WO2019085072A1 - 柔性显示面板及其制造方法、柔性显示装置 - Google Patents
柔性显示面板及其制造方法、柔性显示装置 Download PDFInfo
- Publication number
- WO2019085072A1 WO2019085072A1 PCT/CN2017/112470 CN2017112470W WO2019085072A1 WO 2019085072 A1 WO2019085072 A1 WO 2019085072A1 CN 2017112470 W CN2017112470 W CN 2017112470W WO 2019085072 A1 WO2019085072 A1 WO 2019085072A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- connection hole
- flexible display
- display panel
- organic
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 12
- 238000000034 method Methods 0.000 claims abstract description 17
- 239000010410 layer Substances 0.000 claims description 233
- 229910052751 metal Inorganic materials 0.000 claims description 37
- 239000002184 metal Substances 0.000 claims description 37
- 239000000758 substrate Substances 0.000 claims description 16
- 239000000463 material Substances 0.000 claims description 13
- 239000010408 film Substances 0.000 claims description 8
- 239000011229 interlayer Substances 0.000 claims description 8
- 239000010409 thin film Substances 0.000 claims description 7
- 238000000059 patterning Methods 0.000 claims description 5
- 238000005452 bending Methods 0.000 abstract description 9
- 239000010949 copper Substances 0.000 description 6
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 6
- 229910052782 aluminium Inorganic materials 0.000 description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 3
- 239000004642 Polyimide Substances 0.000 description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 229910052750 molybdenum Inorganic materials 0.000 description 3
- 239000011733 molybdenum Substances 0.000 description 3
- 229920001721 polyimide Polymers 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 239000004332 silver Substances 0.000 description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 2
- 230000001788 irregular Effects 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 229910004205 SiNX Inorganic materials 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 239000012044 organic layer Substances 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/10—OLED displays
- H10K59/12—Active-matrix OLED [AMOLED] displays
- H10K59/124—Insulating layers formed between TFT elements and OLED elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/77—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/80—Constructional details
- H10K50/805—Electrodes
- H10K50/81—Anodes
- H10K50/813—Anodes characterised by their shape
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/80—Constructional details
- H10K59/805—Electrodes
- H10K59/8051—Anodes
- H10K59/80515—Anodes characterised by their shape
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K77/00—Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
- H10K77/10—Substrates, e.g. flexible substrates
- H10K77/111—Flexible substrates
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2102/00—Constructional details relating to the organic devices covered by this subclass
- H10K2102/301—Details of OLEDs
- H10K2102/311—Flexible OLED
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/10—OLED displays
- H10K59/12—Active-matrix OLED [AMOLED] displays
- H10K59/1201—Manufacture or treatment
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/10—OLED displays
- H10K59/12—Active-matrix OLED [AMOLED] displays
- H10K59/121—Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
- H10K59/1216—Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements the pixel elements being capacitors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the present invention relates to the field of terminal display, and in particular to a flexible display panel, a method of manufacturing the same, and a flexible display device.
- the flexible display panel is any curved and deformed display panel made of flexible material. Because of its light weight, small size and thinness, it is easy to carry; it is resistant to high and low temperature, impact resistance and shock resistance, and can adapt to different working environments; It has the advantages of being curlable and more aesthetically pleasing in appearance, and has become a research hotspot in universities and research institutions at home and abroad in recent years.
- Existing flexible display devices generally employ a flexible material as a substrate, such as polyimide, due to the bendability of the flexible substrate, an organic light-emitting device fabricated on a flexible substrate, and on an organic light-emitting device.
- a water-blocking and oxygen-blocking film encapsulation layer the flexible display screen made by these laminated structures can achieve good bending, thereby realizing the bendable function of the display screen.
- the anode layer in the light-emitting unit mainly uses indium tin oxide material. Since the indium tin oxide material itself is brittle and has poor flexibility, it is easy to be broken during the bending process of the flexible display device, causing the anode layer to break and the flexible display screen appears. Abnormalities, etc.
- an object of the present invention is to provide a flexible display panel, a method of manufacturing the same, and a flexible display device, which can effectively improve the stability of use of the flexible display panel and extend the service life of the flexible display panel.
- one technical solution adopted by the present invention is to provide a flexible display panel including a device layer, an organic flat layer formed on the device layer, and a planar layer formed on the device a light-emitting unit, the organic flat layer is adjacent to an anode layer of the light-emitting unit; wherein the organic planarization layer includes at least one first connection hole and at least one second connection hole; the device layer The output end is connected to the anode layer through the first connection hole; the depth of the second connection hole is smaller than the thickness of the organic flat layer, and the anode layer of the light emitting unit further passes through the second connection hole The organic flat layer is joined.
- a display device comprising a flexible display panel, the flexible display panel comprising a device layer, and an organic layer formed on the device layer a flat layer, and a light emitting unit formed on the flat layer, the organic flat layer being in adjacent contact with an anode layer of the light emitting unit;
- the organic planarization layer includes at least one first connection hole and at least a second connection hole; an output end of the device layer is connected to the anode layer through the first connection hole; a depth of the second connection hole is smaller than a thickness of the organic flat layer, an anode of the light emitting unit The layer is also connected to the organic flat layer through the second connection hole.
- another technical solution adopted by the present invention is to provide a method for fabricating a flexible display panel, the method comprising: preparing a device layer; forming an organic flat layer on the device layer, and Forming at least one first connection hole and at least one second connection hole on the organic planarization layer, the second connection hole having a depth smaller than a thickness of the organic flat layer; forming a light-emitting unit in the organic flat layer, wherein The anode layer of the light emitting unit is adjacently contacted with the organic flat layer through the second connection hole, and the output end of the device layer is communicated through the first connection hole.
- the beneficial effect of the present invention is that the anode of the light emitting unit is further connected to the organic flat layer through the second connecting hole by providing at least one first connecting hole and at least one second connecting hole on the organic flat layer.
- the anode layer protecting the flexible display device is not easily broken due to poor flexibility during the bending process, thereby improving the quality of the flexible display device.
- FIG. 1 is a schematic cross-sectional view showing an embodiment of a flexible display panel of the present invention
- FIG. 2 is a schematic flow chart of an embodiment of a method for fabricating a flexible display panel of the present invention.
- FIG. 1 there is shown a cross-sectional view of an embodiment of a flexible display panel of the present invention.
- the flexible display panel includes a device layer 2, an organic flat layer 110 formed on the device layer 2, and a light emitting unit 112 formed on the flat layer 110, the organic flat layer 110
- the anode layer 111 of the light emitting unit 112 is in adjacent contact.
- the first substrate 100 of the device layer 2, the organic thin film layer 101, the buffer layer 102, the active layer 103, the gate insulating layer 104, the gate metal layer 105, and the second layer are sequentially stacked on the first substrate 100.
- the first substrate 100 includes a glass substrate and a quartz substrate. Other embodiments may be other substrates, which are not limited herein.
- the gate insulating layer 104 includes at least one of silicon nitride SiNx and amorphous silicon oxide SiOx. In other embodiments, other insulating materials may be used, which is not limited herein.
- the gate metal layer 105 is formed by first depositing a metal film layer on the first substrate, exposing the metal film layer through the first photomask, and etching the metal film layer.
- the first mask is an ordinary mask that can only etch one layer.
- the metal film layer includes at least one of aluminum Al, molybdenum Mo, copper Cu, and silver Ag. In other embodiments, other metals may be used, and are not limited herein.
- the organic thin film layer 101 coated on the first substrate 100 is a flexible material, such as a main component of polyimide. In other embodiments, other flexible materials may also be used, which are not limited herein.
- the thickness of the organic thin film layer 101 is 10 micrometers to 20 micrometers, in other embodiments, in order to ensure the flexibility of the flexible display panel without causing the thickness of the flexible display panel. The thickness of the organic thin film layer 101 may be separately set according to actual needs, which is not limited herein.
- the buffer layer 102 has a thickness of 200 nm to 300 nm.
- the active layer 103 has a thickness of 40 nm to 50 nm.
- the gate insulating layer 104 has a thickness of 50 nm to 200 nm.
- the gate metal layer 105 has a thickness of 150 nm to 250 nm.
- the second insulating layer 106 and the second metal layer 107 are sequentially formed on the gate metal layer 105.
- the second insulating layer 106 has a thickness of 50 nm to 200 nm.
- the second metal layer 107 has a thickness of 150 nm to 250 nm. Both the second insulating layer 106 and the second metal layer 107 can be patterned using photolithography and dry etching techniques.
- the material of the second metal layer 107 includes at least one of aluminum Al, molybdenum Mo, copper Cu, and silver Ag. In other embodiments, other metals may be used, which are not limited herein.
- an interlayer insulating layer 108 and a source/drain metal layer 109 are sequentially formed on the second metal layer 107, wherein the source and drain electrodes on the source/drain metal layer 109 are separated by a channel.
- the interlayer insulating layer 108 has a thickness of 500 nm to 700 nm.
- the source and drain metal layer 109 has a thickness of 400 nm to 600 nm, and includes titanium and aluminum. In other embodiments, it may be other metal materials, which is not limited herein.
- Both the interlayer insulating layer 108 and the source/drain metal layer 109 are patterned by a halftone mask and development technique.
- the organic flat layer 110 formed on the device layer 2 has a thickness of 1.5 ⁇ m to 3 ⁇ m, and the main component is polyimide.
- the organic flat layer 110 is also patterned by a halftone mask and development technique.
- the anode layer 111 adjacent to the organic flat layer 110 in contact with the light emitting unit 112 is mainly made of an indium tin oxide material.
- the indium tin oxide material itself is brittle and has poor flexibility, it is prone to breakage during the bending process of the flexible display device, causing the anode layer to be broken and the flexible display screen to be abnormal.
- the thickness thereof is set to 100 nm to 250 nm.
- the organic planarization layer 110 includes at least one first connection hole 1101 and at least one second connection hole 1102. An output end of the device layer 2 is connected to the anode layer 111 through the first connection hole.
- the output of device layer 2 is the source or drain terminal in source/drain metal layer 109 in the display panel. Since the output end of the device layer 2 is connected to the anode layer 111 through the first connection hole 1101, it can be understood that the first connection hole 1101 is drilled through the organic planarization layer 110. The depth of the first connection hole 1101 is greater than or equal to the thickness of the organic flat layer.
- the depth of the second connection hole 1102 is smaller than the thickness of the organic flat layer 110, and the anode layer 111 of the light emitting unit 112 is also connected to the organic flat layer 110 through the second connection hole 1102.
- a portion of the anode layer 111 enters the second connection hole 1102 and another portion overlaps the organic planar layer 110. In this way, the contact surface of the anode layer 111 with the organic flat layer 110 can be increased.
- the anode layer 111 is no longer a simple planar force, and the anode layer 111 can be broken due to the difference in flexibility due to the multi-angle dispersion of the force.
- first attachment aperture 1101 or/and the second attachment aperture 1102 are formed by halftone mask exposure and development patterning.
- the cross section of the first connecting hole 1101 or/and the second connecting hole 1102 is circular or square. In other embodiments, the cross section of the first connecting hole 1101 or/and the second connecting hole 1102 may also be Other rules or irregular figures may be used as long as they correspond to other parts of the shape connected thereto, and are not limited herein.
- the shape and size of the cross section of the first connection hole 1101 and the second connection hole 1102 and the inclination angle and depth of the connection hole may be changed according to the thicknesses of the organic planarization layer 110 and the anode layer 111. Wait. For example, when the thickness of the anode layer 111 pair is less than 100 nm, the depth of the second connection hole 1102 can be appropriately reduced to maintain the integrity of the anode layer 111.
- the flexible display panel provided by the present invention allows the anode of the light emitting unit to pass through the second connecting hole by arranging at least one first connecting hole and at least one second connecting hole on the organic flat layer.
- the connection with the organic flat layer can protect the anode layer of the flexible display device from being broken due to poor flexibility during the bending process, improve the quality of the flexible display device, and prolong the service life of the display device.
- the present invention further provides a flexible display device, which includes the flexible display panel of any of the above embodiments.
- a flexible display device which includes the flexible display panel of any of the above embodiments.
- the flexible display device allows the anode of the light emitting unit to pass through the second connecting hole by arranging at least one first connecting hole and at least one second connecting hole on the organic flat layer.
- the connection with the organic flat layer can protect the anode layer of the flexible display device from being broken due to poor flexibility during the bending process, improve the quality of the flexible display device, and prolong the service life of the display device.
- the invention also provides a manufacturing method of a flexible display panel. As shown in FIG. 2, the manufacturing method comprises the following steps:
- Step 201 Prepare a device layer.
- a machine film layer is first coated on the first substrate, and then a buffer layer, an active layer, a gate insulating layer, a gate metal layer, a second insulating layer, and a second layer are sequentially formed on the film layer.
- a second metal layer, an interlayer insulating layer, and a source/drain metal layer adjacent to the active layer is sequentially formed on the first substrate.
- the organic thin film layer has a thickness of 10 micrometers to 20 micrometers.
- the buffer layer has a thickness of 200 nm to 300 nm.
- the active layer has a thickness of 40 nm to 50 nm.
- the thickness of the gate insulating layer is 50 nm to 200 nm.
- the thickness of the gate metal layer is from 150 nanometers to 250 nanometers.
- the second insulating layer has a thickness of 50 nm to 200 nm.
- the second metal layer has a thickness of 150 nm to 250 nm, and the material includes at least one of aluminum Al, molybdenum Mo, copper Cu, and silver Ag. In other embodiments, the metal may be other metals, which is not limited herein.
- the interlayer insulating layer has a thickness of 500 nm to 700 nm.
- the source-drain metal layer has a thickness of 400 nm to 600 nm, and includes titanium and aluminum. In other embodiments, it may be other metal materials, which is not limited herein.
- Step 202 forming an organic flat layer on the device layer, and forming at least one first connection hole and at least one second connection hole on the organic planarization layer, the second connection hole having a depth smaller than a thickness of the organic flat layer.
- the organic flat layer has a thickness of 1.5 micrometers to 3 micrometers.
- first connection hole or/and the second connection hole are formed by halftone mask exposure and development patterning, and the first connection hole or/and the second connection hole are The cross section is round or square.
- the cross-section of the first connecting hole or/and the second connecting hole may also be other regular or irregular patterns, as long as they correspond to the shapes of other parts connected thereto, which is not limited herein.
- Step 203 forming a light-emitting unit in the organic flat layer, wherein the anode layer of the light-emitting unit is adjacent to the organic flat layer through the second connection hole, and communicates with the output end of the device layer through the first connection hole.
- the anode layer adjacent to the organic flat layer contacting the light emitting unit is mainly made of indium tin oxide material.
- the indium tin oxide material itself is brittle and has poor flexibility, it is prone to breakage during the bending process of the flexible display device, causing the anode layer to be broken and the flexible display screen to be abnormal.
- the thickness thereof is set to 100 nm to 250 nm.
- the anode layer when the anode layer is formed, the anode layer is caused to communicate with the source and drain metal layers of the device layer through the first connection hole, and is adjacent to the organic planar layer through the second connection hole.
- the method for fabricating the flexible display panel allows the anode of the light-emitting unit to pass through by installing at least one first connection hole and at least one second connection hole on the organic flat layer.
- the connection of the second connection hole to the organic flat layer can protect the anode layer of the flexible display device from being broken due to poor flexibility during the bending process, improve the quality of the flexible display device, and prolong the service life of the display device.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Optics & Photonics (AREA)
- Electroluminescent Light Sources (AREA)
- Devices For Indicating Variable Information By Combining Individual Elements (AREA)
Abstract
一种柔性显示面板,柔性显示面板包括器件层(2),形成在所述器件层上的有机平坦层(110),以及形成在平坦层上的发光单元(112),有机平坦层与发光单元的阳极层(111)相邻接触;其中,有机平坦化层上包括至少一个第一连接孔(1101)以及至少一个第二连接孔(1102);器件层的输出端通过第一连接孔与阳极层连接;第二连接孔的深度小于有机平坦层的厚度,发光单元的阳极层还通过第二连接孔与有机平坦层连接。通过这种柔性显示面板可以保护柔性显示装置的阳极层在弯折过程中不易因柔韧性较差而发生断裂,提高柔性显示装置的质量。
Description
【技术领域】
本发明涉及终端显示领域,特别是涉及一种柔性显示面板及其制造方法、柔性显示装置。
【背景技术】
柔性显示面板是采用柔性材料制成的任意弯曲变形的显示面板,由于其重量轻、体积小、薄型化,携带方便;耐高低温、耐冲击、抗震能力更强,能适应不同的工作环境;可卷曲,外形更具有艺术设计的美感等优点,近年来成为国内外高校和研究机构研究的热点。现有的柔性显示装置通常采用柔性材料作为衬底,比如包括聚酰亚胺,由于柔性衬底的可弯折性,加上制作在柔性衬底上的有机发光器件,以及在有机发光器件上作为阻水阻氧的薄膜封装层,通过这些层叠结构制得的柔性显示屏能够实现很好的弯折,从而实现显示屏的可弯折功能。
但是,发光单元中的阳极层主要采用氧化铟锡材料,由于氧化铟锡材料本身较脆及柔韧性差,所以在柔性显示装置弯折过程中易发生断裂,造成阳极层线路断裂,柔性显示画面出现异常等不良。
因此,有必要对现有技术的柔性显示面板进行改进以提高使用稳定性和延长使用寿命。
【发明内容】
因此,本发明的目的在于提供一种柔性显示面板及其制造方法、柔性显示装置,能够有效提高柔性显示面板的使用稳定性,并延长柔性显示面板的使用寿命。
为解决上述技术问题,本发明采用的一个技术方案是:提供一种柔性显示面板,所述柔性显示面板包括器件层,形成在所述器件层上的有机平坦层,以及形成在所述平坦层上的发光单元,所述有机平坦层与所述发光单元的阳极层相邻接触;其中,所述有机平坦化层上包括至少一个第一连接孔以及至少一个第二连接孔;所述器件层的输出端通过所述第一连接孔与所述阳极层连接;所述第二连接孔的深度小于所述有机平坦层的厚度,所述发光单元的阳极层还通过所述第二连接孔与所述有机平坦层连接。
为解决上述技术问题,本发明采用的另一个技术方案是:提供一种显示装置,所述柔性显示装置包括柔性显示面板,所述柔性显示面板包括器件层,形成在所述器件层上的有机平坦层,以及形成在所述平坦层上的发光单元,所述有机平坦层与所述发光单元的阳极层相邻接触;其中,所述有机平坦化层上包括至少一个第一连接孔以及至少一个第二连接孔;所述器件层的输出端通过所述第一连接孔与所述阳极层连接;所述第二连接孔的深度小于所述有机平坦层的厚度,所述发光单元的阳极层还通过所述第二连接孔与所述有机平坦层连接。。
为解决上述技术问题,本发明采用的另一个技术方案是:提供一种柔性显示面板的制作方法,所述制作方法包括:制备器件层;在所述器件层上形成有机平坦层,并在所述有机平坦化层上形成至少一个第一连接孔以及至少一个第二连接孔,所述第二连接孔的深度小于所述有机平坦层的厚度;在所述有机平坦层生形成发光单元,其中,发光单元的阳极层通过所述第二连接孔与所述有机平坦层相邻接触,通过所述第一连接孔连通所述器件层的输出端。
本发明的有益效果是:通过在有机平坦层上设置至少一个第一连接孔以及至少一个第二连接孔,让发光单元的阳极还通过所述第二连接孔与所述有机平坦层连接,可以保护柔性显示装置的阳极层在弯折过程中不易因柔韧性较差而发生断裂,提高柔性显示装置的质量。
【附图说明】
图1是本发明柔性显示面板一实施例的剖面示意图;
图2是本发明柔性显示面板制作方法一实施例的流程示意图。
【具体实施方式】
下面结合附图和实施例对本发明进行详细说明。
参见图1,图1是本发明柔性显示面板一实施例的剖面示意图。
如图1所述,在本实施例中,柔性显示面板包括器件层2,形成在器件层2上的有机平坦层110,以及形成在所述平坦层110上的发光单元112,有机平坦层110与发光单元112的阳极层111相邻接触。
其中,器件层2第一基板100,依次叠置在所述第一基板100上的有机薄膜层101、缓冲层102、有源层103、栅极绝缘层104、栅极金属层105、第二绝缘层106、第二金属层107、层间绝缘层108以及和有源层103邻接的源漏极金属层109。
其中,第一基板100包括玻璃基板以及石英基板,在其他实施方式中还可以为其他基板,在此不做限定。
栅极绝缘层104包括氮化硅SiNx,非晶氧化硅SiOx中的至少一种,在其他实施方式中,也可以为其他绝缘物质,在此不做限定。
栅极金属层105是通过先在第一基板上通过沉积的方式形成金属膜层,经过第一道光罩对金属膜层进行曝光,将金属膜层刻蚀而成的。其中,第一道光罩为只能刻蚀一层的普通光罩。
金属膜层包括铝Al、钼Mo、铜Cu以及银Ag中的至少一种,在其他实施方式中也可以为其他金属,在此也不做限定。
另外,涂覆在第一基板100上的有机薄膜层101为柔性材料,如主要成分为聚酰亚胺。在其他实施方式中,还可以为其他柔性材料,在此不再限定。且,为了保证柔性显示面板的柔韧度,同时又不会造成柔性显示面板厚度负担,在一个优选的实施方式中,所述有机薄膜层101的厚度为10微米~20微米,在其他实施方式中,也可以根据实际需求另外设定有机薄膜层101的厚度,在此不做限定。
另外,在本实施方式中,缓冲层102其厚度为200纳米~300纳米。有源层103的厚度为40纳米~50纳米。所述栅极绝缘层104的厚度为50纳米~200纳米。栅极金属层105的厚度为150纳米~250纳米。
具体的,在栅极金属层105上依次形成的第二绝缘层106和第二金属层107。第二绝缘层106厚度为50纳米~200纳米。第二金属层107厚度为150纳米~250纳米。第二绝缘层106和第二金属层107均可利用光刻和干法刻蚀技术将其图案化。第二金属层107的材料包括铝Al、钼Mo、铜Cu以及银Ag中的至少一种,在其他实施方式中也可以为其他金属,在此也不做限定。
具体的,第二金属层107上依次形成层间绝缘层108和源漏极金属层109,其中,该源漏极金属层109上的源极和漏极通过一沟道相分隔开。层间绝缘层108其厚度为500纳米~700纳米。源漏极金属层109其厚度为400纳米~600纳米,其包括钛和铝,在其他实施方式中,也可以为其他金属物质,在此不做限定。层间绝缘层108和源漏极金属层109都是通过半色调光罩及显影技术将其图案化形成。
具体的,形成在器件层2上的有机平坦层110的厚度为1.5微米~3微米,主要成分为聚酰亚胺。有机平坦层110也是通过半色调光罩及显影技术将其图案化形成。
具体的,与有机平坦层110相邻接触所述发光单元112的阳极层111主要采用氧化铟锡材料。但由于氧化铟锡材料本身较脆及柔韧性差,所以在柔性显示装置弯折过程中易发生断裂,造成阳极层线路断裂,柔性显示画面出现异常。在本实施例中,为了更好的减少由于阳极层111柔韧性差带来的影响将其厚度设为100纳米~250纳米。
在本实施例中,有机平坦化层110上包括至少一个第一连接孔1101以及至少一个第二连接孔1102。器件层2的输出端通过所述第一连接孔与所述阳极层111连接。
在一个具体的实施场景中,器件层2的输出端为显示面板中源漏极金属层109中的源极端或者漏极端。由于器件层2的输出端通过第一连接孔1101与阳极层111连接,可以理解为第一连接孔1101钻穿有机平坦化层110。第一连接孔1101的深度大于或者等于所述有机平坦层的厚度。
在本实施例中,第二连接孔1102的深度小于有机平坦层110的厚度,发光单元112的阳极层111还通过所述第二连接孔1102与所述有机平坦层110连接。
在一个具体的实施场景中,阳极层111一部分进入所述第二连接孔1102,另一部分重叠在有机平坦层110上。通过这种方式可以增加阳极层111与有机平坦层110的接触面。如此,在弯折柔性显示面板时,阳极层111不再是简单的平面受力,通过将受力多角度的分散可以减少阳极层111因柔韧性差而造成阳极层线路断裂问题。
在一个可选的实施方式中,第一连接孔1101或/和所述第二连接孔1102通过半色调光罩曝光以及显影图案化而形成。
其中,第一连接孔1101或/和第二连接孔1102的横截面为圆形或方形,在其他实施方式中,该第一连接孔1101或/和第二连接孔1102的横截面也可以为其他规则或不规则图形,只要与其连接的其他部分形状相对应即可,在此不做限定。
例如,在一个具体的实施场景中,可以根据有机平坦化层110和阳极层111的厚度,改变第一连接孔1101和第二连接孔1102横截面的形状、大小以及连接孔的倾斜角度、深度等。例如,当阳极层111对的厚度偏小为100纳米时,可以适当的减小第二连接孔1102的深度以保持阳极层111的整体性。
通过上述描述可知,区别于现有技术,本发明提供的柔性显示面板通过在有机平坦层上设施至少一个第一连接孔以及至少一个第二连接孔,让发光单元的阳极还通过第二连接孔与所述有机平坦层连接,可以保护柔性显示装置的阳极层在弯折过程中不易因柔韧性较差而发生断裂,提高柔性显示装置的质量,延长显示装置的使用寿命。
本发明还提供一种柔性显示装置,所述柔性显示装置包括上述任一实施方式的柔性显示面板,具体请参阅图1以及相关文字描述,在此不再赘述。
通过上述描述可知,区别于现有技术,本发明提供的柔性显示装置通过在有机平坦层上设施至少一个第一连接孔以及至少一个第二连接孔,让发光单元的阳极还通过第二连接孔与有机平坦层连接,可以保护柔性显示装置的阳极层在弯折过程中不易因柔韧性较差而发生断裂,提高柔性显示装置的质量,延长显示装置的使用寿命。
本发明还提供一种柔性显示面板的制作方法,如图2所示,所述制作方法包括以下步骤:
步骤201:制备器件层。
在一个具体实施场景中,先在第一基板上涂覆机薄膜层,然后依次在机薄膜层上形成缓冲层、有源层、栅极绝缘层、栅极金属层、第二绝缘层、第二金属层、层间绝缘层以及和所述有源层邻接的源漏极金属层。
其中,有机薄膜层的厚度为10微米~20微米。缓冲层其厚度为200纳米~300纳米。有源层的厚度为40纳米~50纳米。栅极绝缘层的厚度为50纳米~200纳米。栅极金属层的厚度为150纳米~250纳米。第二绝缘层厚度为50纳米~200纳米。第二金属层厚度为150纳米~250纳米,其材料包括铝Al、钼Mo、铜Cu以及银Ag中的至少一种,在其他实施方式中也可以为其他金属,在此也不做限定。层间绝缘层其厚度为500纳米~700纳米。源漏极金属层其厚度为400纳米~600纳米,其包括钛和铝,在其他实施方式中,也可以为其他金属物质,在此不做限定。
步骤202:在器件层上形成有机平坦层,并在有机平坦化层上形成至少一个第一连接孔以及至少一个第二连接孔,第二连接孔的深度小于所述有机平坦层的厚度。
其中,有机平坦层的厚度为1.5微米~3微米。
在一个具体实施场景中,通过半色调光罩曝光以及显影图案化而形成第一连接孔或/和所述第二连接孔,且所述第一连接孔或/和所述第二连接孔的横截面为圆形或方形。在其他实施方式中,该第一连接孔或/和第二连接孔的横截面也可以为其他规则或不规则图形,只要与其连接的其他部分形状相对应即可,在此不做限定。
步骤203:在有机平坦层生形成发光单元,其中,发光单元的阳极层通过第二连接孔与所述有机平坦层相邻接触,通过第一连接孔连通所述器件层的输出端。
其中,与有机平坦层相邻接触所述发光单元的阳极层主要采用氧化铟锡材料。但由于氧化铟锡材料本身较脆及柔韧性差,所以在柔性显示装置弯折过程中易发生断裂,造成阳极层线路断裂,柔性显示画面出现异常。在本实施例中,为了更好的减少由于阳极层柔韧性差带来的影响将其厚度设为100纳米~250纳米。
在一个具体实施场景中,在形成阳极层时,使得阳极层通过所述第一连接孔连通所述器件层的源漏极金属层,通过第二连接孔与所述有机平坦层相邻接触。
通过上述描述可知,区别于现有技术,本发明提供的柔性显示面板的制作方法通过在有机平坦层上设施至少一个第一连接孔以及至少一个第二连接孔,让发光单元的阳极还通过所述第二连接孔与所述有机平坦层连接,可以保护柔性显示装置的阳极层在弯折过程中不易因柔韧性较差而发生断裂,提高柔性显示装置的质量,延长显示装置的使用寿命。
以上所述,对于本领域的普通技术人员来说,可以根据本发明的技术方案和技术构思作出其他各种相应的改变和变形,而所有这些改变和变形都应属于本发明后附的权利要求的保护范围。
Claims (19)
- 一种柔性显示面板,其中,所述柔性显示面板包括器件层,形成在所述器件层上的有机平坦层,以及形成在所述平坦层上的发光单元,所述有机平坦层与所述发光单元的阳极层相邻接触;其中,所述有机平坦化层上包括至少一个第一连接孔以及至少一个第二连接孔;所述器件层的输出端通过所述第一连接孔与所述阳极层连接;所述第二连接孔的深度小于所述有机平坦层的厚度,所述发光单元的阳极层还通过所述第二连接孔与所述有机平坦层连接。
- 根据权利要求1所述的柔性显示面板,其中,所述第一连接孔或/和所述第二连接孔的横截面为圆形或方形。
- 根据权利要求1所述的柔性显示面板,其中,所述第一连接孔或/和所述第二连接孔通过半色调光罩曝光以及显影图案化而形成。
- 根据权利要求1所述的柔性显示面板,其中,所述有机平坦层的厚度为1.5微米~3微米。
- 根据权利要求1所述的柔性显示面板,其中,所述阳极层的厚度为100纳米~250纳米。
- 根据权利要求1所述的柔性显示面板,其中,所述器件层包括:第一基板,依次叠置在所述第一基板上的有机薄膜层、缓冲层、有源层、栅极绝缘层、栅极金属层、第二绝缘层、第二金属层、层间绝缘层以及和所述有源层邻接的源漏极金属层。
- 根据权利要求1所述的柔性显示面板,其中,有机平坦层是通过半色调光罩及显影技术将其图案化形成。
- 根据权利要求6所述的柔性显示面板,其中,所述有机薄膜层为柔性材料。
- 一种柔性显示装置,所述柔性显示装置包括柔性显示面板,其中,所述柔性显示面板包括器件层,形成在所述器件层上的有机平坦层,以及形成在所述平坦层上的发光单元,所述有机平坦层与所述发光单元的阳极层相邻接触;其中,所述有机平坦化层上包括至少一个第一连接孔以及至少一个第二连接孔;所述器件层的输出端通过所述第一连接孔与所述阳极层连接;所述第二连接孔的深度小于所述有机平坦层的厚度,所述发光单元的阳极层还通过所述第二连接孔与所述有机平坦层连接。
- 根据权利要求9所述的柔性显示装置,其中,所述第一连接孔或/和所述第二连接孔的横截面为圆形或方形。
- 根据权利要求9所述的柔性显示装置,其中,所述第一连接孔或/和所述第二连接孔通过半色调光罩曝光以及显影图案化而形成。
- 根据权利要求9所述的柔性显示装置,其中,所述有机平坦层的厚度为1.5微米~3微米。
- 根据权利要求9所述的柔性显示装置,其中,所述阳极层的厚度为100纳米~250纳米。
- 一种柔性显示面板的制作方法,其中,所述制作方法包括:制备器件层;在所述器件层上形成有机平坦层,并在所述有机平坦化层上形成至少一个第一连接孔以及至少一个第二连接孔,所述第二连接孔的深度小于所述有机平坦层的厚度;在所述有机平坦层生形成发光单元,其中,发光单元的阳极层通过所述第二连接孔与所述有机平坦层相邻接触,通过所述第一连接孔连通所述器件层的输出端。
- 根据权利要求14所述的柔性显示面板的制作方法,其中,所述制备器件层的步骤具体包括:依次制备第一基板,叠置在所述第一基板上的有机薄膜层、缓冲层、有源层、栅极绝缘层、栅极金属层、第二绝缘层、第二金属层、层间绝缘层以及和所述有源层邻接的源漏极金属层。
- 根据权利要求14所述的柔性显示面板的制作方法,其中,所述在所述器件层上形成有机平坦层,并在所述有机平坦化层上形成至少一个第一连接孔以及至少一个第二连接孔,所述第二连接孔的深度小于所述有机平坦层的厚度的步骤包括:通过半色调光罩曝光以及显影图案化形成所述第一连接孔或/和所述第二连接孔。
- 根据权利要求16所述的柔性显示面板的制作方法,其中,所述第一连接孔或/和所述第二连接孔的横截面为圆形或方形。
- 根据权利要求14所述的柔性显示面板的制作方法,其中,所述有机平坦层的厚度为1.5微米~3微米。
- 根据权利要求14所述的柔性显示面板的制作方法,其中,所述阳极层的厚度为100纳米~250纳米。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/736,724 US10547023B2 (en) | 2017-11-06 | 2017-11-23 | Flexible display panel and manufacturing method thereof and flexible display device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711081451.2 | 2017-11-06 | ||
CN201711081451.2A CN107731881A (zh) | 2017-11-06 | 2017-11-06 | 柔性显示面板及其制造方法、柔性显示装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019085072A1 true WO2019085072A1 (zh) | 2019-05-09 |
Family
ID=61222688
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/112470 WO2019085072A1 (zh) | 2017-11-06 | 2017-11-23 | 柔性显示面板及其制造方法、柔性显示装置 |
Country Status (3)
Country | Link |
---|---|
US (1) | US10547023B2 (zh) |
CN (1) | CN107731881A (zh) |
WO (1) | WO2019085072A1 (zh) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI678009B (zh) * | 2018-06-22 | 2019-11-21 | 友達光電股份有限公司 | 顯示面板及其製作方法 |
CN109037297B (zh) | 2018-08-09 | 2021-01-29 | 京东方科技集团股份有限公司 | 一种有机发光显示基板及其制作方法 |
CN109461828A (zh) * | 2018-08-30 | 2019-03-12 | 云谷(固安)科技有限公司 | 一种柔性显示屏 |
CN109300948A (zh) | 2018-09-28 | 2019-02-01 | 昆山国显光电有限公司 | 一种显示装置及其柔性oled面板 |
CN109461836A (zh) * | 2018-09-30 | 2019-03-12 | 云谷(固安)科技有限公司 | 柔性显示面板、显示装置及柔性显示面板的制备方法 |
CN109273624B (zh) * | 2018-09-30 | 2020-09-22 | 昆山工研院新型平板显示技术中心有限公司 | 显示面板及其制备方法 |
CN109411628B (zh) * | 2018-10-30 | 2021-06-01 | 云谷(固安)科技有限公司 | 柔性显示面板与显示装置 |
CN109659323B (zh) * | 2018-12-18 | 2020-12-25 | 武汉华星光电半导体显示技术有限公司 | 一种显示面板及其制作方法 |
CN115132808A (zh) * | 2022-06-29 | 2022-09-30 | 京东方科技集团股份有限公司 | 一种显示面板、显示面板的制作方法及显示装置 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101752400A (zh) * | 2008-12-10 | 2010-06-23 | 统宝光电股份有限公司 | 影像显示装置、影像显示系统及其制造方法 |
CN105652505A (zh) * | 2014-12-02 | 2016-06-08 | 乐金显示有限公司 | 光控制装置及其制造方法 |
CN105895660A (zh) * | 2015-02-13 | 2016-08-24 | 三星显示有限公司 | 显示装置 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003257662A (ja) * | 2002-03-04 | 2003-09-12 | Sanyo Electric Co Ltd | エレクトロルミネッセンス表示装置及びその製造方法 |
US7115913B2 (en) * | 2002-03-27 | 2006-10-03 | Tfpd Corporation | Array substrate used for a display device and a method of making the same |
JP2005062400A (ja) * | 2003-08-11 | 2005-03-10 | Toshiba Matsushita Display Technology Co Ltd | 平面表示装置およびその製造方法 |
KR100560792B1 (ko) * | 2004-03-23 | 2006-03-13 | 삼성에스디아이 주식회사 | 전면 발광 구조를 갖는 유기 전계 발광 표시 장치 및 이의제조방법 |
US20080150421A1 (en) * | 2006-12-21 | 2008-06-26 | Canon Kabushiki Kaisha | Organic light-emitting apparatus |
KR101366162B1 (ko) * | 2007-03-20 | 2014-02-25 | 삼성디스플레이 주식회사 | 유기 발광 표시 패널 및 이의 제조방법 |
KR101407310B1 (ko) * | 2011-12-30 | 2014-06-16 | 엘지디스플레이 주식회사 | 유기 발광 표시 장치 및 이의 제조 방법 |
CN107658333A (zh) * | 2017-10-31 | 2018-02-02 | 京东方科技集团股份有限公司 | 一种柔性显示面板及其制造方法、柔性显示装置 |
-
2017
- 2017-11-06 CN CN201711081451.2A patent/CN107731881A/zh active Pending
- 2017-11-23 WO PCT/CN2017/112470 patent/WO2019085072A1/zh active Application Filing
- 2017-11-23 US US15/736,724 patent/US10547023B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101752400A (zh) * | 2008-12-10 | 2010-06-23 | 统宝光电股份有限公司 | 影像显示装置、影像显示系统及其制造方法 |
CN105652505A (zh) * | 2014-12-02 | 2016-06-08 | 乐金显示有限公司 | 光控制装置及其制造方法 |
CN105895660A (zh) * | 2015-02-13 | 2016-08-24 | 三星显示有限公司 | 显示装置 |
Also Published As
Publication number | Publication date |
---|---|
US20190386240A1 (en) | 2019-12-19 |
US10547023B2 (en) | 2020-01-28 |
CN107731881A (zh) | 2018-02-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019085072A1 (zh) | 柔性显示面板及其制造方法、柔性显示装置 | |
WO2019000520A1 (zh) | 一种内嵌式触控oled显示装置 | |
WO2019085065A1 (zh) | 柔性 oled 显示面板及其制备方法 | |
WO2017063295A1 (zh) | Oled显示面板及其制作方法 | |
WO2019136872A1 (zh) | 一种阵列基板、oled显示面板及oled显示器 | |
WO2012071878A1 (zh) | 一种晶体管的制造方法 | |
WO2012043971A2 (ko) | 롤 형상의 모기판을 이용한 플렉서블 전자소자의 제조방법, 플렉서블 전자소자 및 플렉서블 기판 | |
WO2018030712A1 (ko) | 포토레지스트 음각패턴 및 표면개질을 이용한 금속메쉬 타입 투명 전도막 제조방법 및 이에 의해 제조되는 투명 전도막 | |
WO2019029007A1 (zh) | 一种tft基板的制备方法、tft基板以及oled显示面板 | |
WO2016074275A1 (zh) | 互电容式ogs触摸面板及其制造方法 | |
WO2019090840A1 (zh) | 柔性显示组件、制作方法以及显示面板 | |
WO2016101341A1 (zh) | 具有触控功能的显示面板及其制造方法和复合电极 | |
WO2019075844A1 (zh) | 一种柔性基板及其制备方法、显示器 | |
WO2019227668A1 (zh) | 触控显示屏的制作方法 | |
WO2017024605A1 (zh) | 一种ffs阵列基板的制造方法 | |
WO2018196125A1 (zh) | 一种oled显示面板及其制备方法、显示器 | |
WO2019052008A1 (zh) | 一种阵列基板及其制备方法、显示装置 | |
WO2019000521A1 (zh) | 一种有机发光显示屏的制备方法及显示装置 | |
WO2019127698A1 (zh) | 一种柔性面板的制备方法及柔性显示装置 | |
WO2019010749A1 (zh) | 显示面板及其制备方法、显示器 | |
WO2019033578A1 (zh) | 柔性oled显示面板的柔性基底及其制备方法 | |
WO2018205318A1 (zh) | 一种tft阵列基板及其制作方法 | |
WO2019184318A1 (zh) | 一种触摸显示面板及其制造方法 | |
WO2019010751A1 (zh) | 封装组件的制备方法、封装组件及显示装置 | |
WO2021159566A1 (zh) | 显示面板及其制作方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17930406 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17930406 Country of ref document: EP Kind code of ref document: A1 |