WO2017022320A1 - アルミニウムスパッタリングターゲット - Google Patents
アルミニウムスパッタリングターゲット Download PDFInfo
- Publication number
- WO2017022320A1 WO2017022320A1 PCT/JP2016/066663 JP2016066663W WO2017022320A1 WO 2017022320 A1 WO2017022320 A1 WO 2017022320A1 JP 2016066663 W JP2016066663 W JP 2016066663W WO 2017022320 A1 WO2017022320 A1 WO 2017022320A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sputtering target
- aluminum
- atomic
- aluminum sputtering
- thin film
- Prior art date
Links
- 229910052782 aluminium Inorganic materials 0.000 title claims abstract description 103
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 title claims abstract description 102
- 238000005477 sputtering target Methods 0.000 title claims abstract description 100
- 229910052746 lanthanum Inorganic materials 0.000 claims abstract description 19
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 19
- 239000012535 impurity Substances 0.000 claims abstract description 15
- 239000010409 thin film Substances 0.000 description 30
- 239000002994 raw material Substances 0.000 description 28
- 238000004544 sputter deposition Methods 0.000 description 26
- 239000000203 mixture Substances 0.000 description 24
- 239000000463 material Substances 0.000 description 22
- 239000000758 substrate Substances 0.000 description 18
- 229910000765 intermetallic Inorganic materials 0.000 description 17
- 230000000052 comparative effect Effects 0.000 description 13
- 239000010408 film Substances 0.000 description 13
- 238000002844 melting Methods 0.000 description 10
- 230000008018 melting Effects 0.000 description 10
- 238000000034 method Methods 0.000 description 10
- 229910018518 Al—Ni—La Inorganic materials 0.000 description 8
- 238000005520 cutting process Methods 0.000 description 8
- 230000006872 improvement Effects 0.000 description 8
- 238000003754 machining Methods 0.000 description 8
- 238000005096 rolling process Methods 0.000 description 8
- 229910045601 alloy Inorganic materials 0.000 description 7
- 239000000956 alloy Substances 0.000 description 7
- 239000010949 copper Substances 0.000 description 7
- 238000010438 heat treatment Methods 0.000 description 7
- 238000005219 brazing Methods 0.000 description 6
- 239000013078 crystal Substances 0.000 description 6
- 239000002245 particle Substances 0.000 description 6
- 229910018507 Al—Ni Inorganic materials 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 239000002244 precipitate Substances 0.000 description 5
- 239000013077 target material Substances 0.000 description 5
- 238000005266 casting Methods 0.000 description 4
- 239000004973 liquid crystal related substance Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 229910000838 Al alloy Inorganic materials 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 238000005097 cold rolling Methods 0.000 description 3
- 238000013329 compounding Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 238000005498 polishing Methods 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 238000009718 spray deposition Methods 0.000 description 3
- 238000007545 Vickers hardness test Methods 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 238000001771 vacuum deposition Methods 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000007373 indentation Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000003870 refractory metal Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/3407—Cathode assembly for sputtering apparatus, e.g. Target
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/3407—Cathode assembly for sputtering apparatus, e.g. Target
- C23C14/3414—Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/14—Metallic material, boron or silicon
- C23C14/16—Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
- C23C14/165—Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
- H01L21/283—Deposition of conductive or insulating materials for electrodes conducting electric current
- H01L21/285—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
Definitions
- This invention relates to the aluminum sputtering target used in order to form the electrode of the thin film transistor for display devices, such as a liquid crystal display and a MEMS display.
- Aluminum thin films are used as scanning electrodes and signal electrodes of display devices such as liquid crystal displays because they have low electrical resistance and are easily processed by etching.
- the aluminum thin film is generally formed by a sputtering method using a sputtering target.
- a vacuum deposition method is known as a main method for forming a metal thin film other than the sputtering method.
- the sputtering method is advantageous in that a thin film having the same composition as the sputtering target can be formed.
- it is a film forming method that is advantageous in that it can stably form a film over a large area.
- Patent Document 1 discloses an Al-based target material used as an electrode of a liquid crystal display and a method for manufacturing the same.
- the target material according to Patent Document 1 has a Vickers hardness (Hv) of 25 or less, thereby causing a part of the target material, called splash, to overheat due to insufficient cooling due to defects, resulting in a liquid phase It is disclosed that the phenomenon of adhering to the substrate can be reduced.
- Patent Document 2 in an Al-based sputtering target material, after adjusting the hardness on the sputtering surface side to Hv20 or higher, finishing machining is performed on the sputtering surface side, so that abnormal discharge frequently occurs immediately after the start of sputtering, and the surface of the target material. It is disclosed that protrusions called nodules are generated and can be a starting point of abnormal discharge.
- the size of aluminum sputtering targets has been increasing. For large ones, those having a width and length of 2.5 m or more are used.
- Conventional aluminum sputtering targets, including those described in Patent Documents 1 and 2 contain almost no element other than Al, and the crystal structure is a face-centered cubic structure. There was a problem that the surface was easily damaged. For example, the surface may be damaged by contact during conveyance during processing. The occurrence of such scratches tends to increase as the aluminum sputtering target becomes larger.
- Pre-sputtering is a method of reducing scratches on the surface of a sputtering target, thereby reducing the occurrence of splash during sputtering on a target substrate.
- This invention solves such a problem, and it aims at providing the sputtering target which has the electroconductivity comparable as the conventional aluminum sputtering target, and can reduce generation
- the aluminum sputtering target of the present invention capable of solving the above-mentioned problems includes 0.005 atomic% to 0.04 atomic% Ni and 0.005 atomic% to 0.06 atomic% La, with the balance being Al and Inevitable impurities.
- the Vickers hardness is 25 or more.
- it contains 0.01 atomic% to 0.03 atomic% Ni and 0.03 atomic% to 0.05 atomic% La.
- an aluminum sputtering target that has the same degree of conductivity as a conventional aluminum sputtering target and has reduced generation of scratches.
- the present inventors have a solid solution or a small amount of Ni and a slight amount of Al—Ni-based intermetallic compound, or a slight amount of Al—La-based metal.
- an Al—Ni—La alloy sputtering target (aluminum alloy sputtering target) disclosed in Japanese Patent Application Laid-Open No. 2008-127624 is known as a sputtering target in which Ni is the main component and Ni and La are added.
- a bimetal layer made of a refractory metal such as Mo, Cr, Ti or W formed on a sputtering layer provided on a substrate. Ni and La are added to Al for the purpose of omitting.
- conventional Al—Ni—La alloy sputtering targets including those disclosed in Japanese Patent Application Laid-Open No. 2008-127624 add a relatively large amount of Ni and La, and positively add Al—Ni intermetallic compounds and An Al—La intermetallic compound is formed.
- the area ratio of intermetallic compounds having a particle size in a predetermined range is defined as described above, so that small intermetallic compounds can be obtained. Splashes caused by falling off and splashes caused by the high area ratio of intermetallic compounds having a large particle size are suppressed.
- Such an Al—Ni—La alloy sputtering target has a larger electric resistance than an aluminum sputtering target, and its application is limited.
- it contains a relatively large amount of Ni and La, it is difficult to use a simple method such as vacuum melting in order to make the composition of the entire sputtering target uniform. It is necessary to use a special method. For this reason, productivity is low compared with the aluminum sputtering target which can be manufactured by vacuum melting.
- the aluminum sputtering target of the present invention contains 0.005 atomic% to 0.04 atomic% Ni and 0.005 atomic% to 0.06 atomic% La.
- the balance consists of Al and inevitable impurities.
- This composition range of Ni and La is not considered as a sufficient amount of Al—Ni intermetallic compound and Al—La intermetallic compound cannot be obtained with the conventional Al—Ni—La alloy sputtering target. It is a thing.
- the “aluminum sputtering target” is not only a sputtering target made of aluminum and inevitable impurities, but also a sputtering target further containing a relatively small amount of additive elements such as about 0.1% by mass or less in total. It is a concept that includes Further, in this specification, the “aluminum thin film” includes not only a thin film made of aluminum and inevitable impurities but also a sputter thin film further containing a relatively small amount of additive elements such as about 0.1 mass% or less in total. It is a concept.
- the aluminum sputtering target according to the present invention contains 0.005 atomic% to 0.04 atomic% Ni and 0.005 atomic% to 0.06 atomic% La, with the balance being Al and inevitable impurities. First, details of this composition will be described.
- Ni The Ni content is 0.005 atomic% to 0.04 atomic%.
- the solid solubility limit of Ni with respect to Al varies depending on the literature, but is about 0.01 atomic% to 0.04 atomic%. That is, all of the contained Ni is dissolved in Al, or a small amount of the total amount of Ni is segregated as an Al—Ni intermetallic compound at the grain boundaries of the aluminum crystal structure, and the remaining Ni is dissolved in the Al. Melt. As a result, the same high conductivity as that of the conventional aluminum sputtering target can be maintained, and the material strength can be improved. When the Ni intermetallic compound precipitates, it segregates at the grain boundary because the atomic radius of Ni is considerably smaller than the atomic radius of Al.
- Such improvement in material strength is accompanied by improvement in hardness.
- the surface of the aluminum sputtering target in a state where machining such as cutting is performed is not easily damaged.
- the Ni content is preferably 0.01 atomic% to 0.03 atomic%. This is because the above-described effect can be obtained more reliably. If the Ni content is less than 0.005 atomic%, the increase in material strength is not sufficient. On the other hand, if the Ni content exceeds 0.04 atomic%, the conductivity is lowered.
- conductivity comparable to that of a conventional aluminum sputtering target means, for example, that the thin film resistivity of an aluminum thin film formed on a substrate by a sputtering method using a target aluminum sputtering target is a pure aluminum sputtering target. It is a case where it is 1.05 times or less of the thin film resistivity of the aluminum thin film formed on the substrate by the same sputtering method.
- the thin film resistivity of an aluminum thin film produced using the aluminum sputtering target of the present invention is the thin film resistance of an aluminum thin film formed on a substrate by the same sputtering method using a pure aluminum sputtering target.
- the rate is less than one time. That is, the conductivity of an aluminum thin film produced using the aluminum sputtering target of the present invention may be superior to the conductivity of an aluminum thin film formed using a pure aluminum target. The reason for this is estimated as follows, but this does not limit the technical scope of the present invention.
- an Mo thin film is laminated as an upper and lower layer on an aluminum thin film, and the resistivity is measured after heating at 450 ° C., for example. Since the aluminum thin film produced using the aluminum sputtering target of the present invention is added with Ni, the crystal grain size is larger than that of a pure aluminum thin film. A pure aluminum thin film having a smaller crystal grain size and therefore more crystal grain boundaries may have a higher electrical resistance.
- La The La content is 0.005 atomic% to 0.06 atomic%.
- the solid solubility limit of La with respect to Al is about 0.01 atomic%, although the value varies depending on the literature. That is, all the contained La is dissolved in Al, or a part of the total La amount is precipitated as Al—La intermetallic compound in the grains of the aluminum crystal structure, and most of the remaining La is Al. It dissolves as a substituent atom. When La is present as a substituent atom, dislocations accumulate during rolling described later, and the material strength increases. Furthermore, a part of La segregates at the grain boundary in the natural oxide film of Al on the surface and contributes to the improvement of the oxide film strength.
- Such improvement in material strength is accompanied by improvement in hardness.
- the surface of the aluminum sputtering target in a state where machining such as cutting is performed is not easily damaged.
- the La content is preferably 0.03 atomic% to 0.05 atomic%.
- the La content is preferably 0.03 atomic% to 0.05 atomic%.
- La forms a substitutional solid solution in the grains and contributes to an increase in strength, and also segregates at grain boundaries in the Al oxide film on the surface and contributes to an improvement in strength.
- the remainder is Al and inevitable impurities.
- the total amount of inevitable impurities is 0.01% by mass or less.
- the amount of inevitable impurities is usually managed by a mass ratio, it is represented by mass%. Examples of inevitable impurities include Fe, Si, and Cu.
- the aluminum sputtering target preferably has a surface portion hardness of 25 or more in terms of Vickers hardness. This is because the occurrence of scratches can be more reliably reduced by having a high hardness value. Note that a hardness of 25 or more in terms of Vickers hardness can be realized, for example, by setting the temperature of the heat treatment after rolling to 300 ° C. or less, or setting the rolling to cold rolling and the rolling reduction to 80% or more.
- the aluminum sputtering target according to the present invention may have any shape that a known aluminum sputtering target has. Examples of such shapes include a square shape, a rectangular shape, a circle shape, an ellipse shape, and a shape that forms a part of these shapes when viewed from above.
- the aluminum sputtering target having such a shape may have any size. Examples of the size of the aluminum sputtering target of the present invention include a length of 100 mm to 4000 mm, a width of 100 mm to 3000 mm, and a plate thickness of 5 mm to 35 mm.
- the aluminum sputtering target of the present invention may have any surface property that a known aluminum sputtering target has.
- the surface on which ions collide may be a machined surface such as cutting.
- the surface on which the ions collide is a polished surface. The polished surface can more reliably reduce the occurrence of splash.
- the aluminum thin film may be formed on the substrate by sputtering using the aluminum sputtering target of the present invention as follows, for example.
- the aluminum sputtering target of the present invention is bonded to, for example, a copper or copper alloy backing plate using a brazing material. Thus, it attaches to the sputtering device which is a vacuum device in the state joined to the backing plate.
- the aluminum sputtering target of this invention may be manufactured using the manufacturing method of arbitrary known aluminum sputtering targets. Below, the manufacturing method of the aluminum sputtering target of this invention is illustrated.
- a blended raw material having a predetermined composition is prepared for melting.
- raw materials constituting the blending raw material Al, Ni, and La
- each of single metals may be used, and an aluminum alloy containing at least one of Ni and La may be used as the raw material.
- the purity of the Al raw material and the Ni raw material is preferably 99.9% by mass or more, and more preferably 99.95% by mass or more.
- the La raw material preferably has a purity of 99% by mass or more, and more preferably 99.5% by mass or more.
- the aluminum sputtering target of the present invention has a lower Ni content and lower La content than the conventional Al—Ni—La sputtering target, so that the composition is uniform even without using spray forming, that is, vacuum melting. It has the advantage of being able to. However, this does not exclude melt casting by spray forming, and an ingot may be obtained by performing spray forming. Furthermore, instead of vacuum melting, melting may be performed in an inert atmosphere such as an argon atmosphere.
- the composition of the ingot obtained by the compounding raw material composition and the melting casting and the composition of the finally obtained aluminum sputtering target are substantially The present inventors have confirmed that they are the same. For this reason, you may use as a composition of the aluminum sputtering target from which the compounding composition at the time of melt
- the rolled material after heat treatment is machined to obtain an aluminum sputtering target.
- machining include cutting such as a lathe and rounding.
- polishing may be performed after machining to smooth the surface, particularly the surface on which ions collide.
- Example 1 Using the Al raw material, the Ni raw material, and the La raw material, the raw material is blended so that the Ni addition amount is 0.02 atomic%, the La addition amount is 0.02 atomic%, and the balance is Al (including inevitable impurities), A blended raw material (dissolved raw material) was obtained. Both the Al raw material and the Ni raw material had a purity of 99.98% by mass, and the La raw material had a purity of 99.5% by mass. This blended raw material was vacuum melted and cast to produce an aluminum alloy ingot having the same composition as the blended raw material.
- the obtained ingot was cold-rolled to obtain a rolled material.
- Cold rolling was performed at a thickness of 100 mm before rolling and a thickness of 8 mm after rolling, that is, a reduction rate of 92%.
- the rolled material was heat-treated at 250 ° C. for 2 hours in the air. And after cutting
- the obtained aluminum sputtering target was joined to a backing plate made of pure Cu using the brazing material described above.
- Example 2 An aluminum sputtering target was prepared in the same manner as in Example 1 except that the composition of the blended raw materials was 0.02 atomic% for Ni, 0.04 atomic% for La, and the balance was Al (including inevitable impurities). It was confirmed that the composition of the obtained aluminum sputtering target was the same as the composition of the blended raw material.
- Example 3 An aluminum sputtering target was produced in the same manner as in Example 1 except that the composition of the blended raw materials was 0.02 atomic% for Ni, 0.06 atomic% for La, and the balance was Al (including inevitable impurities). It was confirmed that the composition of the obtained aluminum sputtering target was the same as the composition of the blended raw material.
- Comparative Example 1 An aluminum sputtering target was produced in the same manner as in Example 1 except that the blending raw material was only the Al raw material.
- Example 4 The aluminum sputtering target of Example 1 was further polished with # 600 sandpaper to obtain the aluminum sputtering target of Example 4. Using the brazing material, the obtained aluminum sputtering target was joined to a pure Cu backing plate.
- Example 5 The aluminum sputtering target of Example 2 was further polished with # 600 sandpaper to obtain the aluminum sputtering target of Example 5. Using the brazing material, the obtained aluminum sputtering target was joined to a pure Cu backing plate.
- Example 6 The aluminum sputtering target of Example 3 was further polished with # 600 sandpaper to obtain the aluminum sputtering target of Example 6. The resulting aluminum sputtering target was joined to a pure Cu backing plate using a brazing material.
- Comparative Example 2 The aluminum sputtering target of Comparative Example 1 was further polished with # 600 sandpaper to obtain an aluminum sputtering target of Comparative Example 2. The resulting aluminum sputtering target was joined to a pure Cu backing plate using a brazing material.
- a backing plate to which an aluminum sputtering target was bonded was attached to a magnetron DC sputtering apparatus, and sputtering was performed under the conditions of DC 4.5 kW and pressure 0.3 Pa. Sputtering was performed for 50 seconds per time on a 4-inch silicon substrate to form an aluminum thin film having a thickness of 200 nm. The silicon substrate was replaced every time the film was formed, and the process was continuously performed.
- the formed silicon substrate was inspected with an optical particle counter, and the particle generation site was observed with a microscope. Particles were observed, and the number of occurrences of splash was examined from the shape. Table 1 shows the number of substrates on which films were formed until the occurrence of splash for each target was 1 or less per substrate. This corresponds to the number of dummy substrates necessary for pre-sputtering. As can be seen from Table 1, each sample was evaluated four times.
- the Vickers hardness test was performed on the surfaces of the aluminum sputtering targets of Examples 1 to 6 and Comparative Examples 1 and 2, and the Vickers hardness was measured.
- an aluminum thin film having a thickness of 900 nm was formed using each aluminum sputtering target of Examples 1 to 6 and Comparative Examples 1 and 2, and 70 nm of Mo thin films were stacked as upper and lower layers, respectively, at 450 ° C. for 1 hour.
- the resistivity of the aluminum thin film after heating was measured. The measurement results are shown in Table 1.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physical Vapour Deposition (AREA)
- Electrodes Of Semiconductors (AREA)
Abstract
Description
例えば、加工中の搬送の際の接触により、表面に傷を生ずることがある。そして、このような傷の発生は、アルミニウムスパッタリングターゲットが大型になるほど増加する傾向にある。
本発明に係るアルミニウムスパッタリングターゲットは0.005原子%~0.04原子%のNiと0.005原子%~0.06原子%のLaとを含有し、残部がAlおよび不可避不純物である。最初にこの組成の詳細を説明する。
(1)Ni
Ni含有量は、0.005原子%~0.04原子%である。Alに対するNiの固溶限は、文献により値が異なるが、0.01原子%~0.04原子%程度である。すなわち、含有する全てのNiがAl中に固溶するか、または全Ni量のうち少量がアルミニウム結晶組織の粒界にAl-Ni系金属間化合物として偏析し、残りのNiはAl中に固溶する。これにより従来のアルミニウムスパッタリングターゲットと同程度の高い導電性を維持し、かつ材料強度を向上させることができる。Niの金属間化合物が析出する場合、粒界に偏析するのはNiの原子半径がAlの原子半径よりかなり小さいことに起因する。
La含有量は、0.005原子%~0.06原子%である。Alに対するLaの固溶限は、文献により値が異なるが、0.01原子%程度である。すなわち、含有する全てのLaがAl中に固溶するか、または全La量のうち一部がアルミニウム結晶組織の粒内にAl-La系金属間化合物として析出し、残りのLaの多くはAl中に置換原子として固溶する。Laが置換原子と存在することにより、後述する圧延の際に、転位が堆積し、材料強度が増加する。さらに、Laの一部は、表面のAlの自然酸化膜中の粒界に偏析し、酸化膜強度の向上に寄与する。
残部は、Alと不可避不純物である。好ましい形態では不可避不純物量は合計で、0.01質量%以下である。なお、不可避不純物量は通常、質量比で管理されることが多いため質量%で示した。不可避不純物として、Fe、SiおよびCuを例示できる。
アルミニウムスパッタリングターゲットは、好ましくは表面部の硬度が、ビッカース硬度で25以上である。高い硬度値を有することにより、傷の発生をより確実に低減できるからである。なお、ビッカース硬度で25以上の硬度は、例えば、圧延後の熱処理の温度を300℃以下とする、または圧延を冷間圧延とし、圧下率を80%以上とすることにより実現できる。
本発明に係るアルミニウムスパッタリングターゲットは、既知のアルミニウムスパッタリングターゲットが有する任意の形状を有してよい。このような形状として、上面視した形状が、正方形、長方形、円および楕円、ならびにこれら形状の一部を為す形状を挙げることができる。このような形状を有するアルミニウムスパッタリングターゲットは任意の大きさを有してよい。本発明のアルミニウムスパッタリングターゲットの大きさとして、長さ100mm~4000mm、幅100mm~3000mm、板厚5mm~35mmを例示できる。
本発明のアルミニウムスパッタリングターゲットは、任意の既知のアルミニウムスパッタリングターゲットの製造方法を用いて製造してよい。以下に本発明のアルミニウムスパッタリングターゲットの製造方法を例示する。
まず、溶解するために所定の組成を有する配合原料を準備する。配合原料を構成する原料として、Al、NiおよびLa、それぞれの金属単体を用いてもよく、また、NiおよびLaの少なくとも一方を含むアルミニウム合金を原料として用いてもよい。金属単体の原料を用いる場合、Al原料およびNi原料は、純度が99.9質量%以上であることが好ましく、99.95質量%以上であることがより好ましい。La原料は純度が99質量%以上であることが好ましく、99.5質量%以上であることがより好ましい。真空溶解により配合原料を溶解した後、鋳造し所定の組成を有するインゴットを得る。
さらに、真空溶解に代えて、アルゴン雰囲気等の不活性雰囲気中で溶解を行ってもよい。
得られたインゴットを得ようとするアルミニウムスパッタリングターゲットと同程度の厚さになるように圧延を行い、圧延材(板材)を得る。圧延は例えば冷間圧延でよい。得られた圧延材に熱処理(焼鈍)を行う。熱処理温度は、例えば、240℃~260℃であり、保持時間は2時間~3時間であり、雰囲気は大気中でであってよい。
Al原料、Ni原料およびLa原料を用いて、Ni添加量が0.02原子%、La添加量が0.02原子%、残部がAl(不可避不純物を含む)となるように原料を配合し、配合原料(溶解原料)を得た。Al原料とNi原料は、どちらも純度が99.98質量%のものを用い、La原料は純度が99.5質量%のものを用いた。この配合原料を真空溶解および鋳造し、配合原料と同じ組成を有するアルミニウム合金インゴットを作製した。
配合原料の組成をNiが0.02原子%、Laが0.04原子%、残部がAl(不可避不純物を含む)とした以外は実施例1と同じ方法で、アルミニウムスパッタリングターゲットを作製した。得られたアルミニウムスパッタリングターゲットの組成が配合原料の組成と同じであることを確認した。
配合原料の組成をNiが0.02原子%、Laが0.06原子%、残部がAl(不可避不純物を含む)とした以外は実施例1と同じ方法で、アルミニウムスパッタリングターゲットを作製した。得られたアルミニウムスパッタリングターゲットの組成が配合原料の組成と同じであることを確認した。
配合原料をAl原料のみとした以外は実施例1と同じ方法で、アルミニウムスパッタリングターゲットを作製した。
実施例1のアルミニウムスパッタリングターゲットを更に#600サンドペーパーで研磨し、実施例4のアルミニウムスパッタリングターゲットとした。ろう材を用いて、得られたアルミニウムスパッタリングターゲットを純Cu製のバッキングプレートに接合した。
実施例2のアルミニウムスパッタリングターゲットを更に#600サンドペーパーで研磨し、実施例5のアルミニウムスパッタリングターゲットとした。ろう材を用いて、得られたアルミニウムスパッタリングターゲットを純Cu製のバッキングプレートに接合した。
実施例3のアルミニウムスパッタリングターゲットを更に#600サンドペーパーで研磨し、実施例6のアルミニウムスパッタリングターゲットとした。ろう材を用いて、得られたアルミニウムスパッタリングターゲットを純Cu製のバッキングプレートに接合した
比較例1のアルミニウムスパッタリングターゲットを更に#600サンドペーパーで研磨し、比較例2のアルミニウムスパッタリングターゲットとした。ろう材を用いて、得られたアルミニウムスパッタリングターゲットを純Cu製のバッキングプレートに接合した
Claims (3)
- 0.005原子%~0.04原子%のNiと、0.005原子%~0.06原子%のLaとを含み、残部がAlおよび不可避不純物であることを特徴とするアルミニウムスパッタリングターゲット。
- ビッカース硬度が25以上であることを特徴とする請求項1に記載のアルミニウムスパッタリングターゲット。
- 0.01原子%~0.03原子%のNiと、0.03原子%~0.05原子%のLaとを含むことを特徴とする請求項1または2に記載のアルミニウムスパッタリングターゲット。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201680002116.6A CN106795624B (zh) | 2015-08-03 | 2016-06-03 | 铝溅镀靶材 |
KR1020177025729A KR20180027402A (ko) | 2015-08-03 | 2016-06-03 | 알루미늄 스퍼터링 타겟 |
KR1020167036850A KR20170026398A (ko) | 2015-08-03 | 2016-06-03 | 알루미늄 스퍼터링 타겟 |
US15/749,937 US20180223416A1 (en) | 2015-08-03 | 2016-06-03 | Aluminum sputtering target |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-153554 | 2015-08-03 | ||
JP2015153554A JP6043413B1 (ja) | 2015-08-03 | 2015-08-03 | アルミニウムスパッタリングターゲット |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017022320A1 true WO2017022320A1 (ja) | 2017-02-09 |
Family
ID=57543922
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/066663 WO2017022320A1 (ja) | 2015-08-03 | 2016-06-03 | アルミニウムスパッタリングターゲット |
Country Status (6)
Country | Link |
---|---|
US (1) | US20180223416A1 (ja) |
JP (1) | JP6043413B1 (ja) |
KR (2) | KR20170026398A (ja) |
CN (1) | CN106795624B (ja) |
TW (1) | TWI602931B (ja) |
WO (1) | WO2017022320A1 (ja) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111270213A (zh) * | 2020-04-15 | 2020-06-12 | 宁波江丰电子材料股份有限公司 | 一种长寿命靶材组件 |
KR20230103968A (ko) | 2021-12-30 | 2023-07-07 | 주식회사 큐프럼 머티리얼즈 | 박막 트랜지스터 전극 및 반사 전극용 알루미늄, 망간, 티타늄 및 실리콘을 포함하는 합금 조성물 |
US20230323524A1 (en) * | 2022-04-07 | 2023-10-12 | Cantech Inc. | Quartz crystal sensor coated with gold-aluminum by magnetron sputtering |
KR20240106256A (ko) | 2022-12-29 | 2024-07-08 | 고등기술연구원연구조합 | 알루미늄 합금 타겟 및 이의 제조방법 |
KR20240148285A (ko) | 2023-04-03 | 2024-10-11 | 주식회사 큐프럼 머티리얼즈 | 평판디스플레이 소자 금속 전극용 알루미늄 합금 조성물 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006118044A (ja) * | 1997-12-24 | 2006-05-11 | Toshiba Corp | スパッタリングターゲットの製造方法 |
JP2009263768A (ja) * | 2008-03-31 | 2009-11-12 | Kobelco Kaken:Kk | Al基合金スパッタリングターゲットおよびその製造方法 |
JP2010134458A (ja) * | 2008-11-05 | 2010-06-17 | Kobe Steel Ltd | 表示装置用Al合金膜、表示装置およびスパッタリングターゲット |
JP2011106025A (ja) * | 2009-10-23 | 2011-06-02 | Kobe Steel Ltd | Al基合金スパッタリングターゲット |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3410278B2 (ja) | 1996-02-27 | 2003-05-26 | 日立金属株式会社 | 液晶ディスプレイ用Al系ターゲット材およびその製造方法 |
US20010047838A1 (en) * | 2000-03-28 | 2001-12-06 | Segal Vladimir M. | Methods of forming aluminum-comprising physical vapor deposition targets; sputtered films; and target constructions |
JP2001279433A (ja) | 2000-03-31 | 2001-10-10 | Hitachi Metals Ltd | 異常放電発生数が少ない純Alターゲットの製造方法 |
JP4377906B2 (ja) * | 2006-11-20 | 2009-12-02 | 株式会社コベルコ科研 | Al−Ni−La系Al基合金スパッタリングターゲット、およびその製造方法 |
CN102197335A (zh) * | 2008-11-05 | 2011-09-21 | 株式会社神户制钢所 | 显示装置用Al合金膜、显示装置和溅射靶 |
CN102041479B (zh) * | 2009-10-23 | 2013-08-28 | 株式会社神户制钢所 | Al基合金溅射靶 |
-
2015
- 2015-08-03 JP JP2015153554A patent/JP6043413B1/ja active Active
-
2016
- 2016-06-03 WO PCT/JP2016/066663 patent/WO2017022320A1/ja active Application Filing
- 2016-06-03 KR KR1020167036850A patent/KR20170026398A/ko not_active Application Discontinuation
- 2016-06-03 US US15/749,937 patent/US20180223416A1/en not_active Abandoned
- 2016-06-03 CN CN201680002116.6A patent/CN106795624B/zh active Active
- 2016-06-03 KR KR1020177025729A patent/KR20180027402A/ko not_active Application Discontinuation
- 2016-07-07 TW TW105121496A patent/TWI602931B/zh active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006118044A (ja) * | 1997-12-24 | 2006-05-11 | Toshiba Corp | スパッタリングターゲットの製造方法 |
JP2009263768A (ja) * | 2008-03-31 | 2009-11-12 | Kobelco Kaken:Kk | Al基合金スパッタリングターゲットおよびその製造方法 |
JP2010134458A (ja) * | 2008-11-05 | 2010-06-17 | Kobe Steel Ltd | 表示装置用Al合金膜、表示装置およびスパッタリングターゲット |
JP2011106025A (ja) * | 2009-10-23 | 2011-06-02 | Kobe Steel Ltd | Al基合金スパッタリングターゲット |
Also Published As
Publication number | Publication date |
---|---|
KR20180027402A (ko) | 2018-03-14 |
TWI602931B (zh) | 2017-10-21 |
US20180223416A1 (en) | 2018-08-09 |
JP2017031475A (ja) | 2017-02-09 |
JP6043413B1 (ja) | 2016-12-14 |
CN106795624B (zh) | 2018-07-03 |
CN106795624A (zh) | 2017-05-31 |
KR20170026398A (ko) | 2017-03-08 |
TW201706420A (zh) | 2017-02-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI444492B (zh) | Aluminum alloy sputtering target | |
JP6043413B1 (ja) | アルミニウムスパッタリングターゲット | |
TW201329269A (zh) | 鉭濺鍍靶 | |
WO2013038962A1 (ja) | 高純度銅マンガン合金スパッタリングターゲット | |
JP6325641B1 (ja) | アルミニウム合金スパッタリングターゲット | |
JP6356357B2 (ja) | Ti−Ta合金スパッタリングターゲット及びその製造方法 | |
TWI525207B (zh) | Cu alloy thin film forming sputtering target and its manufacturing method | |
JP6440866B2 (ja) | Ti−Nb合金スパッタリングターゲット及びその製造方法 | |
JP4264302B2 (ja) | 銀合金スパッタリングターゲットとその製造方法 | |
JP2018176493A (ja) | 積層膜、及び、Ag合金スパッタリングターゲット | |
JP4569863B2 (ja) | Ag合金スパッタリングターゲット材およびAg合金膜 | |
JP3410278B2 (ja) | 液晶ディスプレイ用Al系ターゲット材およびその製造方法 | |
TWI619820B (zh) | 銅合金濺鍍靶材 | |
TW201631168A (zh) | 銅基合金濺鍍靶材 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 20167036850 Country of ref document: KR Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16832599 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15749937 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16832599 Country of ref document: EP Kind code of ref document: A1 |