[go: up one dir, main page]

WO2017063295A1 - Oled显示面板及其制作方法 - Google Patents

Oled显示面板及其制作方法 Download PDF

Info

Publication number
WO2017063295A1
WO2017063295A1 PCT/CN2015/099644 CN2015099644W WO2017063295A1 WO 2017063295 A1 WO2017063295 A1 WO 2017063295A1 CN 2015099644 W CN2015099644 W CN 2015099644W WO 2017063295 A1 WO2017063295 A1 WO 2017063295A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
layer
opening
substrate
anode
Prior art date
Application number
PCT/CN2015/099644
Other languages
English (en)
French (fr)
Inventor
石龙强
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US14/907,647 priority Critical patent/US9899462B2/en
Publication of WO2017063295A1 publication Critical patent/WO2017063295A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/13Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing
    • H10K71/135Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing using ink-jet printing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass

Definitions

  • the present application relates to the field of display technologies, and in particular, to an OLED display panel and a method of fabricating the same.
  • OLED Organic Light-Emitting diodes
  • an OLED light-emitting layer is usually formed by using an inkjet printing technology.
  • an OLED display panel includes a pixel unit and a bank layer for separating the pixel units, the isolation layer being a negative photoresist.
  • an isolation layer is disposed on the substrate, and the isolation layer is exposed to obtain a plurality of opening patterns, and the OLED luminescent material is sprayed into the openings to form a luminescent layer of the pixel unit.
  • the exposed opening pattern easily forms a top narrow bottom wide structure as shown in FIG.
  • the OLED luminescent material does not easily enter the opening, resulting in an OLED.
  • the production efficiency of the light-emitting layer is low.
  • the present application provides an OLED display panel and a manufacturing method thereof, which can improve the fabrication efficiency of the OLED light emitting layer.
  • a first aspect of the present application provides an OLED display panel, comprising: a substrate, and an isolation bank layer and a plurality of pixel units disposed on the substrate, the plurality of pixel units being separated by the isolation layer, each The pixel unit includes a cathode, an anode, and a light-emitting layer interposed between the cathode and the anode, the isolation layer is a negative photoresist and is provided with a plurality of openings obtained by exposing and developing the isolation layer, An opening for arranging the luminescent layer of the pixel unit, and a light-transmitting light-enhancing layer disposed between the isolation layer around the opening and the substrate to surround the opening during the exposure and development The light intensity of the isolation layer near the side of the substrate is enhanced to obtain the opening having a top wider than the bottom; wherein the light enhancement layer is composed of a semi-reflective translucent material or a brightness enhancement film; the light enhancement layer extends to The corresponding portion of the bottom of the opening, the extended portion of the light
  • the anode of the pixel unit comprises an ITO electrode
  • the ITO electrode is disposed at the bottom of the opening, and both ends of the ITO electrode are disposed in the isolation layer, and the light enhancement layer is disposed on the ITO electrode Between the substrate and the substrate.
  • the luminescent layer is produced by inkjet printing.
  • a second aspect of the present application provides an OLED display panel including a substrate, and an isolation bank layer and a plurality of pixel units disposed on the substrate, the plurality of pixel units being separated by the isolation layer, each of the The pixel unit includes a cathode, an anode, and a light-emitting layer interposed between the cathode and the anode, the isolation layer is a negative photoresist and is provided with a plurality of openings for exposing and developing the isolation layer, and the opening is used for the opening a light-emitting layer of the pixel unit is disposed, and a light-transmitting light-enhancing layer is disposed between the isolation layer around the opening and the substrate to enable an isolation layer around the opening during the exposure and development The light intensity near the side of the substrate is increased to obtain the opening having a top wider than the bottom.
  • the light enhancement layer is composed of a semi-reflective translucent material or a brightness enhancement film.
  • the light enhancement layer extends to a corresponding area of the bottom of the opening, and the extended portion of the light enhancement layer covers all or part of the corresponding area of the bottom of the opening.
  • the anode of the pixel unit comprises an ITO electrode
  • the ITO electrode is disposed at the bottom of the opening, and both ends of the ITO electrode are disposed in the isolation layer, and the light enhancement layer is disposed on the ITO electrode Between the substrate and the substrate.
  • the luminescent layer is produced by inkjet printing.
  • a third aspect of the present invention provides a method for fabricating an OLED display panel, comprising: forming a light-transmitting light-enhancing layer and an anode of a plurality of pixel units in a first region of the substrate; and coating the substrate as a negative light Separating the bank layer, and exposing and developing the isolation layer to obtain a plurality of openings having a top portion wider than the bottom portion, wherein the first region is an area around the opening; and respectively disposed in the plurality of openings a light emitting layer of the pixel unit; forming a cathode of the pixel unit at a top of the opening, wherein a light emitting layer of the pixel unit is in electrical contact with an anode and a cathode of the pixel unit.
  • the light enhancement layer is composed of a semi-reflective translucent material or a brightness enhancement film.
  • the light enhancement layer extends to a corresponding area of the bottom of the opening, and the extended portion of the light enhancement layer covers all or part of the corresponding area of the bottom of the opening.
  • the luminescent layer is prepared by inkjet printing, and the anode and the light enhancement layer of the pixel unit are obtained by PVD, exposure, etching, and stripping, and the cathode of the pixel unit is obtained by vapor deposition.
  • FIG. 1 is a schematic structural view of an embodiment of an OLED display panel of the present application.
  • FIG. 2 is a schematic structural view of another embodiment of an OLED display panel of the present application.
  • FIG. 3 is a schematic structural view of still another embodiment of an OLED display panel of the present application.
  • FIG. 4 is a schematic structural diagram of still another embodiment of an OLED display panel of the present application.
  • FIG. 5 is a flow chart of an embodiment of a method for fabricating an OLED display panel of the present application
  • FIG. 6 is a schematic structural view of an OLED display panel when the step 520 shown in FIG. 5 is performed.
  • FIG. 1 is a schematic structural diagram of an embodiment of an OLED display panel of the present application.
  • the OLED display panel 100 includes a substrate 110 , and an isolation layer 120 and a plurality of pixel units 130 disposed on the substrate 110 .
  • the plurality of pixel units 130 are separated by the isolation layer 120 (FIG. 1 exemplarily shows the structure of one pixel unit 130 and the isolation layer, and the structure of other pixel units and isolation layers not shown is consistent with FIG. 1).
  • Each of the pixel units 130 includes an anode 131, a cathode 132, and a light-emitting layer 133 interposed between the cathode 131 and the anode 132, the light-emitting layer being composed of an OLED light-emitting material.
  • the light-emitting layer When a voltage is formed between the cathode 131 and the anode 132, the light-emitting layer emits light to realize display.
  • the isolation layer 120 is a negative photoresist and is provided with a plurality of openings 121 for exposure and development of the isolation layer.
  • the openings 121 are used for arranging the light-emitting layer 133 of the pixel unit 130, and the periphery of the opening
  • a light-permeable light-enhancing layer 140 is disposed between the isolation layer (ie, the isolation layer located in the region 122 around the opening in FIG. 1) and the substrate 110 to provide an isolation layer around the opening during the exposure and development.
  • the light intensity near the side of the substrate 110 is enhanced to obtain the opening 121 whose top is wider than the bottom.
  • the bottom portion is the side of the opening close to the substrate 110, and the top portion is the side of the opening away from the substrate 110.
  • the light enhancement layer 140 may be composed of a semi-reflective translucent material or a brightness enhancement film. Moreover, the thickness of the light enhancement layer 140 is lower than a specific thickness, such as less than 0.2 mm or the like.
  • the light enhancing layer 140 is a semi-reflective translucent material. Since the light enhancement layer 140 is reflective to light. At the time of exposure, the incident light incident from the isolation layer reaches the light enhancement layer 140 and emits, and generates a microcavity effect under the action of the reflected light and the incident light, thereby increasing the intensity of the light by the microcavity effect.
  • the thickness of the isolation layer 120 by adjusting the thickness of the isolation layer 120, the effect that the microcavity effect is gradually weakened as the length L of the microcavity increases is increased, so that the remaining portion of the isolation layer 120 after exposure and development is closer to the substrate 110, and thus The opening 121 having a top wider than the bottom is formed by a larger isolation layer 120 at the bottom of both sides.
  • the length L of the microcavity is the distance from the upper surface of the light enhancement layer 140 to the upper surface of the isolation layer 120 (as shown in FIG. 1).
  • the transflective material has a light transmittance greater than a reflectance, and the ratio of the reflectance to the light transmittance may be between 1:200 and 1:10, such as specifically 1:200, 1:100 or 1: 10.
  • the transmittance of the semi-reflective translucent material is not necessarily limited to be greater than the emissivity, and any reflectance and transmittance can be used according to actual application requirements.
  • the semi-reflective translucent material is silver (Ag).
  • the light enhancement layer 140 is a brightness enhancement film (English: Brightness Enhanced) Film). Since the brightness enhancement film can make the light become stronger in a specific direction, the incident light of the isolation layer 120 is inclined along a specific direction d such as a tilt angle to the desired opening 121 (ie, tapper) ⁇ by correspondingly setting the light enhancement layer 140. The direction becomes strong (as shown in FIG. 2, FIG. 2 is a schematic structural view of an embodiment in which the light enhancement layer 140 is a brightness enhancement film). Since the bottom of the illuminated isolation layer 120 is greater in energy than the top, the bottom retains more spacers than the top, thereby forming an opening 121 having a top wider than the bottom.
  • a specific direction d such as a tilt angle to the desired opening 121 (ie, tapper) ⁇
  • the light enhancement layer 140 may also extend to a corresponding area 123 of the bottom of the opening. As shown in FIG. 1, the extended portion 141 of the light-enhancing layer 140 entirely covers the corresponding region 123 of the bottom of the opening. That is, the light-enhancing layer 140 is correspondingly disposed in the area 122 around the opening and the area 123 corresponding to the bottom of the opening, and is connected in one piece.
  • the cathode 132 of the pixel unit 130 may be disposed on the top of the opening 121 to ensure that the cathode 132 can be electrically or electrically connected to the light emitting layer 133 in the opening 121.
  • the anode 131 of the pixel unit 130 may be disposed in the bottom of the opening 121 and in the peripheral region 122 of the opening to ensure that the cathode 132 can be electrically or electrically connected to the light-emitting layer 133 in the opening 121.
  • the light enhancement layer 140 may be disposed between the anode 131 and the substrate 110, in the anode 131 or on the side of the anode 131 away from the substrate 110.
  • the light enhancement layer 140 When the light enhancement layer 140 is disposed in or away from the anode 110, the light enhancement layer 140 is a conductive mechanism or the light enhancement layer 140 does not completely block electrical or electrical contact between the anode and the light-emitting layer. It is to be understood that the extended portion 141 of the light enhancement layer 140 is part of the light enhancement layer 140, and the above description of the light enhancement 140 should be considered equivalent to include the description of the extension portion 141.
  • the anode 131 of the pixel unit 130 may include indium tin oxide (English: Indium tin) Oxide, abbreviation: ITO) electrode 1311.
  • the ITO electrode 1311 is disposed at the bottom of the opening. Both ends of the ITO electrode 1311 may be disposed in the isolation layer 140 in the region 122 around the opening.
  • the light enhancement layer 140 is disposed between the ITO electrode 1311 and the substrate 110.
  • the anode 131 of the pixel unit 130 may include a metal electrode 1312 disposed in the isolation layer 140 in the peripheral region 122 of the opening, and may be electrically connected to the ITO electrode 1311 to supply voltage to the ITO electrode 1311. .
  • the metal electrode 1312 is disposed on the side of the ITO electrode 1311 near the substrate 110, and is electrically connected through the light enhancement layer 140.
  • the light enhancement layer 140 is a conductive mechanism.
  • the light enhancement layer is not necessarily a conductive mechanism, and the metal electrode 1312 can also be electrically connected to the ITO electrode 1311 through the hole of the light enhancement layer.
  • the light emitting layer 133 of the pixel unit 130 is produced by inkjet printing.
  • the anode 131 and the light enhancement layer 140 of the pixel unit 130 are physically vapor deposited (English: Physical: Vapor Deposition (abbreviation: PVD), exposure (English: photo), etching, stripping (English: stripper).
  • the cathode 132 of the pixel unit 130 is obtained by vapor deposition.
  • FIG. 3 is a schematic structural diagram of still another embodiment of an OLED display panel of the present application.
  • the extended portion 141 of the light-enhancing layer 140 of the present embodiment is not all but partially covers the corresponding region 123 of the bottom of the opening to improve the light-emitting efficiency of the bottom OLED light-emitting layer. That is, the light-enhancing layer 140 corresponds to the region 123 corresponding to the bottom portion of the opening and the portion of the opening of the portion of the opening, and the portion of the region corresponding to the bottom of the opening of the light-enhancing layer 140 is the portion of the region 123 corresponding to the bottom of the opening. A portion of the region 122 is open.
  • the light enhancement layer 140 does not necessarily extend to the corresponding region 123 at the bottom. That is, the light enhancement layer 140 is only correspondingly disposed in the area 122 around the opening, as shown in FIG.
  • FIG. 5 is a flowchart of an embodiment of a method for fabricating an OLED display panel.
  • the method includes:
  • 510 forming a light permeable light enhancement layer and an anode of the plurality of pixel units in the first region of the substrate.
  • the first area corresponds to the area around the opening that is required to be disposed.
  • the light enhancement layer may be disposed between the anode and the substrate, in the anode or on the side of the anode away from the substrate.
  • the light enhancement layer is a conductive mechanism or the light enhancement layer does not completely block electrical or electrical contact between the anode and the light-emitting layer.
  • the light enhancing layer may be composed of a semi-reflective translucent material or a brightness enhancing film.
  • the light-enhancing layer may extend to a corresponding area of the bottom of the opening to be provided, and the extended portion of the light-enhancing layer covers all or part of the area corresponding to the bottom of the opening to be provided.
  • the light enhancement layer please refer to the description of the above light enhancement layer.
  • the anode of the pixel unit comprises a metal electrode and an ITO electrode.
  • the 510 step includes: forming the metal electrode in a first region of the substrate; coating the light enhancement layer on the metal electrode; and forming an ITO electrode on the light enhancement layer.
  • 520 coating a negative photoresist on the substrate, and exposing and developing the isolation layer to obtain a plurality of openings having a top portion wider than a bottom portion, wherein the first region is surrounded by the opening Area.
  • the applied spacer layer 120 is exposed and developed by the mask 650 to obtain a plurality of openings to be provided.
  • the opaque region 651 of the reticle 650 corresponds to the desired open area, and the light hole 652 in the reticle 650 corresponds to the remaining isolation layer region.
  • 540 forming a cathode of the pixel unit on top of the opening, wherein a light emitting layer of the pixel unit is in electrical contact with an anode and a cathode of the pixel unit.
  • the luminescent layer is prepared by inkjet printing, and the anode and the light enhancement layer of the pixel unit are obtained by PVD, exposure, etching, and stripping, and the cathode of the pixel unit is obtained by vapor deposition.
  • the OLED display panel described in the above embodiment can be fabricated by the method of the present embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

提供一种OLED显示面板及其制作方法,其中,OLED显示面板包括基板(110)、以及设置在基板上的隔离层(120)和多个像素单元(130),多个像素单元由隔离层隔开,隔离层为负性光阻且设有多个对隔离层曝光显影得到的开口(121),开口用于置放像素单元的发光层(133),且开口四周的隔离层与基板之间设有可透光的光增强层(140),以使在曝光显影时开口四周的隔离层的靠近基板一侧的光强增强,得到顶部宽于底部的开口。通过上述方式,能够提高OLED发光层的制作效率。

Description

OLED显示面板及其制作方法
【技术领域】
本申请涉及显示技术领域,特别是涉及OLED显示面板及其制作方法。
【背景技术】
目前,有机发光二极管(英文:Organic Light-Emitting Diode,简称:OLED)显示面板逐步成为显示领域的主流力量。现有的OLED显示面板制作工艺中,通常采用喷墨打印技术制成其OLED发光层。一般,OLED显示面板包括像素单元和用于将像素单元分隔的隔离(bank)层,该隔离层为负性光阻。在制作过程中,在基板上设置隔离层,并对隔离层进行曝光得到多个开口图案,在开口中喷入OLED发光材料,以形成像素单元的发光层。
然而,由于在曝光的时,隔离层上部接触曝光能量大于底部,曝光出来的开口图案极易形成如图1所示的顶部窄底部宽结构。而在后续喷墨打印制程中,由于开口顶部窄,OLED发光材料则不易进入该开口,导致OLED 发光层的制作效率低下。
【发明内容】
本申请提供OLED显示面板及其制作方法,能够提高OLED发光层的制作效率。
本申请第一方面提供一种OLED显示面板,其中,包括基板、以及设置在所述基板上的隔离bank层和多个像素单元,所述多个像素单元由所述隔离层隔开,每个所述像素单元包括阴极、阳极及夹置在所述阴极和阳极之间的发光层,所述隔离层为负性光阻且设有多个对所述隔离层曝光显影得到的开口,所述开口用于置放所述像素单元的发光层,且所述开口四周的隔离层与所述基板之间设有可透光的光增强层,以使在所述曝光显影时所述开口四周的隔离层的靠近所述基板一侧的光强增强,得到顶部宽于底部的所述开口;其中,所述光增强层由半反射半透明材料或增亮膜构成;所述光增强层延伸至所述开口底部对应的区域,所述光增强层的延伸部分全部或者部分覆盖所述开口底部对应的区域。
其中,所述像素单元的阳极包括ITO电极,所述ITO电极设置在所述开口底部,且所述ITO电极的两端设置在所述隔离层中,所述光增强层设置在所述ITO电极与所述基板之间。
其中,所述发光层由喷墨打印制得。
本申请第二方面提供一种OLED显示面板,包括基板、以及设置在所述基板上的隔离bank层和多个像素单元,所述多个像素单元由所述隔离层隔开,每个所述像素单元包括阴极、阳极及夹置在所述阴极和阳极之间的发光层,所述隔离层为负性光阻且设有多个对所述隔离层曝光显影得到的开口,所述开口用于置放所述像素单元的发光层,且所述开口四周的隔离层与所述基板之间设有可透光的光增强层,以使在所述曝光显影时所述开口四周的隔离层的靠近所述基板一侧的光强增强,得到顶部宽于底部的所述开口。
其中,所述光增强层由半反射半透明材料或增亮膜构成。
其中,所述光增强层延伸至所述开口底部对应的区域,所述光增强层的延伸部分全部或者部分覆盖所述开口底部对应的区域。
其中,所述像素单元的阳极包括ITO电极,所述ITO电极设置在所述开口底部,且所述ITO电极的两端设置在所述隔离层中,所述光增强层设置在所述ITO电极与所述基板之间。
其中,所述发光层由喷墨打印制得。
本申请第三方面提供一种OLED显示面板的制作方法,包括:在基板的第一区域形成可透光的光增强层和多个像素单元的阳极;在所述基板上涂布为负性光阻的隔离bank层,并对所述隔离层进行曝光、显影得到多个顶部宽于底部的开口,其中,所述第一区域为所述开口四周的区域;在所述多个开口中分别设置所述像素单元的发光层;在所述开口顶部形成所述像素单元的阴极,其中,所述像素单元的发光层与所述像素单元的阳极和阴极电接触。
其中,所述光增强层由半反射半透明材料或增亮膜构成。
其中,所述光增强层延伸至所述开口底部对应的区域,所述光增强层的延伸部分全部或者部分覆盖所述开口底部对应的区域。
其中,所述像素单元的阳极包括金属电极和ITO电极;所述在基板的第一区域形成可透光的光增强层和像素单元的阳极的步骤包括:在基板的第一区域形成所述金属电极;在所述金属电极上涂布所述光增强层;在所述光增强层上形成ITO电极。
其中,所述发光层由喷墨打印制得,所述像素单元的阳极、光增强层经PVD、曝光、蚀刻、脱膜制得,所述像素单元的阴极经蒸镀制得。
上述方案中,通过在OLED显示面板的所需设置开口的四周的隔离层中设置光增强层,使得在对隔离层曝光显影时需要设置开口四周的隔离层的靠近所述基板一侧的光强增强,得到顶部宽于底部的开口。在该开口中制作像素单元的发光层时,由于该开口的顶部宽于底部,该发光材料易于进入该开口,故提高了OLED发光层的制作效率。
【附图说明】
图1是本申请OLED显示面板一实施方式的结构示意图;
图2是本申请OLED显示面板另一实施方式的结构示意图;
图3是本申请OLED显示面板再一实施方式的结构示意图;
图4是本申请OLED显示面板又再一实施方式的结构示意图
图5是本申请OLED显示面板的制作方法一实施方式的流程图;
图6是执行图5所示的步骤520时的OLED显示面板的结构示意图。
【具体实施方式】
以下描述中,为了说明而不是为了限定,提出了诸如特定系统结构、接口、技术之类的具体细节,以便透彻理解本申请。然而,本领域的技术人员应当清楚,在没有这些具体细节的其它实施方式中也可以实现本申请。在其它情况中,省略对众所周知的装置、电路以及方法的详细说明,以免不必要的细节妨碍本申请的描述。
请参阅图1,图1是本申请OLED显示面板一实施方式的结构示意图。本实施方式中,该OLED显示面板100包括基板110、以及设置在所述基板110上的隔离层120和多个像素单元130。该多个像素单元130由该隔离层120隔开(图1仅示范性给出一个像素单元130与隔离层的结构,未示出的其他像素单元与隔离层的结构与图1一致)。每个像素单元130包括阳极131、阴极132及夹置在所述阴极131和阳极132之间的发光层133,该发光层由OLED发光材料构成。在该阴极131与阳极132间形成电压时,该发光层发光而实现显示。
该隔离层120为负性光阻且设有多个对所述隔离层曝光显影得到的开口121,所述开口121用于置放所述像素单元130的发光层133,且所述开口四周的隔离层(即位于图1中开口四周区域122的隔离层)与所述基板110之间设有可透光的光增强层140,以使在所述曝光显影时所述开口四周的隔离层的靠近所述基板110一侧的光强增强,得到顶部宽于底部的所述开口121。该底部即为该开口靠近基板110一侧,该顶部即为该开口远离基板110一侧。
具体地,该光增强层140可由半反射半透明材料或增亮膜构成。且,该光增强层140的厚度低于特定厚度,如低于0.2毫米等。
例如,该光增强层140为半反射半透明材料。由于该光增强层140对光具有反射性。在曝光时,从隔离层入射的入射光到达光增强层140后进行发射,在反射光与入射光作用下产生微腔效应,进而通过微腔效应增加光的强度。该实施例通过调整该隔离层120的厚度,得到微腔效应随着微腔长度L增大而逐步减弱的效果,以使曝光显影后的隔离层120越靠近基板110的保留部分越大,进而由两边底部较大的隔离层120形成顶部宽于底部的所述开口121。其中,该微腔长度L为光增强层140上表面至该隔离层120上表面的距离(如图1所示)。
优选,该半反射半透明材料的透光率大于反射率,该反射率与透光率的比值可在1:200至1:10之间,如具体为1:200、1:100或1:10。当然,该半反射半透明材料的透光率未必限定大于发射率,可根据实际应用需求可采用任意反射率和透光率的材料。在一具体实施方式中,该半反射半透明材料为银(Ag)。
又例如,该光增强层140为增亮膜(英文:Brightness Enhanced Film)。由于增亮膜可使光朝着特定的方向变强,故通过对应设置该光增强层140,使得隔离层120的入射光沿着特定方向d如向所需开口121倾斜角(即tapper)β方向变强(如图2所示,图2为光增强层140为增亮膜的实施方式结构示意图)。由于该被光照的隔离层120底部能量大于顶部,故底部保留的隔离层多于顶部,进而形成顶部宽于底部的开口121。
本实施方式中,该光增强层140还可延伸至所述开口底部对应的区域123。如图1所示,该光增强层140的延伸部分141全部覆盖所述开口底部对应的区域123。即该光增强层140对应设置在该开口四周区域122和开口底部对应的区域123并连成一片。
本实施方式中,该像素单元130的阴极132可设置在开口121的顶部上,以确保该阴极132可与开口121中的发光层133电接触或电连接。该像素单元130的阳极131可设置在开口121的底部及开口四周区域122中,以确保该阴极132可与开口121中的发光层133电接触或电连接。其中,该光增强层140可设置在该阳极131与基板110之间、该阳极131之中或者该阳极131远离基板110一侧。当光增强层140设置在阳极131之中或远离基板110一侧时,该光增强层140为可导电机构或者该光增强层140未全部隔断阳极与发光层之间的电连接或电接触。可以理解的是,该光增强层140的延伸部分141作为光增强层140的一部分,上面对光增强140的描述理应认为等同包含为该延伸部分141的描述。
具体,该像素单元130的阳极131可包括氧化铟锡(英文:Indium tin oxide,简称:ITO)电极1311。所述ITO电极1311设置在所述开口底部。该ITO电极1311的两端可设置在开口四周区域122中的隔离层140中。该光增强层140设置在所述ITO电极1311与所述基板110之间。进一步地,该像素单元130的阳极131可包括金属电极1312,该金属电极1312设置在该开口四周区域122中的隔离层140中,并可与ITO电极1311电连接以向该ITO电极1311提供电压。例如,该金属电极1312设置在该ITO电极1311的靠近基板110一侧,并通过光增强层140实现电连接。该光增强层140为可导电机构。当然,该光增强层未必为可导电机构,该金属电极1312也可通过光增强层的孔与ITO电极1311电连接。
可选地,该像素单元130的发光层133由喷墨打印制得。该像素单元130的阳极131、光增强层140经物理气相沉积(英文:Physical Vapor Deposition,简称:PVD)、曝光(英文:photo)、蚀刻、脱膜(英文:stripper)制得。该像素单元130的阴极132经蒸镀制得。
请参阅图3,图3是本申请OLED显示面板再一实施方式的结构示意图。与上一实施方式的唯一区别在于,本实施方式的该光增强层140的延伸部分141不是全部而是部分覆盖该开口底部对应的区域123,以提高底OLED发光层的出光效率。即光增强层140对应设置在该开口四周区域122和部分的开口底部对应的区域123,且设置该光增强层140的开口底部对应的区域123部分为开口底部对应的区域123中靠近该开口四周区域122的部分开口。
可以理解的是,在其他实施方式中,光增强层140也未必延伸至底部对应的区域123。即该光增强层140只对应设置在该开口四周区域122中,如图4所示。
请参阅图5,图5是OLED显示面板的制作方法一实施方式的流程图。本实施方式中,该方法包括:
510:在基板的第一区域形成可透光的光增强层和多个像素单元的阳极。
该第一区域即对应为所需设置的上述开口四周区域。其中,该光增强层可设置在该阳极与基板之间、该阳极之中或者该阳极远离基板一侧。当光增强层设置在阳极之中或远离基板一侧时,该光增强层为可导电机构或者该光增强层未全部隔断阳极与发光层之间的电连接或电接触。该光增强层可由半反射半透明材料或增亮膜构成。该光增强层可延伸至所需设置的开口底部对应的区域,所述光增强层的延伸部分全部或者部分覆盖所需设置的开口底部对应的区域。该光增强层的具体说明请参阅上述光增强层的描述。
可选地,该像素单元的阳极包括金属电极和ITO电极。该510步骤包括:在基板的第一区域形成所述金属电极;在所述金属电极上涂布所述光增强层;在所述光增强层上形成ITO电极。
520:在所述基板上涂布为负性光阻的隔离层,并对所述隔离层进行曝光、显影得到多个顶部宽于底部的开口,其中,所述第一区域为所述开口四周的区域。
如图6所示,利用光罩650对涂布的隔离层120进行曝光、显影,得到多个所需设置的开口。其中,该光罩650中的不透光区域651对应为该所需设置的开口区域,该光罩650中的光孔652对应为保留的隔离层区域。
530:在所述多个开口中分别设置所述像素单元的发光层。
540:在所述开口顶部形成所述像素单元的阴极,其中,所述像素单元的发光层与所述像素单元的阳极和阴极电接触。
其中,所述发光层由喷墨打印制得,所述像素单元的阳极、光增强层经PVD、曝光、蚀刻、脱膜制得,所述像素单元的阴极经蒸镀制得。
经本实施方式方法可制成上面实施方式所述的OLED显示面板。
上述方案中,通过在OLED显示面板的所需设置开口的四周的隔离层中设置光增强层,使得在对隔离层曝光显影时需要设置开口四周的隔离层的靠近所述基板一侧的光强增强,得到顶部宽于底部的开口。在该开口中制作像素单元的发光层时,由于该开口的顶部宽于底部,该发光材料易于进入该开口,故提高了OLED发光层的制作效率。
以上所述仅为本发明的实施方式,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (17)

  1. 一种OLED显示面板,其中,包括基板、以及设置在所述基板上的隔离bank层和多个像素单元,所述多个像素单元由所述隔离层隔开,每个所述像素单元包括阴极、阳极及夹置在所述阴极和阳极之间的发光层,所述隔离层为负性光阻且设有多个对所述隔离层曝光显影得到的开口,所述开口用于置放所述像素单元的发光层,且所述开口四周的隔离层与所述基板之间设有可透光的光增强层,以使在所述曝光显影时所述开口四周的隔离层的靠近所述基板一侧的光强增强,得到顶部宽于底部的所述开口;
    其中,所述光增强层由半反射半透明材料或增亮膜构成;
    所述光增强层延伸至所述开口底部对应的区域,所述光增强层的延伸部分全部或者部分覆盖所述开口底部对应的区域。
  2. 根据权利要求1所述的OLED显示面板,其中,所述像素单元的阳极包括ITO电极,所述ITO电极设置在所述开口底部,且所述ITO电极的两端设置在所述隔离层中,所述光增强层设置在所述ITO电极与所述基板之间。
  3. 根据权利要求1所述的OLED显示面板,其中,所述发光层由喷墨打印制得。
  4. 一种OLED显示面板,其中,包括基板、以及设置在所述基板上的隔离bank层和多个像素单元,所述多个像素单元由所述隔离层隔开,每个所述像素单元包括阴极、阳极及夹置在所述阴极和阳极之间的发光层,所述隔离层为负性光阻且设有多个对所述隔离层曝光显影得到的开口,所述开口用于置放所述像素单元的发光层,且所述开口四周的隔离层与所述基板之间设有可透光的光增强层,以使在所述曝光显影时所述开口四周的隔离层的靠近所述基板一侧的光强增强,得到顶部宽于底部的所述开口。
  5. 根据权利要求4所述的OLED显示面板,其中,所述光增强层由半反射半透明材料或增亮膜构成。
  6. 根据权利要求4所述的OLED显示面板,其中,所述光增强层延伸至所述开口底部对应的区域,所述光增强层的延伸部分全部或者部分覆盖所述开口底部对应的区域。
  7. 根据权利要求4所述的OLED显示面板,其中,所述像素单元的阳极包括ITO电极,所述ITO电极设置在所述开口底部,且所述ITO电极的两端设置在所述隔离层中,所述光增强层设置在所述ITO电极与所述基板之间。
  8. 根据权利要求5所述的OLED显示面板,其中,所述像素单元的阳极包括ITO电极,所述ITO电极设置在所述开口底部,且所述ITO电极的两端设置在所述隔离层中,所述光增强层设置在所述ITO电极与所述基板之间。
  9. 根据权利要求6所述的OLED显示面板,其中,所述像素单元的阳极包括ITO电极,所述ITO电极设置在所述开口底部,且所述ITO电极的两端设置在所述隔离层中,所述光增强层设置在所述ITO电极与所述基板之间。
  10. 根据权利要求4所述的OLED显示面板,其中,所述发光层由喷墨打印制得。
  11. 一种OLED显示面板的制作方法,其中,包括:
    在基板的第一区域形成可透光的光增强层和多个像素单元的阳极;
    在所述基板上涂布为负性光阻的隔离bank层,并对所述隔离层进行曝光、显影得到多个顶部宽于底部的开口,其中,所述第一区域为所述开口四周的区域;
    在所述多个开口中分别设置所述像素单元的发光层;
    在所述开口顶部形成所述像素单元的阴极,其中,所述像素单元的发光层与所述像素单元的阳极和阴极电接触。
  12. 根据权利要求11所述的方法,其中,所述光增强层由半反射半透明材料或增亮膜构成。
  13. 根据权利要求11所述的方法,其中,所述光增强层延伸至所述开口底部对应的区域,所述光增强层的延伸部分全部或者部分覆盖所述开口底部对应的区域。
  14. 根据权利要求11所述的方法,其中,所述像素单元的阳极包括金属电极和ITO电极;
    所述在基板的第一区域形成可透光的光增强层和像素单元的阳极的步骤包括:
    在基板的第一区域形成所述金属电极;
    在所述金属电极上涂布所述光增强层;
    在所述光增强层上形成ITO电极。
  15. 根据权利要求12所述的方法,其中,所述像素单元的阳极包括金属电极和ITO电极;
    所述在基板的第一区域形成可透光的光增强层和像素单元的阳极的步骤包括:
    在基板的第一区域形成所述金属电极;
    在所述金属电极上涂布所述光增强层;
    在所述光增强层上形成ITO电极。
  16. 根据权利要求13所述的方法,其中,所述像素单元的阳极包括金属电极和ITO电极;
    所述在基板的第一区域形成可透光的光增强层和像素单元的阳极的步骤包括:
    在基板的第一区域形成所述金属电极;
    在所述金属电极上涂布所述光增强层;
    在所述光增强层上形成ITO电极。
  17. 根据权利要求11所述的方法,其中,所述发光层由喷墨打印制得,所述像素单元的阳极、光增强层经PVD、曝光、蚀刻、脱膜制得,所述像素单元的阴极经蒸镀制得。
PCT/CN2015/099644 2015-10-12 2015-12-30 Oled显示面板及其制作方法 WO2017063295A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/907,647 US9899462B2 (en) 2015-10-12 2015-12-30 Manufacturing method for OLED display panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510659257.2A CN105206651B (zh) 2015-10-12 2015-10-12 一种oled显示面板及其制作方法
CN201510659257.2 2015-10-12

Publications (1)

Publication Number Publication Date
WO2017063295A1 true WO2017063295A1 (zh) 2017-04-20

Family

ID=54954219

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/099644 WO2017063295A1 (zh) 2015-10-12 2015-12-30 Oled显示面板及其制作方法

Country Status (3)

Country Link
US (1) US9899462B2 (zh)
CN (1) CN105206651B (zh)
WO (1) WO2017063295A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105590957B (zh) * 2016-03-03 2019-07-12 深圳市华星光电技术有限公司 一种基于喷墨打印技术的有机发光显示装置及其制造方法
CN106591780B (zh) * 2016-12-22 2019-12-31 武汉华星光电技术有限公司 一种真空蒸镀机及其蒸镀方法
TWI656637B (zh) * 2017-12-25 2019-04-11 友達光電股份有限公司 發光元件
CN108336110A (zh) * 2018-01-09 2018-07-27 深圳市华星光电半导体显示技术有限公司 一种喷墨打印的oled显示面板及其制备方法
KR20190090902A (ko) 2018-01-25 2019-08-05 삼성디스플레이 주식회사 표시 장치 및 이의 제조 방법
TWI747690B (zh) * 2020-12-28 2021-11-21 友達光電股份有限公司 顯示裝置及其製作方法
CN115132941B (zh) * 2022-06-24 2023-04-07 长沙惠科光电有限公司 显示面板的制备方法及显示面板

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1604708A (zh) * 2003-09-30 2005-04-06 三洋电机株式会社 有机电致发光组件及有机电致发光显示面板
CN1638580A (zh) * 2003-12-26 2005-07-13 三洋电机株式会社 显示装置及其制造方法
CN1839478A (zh) * 2003-08-19 2006-09-27 伊斯曼柯达公司 具有微腔色域子像素的oled器件
JP4226388B2 (ja) * 2003-05-12 2009-02-18 ローム株式会社 有機el表示装置
CN101661997A (zh) * 2008-08-28 2010-03-03 精工爱普生株式会社 发光装置及电子设备、发光装置的制造方法
CN103000640A (zh) * 2012-12-12 2013-03-27 京东方科技集团股份有限公司 阵列基板及其制作方法、显示装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2635841B2 (ja) 1990-04-07 1997-07-30 三井東圧化学株式会社 光記録媒体
JP4612773B2 (ja) * 2001-01-10 2011-01-12 キヤノン株式会社 光学素子の製造方法
US20100051973A1 (en) 2008-08-28 2010-03-04 Seiko Epson Corporation Light-emitting device, electronic equipment, and process of producing light-emitting device
JP2014199267A (ja) * 2011-08-05 2014-10-23 シャープ株式会社 蛍光体基板、表示装置および電子機器
CN102436150A (zh) * 2011-12-15 2012-05-02 深圳市华星光电技术有限公司 曝光装置及曝光方法
KR102113615B1 (ko) * 2013-11-13 2020-05-21 엘지디스플레이 주식회사 투명 디스플레이 및 이의 제조 방법
JPWO2015198603A1 (ja) * 2014-06-25 2017-04-20 株式会社Joled 有機el表示パネルの製造方法
KR102193886B1 (ko) * 2014-11-12 2020-12-23 엘지디스플레이 주식회사 고 개구율 유기발광 다이오드 표시장치 및 그 제조 방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4226388B2 (ja) * 2003-05-12 2009-02-18 ローム株式会社 有機el表示装置
CN1839478A (zh) * 2003-08-19 2006-09-27 伊斯曼柯达公司 具有微腔色域子像素的oled器件
CN1604708A (zh) * 2003-09-30 2005-04-06 三洋电机株式会社 有机电致发光组件及有机电致发光显示面板
CN1638580A (zh) * 2003-12-26 2005-07-13 三洋电机株式会社 显示装置及其制造方法
CN101661997A (zh) * 2008-08-28 2010-03-03 精工爱普生株式会社 发光装置及电子设备、发光装置的制造方法
CN103000640A (zh) * 2012-12-12 2013-03-27 京东方科技集团股份有限公司 阵列基板及其制作方法、显示装置

Also Published As

Publication number Publication date
CN105206651A (zh) 2015-12-30
CN105206651B (zh) 2019-01-04
US9899462B2 (en) 2018-02-20
US20170236889A1 (en) 2017-08-17

Similar Documents

Publication Publication Date Title
WO2017063295A1 (zh) Oled显示面板及其制作方法
CN111696444B (zh) 一种显示面板及其制备方法和显示装置
WO2019000520A1 (zh) 一种内嵌式触控oled显示装置
CN107885004A (zh) 一种阵列基板、显示面板、显示装置及其制作工艺
CN107957813B (zh) 一种柔性触控显示屏及其制作方法
CN110943112B (zh) 一种阵列基板及其制备方法、显示面板
RU2575938C2 (ru) Органическое электронное устройство с герметизацией
CN103235659B (zh) 一种触摸面板及其制作方法、显示装置
WO2019085072A1 (zh) 柔性显示面板及其制造方法、柔性显示装置
CN107526468B (zh) 显示屏及其制备方法
WO2018176583A1 (zh) 一种像素结构及制造方法
WO2018188162A1 (zh) 一种有机发光显示面板
WO2020200168A1 (zh) Amoled显示屏、显示设备及移动终端
CN111785760B (zh) 一种显示基板及其制备方法、显示装置
CN111240078B (zh) 一种显示用基板及其制备方法、显示装置
CN110098227B (zh) Oled显示面板及其制作方法
CN107093680A (zh) 金属辅助电极及使用其的显示器件的制造方法
WO2020186989A1 (zh) 基板及其制作方法、触控显示装置
WO2021088131A1 (zh) 显示面板及其制备方法
CN110148631A (zh) 显示面板及其制作方法以及显示装置
WO2021031420A1 (zh) 触控面板及其制作方法
WO2019000521A1 (zh) 一种有机发光显示屏的制备方法及显示装置
WO2019237498A1 (zh) 一种有源矩阵有机发光二极管显示器及其制作方法
CN112968139A (zh) 显示基板、显示装置及其制备方法
CN112068732A (zh) 一种显示面板及显示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14907647

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15906177

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15906177

Country of ref document: EP

Kind code of ref document: A1