WO2016072165A1 - Travel control device - Google Patents
Travel control device Download PDFInfo
- Publication number
- WO2016072165A1 WO2016072165A1 PCT/JP2015/076829 JP2015076829W WO2016072165A1 WO 2016072165 A1 WO2016072165 A1 WO 2016072165A1 JP 2015076829 W JP2015076829 W JP 2015076829W WO 2016072165 A1 WO2016072165 A1 WO 2016072165A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- power generation
- vehicle
- solar power
- solar
- generation location
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L8/00—Electric propulsion with power supply from forces of nature, e.g. sun or wind
- B60L8/003—Converting light into electric energy, e.g. by using photo-voltaic systems
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L8/00—Electric propulsion with power supply from forces of nature, e.g. sun or wind
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L50/00—Electric propulsion with power supplied within the vehicle
- B60L50/50—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
- B60L50/60—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2260/00—Operating Modes
- B60L2260/20—Drive modes; Transition between modes
- B60L2260/32—Auto pilot mode
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/7072—Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/72—Electric energy management in electromobility
Definitions
- the present invention relates to a travel control device for a vehicle equipped with a solar cell panel.
- Patent Document 1 a candidate parking lot that is estimated to have the largest amount of solar radiation when searching for a parking space is calculated based on factors such as date and time, weather, buildings around the candidate parking lot, and the like to inform the user Techniques for body devices have been proposed.
- a parking lot that is estimated to have the highest amount of solar radiation after parking is recommended based on a prior estimation, but the vehicle user's destination matches the recommended parking lot.
- the vehicle user's destination matches the recommended parking lot.
- the recommended parking lot is far from the destination of the vehicle user, parking at the recommended parking lot is deceived and the parking lot is close to the destination but not charged by solar power generation In such a case, charging is performed using a separate power source, which increases the charging cost.
- the present invention has been made in view of the above points, and the object of the present invention is to provide a time zone during which the vehicle is not driven, such as before the user uses the vehicle or after arriving at the destination.
- An object of the present invention is to provide a travel control device that can be used for solar power generation using a battery panel.
- a travel control device of the present invention that solves the above problem is a travel control device for a vehicle equipped with a solar cell panel and a rechargeable battery that is charged by solar power generation of the solar cell panel, and the user of the vehicle When the vehicle is not used and the rechargeable battery is charged by solar power generation of the solar panel rather than not moving when the vehicle moves from the vehicle position to a preset solar power generation location.
- Expected charge amount is large, and the expected charge amount at the solar power generation place is the charge consumption when traveling back and forth from the own vehicle position to the solar power generation place, or from the own vehicle position
- Automatic driving control is performed to cause the vehicle to travel to the solar power generation site when the amount of charge consumption is greater than when the vehicle travels to a preset return location via the solar power generation site.
- the time zone during which the user does not drive the vehicle can be used for power generation using the solar cell panel. Therefore, the frequency of charging via wire can be reduced, and the electricity bill can be saved.
- FIG. 3 is a diagram illustrating the contents of Example 1.
- FIG. 6 is a diagram for explaining the contents of Example 3;
- FIG. 1 is a diagram illustrating an example of a device configuration of a vehicle to which the travel control device of the present embodiment is applied.
- the vehicle is a vehicle that can run on battery power, such as EV or PHEV, and is a travel control device 101, a vehicle periphery sensor 105, an actuator 106, a car navigation communication device 107, a solar battery panel 103, and a rechargeable battery 104. And a battery control unit 102.
- the solar cell panel 103 is mounted so as to be exposed to exterior parts such as a roof of a vehicle and a bonnet so that power can be generated by receiving sunlight.
- the rechargeable battery 104 is a secondary battery capable of charging and discharging electric power that can drive the travel motor and the actuator 106, and for example, a lithium ion secondary battery is used.
- the battery control unit 102 charges the rechargeable battery 104 by solar power generation of the solar battery panel 103, discharges from the rechargeable battery 104 in response to a request from the traveling control device 101, and supplies battery power to the actuator 106. Battery control.
- the rechargeable battery 104 can be charged not only from the solar battery panel 103 but also from a power source connected via a wire.
- the traveling control device 101 performs automatic driving control for traveling the vehicle to a destination through a predetermined route.
- the automatic driving control is a control for driving the vehicle to the destination by operating the accelerator pedal, the brake pedal, the steering, etc. of the vehicle by the driving control device 101 without driving by the driver.
- the actuator 106 operates a steering, an accelerator pedal, a brake pedal, and the like, and these are controlled by the traveling control device 101.
- the vehicle surrounding sensor 105 is a sensor for recognizing the surrounding environment of the vehicle, and includes, for example, a laser sensor, an ultrasonic sensor, a camera, and the like for detecting the presence or absence of a preceding vehicle and an inter-vehicle distance.
- the car navigation communication device 107 has a positioning navigation device and a GPS device.
- the positioning navigation device is a measuring device including a 3D gyro sensor, an acceleration sensor, and the like.
- the GPS device receives a signal from a GPS satellite and generates latitude / longitude information of the own vehicle.
- the car navigation communication device 107 includes a communication control unit, a position information acquisition unit, and a route guide unit.
- the communication control unit acquires various types of information via a wireless communication network by performing wireless communication. For example, the parking lot information indicating the position and structure of the parking lot around the vehicle, the weather information indicating the weather around the vehicle, the sunrise and sunset time information, the solar radiation amount information, and the like are acquired.
- the position information acquisition unit acquires position information indicating the current position of the vehicle, the traveling direction, and the like.
- the position information is acquired from a positioning navigation device or a GPS device.
- the position information includes information on the longitude and latitude of the vehicle and information on the direction of the traveling direction.
- the route guidance unit performs a process of displaying the vehicle position on a map around the vehicle. Further, upon receiving the input of the destination, the route from the vehicle position to the destination is displayed, and a process for indicating the guidance direction is performed.
- FIG. 2 is a flowchart for explaining the contents of control by the travel control device of this embodiment.
- the travel control device 101 uses solar power generation of a solar panel rather than a vehicle user who does not use the vehicle and does not move when the vehicle moves from a vehicle position to a preset solar power generation location.
- the amount of charge expected to be charged in the rechargeable battery is large, and the estimated amount of charge at the solar power generation site is the charge consumption when traveling back and forth from the own vehicle position to the solar power generation site, or the own vehicle
- automatic driving control is performed to cause the vehicle to travel to the solar power generation location.
- step S101 an inquiry is made about a place where power generation is possible where solar power generation is possible.
- the travel control device 101 determines that the current time is a preset time that the user of the vehicle does not use the vehicle
- the communication control unit of the car navigation communication device 107 performs wireless communication for inquiry.
- information on a place where power can be generated is acquired via a wireless communication network.
- the place where power generation is possible refers to a place where solar power generation can be performed by receiving sunlight on the solar cell panel by parking in such a place.
- a power generation place (solar power generation place) is determined.
- the power generation place since it is necessary to be able to shine sunlight on the solar cell panel, the power generation place is determined in consideration of weather information and sunshine hours.
- a place that is as close and sunny as possible is determined as the power generation site. Since the amount of power generation varies depending on the direction of the vehicle with respect to the sun position, the power generation location may be determined in consideration of the direction of the vehicle.
- step S103 the expected charge amount that the rechargeable battery is expected to be charged by solar power generation of the solar panel rather than not moving when the vehicle moves from the current position of the vehicle to the power generation location determined in step S102. It is determined whether or not there are many.
- the expected charge amount at the current position and the power generation location is calculated based on the sunshine hours and weather forecast information at each location.
- step S104 the predicted charging amount at the power generation location is changed from the own vehicle position to the power generation location. It is determined whether or not the charging consumption is greater than the charging consumption when traveling back and forth, or the charging consumption when traveling from the vehicle position to a preset return location via the power generation location.
- the charge consumption is calculated based on, for example, the distance from the current position to the power generation place or the return place, and information on road shapes such as slopes and curves. Information on the distance and the road shape is acquired from the car navigation communication device 107.
- step S104 If the estimated charge amount at the power generation site is larger than the above-mentioned charge consumption amount at step S104 (YES at step S104), the process proceeds to step S105 and subsequent steps so that the vehicle is moved to the power generation site and charged by solar power generation. To do.
- step S103 if it is not possible to charge even if it moves to the power generation place (NO in step S103), or if the expected charge amount in the power generation place is equal to or less than the charge consumption amount (NO in step S104), On the other hand, the amount of charge is reduced, so that the current position is not moved in step S109, the apparatus waits for a certain time, and the determination process from step S101 is performed again after a predetermined time has elapsed.
- step S105 a process of moving the vehicle to the power generation place and starting solar power generation is performed.
- the travel control device 101 controls the actuator 106 based on the route guidance by the car navigation communication device 107 and the detection information from the vehicle periphery sensor 105, and performs automatic driving control that causes the vehicle to travel to the power generation position. Then, the vehicle is parked at the power generation place, solar power generation by the solar battery panel 103 is started, and the rechargeable battery 104 is charged.
- step S106 when the rechargeable battery 104 is charged to a preset upper limit amount, that is, in a so-called full charge state, a process for terminating the charging of the rechargeable battery 104 is performed.
- the battery control unit 102 confirms that the rechargeable battery 104 has been charged to the upper limit amount, and notifies the traveling control device 101 of the information.
- the travel control apparatus 101 instructs the battery control unit 102 to end charging, and the battery control unit 102 ends charging of the rechargeable battery 104.
- step S107 a process of moving the vehicle to the original parking place or another return place set in advance is performed.
- the travel control device 101 controls the actuator 106 based on the route guidance by the car navigation communication device 107 and the detection information from the vehicle periphery sensor 105, and causes the vehicle to travel to the original parking position or another return position. I do.
- step S108 it is determined whether or not to cancel the series of charging modes described above. Whether or not to release the charging mode can be preset by the user of the vehicle. For example, when it is desired to perform automatic charging periodically, the charging mode is not canceled, but when charging is desired to be performed once, the charging mode is canceled after automatic charging.
- FIG. 3 is a diagram for explaining the contents of the first embodiment.
- the vehicle 311 of the present embodiment is an EV or PHEV having the configuration shown in FIG.
- the vehicle 311 departs from the home parking lot 301 by automatic driving and travels to the sunny flat parking lot 302 through the road 303 during a time period when the user of the vehicle 311 does not use the vehicle 311. . And it parks in the plane parking lot 302, performs solar power generation, fully charges the rechargeable battery, and then goes through the road 303 again and returns to the home parking lot 301.
- the traveling control device 101 of the vehicle 311 performs wireless communication by the communication control unit of the car navigation communication device 107, and acquires information on a place where power generation is possible via the wireless communication network.
- the home parking lot 301 where the vehicle 311 is parked is a shadow of the house and there is a time zone where the sun does not hit, while the flat parking lot 302 away from the home parking lot 301 is more sunny than the home parking lot 301 Get information that is good. Therefore, not the home parking lot 301 but the plane parking lot 302 is determined as the power generation place.
- the amount of charge that can be charged is greater when the vehicle 311 moves than when it does not move.
- the amount of charge charged in the flat parking lot 302 is large, and it is determined that the person moving to the flat parking lot 302 can charge more than the home parking lot 301.
- the amount of charge consumed when traveling on the road 303 and reciprocating between the home parking lot 301 and the flat parking lot 302 is compared with the expected charge charged in the flat parking lot 302.
- the vehicle 311 is traveled to the flat parking lot 302 through the road 303 and charged by solar power generation in the flat parking lot 302. Let the road 303 pass and return to the home parking lot 301.
- the time zone when the user of the vehicle 311 does not use the vehicle 311 can be used for solar power generation using the solar battery panel, and it is not necessary to separately charge with a power source, and the charging cost can be reduced. .
- FIG. 4 is a diagram for explaining the contents of the second embodiment.
- the vehicle 311 when the amount of charge of the vehicle 311 is insufficient in a home parking lot where the position of the sun changes between morning and afternoon, the vehicle 311 moves to follow the position of the sun and is charged by solar power generation. After full charge, move to the shaded position.
- the second half portion 301b of the home parking lot 301 is shaded by the position of the sun 401a and the tree 402, and the vehicle 311 is parked in the first half portion 301a of the home parking lot 301 that is facing the sun. It is carried out.
- the first half portion 301a of the home parking lot 301 becomes shaded due to the positions of the sun 401b and the tree 403, and the vehicle 311 enters the first half portion 301a of the shaded home parking lot 301.
- the travel control device 101 performs control to move the vehicle 311 in the sun when the vehicle 311 enters the shade even though the rechargeable battery is not fully charged by solar power generation.
- the vehicle 311 is moved from the first half 301a to the second half 301b of the parking lot. Therefore, the vehicle 311 can fully charge the rechargeable battery. Therefore, the rechargeable battery 104 can be charged by solar power generation during a time period when the user is not using the vehicle 311.
- the traveling control apparatus 101 moves the vehicle 311 to the first half part 301a of the home parking lot 301 which is shaded after full charge. Therefore, the inside of the vehicle 311 can be prevented from becoming hot, and the solar cell panel can be prevented from deteriorating.
- the position information of the shade in the home parking lot may be acquired from the car navigation communication device 107 or may be directly input by the user.
- FIG. 5 is a diagram for explaining the contents of the third embodiment.
- the present embodiment is a parking system using a vehicle 511 and a multistory parking facility 502.
- the vehicle 511 is an EV or PHEV having the configuration shown in FIG. 1 as in the first and second embodiments.
- the multi-story parking facility 502 includes a Hinata rooftop parking lot 523, which is a solar power generation place where the solar battery panel 103 is capable of solar power generation in a state where the vehicle 511 is parked, and non-power generation where the solar battery panel 103 is not capable of solar power generation. It has a shaded downstairs parking lot 522 as a place.
- a vehicle 511 parked in the downstairs parking lot 522 is automatically driven. To depart from the downstairs parking 522 and move up the slope 521 to the sunny rooftop parking 523.
- the vehicle is parked at the rooftop parking lot 523, solar power is generated, the rechargeable battery is fully charged, and then the vehicle returns to the downstairs parking lot 522 by going down the slope 521 again. Therefore, for example, while the user of the vehicle 511 is shopping in the shopping mall 501 adjacent to the multi-story parking facility 502, the rechargeable battery 104 of the vehicle 511 is charged by solar power generation while the vehicle 511 is not driven. be able to.
- the multi-story parking facility 502 transmits the power generation location information to the parking information acquisition unit 504 that acquires the power generation location information indicating whether or not the rooftop parking lot 523 is vacant, and the vehicle 511 parked in the downstairs parking lot 522.
- a transmission unit 503 is included.
- the travel control device 101 determines whether to perform automatic driving control.
- the travel control device 101 has a higher expected charge amount due to solar power generation when the vehicle moves from the parking position of the downstairs parking lot 522 to the rooftop parking lot 523 and does not move. Charge consumption when traveling back and forth between the vehicle position and the rooftop parking lot 523, or a preset return place of the downstairs parking lot 522 from the own vehicle position of the downstairs parking lot 522 via the rooftop parking lot 523 When the amount of charging is greater than the amount consumed when the vehicle travels to the vehicle, automatic driving control is performed to cause the vehicle 511 to travel to the rooftop parking 523.
- the multi-story parking facility 502 acquires non-power generation location information indicating whether or not the downstairs parking lot 522 is vacant by the parking information acquisition unit 504, and the non-power generation location information is not transmitted to the vehicle 511 parked in the rooftop parking lot 523 by the transmission unit 503. Send power generation location information.
- the vehicle 511 parked in the rooftop parking lot 523 receives the non-power generation location information by the car navigation communication device 107 after the charging of the rechargeable battery 104 by solar power generation (reception unit), the vehicle 511 is received by the travel control device 101. Is controlled to run to the empty space in the downstairs parking lot 522. In this way, the vehicle 511 fully charged by solar power generation at the rooftop parking lot 523 moves to the downstairs parking lot 522, so that the vehicle 511 that needs to be charged instead is moved to the rooftop parking lot 523 to generate solar power. Can be made. Therefore, the sun can be shared among the plurality of vehicles 511, and the utilization efficiency of natural energy can be increased.
- the vehicle 511 leaving the rooftop parking lot 523 and solar power generation A configuration in which vehicle-to-vehicle communication (C2X communication or the like) is performed with a vehicle 511 that wishes to move to the rooftop parking lot 523, and vacant information on the rooftop parking lot 523 is transmitted to a predetermined vehicle 511 like word-of-mouth information. It is good.
- the multi-story parking facility 502 may receive requests for a plurality of vehicles 511 that wish to move to the rooftop parking lot 523 for solar power generation, and transmit the power generation location information to each vehicle 511 in the order received. .
- the present invention is not limited to the above-described embodiments, and various designs can be made without departing from the spirit of the present invention described in the claims. It can be changed.
- the above-described embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to one having all the configurations described.
- a part of the configuration of an embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of an embodiment.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
- Navigation (AREA)
- Output Control And Ontrol Of Special Type Engine (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
To obtain a travel control device whereby a time period in which a vehicle is not being driven, such as before a user uses the vehicle or after a destination has been reached, can be used for solar power generation using a solar cell panel. A travel control device 101 for a vehicle in which a solar cell panel 103 and a rechargeable cell 104 are mounted, wherein automatic driving control is performed for causing the vehicle to travel to a solar power generation location when a user is not using the vehicle and the predicted charging amount by which the rechargeable cell would be charged by solar power generation by the solar cell panel in the case of movement of the vehicle from the current position thereof to the solar power generation location is greater than in the case of no movement of the vehicle, and the predicted charging amount in the solar power generation location is greater than the amount of charging consumed in the case of a round trip from the current position to the solar power generation location or the amount of charging consumed in the case of travel from the current position to a pre-set return location via the solar power generation location.
Description
本発明は、太陽電池パネルを搭載した車両の走行制御装置に関する。
The present invention relates to a travel control device for a vehicle equipped with a solar cell panel.
近年、電気自動車(EV)やプラグインハイブリッド車(PHEV)など電気を動力とする車両がある。このような車両に太陽電池パネルを搭載して日向に駐車することにより太陽光発電を行い、充電池に充電することができる。しかし、駐車した場所が日陰だと太陽光発電ができず、別途電源を用いて充電する必要がある。
In recent years, there are vehicles powered by electricity, such as electric vehicles (EV) and plug-in hybrid vehicles (PHEV). By mounting a solar battery panel on such a vehicle and parking in the sun, solar power can be generated and the rechargeable battery can be charged. However, if the place where you parked is in the shade, you will not be able to generate solar power, and you will need to charge it separately using a power source.
特許文献1には、駐車スペース検索の際に最も日射量が多いと推定される候補駐車場を、日時、天候、候補駐車場周辺の建築物などの要因に基づいて算出し、ユーザに知らせる移動体用装置の技術が提案されている。
In Patent Document 1, a candidate parking lot that is estimated to have the largest amount of solar radiation when searching for a parking space is calculated based on factors such as date and time, weather, buildings around the candidate parking lot, and the like to inform the user Techniques for body devices have been proposed.
上記の従来装置による移動体用装置では、事前の推定に基づき駐車後に最も日射量が多いと推定される駐車場を推奨するが、車両利用者の目的地と推奨された駐車場とが一致するとは限らない。例えば推奨された駐車場が車両利用者の目的地と離れていた場合には、推奨された駐車場への駐車が躊躇され、目的地には近いが太陽光発電による充電が行われない駐車場に駐車されるおそれがあり、かかる場合には別途電源を用いて充電が行われ、充電コストが嵩むことになる。
In the above-mentioned conventional apparatus for a mobile unit, a parking lot that is estimated to have the highest amount of solar radiation after parking is recommended based on a prior estimation, but the vehicle user's destination matches the recommended parking lot. Is not limited. For example, if the recommended parking lot is far from the destination of the vehicle user, parking at the recommended parking lot is deceived and the parking lot is close to the destination but not charged by solar power generation In such a case, charging is performed using a separate power source, which increases the charging cost.
本発明は、上記の点に鑑みてなされたものであり、その目的とするところは、利用者が車両を利用する前、あるいは目的地に到着した後等、車両を運転しない時間帯を、太陽電池パネルを用いた太陽光発電に利用することができる走行制御装置を提供することにある。
The present invention has been made in view of the above points, and the object of the present invention is to provide a time zone during which the vehicle is not driven, such as before the user uses the vehicle or after arriving at the destination. An object of the present invention is to provide a travel control device that can be used for solar power generation using a battery panel.
上記課題を解決する本発明の走行制御装置は、太陽電池パネルと該太陽電池パネルの太陽光発電により充電される充電池とを搭載した車両の走行制御装置であって、前記車両の利用者が前記車両を利用しておらず、前記車両が自車位置から予め設定された太陽光発電場所に移動した方が移動しないよりも前記太陽電池パネルの太陽光発電により前記充電池に充電されると予想される予想充電量が多く、かつ、前記太陽光発電場所における前記予想充電量が、前記自車位置から前記太陽光発電場所まで往復走行した際の充電消費量、もしくは、前記自車位置から前記太陽光発電場所を経由して予め設定された帰着場所まで走行した際の充電消費量よりも多い場合に、前記車両を前記太陽光発電場所まで走行させる自動運転制御を行うことを特徴とする。
A travel control device of the present invention that solves the above problem is a travel control device for a vehicle equipped with a solar cell panel and a rechargeable battery that is charged by solar power generation of the solar cell panel, and the user of the vehicle When the vehicle is not used and the rechargeable battery is charged by solar power generation of the solar panel rather than not moving when the vehicle moves from the vehicle position to a preset solar power generation location. Expected charge amount is large, and the expected charge amount at the solar power generation place is the charge consumption when traveling back and forth from the own vehicle position to the solar power generation place, or from the own vehicle position Automatic driving control is performed to cause the vehicle to travel to the solar power generation site when the amount of charge consumption is greater than when the vehicle travels to a preset return location via the solar power generation site. To.
本発明によれば、利用者が車両を運転しない時間帯を、太陽電池パネルを用いた発電に利用することができる。したがって、有線経由の充電をする頻度を減らすことができ、電気代を節約できる。なお、上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
According to the present invention, the time zone during which the user does not drive the vehicle can be used for power generation using the solar cell panel. Therefore, the frequency of charging via wire can be reduced, and the electricity bill can be saved. Problems, configurations, and effects other than those described above will be clarified by the following description of the embodiments.
次に、本実施形態について図面を用いて説明する。
図1は、本実施形態の走行制御装置が適用される車両の装置構成例を説明する図である。 Next, the present embodiment will be described with reference to the drawings.
FIG. 1 is a diagram illustrating an example of a device configuration of a vehicle to which the travel control device of the present embodiment is applied.
図1は、本実施形態の走行制御装置が適用される車両の装置構成例を説明する図である。 Next, the present embodiment will be described with reference to the drawings.
FIG. 1 is a diagram illustrating an example of a device configuration of a vehicle to which the travel control device of the present embodiment is applied.
車両は、EVまたはPHEVなど、バッテリ電力で走行可能な車両であり、走行制御装置101と、車両周辺センサ105と、アクチュエータ106と、カーナビゲーション通信装置107と、太陽電池パネル103と、充電池104と、電池制御部102を有している。
The vehicle is a vehicle that can run on battery power, such as EV or PHEV, and is a travel control device 101, a vehicle periphery sensor 105, an actuator 106, a car navigation communication device 107, a solar battery panel 103, and a rechargeable battery 104. And a battery control unit 102.
太陽電池パネル103は、太陽光を受けることによって発電できるように、車両の屋根やボンネットなどの外装部品に露出するように搭載されている。充電池104は、走行モータやアクチュエータ106を駆動可能な電力を充放電可能な二次電池であり、例えばリチウムイオン二次電池が用いられている。
The solar cell panel 103 is mounted so as to be exposed to exterior parts such as a roof of a vehicle and a bonnet so that power can be generated by receiving sunlight. The rechargeable battery 104 is a secondary battery capable of charging and discharging electric power that can drive the travel motor and the actuator 106, and for example, a lithium ion secondary battery is used.
電池制御部102は、太陽電池パネル103の太陽光発電により充電池104を充電し、また、走行制御装置101からの要求に応じて充電池104から放電してアクチュエータ106にバッテリ電力を供給する等の電池制御を行う。充電池104は、太陽電池パネル103からだけでなく、有線を介して接続される電源からも充電することができる。
The battery control unit 102 charges the rechargeable battery 104 by solar power generation of the solar battery panel 103, discharges from the rechargeable battery 104 in response to a request from the traveling control device 101, and supplies battery power to the actuator 106. Battery control. The rechargeable battery 104 can be charged not only from the solar battery panel 103 but also from a power source connected via a wire.
走行制御装置101は、所定の経路を通過して目的地まで車両を走行させる自動運転制御を行う。なお、本実施例で自動運転制御とは、運転者による運転操作をすることなく、走行制御装置101によって車両のアクセルペダルやブレーキペダル、ステアリング等を操作して目的地まで車両を走行させる制御をいう。
The traveling control device 101 performs automatic driving control for traveling the vehicle to a destination through a predetermined route. In the present embodiment, the automatic driving control is a control for driving the vehicle to the destination by operating the accelerator pedal, the brake pedal, the steering, etc. of the vehicle by the driving control device 101 without driving by the driver. Say.
アクチュエータ106は、ステアリングやアクセルペダル、ブレーキペダル等を操作するものであり、これらは走行制御装置101によって制御される。車両周辺センサ105は、車両の周辺環境を認識するためのセンサであり、例えば先行車両の有無や車間距離を検出するためのレーザーセンサ、超音波センサ、カメラなどが含まれる。
The actuator 106 operates a steering, an accelerator pedal, a brake pedal, and the like, and these are controlled by the traveling control device 101. The vehicle surrounding sensor 105 is a sensor for recognizing the surrounding environment of the vehicle, and includes, for example, a laser sensor, an ultrasonic sensor, a camera, and the like for detecting the presence or absence of a preceding vehicle and an inter-vehicle distance.
カーナビゲーション通信装置107は、測位航法装置とGPS装置を有している。測位航法装置は、3Dジャイロセンサや加速度センサ等を含む計測装置である。GPS装置は、GPS衛星からの信号を受信して自車の緯度経度情報を生成する。
The car navigation communication device 107 has a positioning navigation device and a GPS device. The positioning navigation device is a measuring device including a 3D gyro sensor, an acceleration sensor, and the like. The GPS device receives a signal from a GPS satellite and generates latitude / longitude information of the own vehicle.
カーナビゲーション通信装置107は、通信制御部と、位置情報取得部と、経路案内部を有している。通信制御部は、無線通信を行うことにより無線通信網を介して各種情報を取得する。例えば、自車周辺の駐車場の位置及び構造を示す駐車場情報や、車両周辺の気象を示す気象情報、日の出と日の入りの時間情報、日射量の情報等を取得する。位置情報取得部は、車両の現在位置や進行方向等を示す位置情報を取得する。位置情報は、測位航法装置やGPS装置から取得する。位置情報には、車両の経度緯度の情報及び進行方向の方角の情報が含まれる。経路案内部は、自車周辺の地図上に自車位置を表示する処理を行う。また、目的地の入力を受けて、自車位置から目的地までの経路を表示し、誘導方向を示す処理を行う。
The car navigation communication device 107 includes a communication control unit, a position information acquisition unit, and a route guide unit. The communication control unit acquires various types of information via a wireless communication network by performing wireless communication. For example, the parking lot information indicating the position and structure of the parking lot around the vehicle, the weather information indicating the weather around the vehicle, the sunrise and sunset time information, the solar radiation amount information, and the like are acquired. The position information acquisition unit acquires position information indicating the current position of the vehicle, the traveling direction, and the like. The position information is acquired from a positioning navigation device or a GPS device. The position information includes information on the longitude and latitude of the vehicle and information on the direction of the traveling direction. The route guidance unit performs a process of displaying the vehicle position on a map around the vehicle. Further, upon receiving the input of the destination, the route from the vehicle position to the destination is displayed, and a process for indicating the guidance direction is performed.
図2は、本実施形態の走行制御装置による制御内容を説明するフローチャートである。
走行制御装置101は、車両の利用者が車両を利用しておらず、車両が自車位置から予め設定された太陽光発電場所に移動した方が移動しないよりも太陽電池パネルの太陽光発電により充電池に充電されると予想される予想充電量が多く、かつ、太陽光発電場所における予想充電量が、自車位置から太陽光発電場所まで往復走行した際の充電消費量、もしくは、自車位置から太陽光発電場所を経由して予め設定された帰着場所まで走行した際の充電消費量よりも多い場合に、車両を太陽光発電場所まで走行させる自動運転制御を行う。 FIG. 2 is a flowchart for explaining the contents of control by the travel control device of this embodiment.
Thetravel control device 101 uses solar power generation of a solar panel rather than a vehicle user who does not use the vehicle and does not move when the vehicle moves from a vehicle position to a preset solar power generation location. The amount of charge expected to be charged in the rechargeable battery is large, and the estimated amount of charge at the solar power generation site is the charge consumption when traveling back and forth from the own vehicle position to the solar power generation site, or the own vehicle When the amount of charge is greater than the amount of charge consumed when traveling from a position to a preset return location via a solar power generation location, automatic driving control is performed to cause the vehicle to travel to the solar power generation location.
走行制御装置101は、車両の利用者が車両を利用しておらず、車両が自車位置から予め設定された太陽光発電場所に移動した方が移動しないよりも太陽電池パネルの太陽光発電により充電池に充電されると予想される予想充電量が多く、かつ、太陽光発電場所における予想充電量が、自車位置から太陽光発電場所まで往復走行した際の充電消費量、もしくは、自車位置から太陽光発電場所を経由して予め設定された帰着場所まで走行した際の充電消費量よりも多い場合に、車両を太陽光発電場所まで走行させる自動運転制御を行う。 FIG. 2 is a flowchart for explaining the contents of control by the travel control device of this embodiment.
The
以下、走行制御装置101の具体的な制御処理の内容について説明する。
まず、ステップS101では、太陽光発電が可能な発電可能場所の問い合わせが行われる。走行制御装置101は、例えば現在時刻が車両の利用者が車両を利用しないとして予め設定された設定時間であると判断した場合に、カーナビゲーション通信装置107の通信制御部により問い合わせの無線通信を行い、無線通信網を介して発電可能場所の情報を取得する。発電可能場所とは、かかる場所に駐車することによって太陽電池パネルに太陽光を受けて太陽光発電を行うことができる場所を示す。 Hereinafter, the content of the specific control processing of the travelingcontrol apparatus 101 will be described.
First, in step S101, an inquiry is made about a place where power generation is possible where solar power generation is possible. For example, when thetravel control device 101 determines that the current time is a preset time that the user of the vehicle does not use the vehicle, the communication control unit of the car navigation communication device 107 performs wireless communication for inquiry. Then, information on a place where power can be generated is acquired via a wireless communication network. The place where power generation is possible refers to a place where solar power generation can be performed by receiving sunlight on the solar cell panel by parking in such a place.
まず、ステップS101では、太陽光発電が可能な発電可能場所の問い合わせが行われる。走行制御装置101は、例えば現在時刻が車両の利用者が車両を利用しないとして予め設定された設定時間であると判断した場合に、カーナビゲーション通信装置107の通信制御部により問い合わせの無線通信を行い、無線通信網を介して発電可能場所の情報を取得する。発電可能場所とは、かかる場所に駐車することによって太陽電池パネルに太陽光を受けて太陽光発電を行うことができる場所を示す。 Hereinafter, the content of the specific control processing of the traveling
First, in step S101, an inquiry is made about a place where power generation is possible where solar power generation is possible. For example, when the
そして、ステップS102では、ステップS101の問い合わせにより取得した情報に基づき、発電場所(太陽光発電場所)を決定する。発電場所では、太陽電池パネルに太陽光を当てることができなければならないので、発電場所は天気の情報や日照時間も考慮して決定される。なるべく近くかつ日当たりの良い場所が発電場所として決定される。なお、太陽の位置に対する車両の向きによっても発電量が異なってくるので、車両の向きも併せて考慮して発電場所を決定してもよい。
And in step S102, based on the information acquired by the inquiry of step S101, a power generation place (solar power generation place) is determined. In the power generation place, since it is necessary to be able to shine sunlight on the solar cell panel, the power generation place is determined in consideration of weather information and sunshine hours. A place that is as close and sunny as possible is determined as the power generation site. Since the amount of power generation varies depending on the direction of the vehicle with respect to the sun position, the power generation location may be determined in consideration of the direction of the vehicle.
ステップS103では、車両が自車の現在位置からステップS102で決定された発電場所に移動した方が移動しないよりも太陽電池パネルの太陽光発電により充電池に充電されると予想される予想充電量が多いか否かが判断される。現在位置と発電場所における予想充電量は、それぞれの場所の日照時間や天気予報の情報に基づいて算出される。
In step S103, the expected charge amount that the rechargeable battery is expected to be charged by solar power generation of the solar panel rather than not moving when the vehicle moves from the current position of the vehicle to the power generation location determined in step S102. It is determined whether or not there are many. The expected charge amount at the current position and the power generation location is calculated based on the sunshine hours and weather forecast information at each location.
そして、発電場所の予想充電量の方が現在位置よりも多いと予想された場合には(ステップS103でYES)、ステップS104に移行し、発電場所における予想充電量が、自車位置から発電場所まで往復走行した際の充電消費量、もしくは、自車位置から発電場所を経由して予め設定された帰着場所まで走行した際の充電消費量よりも多いか否かが判断される。充電消費量は、例えば現在位置から発電場所または帰着場所までの距離と、坂道やカーブなどの道路形状の情報に基づいて算出される。距離と道路形状の情報は、カーナビゲーション通信装置107から取得する。
If it is predicted that the estimated charging amount at the power generation location is larger than the current position (YES in step S103), the process proceeds to step S104, where the predicted charging amount at the power generation location is changed from the own vehicle position to the power generation location. It is determined whether or not the charging consumption is greater than the charging consumption when traveling back and forth, or the charging consumption when traveling from the vehicle position to a preset return location via the power generation location. The charge consumption is calculated based on, for example, the distance from the current position to the power generation place or the return place, and information on road shapes such as slopes and curves. Information on the distance and the road shape is acquired from the car navigation communication device 107.
ステップS104で発電場所における予想充電量が上記の充電消費量よりも多い場合には(ステップS104でYES)、車両を発電場所まで移動させて太陽光発電による充電を行うべく、ステップS105以降に移行する。
If the estimated charge amount at the power generation site is larger than the above-mentioned charge consumption amount at step S104 (YES at step S104), the process proceeds to step S105 and subsequent steps so that the vehicle is moved to the power generation site and charged by solar power generation. To do.
一方、発電場所に移動しても移動しないより充電できない場合や(ステップS103でNO)、発電場所における予想充電量が充電消費量以下の場合には(ステップS104でNO)、移動してしまうと却って充電量が減ってしまうので、ステップS109で現在位置のまま移動せず、一定時間待機し、所定時間経過後に再びステップS101からの判断処理を行う。
On the other hand, if it is not possible to charge even if it moves to the power generation place (NO in step S103), or if the expected charge amount in the power generation place is equal to or less than the charge consumption amount (NO in step S104), On the other hand, the amount of charge is reduced, so that the current position is not moved in step S109, the apparatus waits for a certain time, and the determination process from step S101 is performed again after a predetermined time has elapsed.
ステップS105では、車両を発電場所に移動させ、太陽光発電を開始する処理が行われる。走行制御装置101は、カーナビゲーション通信装置107による経路案内と、車両周辺センサ105からの検出情報に基づき、アクチュエータ106を制御し、車両を発電位置まで走行させる自動運転制御を行う。そして、車両を発電場所に駐車させ、太陽電池パネル103による太陽光発電を開始し、充電池104に充電する。
そして、ステップS106では、予め設定された上限量まで充電池104が充電された、いわゆるフル充電の状態となった場合に、充電池104への充電を終了する処理が行われる。電池制御部102は、充電池104が上限量まで充電されたことを確認し、走行制御装置101にその情報を伝える。走行制御装置101は、電池制御部102に充電終了を指示し、電池制御部102は、充電池104への充電を終了させる。 In step S105, a process of moving the vehicle to the power generation place and starting solar power generation is performed. Thetravel control device 101 controls the actuator 106 based on the route guidance by the car navigation communication device 107 and the detection information from the vehicle periphery sensor 105, and performs automatic driving control that causes the vehicle to travel to the power generation position. Then, the vehicle is parked at the power generation place, solar power generation by the solar battery panel 103 is started, and the rechargeable battery 104 is charged.
In step S106, when therechargeable battery 104 is charged to a preset upper limit amount, that is, in a so-called full charge state, a process for terminating the charging of the rechargeable battery 104 is performed. The battery control unit 102 confirms that the rechargeable battery 104 has been charged to the upper limit amount, and notifies the traveling control device 101 of the information. The travel control apparatus 101 instructs the battery control unit 102 to end charging, and the battery control unit 102 ends charging of the rechargeable battery 104.
そして、ステップS106では、予め設定された上限量まで充電池104が充電された、いわゆるフル充電の状態となった場合に、充電池104への充電を終了する処理が行われる。電池制御部102は、充電池104が上限量まで充電されたことを確認し、走行制御装置101にその情報を伝える。走行制御装置101は、電池制御部102に充電終了を指示し、電池制御部102は、充電池104への充電を終了させる。 In step S105, a process of moving the vehicle to the power generation place and starting solar power generation is performed. The
In step S106, when the
ステップS107では、車両を走行させて、元の駐車場所、もしくは予め設定された別の帰着場所まで移動させる処理が行われる。走行制御装置101は、カーナビゲーション通信装置107による経路案内と、車両周辺センサ105からの検出情報に基づき、アクチュエータ106を制御し、車両を元の駐車位置もしくは別の帰着位置まで走行させる自動運転制御を行う。
In step S107, a process of moving the vehicle to the original parking place or another return place set in advance is performed. The travel control device 101 controls the actuator 106 based on the route guidance by the car navigation communication device 107 and the detection information from the vehicle periphery sensor 105, and causes the vehicle to travel to the original parking position or another return position. I do.
そして、ステップS108では、上述した一連の充電モードを解除するか否かが判断される。充電モードを解除するか否かは、車両の利用者が予め設定しておくことができる。例えば定期的に自動充電を行いたい場合には充電モードは解除しないが、単発的に充電を行いたい場合には、自動充電後に充電モードを解除する。
In step S108, it is determined whether or not to cancel the series of charging modes described above. Whether or not to release the charging mode can be preset by the user of the vehicle. For example, when it is desired to perform automatic charging periodically, the charging mode is not canceled, but when charging is desired to be performed once, the charging mode is canceled after automatic charging.
図3は、実施例1の内容を説明する図である。
本実施例の車両311は、図1に示す構成を有するEVまたはPHEVである。本実施例では、車両311の利用者が車両311を利用しない時間帯に、車両311が自動運転により自宅駐車場301を出発し、道路303を通行して日当たりのよい平面駐車場302まで走行する。そして、平面駐車場302に駐車して太陽光発電を行い、充電池をフル充電した後、再び道路303を通行して自宅駐車場301に戻る動作を行う。 FIG. 3 is a diagram for explaining the contents of the first embodiment.
Thevehicle 311 of the present embodiment is an EV or PHEV having the configuration shown in FIG. In this embodiment, the vehicle 311 departs from the home parking lot 301 by automatic driving and travels to the sunny flat parking lot 302 through the road 303 during a time period when the user of the vehicle 311 does not use the vehicle 311. . And it parks in the plane parking lot 302, performs solar power generation, fully charges the rechargeable battery, and then goes through the road 303 again and returns to the home parking lot 301.
本実施例の車両311は、図1に示す構成を有するEVまたはPHEVである。本実施例では、車両311の利用者が車両311を利用しない時間帯に、車両311が自動運転により自宅駐車場301を出発し、道路303を通行して日当たりのよい平面駐車場302まで走行する。そして、平面駐車場302に駐車して太陽光発電を行い、充電池をフル充電した後、再び道路303を通行して自宅駐車場301に戻る動作を行う。 FIG. 3 is a diagram for explaining the contents of the first embodiment.
The
車両311の走行制御装置101は、カーナビゲーション通信装置107の通信制御部により無線通信を行い、無線通信網を介して発電可能場所の情報を取得する。例えば車両311が駐車している自宅駐車場301は、家の影になり、日が当たらない時間帯がある一方、自宅駐車場301から離れた平面駐車場302は、自宅駐車場301よりも日当たりがよい、という情報を取得する。したがって、自宅駐車場301ではなく、平面駐車場302を発電場所として決定する。
The traveling control device 101 of the vehicle 311 performs wireless communication by the communication control unit of the car navigation communication device 107, and acquires information on a place where power generation is possible via the wireless communication network. For example, the home parking lot 301 where the vehicle 311 is parked is a shadow of the house and there is a time zone where the sun does not hit, while the flat parking lot 302 away from the home parking lot 301 is more sunny than the home parking lot 301 Get information that is good. Therefore, not the home parking lot 301 but the plane parking lot 302 is determined as the power generation place.
そして、現在時刻や天気情報、移動距離、道路形状等の情報に基づき、車両311が移動した方が移動しないよりも充電できる充電量が多いか否かを判断する。ここでは、平面駐車場302で充電される充電量が多く、平面駐車場302に移動した方が自宅駐車場301よりも充電できると判断する。
Then, based on information such as the current time, weather information, travel distance, road shape, etc., it is determined whether the amount of charge that can be charged is greater when the vehicle 311 moves than when it does not move. Here, the amount of charge charged in the flat parking lot 302 is large, and it is determined that the person moving to the flat parking lot 302 can charge more than the home parking lot 301.
次に、道路303を通行して自宅駐車場301と平面駐車場302との間を往復移動する際に消費される充電消費量と平面駐車場302で充電される予想充電量とを比較する。そして、予想充電量が充電消費量を上回るときは、道路303を通行して平面駐車場302まで車両311を走行させ、平面駐車場302で太陽光発電により充電を行わせ、フル充電後に、再び道路303を通行させて自宅駐車場301に戻らせる。
Next, the amount of charge consumed when traveling on the road 303 and reciprocating between the home parking lot 301 and the flat parking lot 302 is compared with the expected charge charged in the flat parking lot 302. When the estimated charge amount exceeds the charge consumption amount, the vehicle 311 is traveled to the flat parking lot 302 through the road 303 and charged by solar power generation in the flat parking lot 302. Let the road 303 pass and return to the home parking lot 301.
したがって、車両311の利用者が車両311を利用しない時間帯を、太陽電池パネルを用いた太陽光発電に利用することができ、別途電源による充電を行う必要がなく、充電コストを下げることができる。
Therefore, the time zone when the user of the vehicle 311 does not use the vehicle 311 can be used for solar power generation using the solar battery panel, and it is not necessary to separately charge with a power source, and the charging cost can be reduced. .
図4は、実施例2の内容を説明する図である。
本実施例では、午前と午後で日向の位置が変わる自宅駐車場で、車両311の充電量が足りない場合に、日向の位置を追いかけるように車両311が移動して太陽光発電により充電を行い、フル充電後は日陰の位置に移動する動作を行う。 FIG. 4 is a diagram for explaining the contents of the second embodiment.
In the present embodiment, when the amount of charge of thevehicle 311 is insufficient in a home parking lot where the position of the sun changes between morning and afternoon, the vehicle 311 moves to follow the position of the sun and is charged by solar power generation. After full charge, move to the shaded position.
本実施例では、午前と午後で日向の位置が変わる自宅駐車場で、車両311の充電量が足りない場合に、日向の位置を追いかけるように車両311が移動して太陽光発電により充電を行い、フル充電後は日陰の位置に移動する動作を行う。 FIG. 4 is a diagram for explaining the contents of the second embodiment.
In the present embodiment, when the amount of charge of the
午前中は太陽401aと樹木402の位置により自宅駐車場301の後半部分301bが日陰となっており、車両311は、日向となっている自宅駐車場301の前半部分301aに駐車し、太陽光発電を行っている。
In the morning, the second half portion 301b of the home parking lot 301 is shaded by the position of the sun 401a and the tree 402, and the vehicle 311 is parked in the first half portion 301a of the home parking lot 301 that is facing the sun. It is carried out.
そして、午後になると、太陽401bと樹木403の位置により自宅駐車場301の前半部分301aが日陰になり、車両311は、日陰である自宅駐車場301の前半部分301aに入ってしまう。
In the afternoon, the first half portion 301a of the home parking lot 301 becomes shaded due to the positions of the sun 401b and the tree 403, and the vehicle 311 enters the first half portion 301a of the shaded home parking lot 301.
走行制御装置101は、太陽光発電により充電池がフル充電されていないのに車両311が日陰に入った場合に、車両311を日向に移動させる制御を行う。
本実施例では、駐車場の前半部分301aから後半部分301bに車両311を移動させる。したがって、車両311は、充電池をフル充電することができる。したがって、利用者が車両311を利用していない時間帯に、太陽光発電により充電池104を充電することができる。 Thetravel control device 101 performs control to move the vehicle 311 in the sun when the vehicle 311 enters the shade even though the rechargeable battery is not fully charged by solar power generation.
In this embodiment, thevehicle 311 is moved from the first half 301a to the second half 301b of the parking lot. Therefore, the vehicle 311 can fully charge the rechargeable battery. Therefore, the rechargeable battery 104 can be charged by solar power generation during a time period when the user is not using the vehicle 311.
本実施例では、駐車場の前半部分301aから後半部分301bに車両311を移動させる。したがって、車両311は、充電池をフル充電することができる。したがって、利用者が車両311を利用していない時間帯に、太陽光発電により充電池104を充電することができる。 The
In this embodiment, the
そして、走行制御装置101は、フル充電後に車両311を日陰である自宅駐車場301の前半部分301aに移動させる。したがって、車両311の車内が高温になるのを防ぎ、また、太陽電池パネルの劣化を防ぐことができる。なお、自宅駐車場内における日向日陰の位置情報は、カーナビゲーション通信装置107から取得してもよいし、また、利用者が直接入力してもよい。
And the traveling control apparatus 101 moves the vehicle 311 to the first half part 301a of the home parking lot 301 which is shaded after full charge. Therefore, the inside of the vehicle 311 can be prevented from becoming hot, and the solar cell panel can be prevented from deteriorating. Note that the position information of the shade in the home parking lot may be acquired from the car navigation communication device 107 or may be directly input by the user.
図5は、実施例3の内容を説明する図である。
本実施例は、車両511と立体駐車施設502を用いた駐車システムである。車両511は、上述の実施例1、2と同様に、図1に示す構成を有するEVまたはPHEVである。立体駐車施設502は、車両511が駐車した状態で太陽電池パネル103が太陽光発電可能な太陽光発電場所となる日向の屋上駐車場523と、太陽電池パネル103が太陽光発電不可能な非発電場所となる日陰の階下駐車場522を有する。 FIG. 5 is a diagram for explaining the contents of the third embodiment.
The present embodiment is a parking system using avehicle 511 and a multistory parking facility 502. The vehicle 511 is an EV or PHEV having the configuration shown in FIG. 1 as in the first and second embodiments. The multi-story parking facility 502 includes a Hinata rooftop parking lot 523, which is a solar power generation place where the solar battery panel 103 is capable of solar power generation in a state where the vehicle 511 is parked, and non-power generation where the solar battery panel 103 is not capable of solar power generation. It has a shaded downstairs parking lot 522 as a place.
本実施例は、車両511と立体駐車施設502を用いた駐車システムである。車両511は、上述の実施例1、2と同様に、図1に示す構成を有するEVまたはPHEVである。立体駐車施設502は、車両511が駐車した状態で太陽電池パネル103が太陽光発電可能な太陽光発電場所となる日向の屋上駐車場523と、太陽電池パネル103が太陽光発電不可能な非発電場所となる日陰の階下駐車場522を有する。 FIG. 5 is a diagram for explaining the contents of the third embodiment.
The present embodiment is a parking system using a
本実施例では、日向となる屋上駐車場523と、日陰となる途中階の階下駐車場522とを有する自走式の立体駐車施設502において、階下駐車場522に駐車した車両511が、自動運転により階下駐車場522を出発し、スロープ521を上って日当たりのよい屋上駐車場523まで移動する。
In this embodiment, in a self-propelled multilevel parking facility 502 having a rooftop parking lot 523 that is in the sun and a downstairs parking lot 522 that is in the shade, a vehicle 511 parked in the downstairs parking lot 522 is automatically driven. To depart from the downstairs parking 522 and move up the slope 521 to the sunny rooftop parking 523.
そして、屋上駐車場523に駐車して太陽光発電を行い、充電池をフル充電した後、再びスロープ521を下って階下駐車場522に戻る動作を行う。したがって、例えば立体駐車施設502に隣接されたショッピングモール501で車両511の利用者が買い物をしている間等、車両511を運転しない合間に、太陽光発電により車両511の充電池104を充電することができる。
Then, the vehicle is parked at the rooftop parking lot 523, solar power is generated, the rechargeable battery is fully charged, and then the vehicle returns to the downstairs parking lot 522 by going down the slope 521 again. Therefore, for example, while the user of the vehicle 511 is shopping in the shopping mall 501 adjacent to the multi-story parking facility 502, the rechargeable battery 104 of the vehicle 511 is charged by solar power generation while the vehicle 511 is not driven. be able to.
立体駐車施設502は、屋上駐車場523が空いているか否かの発電場所情報を取得する駐車情報取得部504と、階下駐車場522に駐車している車両511に対して発電場所情報を送信する送信部503を有している。
The multi-story parking facility 502 transmits the power generation location information to the parking information acquisition unit 504 that acquires the power generation location information indicating whether or not the rooftop parking lot 523 is vacant, and the vehicle 511 parked in the downstairs parking lot 522. A transmission unit 503 is included.
階下駐車場522に駐車している車両511は、カーナビゲーション通信装置107によって発電場所情報を受信すると(受信部)、走行制御装置101により自動運転制御を行うか否かを判断する。
When the vehicle 511 parked in the downstairs parking lot 522 receives the power generation location information by the car navigation communication device 107 (reception unit), the travel control device 101 determines whether to perform automatic driving control.
走行制御装置101は、階下駐車場522の駐車位置から屋上駐車場523まで移動した方が移動しないよりも太陽光発電による予想充電量が多く、かつ、予想充電量が、階下駐車場522の自車位置と屋上駐車場523との間を往復走行した際の充電消費量、もしくは、階下駐車場522の自車位置から屋上駐車場523を経由して階下駐車場522の予め設定された帰着場所まで走行した際の充電消費量よりも多いときは、車両511を屋上駐車場523まで走行させる自動運転制御を行う。
The travel control device 101 has a higher expected charge amount due to solar power generation when the vehicle moves from the parking position of the downstairs parking lot 522 to the rooftop parking lot 523 and does not move. Charge consumption when traveling back and forth between the vehicle position and the rooftop parking lot 523, or a preset return place of the downstairs parking lot 522 from the own vehicle position of the downstairs parking lot 522 via the rooftop parking lot 523 When the amount of charging is greater than the amount consumed when the vehicle travels to the vehicle, automatic driving control is performed to cause the vehicle 511 to travel to the rooftop parking 523.
立体駐車施設502は、駐車情報取得部504により階下駐車場522が空いているか否かの非発電場所情報を取得し、送信部503により屋上駐車場523に駐車している車両511に対して非発電場所情報を送信する。
The multi-story parking facility 502 acquires non-power generation location information indicating whether or not the downstairs parking lot 522 is vacant by the parking information acquisition unit 504, and the non-power generation location information is not transmitted to the vehicle 511 parked in the rooftop parking lot 523 by the transmission unit 503. Send power generation location information.
屋上駐車場523に駐車している車両511は、太陽光発電による充電池104の充電完了後に、カーナビゲーション通信装置107により非発電場所情報を受信すると(受信部)、走行制御装置101により車両511を階下駐車場522の空き場所まで走行させる自動運転制御を行う。このように、屋上駐車場523で太陽光発電によりフル充電した車両511は、階下駐車場522に移動することで、代わりに充電が必要な車両511を屋上駐車場523に移動させて太陽光発電をさせることができる。したがって、複数の車両511の間で、日向をシェアすることができ、自然エネルギの利用効率を上げることができる。
When the vehicle 511 parked in the rooftop parking lot 523 receives the non-power generation location information by the car navigation communication device 107 after the charging of the rechargeable battery 104 by solar power generation (reception unit), the vehicle 511 is received by the travel control device 101. Is controlled to run to the empty space in the downstairs parking lot 522. In this way, the vehicle 511 fully charged by solar power generation at the rooftop parking lot 523 moves to the downstairs parking lot 522, so that the vehicle 511 that needs to be charged instead is moved to the rooftop parking lot 523 to generate solar power. Can be made. Therefore, the sun can be shared among the plurality of vehicles 511, and the utilization efficiency of natural energy can be increased.
なお、屋上駐車場523の所定台数分の空き場所に対して、それ以上の台数の車両511が移動してくるのを防ぐために、屋上駐車場523から退出する車両511と、太陽光発電のために屋上駐車場523への移動を希望する車両511との間で、車々間通信(C2X通信など)を行い、口コミ情報のように、屋上駐車場523の空き情報を所定の車両511に伝達する構成としてもよい。また、立体駐車施設502が太陽光発電のために屋上駐車場523への移動を希望する複数の車両511のリクエストを受け付けて、受け付けた順番で各車両511に発電場所情報を送信してもよい。
In order to prevent a larger number of vehicles 511 from moving to a predetermined number of vacant spaces in the rooftop parking lot 523, the vehicle 511 leaving the rooftop parking lot 523 and solar power generation A configuration in which vehicle-to-vehicle communication (C2X communication or the like) is performed with a vehicle 511 that wishes to move to the rooftop parking lot 523, and vacant information on the rooftop parking lot 523 is transmitted to a predetermined vehicle 511 like word-of-mouth information. It is good. Alternatively, the multi-story parking facility 502 may receive requests for a plurality of vehicles 511 that wish to move to the rooftop parking lot 523 for solar power generation, and transmit the power generation location information to each vehicle 511 in the order received. .
以上、本発明の実施形態について詳述したが、本発明は、前記の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の精神を逸脱しない範囲で、種々の設計変更を行うことができるものである。例えば、前記した実施の形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。さらに、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
Although the embodiments of the present invention have been described in detail above, the present invention is not limited to the above-described embodiments, and various designs can be made without departing from the spirit of the present invention described in the claims. It can be changed. For example, the above-described embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to one having all the configurations described. Further, a part of the configuration of an embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of an embodiment. Furthermore, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.
101 走行制御装置
102 電池制御部
103 太陽電池パネル
104 充電池
105 車両周辺センサ
106 アクチュエータ
107 カーナビゲーション通信装置
502 立体駐車施設(駐車施設)
503 送信部
504 駐車情報取得部
511 車両
522 階下駐車場(非発電場所)
523 屋上駐車場(太陽光発電場所)
DESCRIPTION OFSYMBOLS 101 Traveling control apparatus 102 Battery control part 103 Solar cell panel 104 Rechargeable battery 105 Vehicle periphery sensor 106 Actuator 107 Car navigation communication apparatus 502 Three-dimensional parking facility (parking facility)
503Transmission unit 504 Parking information acquisition unit 511 Vehicle 522 Downstairs parking lot (non-power generation place)
523 Rooftop parking lot (solar power generation place)
102 電池制御部
103 太陽電池パネル
104 充電池
105 車両周辺センサ
106 アクチュエータ
107 カーナビゲーション通信装置
502 立体駐車施設(駐車施設)
503 送信部
504 駐車情報取得部
511 車両
522 階下駐車場(非発電場所)
523 屋上駐車場(太陽光発電場所)
DESCRIPTION OF
503
523 Rooftop parking lot (solar power generation place)
Claims (4)
- 太陽電池パネルと該太陽電池パネルの太陽光発電により充電される充電池とを搭載した車両の走行制御装置であって、
前記車両の利用者が前記車両を利用しておらず、前記車両が自車位置から予め設定された太陽光発電場所に移動した方が移動しないよりも前記太陽電池パネルの太陽光発電により前記充電池に充電されると予想される予想充電量が多く、かつ、前記太陽光発電場所における前記予想充電量が、前記自車位置から前記太陽光発電場所まで往復走行した際の充電消費量、もしくは、前記自車位置から前記太陽光発電場所を経由して予め設定された帰着場所まで走行した際の充電消費量よりも多い場合に、前記車両を前記太陽光発電場所まで走行させる自動運転制御を行うことを特徴とする走行制御装置。 A vehicle travel control device including a solar battery panel and a rechargeable battery charged by solar power generation of the solar battery panel,
The user of the vehicle does not use the vehicle and does not move when the vehicle moves from the vehicle position to a preset photovoltaic power generation location. The expected charge amount that is expected to be charged in the battery is large, and the expected charge amount in the solar power generation place is a charge consumption amount when the vehicle travels from the vehicle position to the solar power generation place, or Automatic driving control for causing the vehicle to travel to the solar power generation location when the vehicle is more charged than when the vehicle travels from the vehicle location to the preset return location via the solar power generation location. A travel control device characterized in that: - 前記太陽電池パネルの太陽光発電による前記充電池の充電完了により前記車両を前記自車位置もしくは前記帰着場所まで走行させる自動運転制御を行うことを特徴とする請求項1に記載の走行制御装置。 2. The travel control device according to claim 1, wherein automatic driving control is performed to cause the vehicle to travel to the vehicle position or the return location upon completion of charging of the rechargeable battery by solar power generation of the solar cell panel.
- 太陽電池パネルと該太陽電池パネルの太陽光発電により充電される充電池とを搭載した車両と、該車両が駐車した状態で前記太陽電池パネルの太陽光発電が可能な太陽光発電場所と前記太陽電池パネルの太陽光発電が不可能な非発電場所を有する駐車施設とを用いた駐車システムであって、
前記駐車施設は、前記太陽光発電場所が空いているか否かの発電場所情報を取得する駐車情報取得部と、前記非発電場所に駐車している前記車両に対して前記発電場所情報を送信する送信部と、を有し、
前記車両は、前記発電場所情報を受信する受信部と、該受信部により前記発電場所情報を受信した場合に、前記車両が自車位置から前記太陽光発電場所まで移動した方が移動しないよりも前記太陽電池パネルの太陽光発電により前記充電池に充電されると予想される予想充電量が多く、かつ、前記太陽光発電場所における前記予想充電量が、前記自車位置から前記太陽光発電場所まで往復走行した際の充電消費量、もしくは、前記自車位置から前記太陽光発電場所を経由して予め設定された帰着場所まで走行した際の充電消費量よりも多いときは、前記車両を前記太陽光発電場所まで走行させる自動運転制御を行う走行制御装置と、を有することを特徴とする駐車システム。 A vehicle equipped with a solar battery panel and a rechargeable battery charged by solar power generation of the solar battery panel, a solar power generation place where the solar battery panel can generate solar power while the vehicle is parked, and the sun A parking system using a parking facility having a non-power generation place where solar power generation of a battery panel is impossible,
The parking facility transmits the power generation location information to a parking information acquisition unit that acquires power generation location information indicating whether or not the solar power generation location is vacant, and the vehicle parked in the non-power generation location. A transmission unit;
The vehicle has a receiving unit that receives the power generation location information, and when the power generation location information is received by the receiving unit, the vehicle has moved from its own vehicle position to the solar power generation location rather than moving. The expected charge amount that the rechargeable battery is expected to be charged by solar power generation of the solar cell panel is large, and the expected charge amount in the solar power generation location is changed from the own vehicle position to the solar power generation location. When the vehicle is more than the amount of charge consumed when traveling back and forth, or the amount of charge consumed when traveling from the vehicle position to a preset return location via the solar power generation location, the vehicle is A parking system comprising: a travel control device that performs automatic operation control to travel to a solar power generation place. - 前記駐車施設は、前記駐車情報取得部により前記非発電場所が空いているか否かの非発電場所情報を取得し、前記送信部により前記太陽光発電場所に駐車している車両に対して前記非発電場所情報を送信し、
前記車両は、前記受信部により前記非発電場所情報を受信し、前記充電池の充電完了後に前記受信部で前記非発電場所情報を受信した場合に、前記走行制御装置により前記車両を前記非発電場所まで走行させる自動運転制御を行うことを特徴とする請求項3に記載の駐車システム。
The parking facility acquires non-power generation location information indicating whether or not the non-power generation location is vacant by the parking information acquisition unit, and the non-power generation location information for the vehicle parked at the solar power generation location by the transmission unit. Send power generation location information,
The vehicle receives the non-power generation location information by the reception unit, and when the reception unit receives the non-power generation location information after the charging of the rechargeable battery is completed, the vehicle is controlled by the travel control device. 4. The parking system according to claim 3, wherein automatic driving control is performed to travel to a place.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016557488A JP6271034B2 (en) | 2014-11-05 | 2015-09-24 | Travel control device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-225445 | 2014-11-05 | ||
JP2014225445 | 2014-11-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016072165A1 true WO2016072165A1 (en) | 2016-05-12 |
Family
ID=55908894
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/076829 WO2016072165A1 (en) | 2014-11-05 | 2015-09-24 | Travel control device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6271034B2 (en) |
WO (1) | WO2016072165A1 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019103270A (en) * | 2017-12-04 | 2019-06-24 | トヨタ自動車株式会社 | Solar power generation system |
JPWO2019163186A1 (en) * | 2018-02-22 | 2020-12-03 | 本田技研工業株式会社 | Vehicle control system, vehicle control device, and vehicle control method |
CN112236646A (en) * | 2018-06-18 | 2021-01-15 | 日立汽车系统株式会社 | Vehicle control device, vehicle management control center, and parking assist system |
CN114179827A (en) * | 2021-12-21 | 2022-03-15 | 广州小鹏汽车科技有限公司 | Vehicle control method and device and storage medium |
US11560064B2 (en) | 2016-11-03 | 2023-01-24 | Ford Motor Company | Renewable energy vehicle charging |
US11810458B2 (en) | 2021-08-20 | 2023-11-07 | Toyota Jidosha Kabushiki Kaisha | Parking lot management system, parking lot management method, and storage medium |
JP7582157B2 (en) | 2021-10-28 | 2024-11-13 | トヨタ自動車株式会社 | Parking Management System |
JP7605195B2 (en) | 2022-09-07 | 2024-12-24 | トヨタ自動車株式会社 | Charging assistance system |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009042095A (en) * | 2007-08-09 | 2009-02-26 | Aisin Aw Co Ltd | Parking position determination device, parking position determination method, and computer program |
JP2010219318A (en) * | 2009-03-17 | 2010-09-30 | Masanori Kobayashi | Foldable sun-tracking solar cell |
JP2011138900A (en) * | 2009-12-28 | 2011-07-14 | Sanyo Electric Co Ltd | Apparatus for control of solar cell panel |
JP2012073077A (en) * | 2010-09-28 | 2012-04-12 | Sanyo Electric Co Ltd | Device for moving body |
JP2012095377A (en) * | 2010-10-25 | 2012-05-17 | Sharp Corp | Device and method for controlling charging of electric vehicle and electric vehicle mounting control device |
-
2015
- 2015-09-24 WO PCT/JP2015/076829 patent/WO2016072165A1/en active Application Filing
- 2015-09-24 JP JP2016557488A patent/JP6271034B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009042095A (en) * | 2007-08-09 | 2009-02-26 | Aisin Aw Co Ltd | Parking position determination device, parking position determination method, and computer program |
JP2010219318A (en) * | 2009-03-17 | 2010-09-30 | Masanori Kobayashi | Foldable sun-tracking solar cell |
JP2011138900A (en) * | 2009-12-28 | 2011-07-14 | Sanyo Electric Co Ltd | Apparatus for control of solar cell panel |
JP2012073077A (en) * | 2010-09-28 | 2012-04-12 | Sanyo Electric Co Ltd | Device for moving body |
JP2012095377A (en) * | 2010-10-25 | 2012-05-17 | Sharp Corp | Device and method for controlling charging of electric vehicle and electric vehicle mounting control device |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11560064B2 (en) | 2016-11-03 | 2023-01-24 | Ford Motor Company | Renewable energy vehicle charging |
JP2019103270A (en) * | 2017-12-04 | 2019-06-24 | トヨタ自動車株式会社 | Solar power generation system |
JP6992453B2 (en) | 2017-12-04 | 2022-02-04 | トヨタ自動車株式会社 | Solar power generation system |
JPWO2019163186A1 (en) * | 2018-02-22 | 2020-12-03 | 本田技研工業株式会社 | Vehicle control system, vehicle control device, and vehicle control method |
CN112236646A (en) * | 2018-06-18 | 2021-01-15 | 日立汽车系统株式会社 | Vehicle control device, vehicle management control center, and parking assist system |
CN112236646B (en) * | 2018-06-18 | 2024-04-26 | 日立安斯泰莫株式会社 | Vehicle control devices, vehicle management control centers, and parking assistance systems |
US11810458B2 (en) | 2021-08-20 | 2023-11-07 | Toyota Jidosha Kabushiki Kaisha | Parking lot management system, parking lot management method, and storage medium |
JP7582157B2 (en) | 2021-10-28 | 2024-11-13 | トヨタ自動車株式会社 | Parking Management System |
CN114179827A (en) * | 2021-12-21 | 2022-03-15 | 广州小鹏汽车科技有限公司 | Vehicle control method and device and storage medium |
JP7605195B2 (en) | 2022-09-07 | 2024-12-24 | トヨタ自動車株式会社 | Charging assistance system |
Also Published As
Publication number | Publication date |
---|---|
JP6271034B2 (en) | 2018-01-31 |
JPWO2016072165A1 (en) | 2017-06-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6271034B2 (en) | Travel control device | |
US8884784B2 (en) | Solar charged automotive vehicle having means to determine a parking location | |
US8798830B2 (en) | Charge controller and navigation device for plug-in vehicle | |
JP5471941B2 (en) | Charge control device for plug-in vehicle and vehicle navigation device | |
US8698642B2 (en) | Electric power amount information output device and system | |
US20120262104A1 (en) | Charge methods for vehicles | |
JP5304673B2 (en) | Navigation device | |
JP4946713B2 (en) | Parking position determination device, parking position determination method, and computer program | |
US20170174092A1 (en) | Mobile energy storage and method for providing energy to a consumer | |
JP4924478B2 (en) | Driving support apparatus, method and program | |
US20130345945A1 (en) | Method for implementing an energy management of a vehicle | |
RU2709153C2 (en) | Electric vehicle charge | |
JP2008172959A (en) | Vehicle power supply control device | |
JP7497183B2 (en) | Photovoltaic power generation control device | |
CN204809906U (en) | Remove energy storage charging device and remove energy storage charging system | |
WO2016121333A1 (en) | Vehicle battery charging information reporting system, charging information reporting program, and charging information reporting method | |
CN109840735A (en) | Delivery system, server, movable body and luggage allocator | |
JP5789926B2 (en) | Vehicle charging system, power supply side system, and in-vehicle system | |
CN104734279B (en) | Charging system for motor-driven vehicle | |
JP7548160B2 (en) | Parking lot management system, parking lot management method and program | |
US11560064B2 (en) | Renewable energy vehicle charging | |
JP7154246B2 (en) | Evacuation center vehicle dispatch service device, evacuation center vehicle dispatch service method, and program | |
JP2006327247A (en) | Vehicle control device | |
KR102030239B1 (en) | Vehicle battery management method using estimation of solar cell power generation amount | |
US20240085202A1 (en) | Location based vehicle electric range control |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15857965 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016557488 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15857965 Country of ref document: EP Kind code of ref document: A1 |