의 측면에는 다수의 요철이 마련될 수 있다.
상기 검사용 소켓에서,
상기 돌기부는 상기 몸통부의 하단으로부터 적어도 둘 이상 돌출될 수 있다.
상기 검사용 소켓에서,
상기 몸통부의 상단과 하단에 배치된 돌기부들은 몸통부에 대하여 서로 대칭적인 형상을 가질 수 있다.
상술한 목적을 달성하기 위한 본 발명의 검사용 소켓은, 피검사 디바이스와 검사장치 사이에 배치되어 상기 피검사 디바이스의 단자와 검사장치의 패드를 서로 전기적으로 접속시키는 검사용 소켓에 있어서,
상기 피검사 디바이스의 단자와 대응되는 위치마다 면방향으로 서로 이격되어 배치되며, 탄성 절연물질 내에 다수의 도전성 입자가 두께방향으로 정렬되어 있는 복수의 도전부와,
서로 이격된 복수의 도전부들 사이에 배치되어 각각의 도전부들을 지지하고 상기 도전부들을 면방향으로 절연시키는 절연성 지지부를 포함하되,
상기 도전성 입자는,
기둥형의 몸통부; 및
상기 몸통부의 상단으로부터 적어도 둘 이상 돌출되어 있는 돌기부를 포함하되,
서로 인접한 돌기부 사이에는 상기 몸통부를 향하여 오목하게 들어간 홈부가 마련되어 있고,
서로 인접한 돌기부에서 서로 마주보는 내면들 사이의 각도는 90°이하이다.
상술한 목적을 달성하기 위한 본 발명의 도전성 입자는, 피검사 디바이스와 검사장치 사이에 배치되어 상기 피검사 디바이스의 단자와 검사장치의 패드를 서로 전기적으로 접속시키는 검사용 소켓에 사용되는 도전성 입자로서,
상기 도전성 입자는 상기 검사용 소켓의 도전부 내에 두께방향으로 정렬되되, 탄성 절연물질 내에 다수개가 배치되고, 피검사 디바이스의 단자가 도전부를 가압하게 되면 그 내부에 배치되어 있는 도전성 입자들이 서로 접촉하여 도전부를 도통가능한 상태로 이루게 하고,
상기 도전성 입자는,
기둥형의 몸통부; 및
상기 몸통부의 상단으로부터 적어도 둘 이상 돌출되어 있는 돌기부를 포함하되,
서로 인접한 돌기부 사이에는 상기 몸통부를 향하여 오목하게 들어간 홈부가 마련되어 있고,
서로 인접한 돌기부에서 서로 마주보는 내면들 사이의 각도는 90°미만인 예각을 이룬다.
상기 도전성 입자에서, 상기 몸통부는, 자장에 의하여 탄성 절연물질 내에 정렬될 때 두께방향으로 세워질 수 있도록 일방향으로 길게 연장될 수 있다.
상기 도전성 입자에서, 상기 돌기부는, 상기 몸통부의 하단으로부터 적어도 둘 이상 돌출될 수 있다.
상술한 목적을 달성하기 위한 본 발명의 도전성 입자는,
피검사 디바이스와 검사장치 사이에 배치되어 상기 피검사 디바이스의 단자와 검사장치의 패드를 서로 전기적으로 접속시키는 검사용 소켓에 사용되는 도전성 입자로서,
상기 도전성 입자는 상기 검사용 소켓의 도전부 내에 두께방향으로 정렬되되, 탄성 절연물질 내에 다수개가 배치되고, 피검사 디바이스의 단자가 도전부를 가압하게 되면 그 내부에 배치되어 있는 도전성 입자들이 서로 접촉하여 도전부를 도통가능한 상태로 이루게 하고,
상기 도전성 입자는,
기둥형의 몸통부; 및
상기 몸통부의 상단으로부터 적어도 둘 이상 돌출되어 있는 돌기부를 포함하되,
서로 인접한 돌기부 사이에는 상기 몸통부를 향하여 오목하게 들어간 홈부가 마련되어 있고,
서로 인접한 돌기부에서 서로 마주보는 내면들 사이의 각도는 90°이하이다.
본 발명에 따른 검사용 소켓은 도전부 내부의 도전성 입자들이 기둥형 몸통부의 단부로부터 돌출된 복수의 돌기부를 마련하고 있기 때문에, 전기적 검사과정에서 도전부들이 압축되는 경우에도 상호 결합되어 있는 도전성 입자들이 상호 안정적인 접촉을 유지할 수 있다는 장점이 있게 된다.
또한, 본 발명에 따른 검사용 소켓은 도전성 입자에서 서로 마주보는 내면들 사이의 각도가 90°미만인 예각을 이루고 있어서 상호 결합된 도전성 입자들이 두 점에서 접촉을 유지 할 수 있게 되어 접촉 안정성이 우수하다는 장점이 있다.
도 1은 종래기술의 검사용 소켓을 도시한 도면.
도 2는 도 1 2의 작동모습을 나타내는 도면.
도 3은 또 다른 종래기술의 검사용 소켓을 도시한 도면.
도 4는 본 발명의 일 실시예에 따른 검사용 소켓을 도시한 도면.
도 5는 도 4의 작동모습을 나타내는 도면.
도 6은 도 4의 검사용 소켓의 도전부 내에 배치되는 도전성 입자의 사시도.
도 7은 도 6의 도전성 입자들이 도전부 내에서 서로 결합되어 있는 일예를 나타내는 도면.
도 8은 도 6의 도전성 입자들이 도전부 내부에서 작동하는 모습을 나타내는 예시도.
도 9는 본 발명의 다른 실시예에 따른 도전성 입자의 도면.
도 10은 본 발명의 또 다른 실시예에 따른 도전성 입자의 도면.
도 11 및 도 12은 도전성 입자의 결합형태를 나타내는 도면.
이하, 본 발명의 일 실시예에 따른 검사용 소켓을 첨부된 도면을 참조하면서 상세하게 설명한다.
본 발명의 바람직한 실시예에 따른 검사용 소켓(10)은 소정의 두께를 가지는 시트의 형태로 이루어지되, 그 시트는 면방향으로의 전기적인 흐름은 없고 두께방향으로의 전기적인 흐름만을 가능하게 하여 피검사 디바이스(130)의 단자(131)과 검사장치(140)의 패드(141)를 상하방향으로 전기적 연결을 가능하게 하는 것이다. 이러한 검사용 소켓(10)은 피검사 디바이스(130)의 전기적 검사를 수행하기 위하여 사용된다.
상기 검사용 소켓(10)은, 도전부(20)와 절연성 지지부(30)로 이루어진다. 이때 도전부(20)는 두께방향으로 연장되어 있어서 두께방향으로 가압되었을 때 압축되면서 두께방향으로 전기적 흐름이 가능하게 하고, 각각의 도전부(20)는 서로 면방향으로 이격되어 있고 그 사이에 절연성을 가지는 절연성 지지부(30)가 배치되어 있어서 도전부(20)들 사이에는 전기적 흐름이 차단되게 된다. 상기 도전부(20)와 절연성 지지부(30)에 대한 구체적인 모습은 아래와 같다.
상기 도전부(20)는 그 상단이 상기 피검사 디바이스(130)의 단자(131)과 접촉가능하며 하단은 상기 검사장치(140)의 패드(141)와 접촉될 수 있도록 되어 있으며, 그 상단과 하단사이에는 다수의 도전성 입자(21)가 탄성 절연물질 내에 상하방향으로 배향되어 있도록 형성된다. 이러한 다수의 도전성 입자(21)들은 도전부(20)가 피검사 디바이스(130)에 의하여 가압되는 경우 서로 접촉하면서 전기적인 통전을 가능하게 하는 기능을 수행한다. 즉, 피검사 디바이스(130)에 의하여 가압되기 전에는 도전성 입자(21)들이 미세하게 이격되거나 접촉되어 있으며, 도전부(20)가 가압되어 압축되면 도전성 입자(21)들이 서로 확실하게 접촉됨으로서 전기적 도통을 가능하게 하는 것이다.
구체적으로 그 도전부(20)는 탄성 절연물질 내에 다수의 도전성 입자(21)가 상하방향으로 밀집되어 배열된 형태를 가지게 되며, 각각의 도전부(20)는 대략적으로 피검사 디바이스(130)의 단자(131)과 대응되는 위치에 배열되어 있게 된다.
상기 탄성 절연물질은 가교 구조를 갖는 절연성 고분자 물질이 바람직하다. 이 가교 고분자 물질을 얻기 위해서 이용할 수 있는 경화성 고분자 물질 형성 재료로는 여러가지를 사용할 수 있고, 그 구체예로는 폴리부타디엔고무, 천연고무, 폴리이소프렌고무, 스티렌-부타디엔 공중합체 고무, 아크릴로니트릴-부타디엔 공중합체 고무와 같은 공액 디엔계 고무 및 이들의 수소 첨가물, 스티렌-부타디엔-디엔 블럭 공중합체 고무, 스티렌-이소프렌 블럭 공중합체 등의 블럭 공중합체 고무 및 이들의 수소 첨가물, 클로로프렌, 우레탄고무, 폴리에스테르계고무, 에피클로로히드린 고무, 실리콘 고무, 에틸렌-프로필렌 공중합체 고무, 에틸렌-프로필렌-디엔 공중합체 고무 등을 들 수 있다. 이중에서, 성형 가공성 및 전기 특성의 관점에서 실리콘 고무를 사용하는 것이 바람직하다.
이러한 실리콘 고무로는 액상 실리콘 고무를 가교 또는 축합한 것이 바람직하다. 액상 실리콘 고무는 그 점도가 전단 속도 10-1초에서 105 포어즈 이하인 것이 바람직하고, 축합형인 것, 부가형인 것, 비닐기 및 히드록실기를 함유하는 것 중의 어느 하나일 수 있다. 구체적으로는, 디메틸실리콘 생고무, 메틸비닐실리콘 생고무, 메틸페닐비닐실리콘 생고무 등을 들 수 있다.
상기 도전성 입자(21)는 전체적으로 기둥형태를 가지는 기둥형의 몸통부(22)와, 상기 몸통부(22)의 상단 및 하단으로부터 각각 돌출되는 돌기부(23)를 포함하여 구성된다.
상기 몸통부(22)는, 대략 기둥형태를 가지고 있으며 구체적으로는 두께가 얇은 사각기둥형태를 가지고 있게 된다. 한편, 몸통부(22)에 대해서는 사각기둥 형태를 예시하고 있으나, 이에 한정되는 것은 아니며 다양한 다각기둥형상이 가능함은 물론이다.
이러한 몸통부(22)는 자장에 의하여 탄성 물질 내에 정렬될 때 각각의 도전부(20)가 두께방향으로 세워질 수 있는 형상과 치수를 가지는 것이 좋다. 즉, 검사용 소켓(10)을 제조하는 과정은 소정의 금형 내에 다수의 도전성 입자(21)가 분포되어 있는 액상 실리콘 고무를 충전한 후에 자장을 일방향으로 가해서 도전성 입자(21)들이 도전부(20)와 대응되는 위치마다 일렬 배치되도록 하게 하는데, 이 과정에서 기둥형 몸통부(22)가 일방향으로 세워질 수 있도록 몸통부(22)의 치수를 결정하는 것이 중요하다. 이를 위하여 몸통부(22)는 일방향으로 길게 연장된 기둥형태를 가지는 것이 좋다.
구체적으로, 상기 몸통부(22)의 상단에서 하단까지의 상하방향 길이를 "h"라 하고, 상기 상하방향 길이와 직각인 좌우방향 길이를 "w"라고 할 때, h/w는 1보다 큰 것이 좋다. 이때 h/w가 1보다 큰 경우에는 몸통부(22)의 상하방향의 길이가 폭보다 커져서 몸통부(22)가 두께방향과 평행한 방향으로 세워지는 것이 용이하고 이에 따라서 두께방향으로 정렬된 도전성 입자(21)는 몸통부(22)로부터 돌출된 돌기부(23)가 인접한 도전성 입자(21)들의 돌기부(23)들과 서로 용이하게 결합될 수 있는 것이다. 이와 반대로 h/w가 1보다 작은 경우에는 도 11에 도시된 바와 같이 도전성 입자(21)들이 제각각으로 배치되게 되어 돌기부(23)들 간의 결합이 어렵다는 단점이 있게 된다.
또한, 몸통부(22)의 두께를 "d"라고 하였을 때 w/d는 1보다 큰 것도 좋다. 즉, 몸통부(22)의 수평방향 단면적이 정사각형인 것보다는 직사각형의 형태를 가지는 것이 좋다. 이와 같이 몸통부(22)의 w/d 가 1보다 큰 경우에는 도전성 입자(21)의 방향이 특정방향으로 이루어질 수 있게 된다. 즉, 도전성 입자(21)들이 몸통부(22)의 중심축(몸통부(22)의 상하 길이방향과 평행하면서 몸통부(22)의 중심을 지나는 축)에 대하여 무작위적으로 회전하지 않고 특정한 방향으로 배열되도록 하여 상하 도전성 입자(21)들 간의 돌기부(23) 간 결합이 보다 용이하게 될 수 있다. 이에 반해서 w/d가 1보다 작은 경우 도 12에 도시된 바와 같이 도전성 입자(21)들이 서로 제각각으로 회전하고 있어서 돌기부(23)들 간의 결합이 어렵게 되는 것이다. 이때, w/d는 1보다 큰 것이 바람직하지만 2 이상인 것이 바람직하고 더욱 바람직하게는 5 이상인 것이 좋다.
위와 같은 몸통부(22) 치수를 가지는 경우에는 도전성 입자(21)들이 서로 정렬되었을 때 도전성 입자(21)들의 돌기부(23)들이 용이하게 결합할 수 있게 된다.
또한, 상기 몸통부(22)의 상단과 하단 사이에는 상단면과 하단면을 연결하는 측면(221)이 마련되어 있으며, 상기 측면(221)은 상부로부터 중앙으로 갈수록 오목하게 패여져 있게 된다. 즉, 몸통부(22)의 측면(221) 중앙이 오목하게 패여진 부분에도 탄성 절연물질이 채워져서 도전성 입자(21)가 도전부(20)로부터 이탈하는 것을 최소화할 수 있게 된다.
상기 돌기부(23)는, 상기 몸통부(22)의 상단으로부터 돌출되는 것으로서, 적어도 둘 이상 돌출되어 있게 된다. 또한, 상기 돌기부(23)는 몸통부(22)의 하단으로부터 돌출될 수 있는데, 상기 몸통부(22) 상단으로부터 돌출되는 돌기부(23)와 대응되는 모양과 형상을 가지게 된다. 한편, 서로 인접한 돌기부(23) 사이에는 상기 몸통부(22)를 향하여 오목하게 들어간 홈부(232)가 마련되어 있게 된다. 이때, 서로 인접한 돌기부(23)에서 홈부(232) 내에 배치되는 서로 마주보는 내면(231)들 사이의 각도(θ)는 90°미만인 예각을 이루고 있는 것이 바람직하다. 이러한 내면(231)들 사이의 각도(θ)는 90°미만이라면 어느 각도라도 좋으나 바람직하게는 30 ~ 85°가 좋으며, 더욱 바람직하게는 40 ~ 70°인 것이 좋다.
또한, 인접한 도전성 입자(21)의 돌기부(23)가 홈부(232)에 삽입되었을 때 상호간 적어도 2점에서 접촉될 수 있도록 돌기의 길이 및 홈부(232)의 형상이 규정되는 것이 바람직하다. 구체적으로 서로 인접한 도전성 입자(21)들이 상호결합되었을 때 어느 한 도전성 입자(21)의 돌기부(23)의 단부 및 다른 도전성 입자(21)의 돌기부(23)의 단부는 상호 내면(231)들에 각각 접촉되는 것이 바람직하며, 이러한 돌기부(23)를 가진 도전성 입자(21)들이 서로 도전부(20) 내에 정렬되었을 때, 도전성 입자(21)들은 도 7에 도시된 바와 같이 돌기부(23)가 서로 결합된 상태에서 상하정렬될 수 있게 된다.
구체적으로 검사용 소켓(10)을 제작하였을 때 자장에 의하여 자연적으로 2개의 도전성 입자(21) 중에서 상측에 배치된 도전성 입자(21)의 돌기부(23)는 하측에 배치된 도전성 입자(21)의 돌기부(23) 사이의 홈부(232) 내에 삽입될 수 있다. 이 과정에서 피검사 디바이스(130)의 패드(141)가 상측에서 도전부(20)를 가압하는 경우 도 8에 도시된 바와 같이, 도전부(20) 내에서 결합된 도전성 입자(21) 중 상측의 도전성 입자가 소정각도로 회전하면서도 하측의 도전성 입자(21)와의 결합관계가 그대로 유지되게 된다. 즉, 상기 도전성 입자(21)에서 인접한 돌기들이 서로 마주하는 면을 내면(231)이라고 하였을 때, 서로 인접한 도전성 입자(21)들이 상호결합되었을 때 어느 한 도전성 입자(21)의 돌기부(23)의 단부 및 다른 도전성 입자(21)의 돌기부(23)의 단부는 상호 내면(231)들에 각각 접촉되게 되어 전체적인 전기적 연결이 양호하게 되는 것이다. 돌기부(23)의 내면(231) 사이의 각도가 예각을 이루고, 홈부(232)와 돌기부(23)가 서로 깊게 결합되는 구조를 이루고 있어서 돌기부(23)간의 결합력이 우수하게 되는 것이다.
상기 도전성 입자(21)에서, 서로 인접한 돌기부(23)와 마주보는 내면(231)들은 몸통부(22)와 근접한 방향으로 갈수록 서로간의 거리가 좁아지도록 경사진 경사면을 가지고 있어서 피검사 디바이스(130)의 의한 가압력이 해제되어 도전부(20)가 원상태로 복원되는 경우 경사면을 따라서 도전성 입자(21)가 회전하면서 도 7과 같은 상태로 될 수 있다.
도전성 입자(21)의 형상 이외에 소재에 대해 설명하면 다음과 같다.
도전성 입자(21)의 소재는 자기력선을 작용시킴으로써 쉽게 상하방향으로 배열하도록 배향시킬 수 있도록 자성을 나타내는 것을 사용된다. 이러한 도전성 입자(21)의 구체예로는 니켈, 철, 코발트 등의 자성을 나타내는 금속으로 이루어지는 입자 또는 이들 합금으로 이루어지는 입자 또는 이들 금속을 함유하는 입자, 또는 이들 입자를 코어 입자로 하여 해당 코어 입자의 표면에 금, 은, 팔라듐, 로듐과 같이 산화되기 어려운 도전성 금속의 도금을 실시한 것이 사용될 수 있다.
한편, 도전성 입자(21)의 코어로서 반드시 자성을 가지는 것을 사용할 필요는 없으며 비자성 금속입자, 글래스, 카본 등의 무기 물질로 이루어지는 입자, 또는 폴리스티렌, 디비닐벤젠에 의해서 가교된 폴리스티렌 등의 중합체로 이루어지는 입자 및 탄성 섬유, 유리 섬유를 단섬유를 분쇄공정을 거쳐 일정한 길이이하로 제작하여 사용된 것을 코어 입자로 하고, 해당 코어 입자의 표면에 니켈, 코발트, 니켈-코발트 합금 등의 도전성 자성체의 도금을 실시한 것, 또는 코어 입자에 도전성 자성체 및 산화되기 어려운 도전성 금속을 피복한 것을 사용할 수 있음은 물론이다.
상기 절연성 지지부(30)는 각각의 도전부(20)를 서로 절연시키면서 지지하는 것으로서, 상기 도전부(20)의 탄성 절연물질과 동일한 실리콘 고무를 사용하는 것이 바람직하나, 이에 한정되는 것은 아니다. 한편, 상기 탄성 절연물질과 반드시 동일한 소재를 사용할 필요는 없으며 다른 절연성이 있는 소재를 사용하는 것도 가능하다.
이러한 본 실시예에 따른 검사용 소켓(10)은 다음과 같이 제작된다.
우선, 유동성의 탄성 물질 내에 도전성 입자(21)가 분포되어 있는 성형용 재료를 준비하고, 그 성형용 재료를 금형(미도시) 내에 삽입한다. 이후에, 상기 성형용 재료에 그 상하방향으로 자장을 가하여 상기 도전성 입자(21)가 자기력선과 평행한 상하방향으로 배열될 수 있도록 한다. 이후에는 성형용 재료를 경화시켜 검사용 소켓(10)의 제조를 완료하게 된다.
이러한 본 발명의 바람직한 실시예에 따른 검사용 소켓(10)을 이용하여 다음과 같이 피검사 디바이스(130)의 검사를 수행할 수 있다.
먼저, 검사장치(140)의 위에 검사용 소켓(10)을 탑재한다. 구체적으로는 각각의 도전부(20)의 하단이 상기 검사장치(140)의 패드(141)에 접촉하도록 상기 검사장치(140)를 배치시킨다. 이후에, 상기 피검사 디바이스(130)를 하강시키면서 상기 피검사 디바이스(130)의 단자(131)이 상기 도전부(20)의 상단에 접촉하도록 한다. 이때 피검사 디바이스(130)를 더욱 하강시키면 상기 피검사 디바이스(130)는 도전부(20)를 가압하게 되면서, 상기 도전부(20) 내의 도전성 입자(21)들은 각각의 양단이 서로 접촉하여 전기적으로 연결가능한 상태를 이루게 되는 것이다. 이때, 검사장치(140)로부터 소정의 전기적 신호가 인가되면 그 신호는 검사용 소켓(10)을 거쳐서 피검사 디바이스(130)로 전달되어 테스트가 진행된다.
이러한 본 발명의 바람직한 실시예에 따른 테스트 소켓은 다음과 같은 효과를 가진다.
먼저, 몸통부(22)의 종횡비(h/w)가 1:1 이상인 막대형으로 되어 있어 검사용 소켓(10)의 제조과정에서 상하 방향으로 정렬이 잘 되는 장점이 있다.
또한, 잘 세워지는 몸통부(22)의 상하단에는 도전성 입자(21)들 간의 결합을 용이하게 하는 돌기부(23)를 마련하고 있어서, 도전부(20) 내에서 도전성 입자(21)들이 상호 결합되어 있으며, 이러한 결합 구조로 인하여 피검사 디바이스(130)의 가압에 의하여 도전부(20)가 압축되는 경우에도 도전성 입자(21)들은 일정한 접촉을 유지할 수 있어 전도성을 유지되는 장점이 있다.
또한, 몸통부(22)의 중앙에 오목한 부분을 마련시켜 놓았기 때문에 탄성 절연물질과의 접촉 면적이 증가하여 도전부(20) 내에서 이탈할 염려가 적다는 장점이 있다.
또한, 도전성 입자(21)의 몸통부(22)의 입자의 두께(d)가 너비(w)보다 작아 수직 상하 방향으로 정렬에 유리하고 이에 따라서 도전성 입자(21)들 간의 결합이 보다 용이하게 될 수 있는 장점이 있다.
또한, 서로 인접한 돌기부(23)에서 서로 마주보는 내면(231)들 사이의 각도는 90°미만인 예각을 이루고 있어 홈부(232)와 돌기부(23)가 서로 깊게 결합되는 구조를 가져서 도전성 입자(21)간의 결합력이 우수하다는 장점이 있다.
또한, 돌기부(23) 사이의 홈부(232)와 돌기부(23)의 결합으로 인하여 작동시에도 적어도 두 점에서 접촉을 유지 할 수 있어 접촉 안정성이 우수하다는 장점이 있다.
이러한 본 발명의 바람직한 실시예에 따른 테스트 소켓은 다음과 같이 변형되는 것도 가능하다.
상술한 실시예는 직선적으로 경사진 측면을 가지는 것을 예시하고 있으나, 도 9에 도시된 바와 같이 도전성 입자(21')의 상하 동일한 폭을 가지는 측면 상에 요철(222)이 마련되는 것이 가능함은 물론이다.
또한, 도 10에 도시된 바와 같이 도전성 입자(21'')의 중앙이 오목하게 패여진 측면상에 복수의 요철(223)이 마련되는 것도 가능하다. 이와 같이 측면 상에 다수의 요철이 마련되어 있게 되면 요철 사이에 탄성 절연물질이 채워져서 도전성 입자의 이탈을 확실하게 방지할 수 있는 장점이 있게 된다.
한편, 상술한 실시예에서는, 서로 인접한 돌기부에서 서로 마주보는 내면들 사이의 각도는 90°미만인 것을 예시하였으나, 이에 한정되는 것은 아니며 서로 인접한 돌기부에서 서로 마주보는 내면들 사이의 각도가 90°를 포함하는 90°이하인 것이 가능함은 물론이다.
이상에서 바람직한 실시예를 들어 본 발명을 상세하게 설명하였으나, 본 발명은 반드시 이러한 실시예들 및 변형예에 한정되는 것은 아니고 본 발명의 기술사상을 벗어나지 않는 범위 내에서 다양하게 변형 실시될 수 있다.

Claims (16)

  1. 피검사 디바이스와 검사장치 사이에 배치되어 상기 피검사 디바이스의 단자와 검사장치의 패드를 서로 전기적으로 접속시키는 검사용 소켓에 있어서,
    상기 피검사 디바이스의 단자와 대응되는 위치마다 면방향으로 서로 이격되어 배치되며, 탄성 절연물질 내에 다수의 도전성 입자가 두께방향으로 정렬되어 있는 복수의 도전부와,
    서로 이격된 복수의 도전부들 사이에 배치되어 각각의 도전부들을 지지하고 상기 도전부들을 면방향으로 절연시키는 절연성 지지부를 포함하되,
    상기 도전성 입자는,
    기둥형의 몸통부; 및
    상기 몸통부의 상단으로부터 적어도 둘 이상 돌출되어 있는 돌기부를 포함하되,
    서로 인접한 돌기부 사이에는 상기 몸통부를 향하여 오목하게 들어간 홈부가 마련되어 있고,
    서로 인접한 돌기부에서 서로 마주보는 내면들 사이의 각도는 90°미만인 예각을 이루고 있는 것을 특징으로 하는 검사용 소켓.
  2. 제1항에 있어서,
    상기 몸통부는, 자장에 의하여 탄성 절연물질 내에 정렬될 때 각각의 도전부가 두께방향으로 세워질 수 있는 형상과 치수를 가지는 것을 특징으로 하는 검사용 소켓.
  3. 제2항에 있어서,
    상기 몸통부의 상단에서 하단까지의 상하방향 길이를 "h"라 하고, 상기 상하방향 길이와 직각인 좌우방향 길이를 "w"라고 할 때, h/w는 1보다 큰 것을 특징으로 하는 검사용 소켓.
  4. 제3항에 있어서,
    상기 몸통부의 두께를 "d"라고 하였을 때, w/d는 1보다 큰 것을 특징으로 하는 검사용 소켓.
  5. 제1항에 있어서,
    상기 도전성 입자는, 인접한 도전성 입자의 돌기부가 홈부에 삽입되었을 때 상호간 적어도 2점에서 접촉될 수 있도록 돌기의 길이 및 홈부의 형상이 규정되는 것을 특징으로 하는 검사용 소켓.
  6. 제5항에 있어서,
    서로 인접한 도전성 입자들이 상호결합되었을 때 어느 한 도전성 입자의 돌기부의 단부 및 다른 도전성 입자의 돌기부의 단부는 상호 내면들에 각각 접촉되는 것을 특징으로 하는 검사용 소켓.
  7. 제1항에 있어서,
    상기 도전성 입자에서, 서로 인접한 돌기부와 마주보는 면들은 몸통부와 근접한 방향으로 갈수록 서로간의 거리가 좁아지도록 경사진 경사면인 것을 특징으로 하는 검사용 소켓.
  8. 제1항에 있어서,
    상기 몸통부의 상단과 하단 사이에는 측면이 마련되어 있으며, 상기 측면은 상단으로부터 중앙으로 갈수록 오목하게 패여진 것을 특징으로 하는 검사용 소켓.
  9. 제1항에 있어서,
    상기 몸통부의 측면에는 다수의 요철이 마련되어 있는 것을 특징으로 하는 검사용 소켓.
  10. 제1항에 있어서,
    상기 돌기부는 상기 몸통부의 하단으로부터 적어도 둘 이상 돌출되어 있는 것을 특징으로 하는 검사용 소켓.
  11. 제10항에 있어서,
    상기 몸통부의 상단과 하단에 배치된 돌기부들은 몸통부에 대하여 서로 대칭적인 형상을 가지는 것을 특징으로 하는 검사용 소켓.
  12. 피검사 디바이스와 검사장치 사이에 배치되어 상기 피검사 디바이스의 단자와 검사장치의 패드를 서로 전기적으로 접속시키는 검사용 소켓에 있어서,
    상기 피검사 디바이스의 단자와 대응되는 위치마다 면방향으로 서로 이격되어 배치되며, 탄성 절연물질 내에 다수의 도전성 입자가 두께방향으로 정렬되어 있는 복수의 도전부와,
    서로 이격된 복수의 도전부들 사이에 배치되어 각각의 도전부들을 지지하고 상기 도전부들을 면방향으로 절연시키는 절연성 지지부를 포함하되,
    상기 도전성 입자는,
    기둥형의 몸통부; 및
    상기 몸통부의 상단으로부터 적어도 둘 이상 돌출되어 있는 돌기부를 포함하되,
    서로 인접한 돌기부 사이에는 상기 몸통부를 향하여 오목하게 들어간 홈부가 마련되어 있고,
    서로 인접한 돌기부에서 서로 마주보는 내면들 사이의 각도는 90°이하인 것을 특징으로 하는 검사용 소켓.
  13. 피검사 디바이스와 검사장치 사이에 배치되어 상기 피검사 디바이스의 단자와 검사장치의 패드를 서로 전기적으로 접속시키는 검사용 소켓에 사용되는 도전성 입자로서,
    상기 도전성 입자는 상기 검사용 소켓의 도전부 내에 두께방향으로 정렬되되, 탄성 절연물질 내에 다수개가 배치되고, 피검사 디바이스의 단자가 도전부를 가압하게 되면 그 내부에 배치되어 있는 도전성 입자들이 서로 접촉하여 도전부를 도통가능한 상태로 이루게 하고,
    상기 도전성 입자는,
    기둥형의 몸통부; 및
    상기 몸통부의 상단으로부터 적어도 둘 이상 돌출되어 있는 돌기부를 포함하되,
    서로 인접한 돌기부 사이에는 상기 몸통부를 향하여 오목하게 들어간 홈부가 마련되어 있고,
    서로 인접한 돌기부에서 서로 마주보는 내면들 사이의 각도는 90°미만인 예각을 이루고 있는 것을 특징으로 하는 도전성 입자.
  14. 제13항에 있어서,
    상기 몸통부는, 자장에 의하여 탄성 절연물질 내에 정렬될 때 두께방향으로 세워질 수 있도록 일방향으로 길게 연장되어 있는 것을 특징으로 하는 도전성 입자.
  15. 제13항에 있어서,
    상기 돌기부는, 상기 몸통부의 하단으로부터 적어도 둘 이상 돌출되어 있는 것을 특징으로 하는 도전성 입자.
  16. 피검사 디바이스와 검사장치 사이에 배치되어 상기 피검사 디바이스의 단자와 검사장치의 패드를 서로 전기적으로 접속시키는 검사용 소켓에 사용되는 도전성 입자로서,
    상기 도전성 입자는 상기 검사용 소켓의 도전부 내에 두께방향으로 정렬되되, 탄성 절연물질 내에 다수개가 배치되고, 피검사 디바이스의 단자가 도전부를 가압하게 되면 그 내부에 배치되어 있는 도전성 입자들이 서로 접촉하여 도전부를 도통가능한 상태로 이루게 하고,
    상기 도전성 입자는,
    기둥형의 몸통부; 및
    상기 몸통부의 상단으로부터 적어도 둘 이상 돌출되어 있는 돌기부를 포함하되,
    서로 인접한 돌기부 사이에는 상기 몸통부를 향하여 오목하게 들어간 홈부가 마련되어 있고,
    서로 인접한 돌기부에서 서로 마주보는 내면들 사이의 각도는 90°이하인 것을 특징으로 하는 도전성 입자.
PCT/KR2017/004870 2016-05-11 2017-05-11 검사용 소켓 및 도전성 입자 WO2017196092A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201780015074.4A CN108780116B (zh) 2016-05-11 2017-05-11 测试插座以及导电颗粒

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160057821A KR101805834B1 (ko) 2016-05-11 2016-05-11 검사용 소켓 및 도전성 입자
KR10-2016-0057821 2016-05-11

Publications (1)

Publication Number Publication Date
WO2017196092A1 true WO2017196092A1 (ko) 2017-11-16

Family

ID=60266654

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/004870 WO2017196092A1 (ko) 2016-05-11 2017-05-11 검사용 소켓 및 도전성 입자

Country Status (4)

Country Link
KR (1) KR101805834B1 (ko)
CN (1) CN108780116B (ko)
TW (1) TWI653454B (ko)
WO (1) WO2017196092A1 (ko)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102195339B1 (ko) * 2019-11-26 2020-12-24 김규선 도전성 입자
KR102204910B1 (ko) * 2019-11-26 2021-01-19 김규선 검사용 소켓
WO2021107484A1 (ko) 2019-11-26 2021-06-03 주식회사 스노우 도전성 입자 및 이를 갖는 검사용 소켓
KR102179457B1 (ko) * 2020-03-25 2020-11-16 (주)티에스이 테스트 소켓 및 이를 포함하는 테스트 장치와, 테스트 소켓의 제조방법
KR102393083B1 (ko) * 2020-08-21 2022-05-03 주식회사 스노우 도전성 입자 및 이를 포함하는 검사용 소켓
KR102474337B1 (ko) 2020-08-28 2022-12-07 주식회사 아이에스시 전기접속용 커넥터
KR20220164169A (ko) * 2021-06-04 2022-12-13 주식회사 스노우 도전성 입자 및 이를 포함하는 검사용 소켓
KR102824329B1 (ko) * 2022-07-21 2025-06-25 주식회사 아이에스시 검사용 커넥터

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050094478A (ko) * 2003-02-05 2005-09-27 센주긴조쿠고교 가부시키가이샤 단자간 접속 방법 및 반도체 장치의 실장 방법
KR20060006282A (ko) * 2004-07-15 2006-01-19 주식회사 현원 휴대용 파일 재생기와 그 재생기에서 파일검색방법
KR20090071312A (ko) * 2007-12-27 2009-07-01 주식회사 아이에스시테크놀러지 판형 도전입자를 포함한 실리콘 콘택터
KR101339166B1 (ko) * 2012-06-18 2013-12-09 주식회사 아이에스시 관통공이 형성된 도전성 입자를 가지는 검사용 소켓 및 그 제조방법
KR101525520B1 (ko) * 2015-02-03 2015-06-03 (주)티에스이 결합 형상의 도전성 입자를 가지는 검사용 소켓

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3769688B2 (ja) 2003-02-05 2006-04-26 独立行政法人科学技術振興機構 端子間の接続方法及び半導体装置の実装方法
KR20060062824A (ko) * 2004-12-06 2006-06-12 주식회사 아이에스시테크놀러지 반도체 패키지 테스트용 실리콘 커넥터
KR101348204B1 (ko) * 2012-12-28 2014-01-10 주식회사 아이에스시 테스트 소켓 및 소켓본체

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050094478A (ko) * 2003-02-05 2005-09-27 센주긴조쿠고교 가부시키가이샤 단자간 접속 방법 및 반도체 장치의 실장 방법
KR20060006282A (ko) * 2004-07-15 2006-01-19 주식회사 현원 휴대용 파일 재생기와 그 재생기에서 파일검색방법
KR20090071312A (ko) * 2007-12-27 2009-07-01 주식회사 아이에스시테크놀러지 판형 도전입자를 포함한 실리콘 콘택터
KR101339166B1 (ko) * 2012-06-18 2013-12-09 주식회사 아이에스시 관통공이 형성된 도전성 입자를 가지는 검사용 소켓 및 그 제조방법
KR101525520B1 (ko) * 2015-02-03 2015-06-03 (주)티에스이 결합 형상의 도전성 입자를 가지는 검사용 소켓

Also Published As

Publication number Publication date
TW201802476A (zh) 2018-01-16
TWI653454B (zh) 2019-03-11
KR101805834B1 (ko) 2017-12-07
KR20170127319A (ko) 2017-11-21
CN108780116B (zh) 2021-01-05
CN108780116A (zh) 2018-11-09

Similar Documents

Publication Publication Date Title
WO2017196093A1 (ko) 검사용 소켓 및 도전성 입자
WO2017196092A1 (ko) 검사용 소켓 및 도전성 입자
WO2017196094A1 (ko) 검사용 소켓 및 도전성 입자
WO2018105896A1 (ko) 검사용 소켓장치
WO2013191432A1 (ko) 관통공이 형성된 도전성 입자를 가지는 검사용 소켓 및 그 제조방법
WO2016126024A1 (ko) 결합 형상의 도전성 입자를 가지는 검사용 소켓
WO2019045426A1 (ko) 검사용 소켓 및 도전성 입자
WO2015012498A1 (ko) 도전성 커넥터 및 그 제조방법
WO2013151316A1 (ko) 고밀도 도전부를 가지는 테스트용 소켓 및 그 제조방법
WO2017023037A1 (ko) 테스트용 소켓
WO2019004661A1 (ko) 포고핀용 탐침부재, 이의 제조 방법 및 이를 포함하는 포고핀
WO2021125679A1 (ko) 검사용 소켓
WO2015156653A1 (ko) 검사용 시트의 제조방법 및 검사용 시트
WO2015102304A1 (ko) 시트형 커넥터 및 전기적 커넥터 장치
WO2013165174A1 (ko) 검사용 탐침장치 및 검사용 탐침장치의 제조방법
WO2021002690A1 (ko) 테스트용 소켓
KR101901982B1 (ko) 검사용 소켓 및 도전성 입자
WO2022045542A1 (ko) 검사용 소켓
WO2018208117A1 (ko) 검사용 소켓
WO2014104782A1 (ko) 테스트 소켓 및 소켓본체
WO2019066365A1 (ko) 전도성 접촉부 및 이를 포함하는 이방 전도성 시트
WO2020022745A1 (ko) 검사용 도전 시트
WO2019045425A1 (ko) 탄소나노튜브가 포함된 검사용 소켓
WO2023128428A1 (ko) 신호 손실 방지용 테스트 소켓
WO2021242078A1 (ko) 전기접속용 커넥터

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17796392

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17796392

Country of ref document: EP

Kind code of ref document: A1