[go: up one dir, main page]

WO2016031992A1 - 熱可塑性エラストマー組成物 - Google Patents

熱可塑性エラストマー組成物 Download PDF

Info

Publication number
WO2016031992A1
WO2016031992A1 PCT/JP2015/074546 JP2015074546W WO2016031992A1 WO 2016031992 A1 WO2016031992 A1 WO 2016031992A1 JP 2015074546 W JP2015074546 W JP 2015074546W WO 2016031992 A1 WO2016031992 A1 WO 2016031992A1
Authority
WO
WIPO (PCT)
Prior art keywords
block copolymer
polymer block
mass
thermoplastic elastomer
structural unit
Prior art date
Application number
PCT/JP2015/074546
Other languages
English (en)
French (fr)
Inventor
洋祐 城後
生地 正樹
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to KR1020177004548A priority Critical patent/KR102367517B1/ko
Priority to CN201580045720.2A priority patent/CN106661309B/zh
Priority to US15/505,825 priority patent/US10259933B2/en
Priority to CA2959473A priority patent/CA2959473C/en
Priority to JP2015560460A priority patent/JP5933140B1/ja
Priority to EP15835064.5A priority patent/EP3187537B1/en
Priority to ES15835064T priority patent/ES2711149T3/es
Publication of WO2016031992A1 publication Critical patent/WO2016031992A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/06Copolymers with styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F255/00Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00
    • C08F255/02Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00 on to polymers of olefins having two or three carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F287/00Macromolecular compounds obtained by polymerising monomers on to block polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F291/00Macromolecular compounds obtained by polymerising monomers on to macromolecular compounds according to more than one of the groups C08F251/00 - C08F289/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0025Crosslinking or vulcanising agents; including accelerators
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/01Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/101Esters; Ether-esters of monocarboxylic acids
    • C08K5/103Esters; Ether-esters of monocarboxylic acids with polyalcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/14Peroxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L19/00Compositions of rubbers not provided for in groups C08L7/00 - C08L17/00
    • C08L19/003Precrosslinked rubber; Scrap rubber; Used vulcanised rubber
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • C08L25/10Copolymers of styrene with conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
    • C08L53/025Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes modified
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/04Thermoplastic elastomer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L91/00Compositions of oils, fats or waxes; Compositions of derivatives thereof

Definitions

  • the present invention relates to a thermoplastic elastomer composition.
  • thermoplastic elastomers which are rubber-like soft materials that do not require a vulcanization process and have the same molding processability as thermoplastic resins, have become automotive parts, household appliance parts, electric wire coatings, medical parts, footwear, and miscellaneous goods. It is used in such fields.
  • thermoplastic elastomers a block copolymer having a polymer block composed of a structural unit derived from an aromatic vinyl compound and a polymer block composed of a structural unit derived from a conjugated diene compound, or a styrene type represented by a hydrogenated product thereof
  • Thermoplastic elastomers are used as materials excellent in flexibility, moldability, and the like, but are required to improve wear resistance.
  • composition (1) as a thermoplastic elastomer having excellent strain recovery properties (heat resistance) at high temperatures, good moldability, and flexible and good rubber properties.
  • a structural unit derived from alkylstyrene in which at least one alkyl group having 1 to 8 carbon atoms is bonded to a benzene ring is added to the mass of the polymer block (A).
  • composition (2) was developed as a thermoplastic elastomer composition that gives a molded article having excellent strain recovery at high temperatures (heat resistance) and extrusion processability and excellent surface properties (Patent Document 2). reference).
  • Crosslinking aid (IV) having 10 to 300 parts by mass of olefin resin (II), 0.01 to 20 parts by mass of crosslinking agent (III), and two or more methacryloyl groups and hydroxyl groups per 100 parts by mass
  • a thermoplastic elastomer composition obtained by heat-treating 0.5 to 50 parts by mass and 30 to 250 parts by mass of a rubber softener (V) under melting conditions.
  • a thermoplastic elastomer composition in which the crosslinking agent (III) is an organic peroxide.
  • thermoplastic elastomer compositions of Patent Documents 1 and 2 are disclosed to be excellent in various physical properties and characteristics including heat resistance, the abrasion resistance required in various applications, and further It was found that the surface smoothness affecting the appearance is not always sufficient, and there is still room for improvement. Accordingly, an object of the present invention is to provide a thermoplastic elastomer composition having excellent mechanical properties and abrasion resistance and surface smoothness.
  • -Crosslinking composition (X) A polymer block A mainly composed of a structural unit derived from an aromatic vinyl compound and containing 1% by mass or more of a structural unit (a) derived from styrene in which an alkyl group having 1 to 8 carbon atoms is bonded to a benzene ring; 100 parts by mass of at least one block copolymer (I) selected from the group consisting of a block copolymer having a polymer block B mainly composed of a structural unit derived from a diene compound and a hydrogenated product thereof, an olefin resin (II) 10 to 300 parts by weight, crosslinking agent (III) 0.01 to 20 parts by weight, crosslinking aid (IV) 1 to 50 parts by weight, and rubber softener (V) 30 to 250 parts by weight A composition obtained by heat-treating a composition under melting conditions.
  • the polymer block C of the hydrogenated block copolymer (Y) is a polymer block mainly composed of structural units derived from styrene or ⁇ -methylstyrene. object.
  • the hydrogenated block copolymer (Y) (1) a polymer block C having a number average molecular weight of 1,000 to 50,000; (2) A polymer block d1 having a number average molecular weight of 1,000 to 30,000 and a 1,4-bonding amount of a structural unit derived from a conjugated diene compound constituting the polymer block being less than 30 mol% A polymer block d2 having a number average molecular weight of 10,000 to 290,000 and a 1,4-bond content of structural units derived from a conjugated diene compound constituting the polymer block being 30 mol% or more; Polymer block D containing The thermoplastic elastomer composition according to any one of the above [1] to [4], which is a hydrogenated block copolymer having the following: [6] The thermoplastic elastomer composition according to the above [1] to [5], wherein the structural unit (a) is a structural unit derived from p-methylstyrene.
  • thermoplastic elastomer composition according to the above [1] to [6], wherein the crosslinking agent (III) is at least one selected from organic peroxides.
  • crosslinking aid (IV) is a compound having two or more functional groups selected from the group consisting of methacryloyl groups and acryloyl groups. Composition.
  • thermoplastic elastomer composition excellent in abrasion resistance and surface smoothness as well as mechanical properties can be provided.
  • the rules that are preferable can be arbitrarily selected, and it can be said that the combinations of rules that are preferable are more preferable.
  • -Crosslinking composition (X) A polymer block A mainly composed of a structural unit derived from an aromatic vinyl compound and containing 1% by mass or more of a structural unit (a) derived from styrene in which an alkyl group having 1 to 8 carbon atoms is bonded to a benzene ring; 100 parts by mass of at least one block copolymer (I) selected from the group consisting of a block copolymer having a polymer block B mainly composed of a structural unit derived from a diene compound and a hydrogenated product thereof, an olefin resin (II) 10 to 300 parts by weight, crosslinking agent (III) 0.01 to 20 parts by weight, crosslinking aid (IV) 1 to 50 parts by weight, and rubber softener (V) 30 to 250 parts by weight A composition obtained by heat-treating a composition under melting conditions.
  • Y Hydrogenating a block copolymer having at least two polymer blocks C mainly composed of structural units derived from an aromatic vinyl compound and at least one polymer block D mainly composed of structural units derived from a conjugated diene compound A hydrogenated block copolymer (however, the block copolymer (I) is not included).
  • the mass ratio (X) :( Y) between the crosslinked composition (X) and the hydrogenated block copolymer (Y) is preferably 20:80 to 90:10, more preferably 20:80 to 80: 20, more preferably 30:70 to 80:20.
  • the total content of the crosslinked composition (X) and the hydrogenated block copolymer (Y) is preferably from the viewpoint of mechanical properties, wear resistance and surface smoothness. It is 50 mass% or more, More preferably, it is 70 mass% or more, More preferably, it is 80 mass% or more, More preferably, it is 90 mass% or more, More preferably, it is 95 mass% or more.
  • the crosslinked composition (X) will be described.
  • the component (I) is a structural unit mainly derived from a structural unit derived from an aromatic vinyl compound, and derived from styrene (hereinafter also referred to as alkylstyrene) in which an alkyl group having 1 to 8 carbon atoms is bonded to a benzene ring (a ) At least one selected from the group consisting of a block copolymer having a polymer block A containing 1% by mass or more and a polymer block B mainly composed of a structural unit derived from a conjugated diene compound, and a hydrogenated product thereof.
  • Block copolymer [hereinafter sometimes referred to as block copolymer (I). ].
  • “consisting mainly of a structural unit derived from an aromatic vinyl compound” means a structural unit derived from an aromatic vinyl compound based on the total mass of the polymer block A (hereinafter abbreviated as an aromatic vinyl compound unit). In some cases).
  • the content of the structural unit derived from the aromatic vinyl compound in the polymer block A is more preferably 70% by mass or more based on the total mass of the polymer block A, and is 90% by mass or more. Is more preferable, and 95% by mass or more is particularly preferable.
  • “consisting mainly of a structural unit derived from a conjugated diene compound” may be abbreviated as a structural unit derived from a conjugated diene compound based on the total mass of the polymer block B (hereinafter, abbreviated as a conjugated diene compound unit). ) In an amount of 50% by mass or more.
  • the content of the structural unit derived from the conjugated diene compound in the polymer block B is more preferably 70% by mass or more and 90% by mass or more based on the total mass of the polymer block B. More preferably, it is particularly preferably 95% by mass or more.
  • the polymer blocks A and B will be described in detail.
  • the polymer block A corresponds to the hard segment of the thermoplastic elastomer, and the alkyl group bonded to the benzene ring in the structural unit (a) reacts with the cross-linking agent to produce the polymer block A. It has a role which introduce
  • the alkyl styrene that gives the structural unit (a) is, for example, o-alkyl styrene, m-alkyl styrene, p-alkyl styrene, 2, 4 wherein the alkyl group has 1 to 8 carbon atoms.
  • examples of the alkylstyrene that gives the structural unit (a) include o-methylstyrene, m-methylstyrene, p-methylstyrene, 2,4-dimethylstyrene, 3,5-dimethylstyrene, 2,4,6-trimethylstyrene, o-ethylstyrene, m-ethylstyrene, p-ethylstyrene, 2,4-diethylstyrene, 3,5-diethylstyrene, 2,4,6-triethylstyrene, o-propyl Styrene, m-propyl styrene, p-propyl styrene, 2,4-dipropyl styrene, 3,5-dipropyl styrene, 2,4,6-tripropyl styrene, 2-methyl-4-ethy
  • the structural unit (a) is preferably a structural unit derived from p-alkylstyrene, and is a structural unit derived from p-methylstyrene. More preferably.
  • the block copolymer (I) can have an aromatic vinyl compound unit other than the structural unit (a) as the aromatic vinyl compound unit constituting the polymer block A.
  • aromatic vinyl compound units include styrene, ⁇ -methylstyrene, ⁇ -methylstyrene, monofluorostyrene, difluorostyrene, monochlorostyrene, dichlorostyrene, methoxystyrene, vinylnaphthalene, vinylanthracene, indene, and acetonaphthylene.
  • Examples include derived structural units.
  • the other aromatic vinyl compound unit may be composed of one kind or two or more kinds. Especially, as another aromatic vinyl compound unit, the structural unit derived from styrene is preferable.
  • the content ratio of the structural unit (a) in the polymer block A is the mass of the polymer block A constituting the block copolymer (I) [the block copolymer (I) has two or more polymer blocks A.
  • the total mass] is 1% by mass or more, more preferably 5% by mass or more, further preferably 10% by mass or more, and particularly preferably 20% by mass or more.
  • the upper limit is not particularly limited, but is preferably 80% by mass or less, more preferably 60% by mass or less, further preferably 45% by mass or less, and 40% by mass or less. Particularly preferred.
  • all the structural units which comprise the polymer block A may consist of the said structural unit (a).
  • the bonding form of the structural unit (a) in the polymer block A and the aromatic vinyl compound unit other than the structural unit (a) is random, block, tapered, tapered block, or two or more thereof. Any form of the combination may be used.
  • the polymer block A may have a structural unit derived from another polymerizable compound together with the above-described aromatic vinyl compound unit containing the structural unit (a).
  • the content ratio of the structural unit derived from the other polymerizable compound is preferably 50% by mass or less, more preferably 30% by mass or less, based on the total mass of the polymer block A, more preferably 10%.
  • the content is more preferably at most 5 mass%, particularly preferably at most 5 mass%.
  • Examples of other polymerizable compounds in this case include conjugated diene compounds such as butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, 1,3-hexadiene; 1-butene, Examples include pentene, hexene, and methyl vinyl ether.
  • the bonding form of these other polymerizable compounds may be any of random, block, tapered, tapered block, and combinations of two or more thereof.
  • the content of the polymer block A in the block copolymer (I) is preferably 5 to 40% by mass, and more preferably 15 to 40% by mass. If it is 5% by mass or more, the mechanical properties of the thermoplastic elastomer composition will be good, and the heat resistance tends to be excellent. When it is 40% by mass or less, the thermoplastic elastomer composition tends to be excellent in flexibility.
  • the content of the polymer block A in the block copolymer (I) is a value obtained from a 1 H-NMR spectrum.
  • the conjugated diene compound from which the structural unit constituting the polymer block B is derived include isoprene, butadiene, hexadiene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, and the like.
  • the polymer block B may be composed of only one kind of conjugated diene compound or may be composed of two or more kinds.
  • the polymer block B is preferably composed of a structural unit derived from butadiene, isoprene, or a mixture of butadiene and isoprene, more preferably composed of a structural unit derived from a mixture of butadiene and isoprene. preferable.
  • the type of microstructure of the polymer block B (1,2-bond structure, 1,4-bond structure, 3,4-bond structure, etc.) and the content ratio thereof are not particularly limited. Moreover, when the polymer block B has a structural unit derived from two or more kinds of conjugated dienes, the bonding form thereof is random, block, tapered, tapered block, and two or more kinds thereof. Any combination may be used.
  • the polymer block B may contain a small amount of structural units derived from other polymerizable compounds in addition to the structural units derived from the conjugated diene.
  • the content ratio of the other polymerizable compound is 50% by mass or less based on the total mass of the polymer block B, preferably 30% by mass or less, and more preferably 10% by mass or less.
  • the other polymerizable compound include styrene, ⁇ -methylstyrene, and alkylstyrene (preferably p-methylstyrene) that gives the structural unit (a).
  • the polymer block B is a polyisoprene block mainly composed of structural units derived from isoprene or a hydrogenated polyisoprene block in which part or all of the carbon-carbon double bonds in the polyisoprene block are hydrogenated;
  • a polybutadiene block comprising a derived structural unit or a hydrogenated polybutadiene block in which some or all of the carbon-carbon double bonds based on the butadiene unit are hydrogenated; or a co-polymer comprising a structure derived primarily from a mixture of isoprene and butadiene
  • the weather resistance and heat resistance of the thermoplastic elastomer composition of the present invention is a hydrogenated copolymer block in which part or all of the carbon block or carbon-carbon double bond in the copolymer block or the copolymer block is hydrogenated. From the viewpoint of properties and the like.
  • the structural unit derived from isoprene (hereinafter sometimes abbreviated as isoprene unit) before hydrogenation is 2-methyl-2- Butene-1,4-diyl group [—CH 2 —C (CH 3 ) ⁇ CH—CH 2 —; 1,4-linked isoprene unit], isopropenyl ethylene group [—CH (C (CH 3 ) ⁇ CH 2 ) —CH 2 —; a 3,4-linked isoprene unit] and a 1-methyl-1-vinylethylene group [—C (CH 3 ) (CH ⁇ CH 2 ) —CH 2 —; It consists of at least one group selected from the group consisting of isoprene units], and the proportion of each unit is not particularly limited.
  • polybutadiene block which can be a constituent block of the polymer block B, before hydrogenation, 70 to 20 mol% of a structural unit derived from the butadiene (hereinafter sometimes abbreviated as a butadiene unit), particularly 65 to 40 mol% is a 2-butene-1,4-diyl group (—CH 2 —CH ⁇ CH—CH 2 —; 1,4-bonded butadiene unit), and 30 to 80 mol%, particularly 35 to 60 mol% is preferably a vinylethylene group [—CH (CH ⁇ CH 2 ) —CH 2 —; 1,2-bonded butadiene unit].
  • a structural unit derived from the butadiene hereinafter sometimes abbreviated as a butadiene unit
  • 65 to 40 mol% is a 2-butene-1,4-diyl group (—CH 2 —CH ⁇ CH—CH 2 —; 1,4-bonded butadiene unit)
  • 30 to 80 mol% particularly 35 to 60 mol% is
  • the isoprene unit has a 2-methyl-2-butene-1,4-diyl group, It consists of propenylethylene group and 1-methyl-1-vinylethylene group, and the butadiene unit consists of 2-butene-1,4-diyl group and vinylethylene group, and the ratio of each unit is not particularly limited.
  • the arrangement of isoprene units and butadiene units is any of random, block, tapered, tapered block, and combinations of two or more thereof. Also good.
  • the mass ratio of isoprene units: butadiene units is preferably 10:90 to 90:10 from the viewpoint of rubber elasticity, and 30:70 to 70:30. More preferably, it is more preferably 35:65 to 65:35, and particularly preferably 40:60 to 65:35.
  • the hydrogenation rate of the polymer block B is preferably 60 mol% or more, more preferably 80 mol% or more, and further preferably 95 mol% or more.
  • the hydrogenation rate of the carbon-carbon double bond based on the conjugated diene compound unit of the polymer block B is determined by the 1 H-NMR measurement of the carbon-carbon double bond in the polymer block B before and after the hydrogenation reaction. The amount can be measured and calculated from the measured value.
  • the reaction rate of the polymer block B and the crosslinking agent (III) is reduced when the thermoplastic elastomer composition of the present invention is produced, while the polymer block is reduced.
  • the reaction between the structural unit (a) of A and the crosslinking agent (III) is promoted, so that the proportion of crosslinking introduced into the polymer block A forming the hard segment is increased.
  • the hydrogenation method of the carbon-carbon double bond in the polymer block B there is no particular limitation on the hydrogenation method of the carbon-carbon double bond in the polymer block B, and a known method can be employed.
  • the bonding form is not limited, and is linear, branched, radial, or two or more thereof Any of the combined forms may be used. Among them, it is preferable that the bond form of the polymer block A and the polymer block B is a linear form, for example, when the polymer block A is represented by A and the polymer block B is represented by B.
  • a triblock copolymer represented by ABA a triblock copolymer represented by ABABA
  • a pentablock copolymer represented by ABABA etc.
  • a triblock copolymer (ABA) is preferably used from the viewpoint of ease of production of the block copolymer (I), flexibility, and the like.
  • the number average molecular weight of the polymer block A is preferably from 2,500 to 75,000, more preferably from the viewpoints of mechanical properties and molding processability of the resulting thermoplastic elastomer composition.
  • the number average molecular weight of the polymer block B is preferably 10,000 to 400,000, more preferably 30,000 to 35,000, and the block copolymer (I) is from 5,000 to 50,000.
  • the total number average molecular weight is preferably 12,500 to 2,000,000, more preferably 50,000 to 1,000,000, still more preferably 100,000 to 500,000, particularly preferably 200,000 to 450. , 000.
  • the number average molecular weight (Mn) as used in this specification says the value calculated
  • the olefin resin (II) examples include ethylene polymers, propylene polymers, poly (1-butene), poly (4-methyl-1-pentene) and the like. These may be used individually by 1 type and may use 2 or more types together.
  • the ethylene polymer refers to a polymer in which the content of structural units derived from ethylene (hereinafter sometimes abbreviated as ethylene content) is 60 mol% or more, and the ethylene content is , Preferably it is 70 mol% or more, More preferably, it is 80 mol% or more.
  • the propylene-based polymer refers to a polymer having a content of structural units derived from propylene (hereinafter sometimes abbreviated as propylene content) of 60 mol% or more, and the propylene content is: Preferably it is 70 mol% or more, More preferably, it is 80 mol% or more, Most preferably, it is 90 mol% or more.
  • ethylene polymer examples include ethylene homopolymers such as high density polyethylene, medium density polyethylene and low density polyethylene, ethylene-1-butene copolymer, ethylene-1-hexene copolymer, ethylene-1- Heptene copolymer, ethylene-1-octene copolymer, ethylene-4-methyl-1-pentene copolymer, ethylene-vinyl acetate copolymer, ethylene-acrylic acid copolymer, ethylene-acrylic acid ester copolymer Examples thereof include a copolymer, an ethylene-methacrylic acid copolymer, an ethylene-methacrylic acid ester copolymer, and modified products thereof.
  • propylene polymer examples include propylene homopolymer, propylene-ethylene random copolymer, propylene-ethylene block copolymer, propylene-1-butene copolymer, propylene-ethylene-1-butene copolymer. , Propylene-4-methylpentene-1 copolymer, and modified products thereof.
  • modified product examples include those obtained by graft copolymerizing a modifier with a polypropylene resin, and those obtained by copolymerizing a modifier with the main chain of the polypropylene resin.
  • the modifying agent include, for example, maleic acid, citraconic acid, halogenated maleic acid, itaconic acid, cis-4-cyclohexene-1,2-dicarboxylic acid, and endo-cis-bicyclo [2.2.1]- Unsaturated dicarboxylic acids such as 5-heptene-2,3-dicarboxylic acid; esters, amides or imides of unsaturated dicarboxylic acids; maleic anhydride, citraconic anhydride, halogenated maleic anhydride, itaconic anhydride, cis-4 anhydride -Unsaturated dicarboxylic acid anhydrides such as cyclohexene-1,2-dicarboxylic acid anhydride, endo-cis-bicyclo [2.2.1] -5-heptene-2,3-dicarboxylic acid; acrylic acid, methacrylic acid, croton Unsaturated monocarboxylic acids such as acids; esters of
  • the olefin resin (II) from the viewpoint of moldability, ethylene polymers such as high density polyethylene, medium density polyethylene, and low density polyethylene; propylene homopolymer, ethylene-propylene random copolymer A propylene polymer such as an ethylene-propylene block copolymer is preferred, a propylene polymer is more preferred, and a propylene homopolymer is more preferred.
  • the melt flow rate (MFR) measured under the conditions of 230 ° C. and 2.16 kg of the olefin resin (II) is 0.1 g / from the viewpoint of moldability and wear resistance of the thermoplastic polymer composition.
  • the MFR is a value measured according to JIS K7210.
  • the content of the olefin resin (II) is 10 to 300 parts by weight, preferably 10 to 200 parts by weight, more preferably 15 to 100 parts by weight, based on 100 parts by weight of the block copolymer (I). 20 to 60 parts by mass is more preferable, 20 to 40 parts by mass is further preferable, and 20 to 37 parts by mass is particularly preferable.
  • the amount is less than 10 parts by mass with respect to 100 parts by mass of the block copolymer (I)
  • the molding processability of the obtained thermoplastic elastomer composition becomes poor.
  • the thermoplastic elastomer composition to be obtained is obtained.
  • the flexibility and rubber elasticity of the resin deteriorate.
  • the structural unit (a) present in the polymer block A of the block copolymer (I) is subjected to heat treatment under melting conditions when obtaining the thermoplastic elastomer composition of the present invention.
  • a cross-linking agent that can act to form a cross-link on the polymer block A at that portion is used.
  • an appropriate crosslinking agent can be selected in consideration of reactivity and the like, and among them, a group consisting of an organic peroxide and a bismaleimide compound 1 type or 2 types or more chosen from are preferable, and an organic peroxide is more preferable.
  • organic peroxide examples include dialkyl monoperoxides such as dicumyl peroxide, di-t-butyl peroxide, and t-butylcumyl peroxide; 2,5-dimethyl-2,5-di (t-butylperoxy) hexane, 2,5-dimethyl-2,5-di (t-butylperoxy) hexyne-3, 1,3-bis (t-butylperoxyisopropyl) benzene, 1,1-bis (t-butylperoxy) -3,3 , 5-trimethylcyclohexane, diperoxides such as n-butyl-4,4-bis (t-butylperoxy) valerate; diacyl peroxides such as benzoyl peroxide, p-chlorobenzoyl peroxide, 2,4-dichlorobenzoyl peroxide; t- Monoacylalkylperoxy such as butylperoxybenz
  • dialkyl monoperoxides such as dicumyl peroxide and diperoxides such as 2,5-dimethyl-2,5-di (t-butylperoxy) hexane are preferable.
  • the bismaleimide compound may be any bismaleimide compound that can cause crosslinking at the alkyl group moiety and unsaturated double bond moiety bonded to the benzene ring.
  • N, N′-m-phenylenebismaleimide N, N′-p-phenylene bismaleimide, N, N′-p-phenylene (1-methyl) bismaleimide, N, N′-2,7-naphthene bismaleimide, N, N′-m-naphthene bis Examples include maleimide, N, N′-m-phenylene-4-methylbismaleimide, N, N′-m-phenylene (4-ethyl) bismaleimide, and toluylene bismaleimide.
  • N, N′-m-phenylenebismaleimide is preferable from the viewpoint of reactivity. These may be used individually by 1 type and may use 2 or more types together.
  • the content of the crosslinking agent (III) is 0.01 to 20 parts by weight, preferably 0.01 to 10 parts by weight, and preferably 0.1 to 10 parts by weight with respect to 100 parts by weight of the block copolymer (I). Part is more preferable, and 0.3 to 6 parts by mass is particularly preferable. When the amount is less than 0.01 part by mass with respect to 100 parts by mass of the block copolymer (I), sufficient crosslinking cannot be formed. The bleeding out of (V), the deterioration of the mechanical properties of the thermoplastic elastomer composition, etc. occur.
  • crosslinking aid known crosslinking aids can be used.
  • trimethylolpropane trimethacrylate trimethylolpropane triacrylate, trimellitic acid triallyl ester, 1,2,4-benzenetricarboxylic acid triallyl Ester, triallyl isocyanurate, 1,6-hexanediol dimethacrylate, 1,9-nonanediol dimethacrylate, 1,10-decanediol dimethacrylate, polyethylene glycol dimethacrylate, ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, triethylene Examples include glycol dimethacrylate, divinylbenzene, glycerol dimethacrylate, and 2-hydroxy-3-acryloyloxypropyl methacrylate.
  • the crosslinking aid is preferably a compound having at least two functional groups selected from the group consisting of a methacryloyl group and an acryloyl group, preferably one methacryloyl group, one acryloyl group, and one or more A compound having a hydroxyl group is more preferred.
  • the number of hydroxyl groups possessed by such a crosslinking aid is not particularly limited as long as it is 1 or more, but the upper limit is preferably 8 or less, more preferably 6 or less, and even more preferably 3 It is as follows.
  • the number of hydroxyl groups contained in such a crosslinking aid is particularly preferably one.
  • Such a crosslinking aid has, in addition to the methacryloyl group, acryloyl group and hydroxyl group, further one or more selected from the group consisting of other functional groups such as amino group, epoxy group, fluoro group and silyl group. It may be.
  • crosslinking aid from the viewpoint of mechanical properties, wear resistance, and heat resistance, together with one methacryloyl group, one acryloyl group, and one or more hydroxyl groups, the number of carbon atoms is 3-12. Those having an alkylene group of (preferably 3 to 8, more preferably 3 to 6, more preferably 3) are preferred. Moreover, what has a hydroxyl group between a methacryloyl group and an acryloyl group from a viewpoint of abrasion resistance and heat resistance is preferable.
  • the methacryloyl group and acryloyl group of the crosslinking aid may both be bonded to an oxygen atom, that is, may be a methacryloyloxy group and an acryloyloxy group, respectively.
  • the crosslinking aid (IV) 2-hydroxy-3-acryloyloxypropyl methacrylate is preferable from the viewpoint of wear resistance and heat resistance.
  • Such a crosslinking aid (IV) can be produced, for example, by substituting two of the hydroxyl groups of the trivalent or higher alcohol with one acryloyloxy group and one methacryloyloxy group.
  • trihydric or higher alcohols examples include glycerol (glycerol), trimethylolpropane, pentaerythritol, diglycerin, ditrimethylolpropane, dipentaerythritol, etc., 3 to 12 carbon atoms (preferably 3 to 8, more preferably 3 to 6). More preferably, the trivalent or higher alcohol of 3) can be mentioned.
  • the content of the crosslinking aid (IV) is 1 to 50 parts by weight, preferably 5 to 45 parts by weight, more preferably 10 to 40 parts by weight, based on 100 parts by weight of the block copolymer (I). More preferably, it is 20 to 37 parts by mass. When it is less than 1 part by mass relative to 100 parts by mass of the block copolymer (I), the mechanical properties, abrasion resistance and heat resistance of the resulting thermoplastic elastomer composition are inferior, and when it exceeds 50 parts by mass, it is obtained.
  • the resulting thermoplastic elastomer composition lacks flexibility.
  • Rubber softeners (V) examples include petroleum-based process oils such as paraffinic process oil and naphthenic process oil; aromatic process oils; silicone oils; vegetable oil-based softeners such as peanut oil and rosin; Synthetic softeners such as ⁇ -olefin oligomers, liquid polybutenes, and low molecular weight polybutadienes.
  • a softener having a kinematic viscosity of 20 to 800 mm 2 / s (preferably 40 to 600 mm 2 / s, more preferably 60 to 500 mm 2 / s) at 40 ° C. is particularly preferable.
  • the kinematic viscosity is a value measured according to JIS K2283.
  • the rubber softener (V) petroleum-based process oil is preferable, and paraffin-based process oil is more preferable.
  • the rubber softener (V) may be used alone or in combination of two or more.
  • rubber softener (V) for example, paraffinic process oil or naphthenic process oil (preferably paraffinic process oil) in the product name “Diana Process Oil” series marketed by Idemitsu Kosan Co., Ltd. is used. it can.
  • the content of the rubber softening agent (V) is 30 to 250 parts by weight, preferably 50 to 200 parts by weight, and more preferably 50 to 140 parts by weight with respect to 100 parts by weight of the block copolymer (I). 50 to 130 parts by mass is more preferable.
  • it exceeds 250 parts by mass with respect to 100 parts by mass of the block copolymer (I) the mechanical properties of the thermoplastic elastomer composition of the present invention are deteriorated, and a molded product obtained from the thermoplastic elastomer composition is used for rubber.
  • the softening agent (V) is likely to bleed out.
  • it is less than 30 parts by mass the flexibility of the thermoplastic elastomer composition is insufficient.
  • the crosslinked composition (X) used in the present invention is obtained by heat-treating a composition containing the above-mentioned respective components in the predetermined amount under melting conditions. In the composition before the heat treatment, the effect of the present invention is obtained. Other polymers can be contained as long as they are not impaired.
  • polymers include, for example, polyphenylene ether resins; polyamide 6, polyamide 6 ⁇ 6, polyamide 6 ⁇ 10, polyamide 11, polyamide 12, polyamide 6 ⁇ 12, polyhexamethylenediamine terephthalamide, polyhexamethylenediamine isophthalate Polyamide resins such as amide and xylene group-containing polyamide; Polyester resins such as polyethylene terephthalate and polybutylene terephthalate; Acrylic resins such as polymethyl acrylate and polymethyl methacrylate; Polyoxymethylene homopolymer, polyoxymethylene copolymer, etc.
  • Polyoxymethylene resins styrene homopolymer, ⁇ -methylstyrene homopolymer, styrene such as acrylonitrile-styrene resin, acrylonitrile-butadiene-styrene resin Fatty; polycarbonate resin; ethylene-propylene copolymer rubber (EPM), ethylene-propylene-nonconjugated diene copolymer rubber (EPDM); styrene-butadiene copolymer rubber, styrene-isoprene copolymer rubber or hydrogenated product thereof or Natural rubber; Synthetic isoprene rubber, liquid polyisoprene rubber and hydrogenated or modified products thereof; chloroprene rubber; acrylic rubber; butyl rubber; acrylonitrile-butadiene rubber; epichlorohydrin rubber; silicone rubber; Polyethylene; Urethane rubber; Polyurethane elastomer; Polyamide elastomer; Styrene
  • the composition before the heat treatment contains these other polymers, the content (the total content in the case of two or more types) impairs the mechanical properties of the resulting thermoplastic elastomer composition.
  • 200 parts by mass or less preferably 100 parts by mass or less, more preferably 50 parts by mass or less, still more preferably 20 parts by mass or less, even more preferably 10 parts by mass or less, for example, relative to 100 parts by mass of the block copolymer (I). Part by mass or less is particularly preferable.
  • the hydrogenated block copolymer (Y) described later is not contained in the composition before the heat treatment.
  • the block copolymer (I) has a mass of 100 mass.
  • it is 50 parts by mass or less, more preferably 30 parts by mass or less, more preferably 15 parts by mass or less, still more preferably 10 parts by mass or less, particularly preferably 5 parts by mass or less, and substantially contained. Most preferably not.
  • the composition before the heat treatment can contain an inorganic filler as necessary.
  • the inorganic filler include calcium carbonate, talc, clay, synthetic silicon, titanium oxide, carbon black, barium sulfate, mica, glass fiber, whisker, carbon fiber, magnesium carbonate, glass powder, metal powder, kaolin, graphite, two Molybdenum sulfide, zinc oxide, etc. can be mentioned, These 1 type or 2 types or more can be contained.
  • the content thereof is a range in which the effect of the present invention is not impaired, for example, 50 parts by mass or less with respect to 100 parts by mass of the thermoplastic elastomer composition, 20 mass parts or less are more preferable, and 10 mass parts or less are still more preferable.
  • composition before the heat treatment may contain a flame retardant, a lubricant, a light stabilizer, a pigment, a heat stabilizer, an antifogging agent, an antistatic agent, an antiblocking agent, an ultraviolet absorber, a heat stabilizer, an oxidation as necessary.
  • a flame retardant e.g., a flame retardant, a lubricant, a light stabilizer, a pigment, a heat stabilizer, an antifogging agent, an antistatic agent, an antiblocking agent, an ultraviolet absorber, a heat stabilizer, an oxidation as necessary.
  • a flame retardant e.g., a lubricant, a light stabilizer, a pigment, a heat stabilizer, an antifogging agent, an antistatic agent, an antiblocking agent, an ultraviolet absorber, a heat stabilizer, an oxidation as necessary.
  • 1 or more types chosen from the group which consists of an inhibitor, a coloring agent, etc. can be contained.
  • the cross-linked composition (X) used in the present invention is a composition obtained by cross-linking at least a part of the polymer block A by heat-treating a composition containing the above-mentioned respective components in the predetermined amount under melting conditions. It is. From the viewpoint of dynamically crosslinking the composition, the heat treatment is preferably performed while stirring or mixing the composition containing the predetermined amounts of the respective components.
  • an apparatus used for heat-treating the composition under melting conditions any melt-kneading apparatus capable of uniformly mixing each component can be used.
  • melt kneaders such as a single screw extruder, a twin screw extruder, a Banbury mixer, a heating roll, and various kneaders.
  • a twin-screw extruder is preferable from the viewpoint that the shearing force during kneading is large and fine and uniform dispersion is possible, and continuous operation is possible.
  • the thermoplastic elastomer composition of the present invention is produced using a single-screw extruder or a twin-screw extruder, two or more extruders are used to disperse each component even if one extruder is used. May be used for sequential heat treatment (preferably melt kneading) step by step.
  • the heat treatment temperature can be appropriately selected within the range of the temperature at which the olefin resin (II) melts and the block copolymer (I) reacts with the crosslinking agent (III), and is usually preferably 140 to 270 ° C., preferably 160 to 240 ° C. is more preferable, and 170 to 240 ° C. is more preferable.
  • the heat treatment time is preferably 30 seconds to 5 minutes, more preferably 45 seconds to 3 minutes.
  • the melt flow rate (MFR) measured under the conditions of 230 ° C. and 10 kg of the crosslinked composition (X) thus obtained is preferably 0.5 to 35 g / 10 minutes, more preferably 0.5 to 20 g / 10. Min, more preferably 0.5 to 10 g / 10 min, particularly preferably 0.5 to 7 g / 10 min.
  • the MFR is a value measured according to the method described in Examples.
  • the hydrogenated block copolymer (Y) comprises at least two polymer blocks C mainly composed of structural units derived from an aromatic vinyl compound and at least 1 polymer block D mainly composed of structural units derived from a conjugated diene compound. This is a hydrogenated block copolymer obtained by hydrogenating a block copolymer having a single block. However, the hydrogenated block copolymer (Y) does not include the block copolymer (I).
  • “consisting mainly of a structural unit derived from an aromatic vinyl compound” means a structural unit derived from an aromatic vinyl compound based on the total mass of the polymer block C (hereinafter abbreviated as an aromatic vinyl compound unit). In some cases).
  • the content of the structural unit derived from the aromatic vinyl compound in the polymer block C is more preferably 70% by mass or more based on the total mass of the polymer block C, and is 90% by mass or more. Is more preferable, and 95% by mass or more is particularly preferable.
  • a structural unit derived from a conjugated diene compound based on the total mass of the polymer block D (hereinafter, abbreviated as a conjugated diene compound unit). ) In an amount of 50% by mass or more.
  • the content of the structural unit derived from the conjugated diene compound in the polymer block D is more preferably 70% by mass or more and 90% by mass or more based on the total mass of the polymer block D. More preferably, it is particularly preferably 95% by mass or more.
  • the polymer blocks C and D will be described in detail.
  • the polymer block C in the hydrogenated block copolymer (Y) is mainly composed of structural units derived from an aromatic vinyl compound.
  • the aromatic vinyl compound include styrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, ⁇ -methylstyrene, ⁇ -methylstyrene, ⁇ -methyl-o-methylstyrene, ⁇ -methyl- m-methylstyrene, ⁇ -methyl-p-methylstyrene, ⁇ -methyl-o-methylstyrene, ⁇ -methyl-m-methylstyrene, ⁇ -methyl-p-methylstyrene, ⁇ -methyl-2,6-dimethyl Styrene, ⁇ -methyl-2,4-dimethylstyrene, ⁇ -methyl-2,6-dimethylstyrene, ⁇ -methyl-2,4-dimethylstyrene, ⁇ -methyl-2,
  • aromatic vinyl compound 1 type chosen from these may be sufficient, and 2 or more types may be sufficient.
  • the aromatic vinyl compound is preferably styrene, ⁇ -methylstyrene, and a mixture thereof, more preferably styrene, ⁇ -methylstyrene, and ⁇ -methylstyrene. Further preferred.
  • the polymer block C may contain an unsaturated compound other than the aromatic vinyl compound in a proportion of 10% by mass or less.
  • Examples of the other unsaturated compounds include butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, 1,3-hexadiene, isobutylene, methyl methacrylate, methyl vinyl ether, N- Examples thereof include at least one selected from vinylcarbazole, ⁇ -pinene, 8,9-p-mentene, dipentene, methylene norbornene, 2-methylenetetrahydrofuran and the like.
  • the bonding form is not particularly limited, and may be random, block, tapered, tapered block, or a combination of two or more thereof. Either is acceptable.
  • the number average molecular weight of the polymer block C in the hydrogenated block copolymer (Y) is preferably 1,000 to 50,000, more preferably 2,000 to 40,000.
  • the content of the polymer block C in the hydrogenated block copolymer (Y) is 5 to 45 mass from the viewpoint of rubber elasticity, flexibility, wear resistance and surface smoothness of the hydrogenated block copolymer (Y). %, And more preferably 15 to 40% by mass.
  • the content of the polymer block C in the hydrogenated block copolymer (Y) is a value determined by 1 H-NMR spectrum.
  • the polymer block D in the hydrogenated block copolymer (Y) mainly comprises structural units derived from a conjugated diene compound.
  • the conjugated diene compound include at least one selected from butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, 1,3-hexadiene, and the like.
  • butadiene, isoprene, a mixture of butadiene and isoprene are preferable, and butadiene is more preferable.
  • the microstructure of the structural unit derived from the conjugated diene monomer is not particularly limited.
  • the content of 1,4-bonded structural units (hereinafter simply referred to as 1,4-bonded amount) is 10 to 95. It is preferably mol%, more preferably 30 to 80 mol%, and even more preferably 45 to 65 mol%.
  • the polymer block D is mainly composed of a structural unit derived from isoprene or a structural unit derived from a mixture of butadiene and isoprene
  • the amount of 1,4-bond is 5 to 99 mol%. It is preferably 30 to 97 mol%, more preferably 50 to 97 mol%, particularly preferably 80 to 97 mol%, and 90 to 97 mol%. Is most preferred.
  • the polymer block D is composed of structural units derived from two or more kinds of conjugated diene compounds (for example, butadiene and isoprene), there is no particular limitation on the bonding form, and random, tapered, and completely alternating , A partial block shape, a block, or a combination of two or more thereof.
  • the carbon-carbon double bond in the structural unit derived from the conjugated diene compound is at least partially hydrogenated (hereinafter sometimes abbreviated as hydrogenation), and has heat resistance, weather resistance, resistance to resistance.
  • the carbon-carbon double bond in the conjugated diene compound unit is hydrogenated, and it is more preferable that 70 mol% or more is hydrogenated.
  • 90 mol% or more is more preferably hydrogenated, and more preferably 95 mol% or more is hydrogenated.
  • the above hydrogenation rate is determined by using the 1 H-NMR spectrum for the carbon-carbon double bond content in the conjugated diene compound unit in the polymer block D before and after hydrogenation. This is the calculated value.
  • hydrogenation method of the carbon-carbon double bond in the polymer block D There is no particular limitation on the hydrogenation method of the carbon-carbon double bond in the polymer block D, and a known method can be adopted.
  • the polymer block D is usually preferably 30% by mass or less, more preferably 10% by mass or less, based on the total mass of the polymer block D, unless the object and effect of the present invention are hindered.
  • the other polymerizable compounds include styrene, ⁇ -methylstyrene, vinylnaphthalene, vinylanthracene, methyl methacrylate, methyl vinyl ether, N-vinylcarbazole, ⁇ -pinene, 8,9-p-mentene, and dipentene.
  • Preferred is at least one selected from the group consisting of methylene norbornene and 2-methylenetetrahydrofuran.
  • the bonding form is not particularly limited, and is random, block-like, tapered, tapered block-like, and those Any of two or more combinations may be used.
  • the polymer block D has a number average molecular weight of 1,000 to 30,000, and the amount of 1,4-bonds of structural units derived from the conjugated diene compound constituting the polymer block is less than 30 mol%.
  • a polymer block d1 (preferably 5 to 25 mol%, more preferably 10 to 25 mol%) and a conjugated diene compound having a number average molecular weight of 10,000 to 290,000 and constituting the polymer block
  • the polymer block d2 in which the amount of 1,4-bonds in the structural unit derived from is 30 mol% or more (preferably 30 to 80 mol%, more preferably 40 to 80 mol%, still more preferably 50 to 70 mol%).
  • the number average molecular weight of the polymer block d1 is more preferably 1,000 to 30,000, still more preferably 2,000 to 20,000, and particularly preferably 3,000 to 10,000.
  • the number average molecular weight of the polymer block d2 is more preferably 10,000 to 290,000, further preferably 5,000 to 200,000, particularly preferably 10,000 to 100,000, and most preferably 10 , 000 to 60,000.
  • the bonding type of the hydrogenated block copolymer (Y) is not limited, and is linear, branched, radial, or these 2 Any combination of two or more combinations may be used.
  • bonding type of the polymer block C and the polymer block D is a linear form, as an example, when the polymer block C is represented by C and the polymer block D is represented by D, C A triblock copolymer represented by —DC, a tetrablock copolymer represented by CDCD, a pentablock copolymer represented by CDCDC, (C— D) nX type copolymer (X represents a coupling agent residue, and n represents an integer of 3 or more).
  • a triblock copolymer (C—D—C) is preferably used from the viewpoint of ease of production of the hydrogenated block copolymer (Y), flexibility, wear resistance, and surface smoothness.
  • the entire bonded polymer block is handled as one polymer block. (However, the number average molecular weight is determined separately.) Accordingly, including the above examples, the polymer block that should be strictly described as YXY (X represents a coupling residue) must be distinguished from the single polymer block Y in particular. Except for cases, Y is displayed as a whole.
  • this type of polymer block containing a coupling agent residue is handled as described above, so that it includes, for example, a coupling agent residue, strictly speaking, CDXDCC ( A block copolymer to be represented as (X represents a coupling agent residue) is represented as CDC, and is treated as an example of a triblock copolymer.
  • the hydrogenated block copolymer (Y) has a polymer block H composed of other polymerizable compounds other than the polymer block C and the polymer block D within a range not impairing the object of the present invention. You may do it.
  • the structure of the block copolymer includes a CDH type triblock copolymer, a CDHC type tetrablock copolymer, C -DCH type tetrablock copolymer and the like.
  • the number average molecular weight (Mn) of the hydrogenated block copolymer (Y) is preferably 30,000 to 300,000, more preferably 35,000 to 180,000, still more preferably 40,000 to 150,000, Particularly preferred is 40,000 to 120,000, and most preferred is 60,000 to 110,000. If the number average molecular weight of the hydrogenated block copolymer (Y) is 30,000 or more, the abrasion resistance and surface gloss of the thermoplastic elastomer composition of the present invention will be good, while it will be 300,000 or less. For example, the hydrogenated block copolymer (Y) has sufficient moldability.
  • the hydrogenated block copolymer (Y) includes (1) a polymer block C having a number average molecular weight of 1,000 to 50,000, and (2) a number average molecular weight of 1,000 to 30,000, A polymer block d1 having a 1,4-bond content of a structural unit derived from a conjugated diene compound constituting the polymer block of less than 30 mol%, a number average molecular weight of 10,000 to 290,000, A hydrogenated block copolymer having a polymer block D including a polymer block d2 having a 1,4-bond content of 30 mol% or more of structural units derived from a conjugated diene compound constituting the combined block, that is, ( A hydrogenated block copolymer containing at least one Cd1-d2) structure is preferred from the viewpoints of mechanical properties, wear resistance and surface smoothness.
  • the more preferable range of each number average molecular weight is as above-mentioned.
  • the hydrogenated block copolymer (Y) has a functional group such as a carboxyl group, a hydroxyl group, an acid anhydride group, an amino group, and an epoxy group in the molecular chain and / or at the molecular end unless the purpose and effect of the present invention are impaired. You may have 1 type or 2 types or more of groups. Further, as the hydrogenated block copolymer (Y), the above-mentioned hydrogenated block copolymer (Y) having a functional group and the hydrogenated block copolymer (Y) having no functional group are used in combination. May be.
  • thermoplastic elastomer composition (Method for producing thermoplastic elastomer composition)
  • the crosslinked composition (X) contained in the thermoplastic elastomer composition of the present invention is obtained by heat-treating the composition before crosslinking containing the predetermined amount of components (I) to (V) under melting conditions.
  • the thermoplastic elastomer composition of the present invention is obtained by crosslinking at least a part of the polymer block A and adding the hydrogenated block copolymer (Y) thereto. That is, it is different from the thermoplastic elastomer composition obtained by mixing the uncrosslinked composition before the heat treatment and the hydrogenated block copolymer (Y) and then heat-treating them under melting conditions.
  • wear resistance and surface smoothness are particularly the heat obtained by kneading the crosslinked composition (X) obtained by heat-treating the composition and the hydrogenated block copolymer (Y).
  • the thermoplastic elastomer composition obtained by melt kneading after adding the hydrogenated block copolymer (Y) to the uncrosslinked composition the same abrasion resistance is achieved.
  • the effect of surface smoothness cannot be obtained. Therefore, in the production of the thermoplastic elastomer composition of the present invention, it is necessary to prepare the crosslinked composition (X) by the above-described method and then add the hydrogenated block copolymer (Y) and knead.
  • thermoplastic elastomer composition of the present invention is produced using a single-screw extruder or a twin-screw extruder, two or more extruders are used to disperse each component even if one extruder is used. May be used for sequential heat treatment (preferably melt kneading) step by step.
  • the resin temperature during melt-kneading is usually preferably 140 to 270 ° C., more preferably 160 to 240 ° C., and further preferably 170 to 240 ° C.
  • the components (I) to (V) are supplied from a hopper using a side-feedable melt kneader such as a twin screw extruder.
  • the cross-linked composition (X) is produced in a melt-kneader while melt-kneading at the heat treatment temperature, and the hydrogenated block co-polymerization is carried out from the position after the cross-linked composition (X) is heat-treated or after the position
  • a method in which the coalescence (Y) is side-feeded and kneaded with the crosslinked composition (X) can be mentioned.
  • L / D which is the ratio of length (L) to diameter (D)
  • L / D which is the ratio of length (L) to diameter (D)
  • L / D which is the ratio of length (L) to diameter (D)
  • L / D which is the ratio of length (L) to diameter (D)
  • side-feeding the hydrogenated block copolymer (Y) it is preferable to side-feed from the position of the remaining 1/3 of the screw, and side-feed from the position of the
  • thermoplastic elastomer composition of the present invention may contain other polymers in addition to the above-described crosslinked composition (X) and hydrogenated block copolymer (Y) as long as the effects of the present invention are not impaired. it can.
  • Other polymers include, for example, polyphenylene ether resins; polyamide 6, polyamide 6 ⁇ 6, polyamide 6 ⁇ 10, polyamide 11, polyamide 12, polyamide 6 ⁇ 12, polyhexamethylenediamine terephthalamide, polyhexamethylenediamine isophthalate Polyamide resins such as amide and xylene group-containing polyamide; Polyester resins such as polyethylene terephthalate and polybutylene terephthalate; Acrylic resins such as polymethyl acrylate and polymethyl methacrylate; Polyoxymethylene homopolymer, polyoxymethylene copolymer, etc.
  • Polyoxymethylene resins styrene homopolymer, ⁇ -methylstyrene homopolymer, styrene such as acrylonitrile-styrene resin, acrylonitrile-butadiene-styrene resin Fatty; polycarbonate resin; ethylene-propylene copolymer rubber (EPM), ethylene-propylene-nonconjugated diene copolymer rubber (EPDM); styrene-butadiene copolymer rubber, styrene-isoprene copolymer rubber or hydrogenated product thereof or Natural rubber; Synthetic isoprene rubber, liquid polyisoprene rubber and hydrogenated or modified products thereof; chloroprene rubber; acrylic rubber; butyl rubber; acrylonitrile-butadiene rubber; epichlorohydrin rubber; silicone rubber; Polyethylene; Urethane rubber; Polyurethane elastomer; Polyamide elastomer; Styrene
  • thermoplastic elastomer composition of the present invention can contain an inorganic filler as required.
  • the inorganic filler include calcium carbonate, talc, clay, synthetic silicon, titanium oxide, carbon black, barium sulfate, mica, glass fiber, whisker, carbon fiber, magnesium carbonate, glass powder, metal powder, kaolin, graphite, Molybdenum disulfide, zinc oxide and the like can be mentioned, and one or more of these can be contained.
  • thermoplastic elastomer composition of the present invention may contain a flame retardant, a lubricant, a light stabilizer, a pigment, a heat stabilizer, an antifogging agent, an antistatic agent, an antiblocking agent, an ultraviolet absorber, and a heat stabilizer as necessary.
  • a flame retardant e.g., a flame retardant, a lubricant, a light stabilizer, a pigment, a heat stabilizer, an antifogging agent, an antistatic agent, an antiblocking agent, an ultraviolet absorber, and a heat stabilizer
  • 1 type, or 2 or more types, such as antioxidant and a coloring agent can be contained.
  • examples of the antioxidant include hindered phenol-based, hindered amine-based, phosphorus-based and sulfur-based antioxidants.
  • thermoplastic elastomer composition of the present invention contains other components other than these crosslinked composition (X) and hydrogenated block copolymer (Y), the effect of the present invention is impaired by the content.
  • it is 50 mass% or less with respect to the whole thermoplastic elastomer composition, More preferably, it is 30 mass% or less, More preferably, it is 10 mass% or less.
  • the method for preparing the thermoplastic elastomer composition containing these other components There is no particular limitation on the method for preparing the thermoplastic elastomer composition containing these other components.
  • the molded product can be obtained by molding the thermoplastic elastomer composition thus obtained by a known method such as extrusion molding, injection molding, press molding, calendar molding, or the like. It can also be compounded with other members (for example, polymer materials such as polyethylene, polypropylene, olefin elastomer, ABS resin, polyamide, metal, wood, cloth, etc.) by a two-color molding method.
  • a known method such as extrusion molding, injection molding, press molding, calendar molding, or the like.
  • other members for example, polymer materials such as polyethylene, polypropylene, olefin elastomer, ABS resin, polyamide, metal, wood, cloth, etc.
  • the amount of abrasion by the DIN abrasion test is approximately in the range of 5 to 90 mm 3 , preferably 10 to 40 mm 3 .
  • the tensile strength at break is in the range of approximately 9 to 20 MPa, preferably 10 to 15 MPa.
  • the tensile elongation at break is in the range of approximately 560-800%, preferably 650-800%, more preferably 680-750%.
  • the thermoplastic elastomer composition of the present invention is excellent in surface smoothness, and it is difficult to form a flow mark on a molded product.
  • the abrasion loss, the tensile breaking strength, and the tensile breaking elongation of the thermoplastic polymer composition are values measured according to the methods described in the examples.
  • block copolymer (I) Poly (isoprene / butadiene) -poly (p-methylstyrene / styrene) triblock copolymer hydrogenated product [hereinafter referred to as block copolymer (I)] was obtained.
  • the number average molecular weight (Mn) of the obtained block copolymer (I) is 360,000, and the ratio of each polymer block is 15/70/15 (mass ratio) [polymer block A / polymer block B / heavy weight.
  • the number average molecular weight (Mn) of poly ( ⁇ -methylstyrene) (polymer block C) 3 hours after the start of polymerization was measured by GPC, which was 6,600 in terms of standard polystyrene, and polymerization of ⁇ -methylstyrene The conversion was 89%.
  • GPC number average molecular weight
  • 23 g of butadiene was added to the reaction mixture, and the mixture was stirred at ⁇ 10 ° C. for 30 minutes for polymerization, and then 930 g of cyclohexane was added.
  • the polymerization conversion rate of ⁇ -methylstyrene at this point was 89%, and the number average molecular weight (GPC measurement, standard polystyrene conversion) of the formed polybutadiene block d1 was 3,700, which was obtained from 1 H-NMR measurement. The content of 1,4-bonded structural units was 19 mol%.
  • 141.3 g of butadiene was further added to the reaction solution, and a polymerization reaction was performed at 50 ° C. for 2 hours.
  • the number average molecular weight (GPC measurement, standard polystyrene conversion) of the polybutadiene block d2 of the block copolymer (structure: C-d1-d2) obtained by sampling at this time is 29,800.
  • the coupling efficiency at this time was determined by the coupling body [poly ( ⁇ -methylstyrene) -polybutadiene-poly ( ⁇ -methylstyrene) triblock copolymer: Cd1-d2-X-d2-d1-C;
  • X represents a coupling agent residue (—Si (CH 3 ) 2 —).
  • the poly ( ⁇ -methylstyrene) block content in the poly ( ⁇ -methylstyrene) -polybutadiene-poly ( ⁇ -methylstyrene) triblock copolymer was 33% by mass.
  • a Ziegler-type hydrogenation catalyst formed from nickel octylate and triethylaluminum was added to the polymerization reaction solution obtained above in a hydrogen atmosphere, and a hydrogenation reaction was carried out at a hydrogen pressure of 0.8 MPa and 80 ° C. for 5 hours.
  • hydrogenated block copolymer (Y1) a hydrogenated product of poly ( ⁇ -methylstyrene) -polybutadiene-poly ( ⁇ -methylstyrene) triblock copolymer (hereinafter referred to as hydrogenated block copolymer (Y1)) was obtained.
  • Example 4 a pellet-shaped thermoplastic elastomer composition was produced in the same manner as in Example 1 except that the composition before heat treatment of the crosslinked composition (X1) was used instead of the crosslinked composition (X1). .
  • Each physical property was measured by the following method using the obtained pellet-shaped thermoplastic elastomer composition. The results are shown in Table 4.
  • the DIN abrasion tester rotates a drum having a diameter of 150 mm and a width of 460 mm with a surface of # 60 abrasive paper wound at a speed of 0.32 m / sec, and a sample for abrasion test is loaded on the abrasive paper of this drum at a load of 10 N. It is a testing machine that wears by pressing. In order to smooth the wear surface during the test, first, preliminary grinding was performed.
  • Pre-grinding was performed by pressing the abrasion test sample against the drum for 20 m in a 23 ° C. atmosphere. Thereafter, the weight of the sample for wear test after the preliminary grinding was measured, and this test was performed. In this test, the pre-ground sample was pressed against the drum for 40 m, and the weight was measured. The difference between the weight before the main test and the weight after the main test was determined (this difference is referred to as wear weight). In order to eliminate the influence of the worn state of the abrasive paper, the wear weight of the standard rubber was also measured in the same procedure as described above.
  • the wear weight of the standard rubber is W 1
  • the wear weight of the sample for wear test is W 2
  • the specific gravity of the sample for wear test is S
  • a sheet was produced from the pellet-shaped thermoplastic elastomer composition by the same injection molding as in the above-described evaluation of abrasion resistance, and evaluated according to the following evaluation criteria.
  • thermoplastic elastomer composition of the present invention is excellent in abrasion resistance and surface smoothness as well as mechanical properties.
  • the surface smoothness was clearly lowered.
  • thermoplastic polymer composition of the present invention can be used, for example, for instrument panels, rack and opinion boots, suspension boots, constant velocity joint boots, bumpers, side moldings, weather strips, mat guards, emblems, leathers.
  • Automotive interior and exterior parts such as seats, floor mats, armrests, airbag covers, steering wheel covers, belt line moldings, flush mounts, gears, knobs, etc .; pressure hoses, fire hoses, painting hoses, washing machine hoses, fuel Tubes, oil / pneumatic tubes, hoses such as dialysis tubes, tubes; grip materials for various products (eg, scissors, screwdrivers, toothbrushes, pens, cameras, etc.); refrigerator gaskets, vacuum cleaner bumpers, cell phone protective films, Waterproof body etc.
  • Office machine parts such as copier feeding roller and take-up roller; Furniture such as sofas and chair seats; Parts such as switch covers, casters, stoppers and rubber feet; Building materials such as coated steel sheets and coated plywood; Underwater glasses and snorkels Sports equipment such as ski stocks, ski boots, snowboard boots, skis / snowboard skins, golf ball covers, medical supplies such as syringe gaskets and rolling tubes, industrial materials such as conveyor belts, electric belts, pelletizer rolls, disposable diapers, Elastic members for hygiene materials such as haps, bandages, etc .; Bands for hair bands, wristbands, watch bands, spectacle bands, etc .; Snow chains, wire covering materials, trays, films, sheets, stationery, toys, daily goods, etc. It can be used effectively for a wide range of applications.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Graft Or Block Polymers (AREA)
  • Oil, Petroleum & Natural Gas (AREA)

Abstract

 機械的特性と共に耐摩耗性および表面平滑性に優れた熱可塑性エラストマー組成物を提供する。具体的には、下記架橋組成物(X)と下記水添ブロック共重合体(Y)とを質量比(X):(Y)=10:90~90:10で含有する熱可塑性エラストマー組成物を提供する。 ・架橋組成物(X):芳香族ビニル化合物に由来する構造単位から主としてなり、炭素数1~8のアルキル基がベンゼン環に結合したスチレンに由来する構造単位(a)を1質量%以上含有する重合体ブロックAと、共役ジエン化合物に由来する構造単位から主としてなる重合体ブロックBとを有するブロック共重合体およびその水素添加物からなる群から選ばれる少なくとも1種のブロック共重合体(I)100質量部、オレフィン系樹脂(II)10~300質量部、架橋剤(III)0.01~20質量部、架橋助剤(IV)1~50質量部、およびゴム用軟化剤(V)30~250質量部を含有する組成物を溶融条件下で熱処理することにより得られる組成物。 ・水添ブロック共重合体(Y):芳香族ビニル化合物に由来する構造単位から主としてなる重合体ブロックCを少なくとも2個および共役ジエン化合物に由来する構造単位から主としてなる重合体ブロックDを少なくとも1個有するブロック共重合体を水素添加してなる水添ブロック共重合体(但し、前記ブロック共重合体(I)は含まれない。)。

Description

熱可塑性エラストマー組成物
 本発明は、熱可塑性エラストマー組成物に関する。
 近年、ゴム的な軟質材料であって、加硫工程を必要とせず、熱可塑性樹脂と同様の成形加工性を有する熱可塑性エラストマーが、自動車部品、家電部品、電線被覆、医療部品、履物、雑貨等の分野で用いられている。熱可塑性エラストマーの中でも、芳香族ビニル化合物由来の構造単位からなる重合体ブロックと共役ジエン化合物由来の構造単位からなる重合体ブロックとを有するブロック共重合体またはその水素添加物に代表されるスチレン系熱可塑性エラストマーは、柔軟性および成形加工性等に優れた材料として使用されているが、耐摩耗性の改善が求められている。
 ところで、本出願人は以前に、高温での歪み回復性(耐熱性)に優れ、かつ良好な成形加工性および柔軟で良好なゴム的特性を有する熱可塑性エラストマーとして下記組成物(1)を開発した(特許文献1参照)。
(1)芳香族ビニル化合物に由来する構造単位からなる重合体ブロック(A)を1個以上および共役ジエン化合物に由来する構造単位からなる重合体ブロック(B)を1個以上有するブロック共重合体であって、重合体ブロック(A)中に、炭素数1~8のアルキル基の少なくとも1個がベンゼン環に結合したアルキルスチレンに由来する構造単位を重合体ブロック(A)の質量に対して1質量%の割合で有するブロック共重合体およびその水素添加物からなる群から選ばれる少なくとも1種の付加重合系ブロック共重合体(I0)100質量部に対して;ポリオレフィン(II)を10~300質量部;ゴム用軟化剤(III)を0~300質量部;および、架橋剤(IV)を0.1~20質量部;の割合で混合した混合物を、溶融条件下に動的に架橋処理してなる熱可塑性エラストマー組成物であって、熱可塑性エラストマー組成物中で、付加重合系ブロック共重合体(I0)が少なくとも重合体ブロック(A)部分で架橋されていることを特徴とする熱可塑性エラストマー組成物。
 またその後、高温時の歪み回復性(耐熱性)、押出成形加工性に優れ、表面性に優れた成形品を与える熱可塑性エラストマー組成物として、下記組成物(2)を開発した(特許文献2参照)。
(2)芳香族ビニル化合物に由来する構造単位から主としてなり、炭素数1~8のアルキル基がベンゼン環に結合したアルキルスチレンに由来する構造単位(a)を1質量%以上含有する重合体ブロックAと、共役ジエン化合物に由来する構造単位から主としてなる重合体ブロックBとを有するブロック共重合体およびその水素添加物からなる群から選ばれる少なくとも1種の付加重合系ブロック共重合体(I)100質量部に対して、オレフィン系樹脂(II)10~300質量部、架橋剤(III)0.01~20質量部、2個以上のメタクリロイル基とヒドロキシル基とを有する架橋助剤(IV)0.5~50質量部並びにゴム用軟化剤(V)30~250質量部を溶融条件下で熱処理することにより得られる熱可塑性エラストマー組成物であって、該架橋剤(III)が有機過酸化物である熱可塑性エラストマー組成物。
特許第3946080号公報 特許第5085174号公報
 特許文献1および2の熱可塑性エラストマー組成物は、耐熱性をはじめとする諸物性または諸特性に優れていることが開示されているが、種々の用途において要求される耐摩耗性や、さらには外観に影響を及ぼす表面平滑性が必ずしも充分ではなく、まだこれらに改善の余地があることが分かった。
 しかして、本発明の課題は、機械的特性と共に耐摩耗性および表面平滑性に優れた熱可塑性エラストマー組成物を提供することにある。
 本発明は、下記[1]~[8]に関する。
[1]下記架橋組成物(X)と下記水添ブロック共重合体(Y)とを質量比(X):(Y)=10:90~90:10で含有する熱可塑性エラストマー組成物。
・架橋組成物(X):
 芳香族ビニル化合物に由来する構造単位から主としてなり、炭素数1~8のアルキル基がベンゼン環に結合したスチレンに由来する構造単位(a)を1質量%以上含有する重合体ブロックAと、共役ジエン化合物に由来する構造単位から主としてなる重合体ブロックBとを有するブロック共重合体およびその水素添加物からなる群から選ばれる少なくとも1種のブロック共重合体(I)100質量部、オレフィン系樹脂(II)10~300質量部、架橋剤(III)0.01~20質量部、架橋助剤(IV)1~50質量部、およびゴム用軟化剤(V)30~250質量部を含有する組成物を溶融条件下で熱処理することにより得られる組成物。
・水添ブロック共重合体(Y):
 芳香族ビニル化合物に由来する構造単位から主としてなる重合体ブロックCを少なくとも2個および共役ジエン化合物に由来する構造単位から主としてなる重合体ブロックDを少なくとも1個有するブロック共重合体を水素添加してなる水添ブロック共重合体(但し、前記ブロック共重合体(I)は含まれない。)。
[2]前記水添ブロック共重合体(Y)が有する重合体ブロックCが、スチレンまたはα-メチルスチレンに由来する構造単位から主としてなる重合体ブロックである、上記[1]の熱可塑性エラストマー組成物。
[3]前記水添ブロック共重合体(Y)が有する重合体ブロックCが、α-メチルスチレンに由来する構造単位から主としてなる重合体ブロックである、上記[1]の熱可塑性エラストマー組成物。
[4]水添ブロック共重合体(Y)の数平均分子量(Mn)が30,000~300,000である、上記[1]~[3]の熱可塑性エラストマー組成物。
[5]前記水添ブロック共重合体(Y)が、
(1)数平均分子量1,000~50,000の重合体ブロックCと、
(2)数平均分子量が1,000~30,000であって、重合体ブロックを構成する共役ジエン化合物に由来する構造単位の1,4-結合量が30モル%未満である重合体ブロックd1と、数平均分子量が10,000~290,000であって、重合体ブロックを構成する共役ジエン化合物に由来する構造単位の1,4-結合量が30モル%以上である重合体ブロックd2とを含む重合体ブロックD
を有する水添ブロック共重合体である、上記[1]~[4]の熱可塑性エラストマー組成物。
[6]前記構造単位(a)が、p-メチルスチレンに由来する構造単位である、上記[1]~[5]の熱可塑性エラストマー組成物。
[7]前記架橋剤(III)が有機過酸化物から選ばれる少なくとも1種である、上記[1]~[6]の熱可塑性エラストマー組成物。
[8]前記架橋助剤(IV)が、メタクリロイル基およびアクリロイル基からなる群から選ばれる少なくとも1種の官能基を2個以上有する化合物である、上記[1]~[7]の熱可塑性エラストマー組成物。
 本発明によれば、機械的特性と共に、耐摩耗性および表面平滑性に優れた熱可塑性エラストマー組成物を提供することができる。
 以下の説明において、好ましいとする規定は任意に選択することができ、好ましいとする規定同士の組み合わせはより好ましいと言える。
[熱可塑性エラストマー組成物]
 本発明の熱可塑性エラストマー組成物は、下記架橋組成物(X)と下記水添ブロック共重合体(Y)とを質量比(X):(Y)=10:90~90:10で含有する熱可塑性エラストマー組成物である。
・架橋組成物(X):
 芳香族ビニル化合物に由来する構造単位から主としてなり、炭素数1~8のアルキル基がベンゼン環に結合したスチレンに由来する構造単位(a)を1質量%以上含有する重合体ブロックAと、共役ジエン化合物に由来する構造単位から主としてなる重合体ブロックBとを有するブロック共重合体およびその水素添加物からなる群から選ばれる少なくとも1種のブロック共重合体(I)100質量部、オレフィン系樹脂(II)10~300質量部、架橋剤(III)0.01~20質量部、架橋助剤(IV)1~50質量部、およびゴム用軟化剤(V)30~250質量部を含有する組成物を溶融条件下で熱処理することにより得られる組成物。
・水添ブロック共重合体(Y):
 芳香族ビニル化合物に由来する構造単位から主としてなる重合体ブロックCを少なくとも2個および共役ジエン化合物に由来する構造単位から主としてなる重合体ブロックDを少なくとも1個有するブロック共重合体を水素添加してなる水添ブロック共重合体(但し、前記ブロック共重合体(I)は含まれない。)。
 架橋組成物(X)と水添ブロック共重合体(Y)との質量比(X):(Y)は、好ましくは20:80~90:10であり、より好ましくは20:80~80:20であり、さらに好ましくは30:70~80:20である。
 また、熱可塑性エラストマー組成物において、前記架橋組成物(X)と前記水添ブロック共重合体(Y)の合計含有量は、機械的特性、耐摩耗性および表面平滑性の観点から、好ましくは50質量%以上、より好ましくは70質量%以上、より好ましくは80質量%以上、より好ましくは90質量%以上、さらに好ましくは95質量%以上である。
 以下、まずは架橋組成物(X)について説明する。
{架橋組成物(X)}
〔(I)成分〕
 (I)成分は、芳香族ビニル化合物に由来する構造単位から主としてなり、炭素数1~8のアルキル基がベンゼン環に結合したスチレン(以下、アルキルスチレンともいう。)に由来する構造単位(a)を1質量%以上含有する重合体ブロックAと、共役ジエン化合物に由来する構造単位から主としてなる重合体ブロックBとを有するブロック共重合体およびその水素添加物からなる群から選ばれる少なくとも1種のブロック共重合体[以下、ブロック共重合体(I)と略称することがある。]である。
 ここで、「芳香族ビニル化合物に由来する構造単位から主としてなり」とは、重合体ブロックAの合計質量に基づいて芳香族ビニル化合物に由来する構造単位(以下、芳香族ビニル化合物単位と略称することがある。)を50質量%以上含むことをいう。該重合体ブロックA中の芳香族ビニル化合物に由来する構造単位の含有量は、重合体ブロックAの合計質量に基づいて、70質量%以上であることがより好ましく、90質量%以上であることがさらに好ましく、95質量%以上であることが特に好ましい。
 また、「共役ジエン化合物に由来する構造単位から主としてなる」とは、重合体ブロックBの合計質量に基づいて共役ジエン化合物に由来する構造単位(以下、共役ジエン化合物単位と略称することがある。)を50質量%以上含むことをいう。該重合体ブロックB中の共役ジエン化合物に由来する構造単位の含有量は、重合体ブロックBの合計質量に基づいて、70質量%以上であることがより好ましく、90質量%以上であることがさらに好ましく、95質量%以上であることが特に好ましい。
 以下、まずは重合体ブロックAおよびBについて詳細に説明する。
-重合体ブロックA-
 ブロック共重合体(I)において、重合体ブロックAは熱可塑性エラストマーのハードセグメントに相当し、構造単位(a)におけるベンゼン環に結合したアルキル基は、架橋剤と反応して、重合体ブロックAからなるハードセグメントに架橋を導入する役割を有する。
 重合体ブロックAにおいて、前記構造単位(a)を与えるアルキルスチレンとしては、例えばアルキル基の炭素数が1~8である、o-アルキルスチレン、m-アルキルスチレン、p-アルキルスチレン、2,4-ジアルキルスチレン、3,5-ジアルキルスチレン、2,4,6-トリアルキルスチレン、前記したアルキルスチレンにおけるアルキル基の水素原子の1個または2個以上がハロゲン原子で置換されたハロゲン化アルキルスチレン等が挙げられる。より具体的には、前記構造単位(a)を与えるアルキルスチレンとしては、例えば、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、2,4-ジメチルスチレン、3,5-ジメチルスチレン、2,4,6-トリメチルスチレン、o-エチルスチレン、m-エチルスチレン、p-エチルスチレン、2,4-ジエチルスチレン、3,5-ジエチルスチレン、2,4,6-トリエチルスチレン、o-プロピルスチレン、m-プロピルスチレン、p-プロピルスチレン、2,4-ジプロピルスチレン、3,5-ジプロピルスチレン、2,4,6-トリプロピルスチレン、2-メチル-4-エチルスチレン、3-メチル-5-エチルスチレン、o-クロロメチルスチレン、m-クロロメチルスチレン、p-クロロメチルスチレン、2,4-ビス(クロロメチル)スチレン、3,5-ビス(クロロメチル)スチレン、2,4,6-トリ(クロロメチル)スチレン、o-ジクロロメチルスチレン、m-ジクロロメチルスチレン、p-ジクロロメチルスチレン等が挙げられる。
 重合体ブロックAは、構造単位(a)を与えるアルキルスチレン1種または2種以上に由来する単位を有することができる。
 構造単位(a)のベンゼン環に結合したアルキル基の炭素数が9以上になると、架橋剤(III)との反応性に劣り、架橋構造が形成されにくくなる。同様の観点から、構造単位(a)を与えるアルキルスチレンにおいて、ベンゼン環に結合したアルキル基の炭素数は、好ましくは1~5、より好ましくは1~3、さらに好ましくは1である。
 入手容易性の観点および架橋剤(III)との反応性の観点から、構造単位(a)がp-アルキルスチレンに由来する構造単位であることが好ましく、p-メチルスチレンに由来する構造単位であることがより好ましい。
 ブロック共重合体(I)は、重合体ブロックAを構成する芳香族ビニル化合物単位として、構造単位(a)以外の他の芳香族ビニル化合物単位を有することができる。他の芳香族ビニル化合物単位としては、例えば、スチレン、α-メチルスチレン、β-メチルスチレン、モノフルオロスチレン、ジフルオロスチレン、モノクロロスチレン、ジクロロスチレン、メトキシスチレン、ビニルナフタレン、ビニルアントラセン、インデンまたはアセトナフチレンに由来する構造単位等が挙げられる。他の芳香族ビニル化合物単位は、1種からなっていても、2種以上からなっていてもよい。中でも、他の芳香族ビニル化合物単位としては、スチレンに由来する構造単位が好ましい。
 重合体ブロックAにおける構造単位(a)の含有割合は、ブロック共重合体(I)を構成する重合体ブロックAの質量[ブロック共重合体(I)が2個以上の重合体ブロックAを有する場合はその合計質量]に対して1質量%以上であり、5質量%以上であることがより好ましく、10質量%以上であることがさらに好ましく、20質量%以上であることが特に好ましく、一方、上限値に特に制限はないが、80質量%以下であることが好ましく、60質量%以下であることがより好ましく、45質量%以下であることがさらに好ましく、40質量%以下であることが特に好ましい。また、重合体ブロックAを構成する全ての構造単位が前記構造単位(a)からなっていてもよい。
 重合体ブロックAにおける構造単位(a)の含有割合が1質量%未満であると、重合体ブロックAに架橋が充分に導入されず、得られる熱可塑性エラストマー組成物において耐熱性が劣ったものになり易い。
 重合体ブロックAにおける構造単位(a)と該構造単位(a)以外の他の芳香族ビニル化合物単位との結合形態は、ランダム状、ブロック状、テーパー状、テーパーブロック状およびそれらの2種以上の組み合わせのいずれの形態であってもよい。
 重合体ブロックAは、構造単位(a)を含有する上記した芳香族ビニル化合物単位と共に、他の重合性化合物に由来する構造単位を有していてもよい。その場合、他の重合性化合物に由来する構造単位の含有割合は、重合体ブロックAの合計質量に基づいて50質量%以下であることが好ましく、30質量%以下であることがより好ましく、10質量%以下であることがさらに好ましく、5質量%以下であることが特に好ましい。その場合の他の重合性化合物としては、例えば、ブタジエン、イソプレン、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエン、1,3-ヘキサジエン等の共役ジエン化合物;1-ブテン、ペンテン、ヘキセン、メチルビニルエーテル等が挙げられる。これら他の重合性化合物の結合形態は、ランダム状、ブロック状、テーパー状、テーパーブロック状およびそれらの2種以上の組み合わせのいずれの形態であってもよい。
 ブロック共重合体(I)における重合体ブロックAの含有量は、5~40質量%であることが好ましく、15~40質量%であることがより好ましい。5質量%以上であると、熱可塑性エラストマー組成物の機械的特性が良好となり、耐熱性に優れる傾向にある。40質量%以下であると、熱可塑性エラストマー組成物の柔軟性に優れる傾向にある。なお、ブロック共重合体(I)における重合体ブロックAの含有量は、H-NMRスペクトルにより求めた値である。
-重合体ブロックB-
 重合体ブロックBを構成する構造単位の由来となる共役ジエン化合物としては、例えば、イソプレン、ブタジエン、ヘキサジエン、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエン等が挙げられる。重合体ブロックBは、共役ジエン化合物1種のみから構成されていても、2種以上から構成されていてもよい。中でも、重合体ブロックBは、ブタジエン、イソプレン、またはブタジエンとイソプレンの混合物に由来する構造単位から構成されているのが好ましく、ブタジエンとイソプレンの混合物に由来する構造単位から構成されているのがより好ましい。
 なお、重合体ブロックBのミクロ構造の種類(1,2-結合構造、1,4-結合構造、3,4-結合構造等)およびそれらの含有割合に特に制限はない。また、重合体ブロックBが2種以上の共役ジエンに由来する構造単位を有している場合、それらの結合形態は、ランダム状、ブロック状、テーパー状、テーパーブロック状およびそれらの2種以上の組み合わせのいずれであってもよい。
 重合体ブロックBは、共役ジエンに由来する構造単位以外に、他の重合性化合物に由来する構造単位を少量含有していてもよい。その場合、他の重合性化合物の含有割合は、重合体ブロックBの合計質量に基づいて50質量%以下であり、30質量%以下であるのが好ましく、10質量%以下であるのがより好ましい。該他の重合性化合物としては、例えばスチレン、α-メチルスチレン、前記した構造単位(a)を与えるアルキルスチレン(好ましくはp-メチルスチレン)等が挙げられる。
 重合体ブロックBは、主としてイソプレンに由来する構造単位からなるポリイソプレンブロックまたは該ポリイソプレンブロック中の炭素-炭素二重結合の一部または全部が水素添加された水添ポリイソプレンブロック;主としてブタジエンに由来する構造単位からなるポリブタジエンブロックまたは該ブタジエン単位に基づく炭素-炭素二重結合の一部または全部が水素添加された水添ポリブタジエンブロック;或いは主としてイソプレンとブタジエンの混合物に由来する構造からなる共重合体ブロックまたは該共重合体ブロック中の炭素-炭素二重結合の一部または全部が水素添加された水添共重合体ブロックであることが、本発明の熱可塑性エラストマー組成物の耐候性および耐熱性等の観点から好ましい。
 重合体ブロックBの構成ブロックとなり得る上記したポリイソプレンブロックでは、その水素添加前には、イソプレンに由来する構造単位(以下、イソプレン単位と略称することがある。)は、2-メチル-2-ブテン-1,4-ジイル基[-CH-C(CH)=CH-CH-;1,4-結合のイソプレン単位]、イソプロペニルエチレン基[-CH(C(CH)=CH)-CH-;3,4-結合のイソプレン単位]および1-メチル-1-ビニルエチレン基[-C(CH)(CH=CH)-CH-;1,2-結合のイソプレン単位]からなる群から選ばれる少なくとも1種の基からなっており、各単位の割合は特に限定されない。
 重合体ブロックBの構成ブロックとなり得る上記したポリブタジエンブロックでは、その水素添加前には、そのブタジエンに由来する構造単位(以下、ブタジエン単位と略称することがある。)の70~20モル%、特に65~40モル%が2-ブテン-1,4-ジイル基(-CH-CH=CH-CH-;1,4-結合のブタジエン単位)であり、30~80モル%、特に35~60モル%がビニルエチレン基[-CH(CH=CH)-CH-;1,2-結合のブタジエン単位]であるのが好ましい。ポリブタジエンブロックにおける1,4-結合構造単位の含有量が上記した70~20モル%であると、ゴム弾性が良好になる傾向にある。
 重合体ブロックBの構成ブロックとなり得る上記したイソプレンとブタジエンの混合物からなる共重合体ブロックでは、その水素添加前には、イソプレン単位は2-メチル-2-ブテン-1,4-ジイル基、イソプロペニルエチレン基および1-メチル-1-ビニルエチレン基からなっており、またブタジエン単位は2-ブテン-1,4-ジイル基およびビニルエチレン基からなっており、各単位の割合は特に制限されない。イソプレンとブタジエンの混合物からなる共重合体ブロックでは、イソプレン単位とブタジエン単位の配置は、ランダム状、ブロック状、テーパー状、テーパーブロック状およびそれらの2種以上の組み合わせのいずれの形態になっていてもよい。そして、イソプレンとブタジエンの混合物からなる共重合体ブロックでは、ゴム弾性の観点から、イソプレン単位:ブタジエン単位の質量比が10:90~90:10であるのが好ましく、30:70~70:30であるのがより好ましく、35:65~65:35であるのがさらに好ましく、40:60~65:35であるのが特に好ましい。
 ブロック共重合体(I)を含有する熱可塑性エラストマー組成物の耐熱性および耐候性の観点から、ブロック共重合体(I)の重合体ブロックBにおける炭素-炭素二重結合の一部または全部が水素添加されているのが好ましい。その際の重合体ブロックBの水添率は60モル%以上であるのが好ましく、80モル%以上であるのがより好ましく、95モル%以上であるのがさらに好ましい。なお、重合体ブロックBの共役ジエン化合物単位に基づく炭素-炭素二重結合の水素添加率は、H-NMR測定により、水素添加反応前後における重合体ブロックB中の炭素-炭素二重結合の量を測定し、その測定値から算出することができる。とりわけ該水添率が100モル%に近いと、本発明の熱可塑性エラストマー組成物を製造する際に、重合体ブロックBと架橋剤(III)との反応割合が低減する一方で、重合体ブロックAの有する構造単位(a)と架橋剤(III)との反応が促進されて、ハードセグメントをなす重合体ブロックAに架橋が導入される割合が高くなるために好ましい。
 重合体ブロックBにおける炭素-炭素二重結合の水素添加方法に特に制限はなく、公知の方法を採用することができる。
 ブロック共重合体(I)は、重合体ブロックAと重合体ブロックBとが結合している限りは、その結合形式は限定されず、直鎖状、分岐状、放射状、またはそれらの2つ以上が組合わさった結合形式のいずれでもよい。それらのうちでも、重合体ブロックAと重合体ブロックBの結合形式は直鎖状であることが好ましく、その例としては重合体ブロックAをAで、また重合体ブロックBをBで表したときに、A-B-Aで示されるトリブロック共重合体、A-B-A-Bで示されるテトラブロック共重合体、A-B-A-B-Aで示されるペンタブロック共重合体等を挙げることができる。中でも、トリブロック共重合体(A-B-A)が、ブロック共重合体(I)の製造の容易性、柔軟性等の観点から好ましく用いられる。
 ブロック共重合体(I)は、得られる熱可塑性エラストマー組成物の機械的特性および成形加工性等の観点から、重合体ブロックAの数平均分子量が好ましくは2,500~75,000、より好ましくは5,000~50,000であり、重合体ブロックBの数平均分子量が好ましくは10,000~400,000、より好ましくは30,000~35,0000であり、ブロック共重合体(I)全体の数平均分子量が好ましくは12,500~2,000,000、より好ましくは50,000~1,000,000、さらに好ましくは100,000~500,000、特に好ましくは200,000~450,000である。なお、本明細書でいう数平均分子量(Mn)は、ゲルパーミエーションクロマトグラフィー(GPC)法により、標準ポリスチレン検量線から求めた値をいう。
〔(II)成分〕
 オレフィン系樹脂(II)としては、例えば、エチレン系重合体、プロピレン系重合体、ポリ(1-ブテン)、ポリ(4-メチル-1-ペンテン)等が挙げられる。これらは1種を単独で使用してもよいし、2種以上を併用してもよい。
 ここで、エチレン系重合体とは、エチレンに由来する構造単位の含有量(以下、エチレン含有量と略称することがある。)が60モル%以上である重合体を言い、該エチレン含有量は、好ましくは70モル%以上、より好ましくは80モル%以上である。また、プロピレン系重合体とは、プロピレンに由来する構造単位の含有量(以下、プロピレン含有量と略称することがある。)が60モル%以上である重合体を言い、該プロピレン含有量は、好ましくは70モル%以上、より好ましくは80モル%以上、特に好ましくは90モル%以上である。
 エチレン系重合体の具体例としては、高密度ポリエチレン、中密度ポリエチレン、低密度ポリエチレン等のエチレン単独重合体、エチレン-1-ブテン共重合体、エチレン-1-ヘキセン共重合体、エチレン-1-ヘプテン共重合体、エチレン-1-オクテン共重合体、エチレン-4-メチル-1-ペンテン共重合体、エチレン-酢酸ビニル共重合体、エチレン-アクリル酸共重合体、エチレン-アクリル酸エステル共重合体、エチレン-メタクリル酸共重合体、エチレン-メタクリル酸エステル共重合体、およびこれらの変性物等が挙げられる。
 プロピレン系重合体の具体例としては、プロピレン単独重合体、プロピレン-エチレンランダム共重合体、プロピレン-エチレンブロック共重合体、プロピレン-1-ブテン共重合体、プロピレン-エチレン-1-ブテン共重合体、プロピレン-4-メチルペンテン-1共重合体、およびこれらの変性物等が挙げられる。
 前記変性物としては、ポリプロピレン系樹脂に変性剤をグラフト共重合して得られるものや、ポリプロピレン系樹脂の主鎖に変性剤を共重合させて得られるもの等が挙げられる。変性剤の具体例としては、例えば、マレイン酸、シトラコン酸、ハロゲン化マレイン酸、イタコン酸、シス-4-シクロヘキセン-1,2-ジカルボン酸、エンド-シス-ビシクロ[2.2.1]-5-ヘプテン-2,3-ジカルボン酸等の不飽和ジカルボン酸;不飽和ジカルボン酸のエステル、アミドまたはイミド;無水マレイン酸、無水シトラコン酸、ハロゲン化無水マレイン酸、無水イタコン酸、無水シス-4-シクロヘキセン-1,2-ジカルボン酸、無水エンド-シス-ビシクロ[2.2.1]-5-ヘプテン-2,3-ジカルボン酸等の不飽和ジカルボン酸無水物;アクリル酸、メタクリル酸、クロトン酸等の不飽和モノカルボン酸;不飽和モノカルボン酸のエステル(アクリル酸メチル、アクリル酸エチル、メタクリル酸メチル、メタクリル酸エチル等)、アミドまたはイミド等が挙げられる。なお、オレフィン系樹脂(II)としては、変性物ではないことが好ましい。
 オレフィン系樹脂(II)としては、以上の中でも、成形加工性の観点から、高密度ポリエチレン、中密度ポリエチレン、低密度ポリエチレン等のエチレン系重合体;プロピレン単独重合体、エチレン-プロピレンランダム共重合体、エチレン-プロピレンブロック共重合体等のプロピレン系重合体が好ましく、プロピレン系重合体がより好ましく、プロピレン単独重合体がさらに好ましい。
 オレフィン系樹脂(II)の230℃、2.16kgの条件下で測定されるメルトフローレート(MFR)は、熱可塑性重合体組成物の成形加工性や耐摩耗性の観点から、0.1g/10分以上であることが好ましく、0.1~50g/10分であることがより好ましく、0.1~20g/10分であることがさらに好ましく、0.1~10g/10分であることが特に好ましい。なお、当該MFRは、JIS K7210に準拠して測定した値である。
 前記オレフィン系樹脂(II)の含有量は、ブロック共重合体(I)100質量部に対して10~300質量部であり、10~200質量部が好ましく、15~100質量部がより好ましく、20~60質量部がより好ましく、20~40質量部がさらに好ましく、20~37質量部が特に好ましい。ブロック共重合体(I)100質量部に対して10質量部未満では、得られる熱可塑性エラストマー組成物の成形加工性が乏しくなり、一方、300質量部を超えると、得られる熱可塑性エラストマー組成物の柔軟性およびゴム弾性が低下する。
〔(III)成分〕
 架橋剤(III)としては、本発明の熱可塑性エラストマー組成物を得る際の溶融条件下での熱処理中に、ブロック共重合体(I)の重合体ブロックAに存在する構造単位(a)に作用してその部分で重合体ブロックAに架橋を形成させ得る架橋剤が用いられる。かかる熱処理時の条件(例えば処理温度や処理時間等)に応じて、反応性等を考慮して適当な架橋剤を選択することができ、中でも、有機過酸化物およびビスマレイミド系化合物からなる群から選ばれる1種または2種以上が好ましく、有機過酸化物がより好ましい。
 有機過酸化物としては、例えば、ジクミルペルオキシド、ジt-ブチルペルオキシド、t-ブチルクミルペルオキシド等のジアルキルモノペルオキシド;2,5-ジメチル-2,5-ジ(t-ブチルペルオキシ)ヘキサン、2,5-ジメチル-2,5-ジ(t-ブチルペルオキシ)ヘキシン-3、1,3-ビス(t-ブチルペルオキシイソプロピル)ベンゼン、1,1-ビス(t-ブチルペルオキシ)-3,3,5-トリメチルシクロヘキサン、n-ブチル-4,4-ビス(t-ブチルペルオキシ)バレレート等のジペルオキシド;ベンゾイルペルオキシド、p-クロロベンゾイルペルオキシド、2,4-ジクロロベンゾイルペルオキシド等のジアシルペルオキシド;t-ブチルペルオキシベンゾエート等のモノアシルアルキルペルオキシド;t-ブチルペルオキシイソプロピルカーボネート等の過炭酸;ジアセチルペルオキシド、ラウロイルペルオキシド等のジアシルペルオキシド等が挙げられる。これらは1種を単独で使用してもよいし、2種以上を併用してもよい。中でも、反応性の観点から、ジクミルペルオキシド等のジアルキルモノペルオキシド、2,5-ジメチル-2,5-ジ(t-ブチルペルオキシ)ヘキサン等のジペルオキシドが好ましい。
 ビスマレイミド系化合物としては、ベンゼン環に結合したアルキル基部分および不飽和二重結合部分で架橋を生じさせ得るビスマレイミド系化合物であればいずれでもよく、例えばN,N’-m-フェニレンビスマレイミド、N,N’-p-フェニレンビスマレイミド、N,N’-p-フェニレン(1-メチル)ビスマレイミド、N,N’-2,7-ナフテンビスマレイミド、N,N’-m-ナフテンビスマレイミド、N,N’-m-フェニレン-4-メチルビスマレイミド、N,N’-m-フェニレン(4-エチル)ビスマレイミドおよびトルイレンビスマレイミド等が挙げられる。中でも、反応性の観点から、N,N’-m-フェニレンビスマレイミドが好ましい。これらは、1種を単独で使用してもよいし、2種以上を併用してもよい。
 前記架橋剤(III)の含有量は、ブロック共重合体(I)100質量部に対して0.01~20質量部であり、0.01~10質量部が好ましく、0.1~10質量部がさらに好ましく、0.3~6質量部が特に好ましい。ブロック共重合体(I)100質量部に対して0.01質量部未満であると、十分な架橋結合を形成させることができず、一方、20質量部を超えると、後述するゴム用軟化剤(V)のブリードアウトや、熱可塑性エラストマー組成物の力学的特性の低下等が生ずる。
〔(IV)成分〕
 架橋助剤としては、公知の架橋助剤を使用することができ、例えば、トリメチロールプロパントリメタクリレート、トリメチロールプロパントリアクリレート、トリメリット酸トリアリルエステル、1,2,4-ベンゼントリカルボン酸トリアリルエステル、トリアリルイソシアヌレート、1,6-ヘキサンジオールジメタクリレート、1,9-ノナンジオールジメタクリレート、1,10-デカンジオールジメタクリレート、ポリエチレングリコールジメタクリレート、エチレングリコールジメタクリレート、ジエチレングリコールジメタクリレート、トリエチレングリコールジメタクリレート、ジビニルベンゼン、グリセロールジメタクリレート、2-ヒドロキシ-3-アクリロイルオキシプロピルメタクリレート等が挙げられる。
 架橋助剤としては、メタクリロイル基およびアクリロイル基からなる群から選ばれる少なくとも1種の官能基を2個以上有する化合物が好ましく、1個のメタクリロイル基と、1個のアクリロイル基と、1個以上のヒドロキシル基とを有する化合物がより好ましい。このような架橋助剤を用いることにより、架橋後の耐摩耗性および機械的特性の向上効果が顕著となる。その詳細なメカニズムは定かではないが、このような特定の構造を有する架橋助剤を使用することで架橋助剤の相容性が高まり、架橋構造が均等に存在するようになるためと推測する。このような架橋助剤について、以下にさらに詳細に説明する。
 このような架橋助剤が有するヒドロキシル基の数は、1個以上であれば特に制限されないが、その上限は好ましくは8個以下であり、より好ましくは6個以下であり、さらに好ましくは3個以下である。このような架橋助剤が有するヒドロキシル基の数は、特に好ましくは1個である。
 このような架橋助剤は、メタクリロイル基、アクリロイル基およびヒドロキシル基以外に、さらに他の官能基、例えばアミノ基、エポキシ基、フルオロ基およびシリル基等からなる群から選ばれる1個以上を有していてもよい。
 このような架橋助剤としては、機械的特性、耐摩耗性および耐熱性の観点から、1個のメタクリロイル基と、1個のアクリロイル基と、1個以上のヒドロキシル基と共に、炭素数3~12(好ましくは3~8、より好ましくは3~6、さらに好ましくは3)のアルキレン基を有するものが好ましい。また、耐摩耗性および耐熱性の観点から、メタクリロイル基とアクリロイル基との間にヒドロキシル基を有するものが好ましい。
 なお、架橋助剤が有するメタクリロイル基とアクリロイル基は、いずれも酸素原子に結合していてもよく、つまりそれぞれメタクリロイルオキシ基、アクリロイルオキシ基となっていてもよい。
 中でも架橋助剤(IV)としては、耐摩耗性および耐熱性の観点から、2-ヒドロキシ-3-アクリロイルオキシプロピルメタアクリレートが好ましい。
 このような架橋助剤(IV)は、例えば、3価以上のアルコールが有するヒドロキシル基のうちの2個を1個のアクリロイルオキシ基および1個のメタクリロイルオキシ基で置換することで製造できる。3価以上のアルコールとしては、グリセリン(グリセロール)、トリメチロールプロパン、ペンタエリスリトール、ジグリセリン、ジトリメチロールプロパン、ジペンタエリスリトール等の炭素数3~12(好ましくは3~8、より好ましくは3~6、さらに好ましくは3)の3価以上のアルコールを挙げることができる。
 前記架橋助剤(IV)の含有量は、ブロック共重合体(I)100質量部に対して1~50質量部であり、好ましくは5~45質量部、より好ましくは10~40質量部、さらに好ましくは20~37質量部である。ブロック共重合体(I)100質量部に対して1質量部未満であると、得られる熱可塑性エラストマー組成物の機械的特性、耐摩耗性および耐熱性が劣り、50質量部を超えると、得られる熱可塑性エラストマー組成物の柔軟性が不足する。
〔(V)成分〕
 ゴム用軟化剤(V)としては、例えば、パラフィン系プロセスオイル、ナフテン系プロセスオイル等の石油系プロセスオイル;芳香族系プロセスオイル;シリコーンオイル;落花生油、ロジン等の植物油系軟化剤;エチレン-α-オレフィンオリゴマー、液状ポリブテン、低分子量ポリブタジエン等の合成軟化剤等が挙げられる。
 ゴム用軟化剤(V)としては、特に40℃における動粘度が20~800mm/s(好ましくは40~600mm/s、より好ましくは60~500mm/s)である軟化剤が好ましい。なお、動粘度はJIS K2283に準拠して測定した値である。
 ゴム用軟化剤(V)としては、石油系プロセスオイルが好ましく、パラフィン系プロセスオイルがより好ましい。
 ゴム用軟化剤(V)は1種を単独で使用してもよいし、2種以上を併用してもよい。
 ゴム用軟化剤(V)としては、例えば出光興産(株)が上市している商品名「ダイアナプロセスオイル」シリーズにおけるパラフィン系プロセスオイルやナフテン系プロセスオイル(好ましくはパラフィン系プロセスオイル)等を使用できる。
 前記ゴム用軟化剤(V)の含有量は、ブロック共重合体(I)100質量部に対して30~250質量部であり、50~200質量部が好ましく、50~140質量部がより好ましく、50~130質量部がさらに好ましい。ブロック共重合体(I)100質量部に対して250質量部を超えると、本発明の熱可塑性エラストマー組成物の機械的特性が低下するほか、熱可塑性エラストマー組成物より得られる成形体からゴム用軟化剤(V)がブリードアウトし易くなる。一方、30質量部未満であると、熱可塑性エラストマー組成物の柔軟性が不足する。
〔その他の成分〕
 本発明で使用する架橋組成物(X)は、前記各成分を前記所定量含有する組成物を溶融条件下で熱処理することにより得られるが、その熱処理前の組成物において、本発明の効果を損なわない範囲で、他の重合体を含有することができる。他の重合体としては、例えば、ポリフェニレンエーテル系樹脂;ポリアミド6、ポリアミド6・6、ポリアミド6・10、ポリアミド11、ポリアミド12、ポリアミド6・12、ポリヘキサメチレンジアミンテレフタルアミド、ポリヘキサメチレンジアミンイソフタルアミド、キシレン基含有ポリアミド等のポリアミド系樹脂;ポリエチレンテレフタレート、ポリブチレンテレフタレート等のポリエステル系樹脂;ポリアクリル酸メチル、ポリメタクリル酸メチル等のアクリル系樹脂;ポリオキシメチレンホモポリマー、ポリオキシメチレンコポリマー等のポリオキシメチレン系樹脂;スチレン単独重合体、α-メチルスチレン単独重合体、アクリロニトリル-スチレン樹脂、アクリロニトリル-ブタジエン-スチレン樹脂等のスチレン系樹脂;ポリカーボネート樹脂;エチレン-プロピレン共重合ゴム(EPM)、エチレン-プロピレン-非共役ジエン共重合ゴム(EPDM);スチレン-ブタジエン共重合体ゴム、スチレン-イソプレン共重合体ゴムまたはその水素添加物またはその変性物;天然ゴム;合成イソプレンゴム、液状ポリイソプレンゴムおよびその水素添加物または変性物;クロロプレンゴム;アクリルゴム;ブチルゴム;アクリロニトリル-ブタジエンゴム;エピクロロヒドリンゴム;シリコーンゴム;フッ素ゴム;クロロスルホン化ポリエチレン;ウレタンゴム;ポリウレタン系エラストマー;ポリアミド系エラストマー;スチレン系エラストマー;ポリエステル系エラストマー;軟質塩化ビニル樹脂等が挙げられる。これらは、1種を単独で使用してもよいし、2種以上を併用してもよい。
 前記熱処理前の組成物がこれらの他の重合体を含有する場合、その含有量(2種以上の場合にはその合計含有量)は、得られる熱可塑性エラストマー組成物の機械的特性が損なわれない範囲、例えば、ブロック共重合体(I)100質量部に対して200質量部以下が好ましく、100質量部以下がより好ましく、50質量部以下がより好ましく、20質量部以下がさらに好ましく、10質量部以下が特に好ましい。
 但し、以上の条件の中でも、本発明においては、後述する水添ブロック共重合体(Y)が前記熱処理前の組成物に含まれていないことが好ましい。また、たとえ水添ブロック共重合体(Y)が前記熱処理前の組成物に含まれていたとしても、本発明の効果を著しく損なわない程度が好ましく、例えば、ブロック共重合体(I)100質量部に対して、好ましくは50質量部以下、より好ましくは30質量部以下、より好ましくは15質量部以下、さらに好ましくは10質量部以下、特に好ましくは5質量部以下であり、実質的に含有していないことが最も好ましい。
 また、前記熱処理前の組成物は、必要に応じて無機充填剤を含有することができる。無機充填剤としては、例えば炭酸カルシウム、タルク、クレー、合成珪素、酸化チタン、カーボンブラック、硫酸バリウム、マイカ、ガラス繊維、ウィスカー、炭素繊維、炭酸マグネシウム、ガラス粉末、金属粉末、カオリン、グラファイト、二硫化モリブデン、酸化亜鉛等を挙げることができ、これらの1種または2種以上を含有することができる。前記熱処理前の組成物が無機充填剤を含有する場合、その含有量は、本発明の効果が損なわれない範囲、例えば、熱可塑性エラストマー組成物100質量部に対して50質量部以下が好ましく、20質量部以下がより好ましく、10質量部以下がさらに好ましい。
 さらに、前記熱処理前の組成物は、必要に応じて難燃剤、滑剤、光安定剤、顔料、熱安定剤、防曇剤、帯電防止剤、ブロッキング防止剤、紫外線吸収剤、耐熱安定剤、酸化防止剤および着色剤等からなる群から選ばれる1種以上を含有することができる。このうち、酸化防止剤としては、例えば、ヒンダードフェノール系、ヒンダードアミン系、リン系およびイオウ系の酸化防止剤等が挙げられる。
(架橋組成物(X)の製造方法)
 本発明で使用する架橋組成物(X)は、前記各成分を前記所定量含有する組成物を溶融条件下で熱処理することにより前記重合体ブロックAの少なくとも一部を架橋させて得られる組成物である。組成物を動的架橋させる観点から、熱処理は、前記各成分を前記所定量含有する組成物を攪拌または混合しながら行なうことが好ましい。
 組成物を溶融条件下で熱処理するために用いる装置としては、各成分を均一に混合し得る溶融混練装置のいずれもが使用できる。このような装置としては、例えば一軸押出機、二軸押出機、バンバリーミキサー、加熱ロール、各種ニーダー等の溶融混練機が挙げられる。中でも、混練中の剪断力が大きくて微細かつ均一に分散させることができ、連続運転が可能という観点から、二軸押出機が好ましい。
 一軸押出機または二軸押出機を使用して本発明の熱可塑性エラストマー組成物を製造する場合、1台の押出機を使用しても、各成分をより分散させるために2台以上の押出機を使用して段階的に順次熱処理(好ましくは溶融混練)してもよい。
 熱処理温度は、オレフィン系樹脂(II)が溶融し、ブロック共重合体(I)と架橋剤(III)が反応する温度の範囲内で適宜選択でき、通常、140~270℃が好ましく、160~240℃がより好ましく、170~240℃がさらに好ましい。熱処理時間は30秒~5分間が好ましく、45秒~3分間がより好ましい。
 こうして得られる架橋組成物(X)の230℃、10kgの条件下で測定されるメルトフローレート(MFR)は、好ましくは0.5~35g/10分、より好ましくは0.5~20g/10分、さらに好ましくは0.5~10g/10分、特に好ましくは0.5~7g/10分の範囲にある。該MFRは、実施例に記載の方法に従って測定した値である。
 次に、水添ブロック共重合体(Y)について説明する。
{水添ブロック共重合体(Y)}
 水添ブロック共重合体(Y)は、芳香族ビニル化合物に由来する構造単位から主としてなる重合体ブロックCを少なくとも2個および共役ジエン化合物に由来する構造単位から主としてなる重合体ブロックDを少なくとも1個有するブロック共重合体を水素添加してなる水添ブロック共重合体である。但し、この水添ブロック共重合体(Y)には、前記ブロック共重合体(I)は含まれない。
 ここで、「芳香族ビニル化合物に由来する構造単位から主としてなる」とは、重合体ブロックCの合計質量に基づいて芳香族ビニル化合物に由来する構造単位(以下、芳香族ビニル化合物単位と略称することがある。)を50質量%以上含むことをいう。該重合体ブロックC中の芳香族ビニル化合物に由来する構造単位の含有量は、重合体ブロックCの合計質量に基づいて、70質量%以上であることがより好ましく、90質量%以上であることがさらに好ましく、95質量%以上であることが特に好ましい。
 また、「共役ジエン化合物に由来する構造単位から主としてなる」とは、重合体ブロックDの合計質量に基づいて共役ジエン化合物に由来する構造単位(以下、共役ジエン化合物単位と略称することがある。)を50質量%以上含むことをいう。該重合体ブロックD中の共役ジエン化合物に由来する構造単位の含有量は、重合体ブロックDの合計質量に基づいて、70質量%以上であることがより好ましく、90質量%以上であることがさらに好ましく、95質量%以上であることが特に好ましい。
 以下、重合体ブロックCおよびDについて詳細に説明する。
-重合体ブロックC-
 水添ブロック共重合体(Y)における重合体ブロックCは、芳香族ビニル化合物に由来する構造単位から主としてなる。
 該芳香族ビニル化合物としては、例えば、スチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、α-メチルスチレン、β-メチルスチレン、α-メチル-o-メチルスチレン、α-メチル-m-メチルスチレン、α-メチル-p-メチルスチレン、β-メチル-o-メチルスチレン、β-メチル-m-メチルスチレン、β-メチル-p-メチルスチレン、α-メチル-2,6-ジメチルスチレン、α-メチル-2,4-ジメチルスチレン、β-メチル-2,6-ジメチルスチレン、β-メチル-2,4-ジメチルスチレン、o-クロロスチレン、m-クロロスチレン、p-クロロスチレン、2,6-ジクロロスチレン、2,4-ジクロロスチレン、α-クロロ-o-クロロスチレン、α-クロロ-m-クロロスチレン、α-クロロ-p-クロロスチレン、β-クロロ-o-クロロスチレン、β-クロロ-m-クロロスチレン、β-クロロ-p-クロロスチレン、2,4,6-トリクロロスチレン、α-クロロ-2,6-ジクロロスチレン、α-クロロ-2,4-ジクロロスチレン、β-クロロ-2,6-ジクロロスチレン、β-クロロ-2,4-ジクロロスチレン、o-メトキシスチレン、m-メトキシスチレン、p-メトキシスチレン、シリル基で置換されたスチレン、インデン、ビニルナフタレン、ビニルアントラセンなどが挙げられる。芳香族ビニル化合物としては、これらから選ばれる1種であってもよいし、2種以上であってもよい。
 中でも、特に耐摩耗性および表面平滑性の観点から、芳香族ビニル化合物としては、スチレン、α-メチルスチレン、およびこれらの混合物が好ましく、スチレン、α-メチルスチレンがより好ましく、α-メチルスチレンがさらに好ましい。
 但し、本発明の目的および効果の妨げにならない限り、重合体ブロックCは芳香族ビニル化合物以外の他の不飽和化合物を10質量%以下の割合で含有していてもよい。該他の不飽和化合物としては、例えば、ブタジエン、イソプレン、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエン、1,3-ヘキサジエン、イソブチレン、メタクリル酸メチル、メチルビニルエーテル、N-ビニルカルバゾール、β-ピネン、8,9-p-メンテン、ジペンテン、メチレンノルボルネン、2-メチレンテトラヒドロフランなどから選ばれる少なくとも1種が挙げられる。重合体ブロックCが該他の不飽和化合物に由来する構造単位を含有する場合の結合形態は特に制限はなく、ランダム状、ブロック状、テーパー状、テーパーブロック状およびそれらの2種以上の組み合わせのいずれでもよい。
 水添ブロック共重合体(Y)における重合体ブロックCの数平均分子量は、好ましくは1,000~50,000であり、より好ましくは2,000~40,000である。
 水添ブロック共重合体(Y)における重合体ブロックCの含有量は、水添ブロック共重合体(Y)のゴム弾性、柔軟性、耐摩耗性および表面平滑性の観点から、5~45質量%であることが好ましく、15~40質量%であることがより好ましい。なお、水添ブロック共重合体(Y)における重合体ブロックCの含有量は、H-NMRスペクトルにより求めた値である。
-重合体ブロックD-
 水添ブロック共重合体(Y)における重合体ブロックDは、共役ジエン化合物由来の構造単位から主としてなる。
 該共役ジエン化合物としては、例えば、ブタジエン、イソプレン、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエン、1,3-ヘキサジエンなどから選ばれる少なくとも1種が挙げられる。中でも、ブタジエン、イソプレン、ブタジエンとイソプレンの混合物が好ましく、ブタジエンがより好ましい。
 共役ジエン単量体に由来する構造単位のミクロ構造は特に制限されない。例えば、重合体ブロックDがブタジエン単量体に由来する構造単位から主としてなる場合は、その1,4-結合構造単位の含有量(以下、単に1,4-結合量と称する)は10~95モル%であることが好ましく、30~80モル%であるのがより好ましく、45~65モル%であるのがさらに好ましい。一方、重合体ブロックDがイソプレンに由来する構造単位を主体とするか、またはブタジエンとイソプレンの混合物に由来する構造単位を主体とする場合は、その1,4-結合量は5~99モル%であることが好ましく、30~97モル%であるのがより好ましく、50~97モル%であるのがさらに好ましく、80~97モル%であるのが特に好ましく、90~97モル%であるのが最も好ましい。
 また、重合体ブロックDが2種以上の共役ジエン化合物(例えば、ブタジエンとイソプレン)に由来する構造単位から構成されている場合は、それらの結合形態は特に制限はなく、ランダム、テーパー、完全交互、一部ブロック状、ブロック、またはそれらの2種以上の組合せからなることができる。
 なお、共役ジエン化合物に由来する構造単位中の炭素-炭素二重結合は、少なくとも一部が水素添加(以下、水添と略称することがある。)されており、耐熱性、耐候性、耐摩耗性および表面平滑性の観点から、共役ジエン化合物単位中の炭素-炭素二重結合の50モル%以上が水添されていることが好ましく、70モル%以上が水添されていることがより好ましく、90モル%以上が水添されていることがさらに好ましく、95モル%以上が水添されていることが特に好ましい。なお、上記の水素添加率(水添率)は、重合体ブロックD中の共役ジエン化合物単位中の炭素-炭素二重結合の含有量を、水素添加の前後において、H-NMRスペクトルを用いて算出した値である。
 重合体ブロックDにおける炭素-炭素二重結合の水素添加方法に特に制限はなく、公知の方法を採用することができる。
 さらに、重合体ブロックDは、本発明の目的および効果の妨げにならない限り、重合体ブロックDの合計質量に基づいて、通常は好ましくは30質量%以下、より好ましくは10質量%以下で、共役ジエン化合物以外の他の重合性の化合物に由来する構造単位を含有していてもよい。該他の重合性の化合物としては、例えば、スチレン、α-メチルスチレン、ビニルナフタレン、ビニルアントラセン、メタクリル酸メチル、メチルビニルエーテル、N-ビニルカルバゾール、β-ピネン、8,9-p-メンテン、ジペンテン、メチレンノルボルネン、2-メチレンテトラヒドロフランなどから選ばれる少なくとも1種が好ましく挙げられる。重合体ブロックDが共役ジエン化合物以外の他の重合体の化合物に由来する構造単位を含有する場合、その結合形態は特に制限はなく、ランダム状、ブロック状、テーパー状、テーパーブロック状およびそれらの2種以上の組み合わせのいずれでもよい。
 特に、重合体ブロックDとしては、数平均分子量が1,000~30,000であって、重合体ブロックを構成する共役ジエン化合物に由来する構造単位の1,4-結合量が30モル%未満(好ましくは5~25モル%、より好ましくは10~25モル%)である重合体ブロックd1と、数平均分子量が10,000~290,000であって、重合体ブロックを構成する共役ジエン化合物に由来する構造単位の1,4-結合量が30モル%以上(好ましくは30~80モル%、より好ましくは40~80モル%、さらに好ましくは50~70モル%)である重合体ブロックd2とを含むことが好ましい。
 上記重合体ブロックd1の数平均分子量は、より好ましくは1,000~30,000、さらに好ましくは2,000~20,000、特に好ましくは3,000~10,000である。また、上記重合体ブロックd2の数平均分子量は、より好ましくは10,000~290,000、さらに好ましくは5,000~200,000、特に好ましくは10,000~100,000、最も好ましくは10,000~60,000である。
(重合体ブロックCと重合体ブロックDの結合様式)
 水添ブロック共重合体(Y)は、重合体ブロックCと重合体ブロックDとが結合している限りは、その結合形式は限定されず、直鎖状、分岐状、放射状、またはこれらの2つ以上が組合わさった結合様式のいずれでもよい。中でも、重合体ブロックCと重合体ブロックDの結合形式は直鎖状であることが好ましく、その例としては重合体ブロックCをCで、また重合体ブロックDをDで表したときに、C-D-Cで示されるトリブロック共重合体、C-D-C-Dで示されるテトラブロック共重合体、C-D-C-D-Cで示されるペンタブロック共重合体、(C-D)nX型共重合体(Xはカップリング剤残基を表し、nは3以上の整数を表す)などを挙げることができる。中でも、トリブロック共重合体(C-D-C)が、水添ブロック共重合体(Y)の製造の容易性、柔軟性、耐摩耗性および表面平滑性の観点から好ましく用いられる。
 ここで、本明細書においては、同種の重合体ブロックが2価のカップリング剤などを介して直線状に結合している場合、結合している重合体ブロック全体は一つの重合体ブロックとして取り扱われる(但し、数平均分子量については、それぞれ別々に求める。)。これに従い、上記例示も含め、本来厳密にはY-X-Y(Xはカップリング残基を表す)と表記されるべき重合体ブロックは、特に単独の重合体ブロックYと区別する必要がある場合を除き、全体としてYと表示される。本明細書においては、カップリング剤残基を含むこの種の重合体ブロックを上記のように取り扱うので、例えば、カップリング剤残基を含み、厳密にはC-D-X-D-C(Xはカップリング剤残基を表す)と表記されるべきブロック共重合体はC-D-Cと表記され、トリブロック共重合体の一例として取り扱われる。
 また、水添ブロック共重合体(Y)には、本発明の目的を損なわない範囲内で、重合体ブロックCおよび重合体ブロックD以外の、他の重合性化合物からなる重合体ブロックHが存在していてもよい。この場合、重合体ブロックHをHで表したとき、ブロック共重合体の構造としては、C-D-H型トリブロック共重合体、C-D-H-C型テトラブロック共重合体、C-D-C-H型テトラブロック共重合体などが挙げられる。
 水添ブロック共重合体(Y)の数平均分子量(Mn)は、好ましくは30,000~300,000、より好ましくは35,000~180,000、さらに好ましくは40,000~150,000、特に好ましくは40,000~120,000、最も好ましくは60,000~110,000である。水添ブロック共重合体(Y)の数平均分子量が30,000以上であれば、本発明の熱可塑性エラストマー組成物の耐摩耗性および表面光沢性が良好となり、一方、300,000以下であれば、水添ブロック共重合体(Y)が充分な成形加工性を有する。
 水添ブロック共重合体(Y)としては、(1)数平均分子量1,000~50,000の重合体ブロックCと、(2)数平均分子量が1,000~30,000であって、重合体ブロックを構成する共役ジエン化合物に由来する構造単位の1,4-結合量が30モル%未満である重合体ブロックd1と、数平均分子量が10,000~290,000であって、重合体ブロックを構成する共役ジエン化合物に由来する構造単位の1,4-結合量が30モル%以上である重合体ブロックd2とを含む重合体ブロックDを有する水添ブロック共重合体、つまり、(C-d1-d2)構造を少なくとも1つ含む水添ブロック共重合体であることが、機械的特性、耐摩耗性および表面平滑性の観点から好ましい。なお、各数平均分子量のより好ましい範囲は前述の通りである。
 水添ブロック共重合体(Y)は、本発明の目的および効果を損なわない限り、分子鎖中および/または分子末端に、カルボキシル基、水酸基、酸無水物基、アミノ基、エポキシ基などの官能基を1種または2種以上を有していてもよい。また、水添ブロック共重合体(Y)として、前記した官能基を有する水添ブロック共重合体(Y)と官能基を有さない水添ブロック共重合体(Y)を混合して使用してもよい。
(熱可塑性エラストマー組成物の製造方法)
 本発明の熱可塑性エラストマー組成物に含まれる架橋組成物(X)は、前記所定量の成分(I)~(V)を含有する架橋前の組成物を溶融条件下で熱処理することにより、前記重合体ブロックAの少なくとも一部を架橋させたものであり、これに前記水添ブロック共重合体(Y)を加えたものが本発明の熱可塑性エラストマー組成物である。すなわち、前記熱処理前の未架橋の組成物と水添ブロック共重合体(Y)とを混合した後に溶融条件下で熱処理して得られる熱可塑性エラストマー組成物とは異なるものである。本発明の効果の中でも特に耐摩耗性および表面平滑性は、前記組成物を熱処理して得られる架橋組成物(X)と水添ブロック共重合体(Y)とを混練することにより得られる熱可塑性エラストマー組成物において達成されたものであり、未架橋の組成物に水添ブロック共重合体(Y)を含有させてから溶融混練して得られる熱可塑性エラストマー組成物では、同様の耐摩耗性および表面平滑性の効果は得られない。
 従って、本発明の熱可塑性エラストマー組成物の製造においては、前述の方法により架橋組成物(X)を調製した後に水添ブロック共重合体(Y)を加えて混練する必要がある。製造方法の好ましい一例としては、例えば、一軸押出機、二軸押出機、バンバリーミキサー、加熱ロール、各種ニーダー等の溶融混練機を用いて、架橋組成物(X)と水添ブロック共重合体(Y)とを混練する方法が挙げられる。一軸押出機または二軸押出機を使用して本発明の熱可塑性エラストマー組成物を製造する場合、1台の押出機を使用しても、各成分をより分散させるために2台以上の押出機を使用して段階的に順次熱処理(好ましくは溶融混練)してもよい。溶融混練する際の樹脂温度は、通常、140~270℃が好ましく、160~240℃がより好ましく、170~240℃がさらに好ましい。
 本発明の熱可塑性エラストマー組成物の製造方法の別の好ましい一例としては、例えば、二軸押出機等のサイドフィード可能な溶融混練機を用い、前記成分(I)~(V)をホッパーから供給して、前記熱処理温度にて溶融混練しながら架橋組成物(X)を溶融混練機内で製造し、架橋組成物(X)が熱処理された後の位置またはそれ以降の位置から水添ブロック共重合体(Y)をサイドフィードして、架橋組成物(X)と共に混練する方法が挙げられる。
 なお、二軸押出機において、長さ(L)と直径(D)との比であるL/Dは、好ましくは30~100、より好ましくは30~70、更に好ましくは40~70である。上記の様に、水添ブロック共重合体(Y)をサイドフィードする場合、スクリューの残り1/3程度の位置からサイドフィードすることが好ましく、スクリューの残り1/4程度の位置からサイドフィードすることがより好ましい。
 本発明の熱可塑性エラストマー組成物は、前記した架橋組成物(X)および水添ブロック共重合体(Y)以外に、本発明の効果を損なわない範囲で、他の重合体を含有することができる。他の重合体としては、例えば、ポリフェニレンエーテル系樹脂;ポリアミド6、ポリアミド6・6、ポリアミド6・10、ポリアミド11、ポリアミド12、ポリアミド6・12、ポリヘキサメチレンジアミンテレフタルアミド、ポリヘキサメチレンジアミンイソフタルアミド、キシレン基含有ポリアミド等のポリアミド系樹脂;ポリエチレンテレフタレート、ポリブチレンテレフタレート等のポリエステル系樹脂;ポリアクリル酸メチル、ポリメタクリル酸メチル等のアクリル系樹脂;ポリオキシメチレンホモポリマー、ポリオキシメチレンコポリマー等のポリオキシメチレン系樹脂;スチレン単独重合体、α-メチルスチレン単独重合体、アクリロニトリル-スチレン樹脂、アクリロニトリル-ブタジエン-スチレン樹脂等のスチレン系樹脂;ポリカーボネート樹脂;エチレン-プロピレン共重合ゴム(EPM)、エチレン-プロピレン-非共役ジエン共重合ゴム(EPDM);スチレン-ブタジエン共重合体ゴム、スチレン-イソプレン共重合体ゴムまたはその水素添加物またはその変性物;天然ゴム;合成イソプレンゴム、液状ポリイソプレンゴムおよびその水素添加物または変性物;クロロプレンゴム;アクリルゴム;ブチルゴム;アクリロニトリル-ブタジエンゴム;エピクロロヒドリンゴム;シリコーンゴム;フッ素ゴム;クロロスルホン化ポリエチレン;ウレタンゴム;ポリウレタン系エラストマー;ポリアミド系エラストマー;スチレン系エラストマー;ポリエステル系エラストマー;軟質塩化ビニル樹脂等が挙げられる。これらは、1種を単独で使用してもよいし、2種以上を併用してもよい。
 また、本発明の熱可塑性エラストマー組成物は、必要に応じて無機充填剤を含有することができる。無機充填剤としては、例えば、炭酸カルシウム、タルク、クレー、合成珪素、酸化チタン、カーボンブラック、硫酸バリウム、マイカ、ガラス繊維、ウィスカー、炭素繊維、炭酸マグネシウム、ガラス粉末、金属粉末、カオリン、グラファイト、二硫化モリブデン、酸化亜鉛等を挙げることができ、これらの1種または2種以上を含有することができる。
 さらに、本発明の熱可塑性エラストマー組成物は、必要に応じて難燃剤、滑剤、光安定剤、顔料、熱安定剤、防曇剤、帯電防止剤、ブロッキング防止剤、紫外線吸収剤、耐熱安定剤、酸化防止剤、着色剤等の1種または2種以上を含有することができる。このうち、酸化防止剤としては、例えば、ヒンダードフェノール系、ヒンダードアミン系、リン系およびイオウ系の酸化防止剤等が挙げられる。
 本発明の熱可塑性エラストマー組成物が、これらの架橋組成物(X)および水添ブロック共重合体(Y)以外の他の成分を含有する場合、その含有量は、本発明の効果が損なわれない範囲、例えば、熱可塑性エラストマー組成物全体に対して、好ましくは50質量%以下、より好ましくは30質量%以下、更に好ましくは10質量%以下である。
 これらの他の成分を含有する熱可塑性エラストマー組成物の調製方法に特に制限はなく、(i)前述の通り架橋組成物(X)を調製した後、水添ブロック共重合体(Y)と一緒に添加してから混練する方法でもよいし、(ii)架橋組成物(X)と該他の成分の少なくとも一部を混練した後、水添ブロック共重合体(Y)と必要に応じて残りの他の成分とを一緒に混練する方法でもよいし、(iii)架橋組成物(X)と水添ブロック共重合体(Y)とを混練した後、該他の成分を更に添加して混練する方法でもよい。中でも、簡便性の観点から、前記方法(i)が好ましい。
 このようにして得られる熱可塑性エラストマー組成物を、例えば、押出成形、射出成形、プレス成形、カレンダー成形等の公知の方法により成形することにより成形品が得られる。また、二色成形法により他の部材(例えば、ポリエチレン、ポリプロピレン、オレフィン系エラストマー、ABS樹脂、ポリアミド等の高分子材料、金属、木材、布等)と複合化することもできる。
 本発明の熱可塑性エラストマー組成物において、DIN摩耗試験による摩耗量は、おおよそ5~90mm、好ましくは10~40mmの範囲にある。
 引張破断強度は、おおよそ9~20MPa、好ましくは10~15MPaの範囲にある。引張破断伸びは、おおよそ560~800%、好ましくは650~800%、より好ましくは680~750%の範囲にある。
 また、本発明の熱可塑性エラストマー組成物は、表面平滑性に優れており、成形品にはフローマークができ難い。
 なお、上記の熱可塑性重合体組成物の摩耗量、引張破断強度および引張破断伸びは、実施例に記載の方法に従って測定した値である。
 以下、実施例等により本発明をさらに詳細に説明するが、本発明はかかる実施例により何ら限定されるものではない。
 なお、以下の実施例および比較例で用いた各成分については、以下のものを用いた。
 また、数平均分子量は、以下の条件でゲル浸透クロマトグラフィー(GPC)測定を行い、標準ポリスチレン換算の値として求めた。
(GPC測定条件)
 カラム:「TSKgel G4000HXL」(商品名)×2、東ソー(株)製(カラム温度:40℃)
 移動相:テトラヒドロフラン(流速:1ml/min)
 検出器:示差屈折計(なお、多波長検出器(検出波長:254nm)をさらに連結させた。)
 標準物質:TSK標準ポリスチレン、東ソー(株)製
 試料濃度:0.06質量%
〔ブロック共重合体(I)の製造〕
[製造例1]
 撹拌装置付き耐圧容器中にシクロヘキサン30kg、sec-ブチルリチウム14ml(1.3Mシクロヘキサン溶液)およびp-メチルスチレン/スチレン=30/70(質量比)の混合物778gを加え、50℃で120分間重合し、次いでイソプレン/ブタジエン=60/40(質量比)の混合物3,630gを加えて120分間重合した。その後、さらにp-メチルスチレン/スチレン=30/70(質量比)の混合物778gを加え、120分間重合した後、メタノールを添加して重合を停止し、ポリ(p-メチルスチレン/スチレン)-ポリ(イソプレン/ブタジエン)-ポリ(p-メチルスチレン/スチレン)トリブロック共重合体を含む反応混合液を得た。得られた反応混合液に、オクチル酸ニッケルとトリイソプロピルアルミニウムより調製した水素添加触媒を添加し、80℃、1MPaの水素雰囲気下において5時間水素添加反応を行い、ポリ(p-メチルスチレン/スチレン)-ポリ(イソプレン/ブタジエン)-ポリ(p-メチルスチレン/スチレン)トリブロック共重合体の水素添加物[以下、ブロック共重合体(I)と称する]を得た。得られたブロック共重合体(I)の数平均分子量(Mn)は360,000、各重合体ブロックの割合は15/70/15(質量比)[重合体ブロックA/重合体ブロックB/重合体ブロックA]、H-NMR測定の結果、ポリ(イソプレン/ブタジエン)ブロックの水添率は99モル%であった。
 ここで、製造例1で得たブロック共重合体(I)の物性について下記表1にまとめる。
Figure JPOXMLDOC01-appb-T000001

<表1中の略号の説明>
p-MeSt/St:p-メチルスチレンに由来する構造単位/スチレンに由来する構造単位
〔オレフィン系樹脂(II)〕
 プロピレン単独重合体[(株)プライムポリマー製、商品名「プライムポリプロE111G」、MFR:0.5g/10分(230℃、2.16kg)、融点165℃]
〔架橋剤(III)〕
 2,5-ジメチル-2,5-ジ(t-ブチルペルオキシ)ヘキサン[日油(株)製、商品名「パーヘキサ25B-40」]
〔架橋助剤(IV)〕
 2-ヒドロキシ-3-アクリロイルオキシプロピルメタクリレート[新中村化学工業(株)製、商品名「NKエステル 701A」]
〔ゴム用軟化剤(V)〕
 パラフィン系プロセスオイル[出光興産(株)製、商品名「PW-90」、動粘度:95.54mm/s(40℃)]
〔水添ブロック共重合体(Y1)の製造〕
[製造例2]
 窒素置換した攪拌装置付き耐圧容器に、α-メチルスチレン90.9g、シクロヘキサン138g、メチルシクロヘキサン15.2gおよびテトラヒドロフラン3.1gを仕込んだ。この混合液にsec-ブチルリチウム(1.3Mシクロヘキサン溶液)9.4mlを添加し、-10℃で3時間重合させた。重合開始から3時間後のポリ(α-メチルスチレン)(重合体ブロックC)の数平均分子量(Mn)をGPCにより測定したところ、標準ポリスチレン換算で6,600であり、α-メチルスチレンの重合転化率は89%であった。
 次いで、この反応混合液にブタジエン23gを添加し、-10℃で30分間攪拌して重合を行った後、シクロヘキサン930gを加えた。この時点でのα-メチルスチレンの重合転化率は89%であり、形成したポリブタジエンブロックd1の数平均分子量(GPC測定、標準ポリスチレン換算)は3,700であり、H-NMR測定から求めた1,4-結合構造単位の含有量は19モル%であった。
 次に、この反応液にさらにブタジエン141.3gを加え、50℃で2時間重合反応を行った。この時点のサンプリングで得られたブロック共重合体(構造:C-d1-d2)のポリブタジエンブロックd2の数平均分子量(GPC測定、標準ポリスチレン換算)は29,800であり、H-NMR測定から求めた1,4-結合構造単位の含有量は60モル%であった。
 続いて、この重合反応溶液に、ジクロロジメチルシラン(0.5Mトルエン溶液)12.2mlを加え、50℃にて1時間攪拌し、ポリ(α-メチルスチレン)-ポリブタジエン-ポリ(α-メチルスチレン)トリブロック共重合体を得た。このときのカップリング効率を、カップリング体〔ポリ(α-メチルスチレン)-ポリブタジエン-ポリ(α-メチルスチレン)トリブロック共重合体:C-d1-d2-X-d2-d1-C;式中、Xはカップリング剤残基(-Si(CH-)を表す。数平均分子量=81,000〕と、未反応ブロック共重合体〔ポリ(α-メチルスチレン)-ポリブタジエンブロック共重合体:C-d1-d2、数平均分子量=41,000〕のGPCにおけるUV吸収の面積比から算出すると94質量%であった。また、H-NMR解析の結果、ポリ(α-メチルスチレン)-ポリブタジエン-ポリ(α-メチルスチレン)トリブロック共重合体中のポリ(α-メチルスチレン)ブロックの含有量は33質量%であり、ポリブタジエンブロック(重合体ブロックD)全体、すなわちブロックd1およびブロックd2の1,4-結合構造単位の含有量は56モル%であった。
 上記で得られた重合反応溶液中に、オクチル酸ニッケルおよびトリエチルアルミニウムから形成されるチーグラー系水素添加触媒を水素雰囲気下に添加し、水素圧力0.8MPa、80℃で5時間の水素添加反応を行ない、ポリ(α-メチルスチレン)-ポリブタジエン-ポリ(α-メチルスチレン)トリブロック共重合体の水素添加物〔以下、これを水添ブロック共重合体(Y1)と略称する〕を得た。
 得られた水添ブロック共重合体(Y1)をGPC測定した結果、主成分はピークトップ分子量(Mt)=81,000、数平均分子量(Mn)=78,700、重量平均分子量(Mw)=79,500、Mw/Mn=1.01であるポリ(α-メチルスチレン)-ポリブタジエン-ポリ(α-メチルスチレン)トリブロック共重合体の水添物(カップリング体)であり、GPCにおけるUV(254nm)吸収の面積比から、カップリング体は94質量%含まれることが判明した。また、H-NMR測定により、ブロックd1およびブロックd2から構成されるポリブタジエンブロック(重合体ブロックD)の水素添加率は99モル%であった。
〔水添ブロック共重合体(Y2)の製造〕
[製造例3]
 撹拌装置付き耐圧容器中にシクロヘキサン50kg、sec-ブチルリチウム218ml(1.3Mシクロヘキサン溶液)およびスチレン1.5kgを加え、50℃で120分間重合し、次いでイソプレンを13.6kgを加えて120分間重合した。その後、さらにスチレン1.5kgを加え、120分間重合した後、メタノールを添加して重合を停止し、ポリスチレン-ポリイソプレン-ポリスチレントリブロック共重合体を含む反応混合液を得た。得られた反応混合液に、オクチル酸ニッケルとトリイソプロピルアルミニウムより調製した水素添加触媒を添加し、80℃、1MPaの水素雰囲気下において5時間水素添加反応を行い、ポリスチレン-ポリイソプレン-ポリスチレントリブロック共重合体の水素添加物〔以下、ブロック共重合体(Y2)と略称する〕を得た。
 得られたブロック共重合体(Y2)の数平均分子量(Mw)は96,000、Mw/Mn=1.01、各重合体ブロックの割合は9/82/9(質量比)[重合体ブロックC/重合体ブロックD/重合体ブロックC]、H-NMR測定の結果、ポリイソプレンブロックの水添率は99モル%であり、1,4-結合構造単位の含有量は96モル%であった。
 ここで、製造例2および製造例3で得た水添ブロック共重合体(Y1)および(Y2)の物性について下記表2にまとめる。
Figure JPOXMLDOC01-appb-T000002

<表2中の略号の説明>
α-MeSt:α-メチルスチレンに由来する構造単位
St:スチレンに由来する構造単位
<参考例1~4>
 下記表3に示す成分を各配合割合(単位:質量部)でそれぞれ予備混合した後、一括して二軸押出機[(株)日本製鋼所製「TEX-44XCT」、L/D=42]に供給して温度170~200℃、回転数300min-1で溶融混練し、ホットカットすることによって、ペレット状の架橋組成物(X1)~(X4)を製造した。
(1)メルトフローレート(MFR)の測定
 ペレット状の架橋組成物(X1)~(X4)を、JIS K7210に準じた方法で、230℃、荷重10kgの条件下でMFR(g/10分)を測定した。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
<実施例1~6および比較例1~3>
 参考例1~4で得た架橋組成物(X1)~(X4)を用い、表4に示す配合割合(単位:質量部)でそれぞれ予備混合した後、水添ブロック共重合体(Y1)または(Y2)と共に二軸押出機[(株)日本製鋼所製「TEX-44XCT」、L/D=42]に供給して温度170~200℃、回転数300min-1で溶融混練し、ホットカットすることによって、ペレット状の熱可塑性エラストマー組成物を製造した。
 得られたペレット状の熱可塑性エラストマー組成物を用いて、各物性を以下の方法で測定した。結果を表4に示す。
<比較例4>
 実施例1において、架橋組成物(X1)の代わりに、架橋組成物(X1)の熱処理前の組成物を用いたこと以外は同様に操作を行ない、ペレット状の熱可塑性エラストマー組成物を製造した。
 得られたペレット状の熱可塑性エラストマー組成物を用いて、各物性を以下の方法で測定した。結果を表4に示す。
(2)摩耗量の測定
 JIS K6264-2に準拠したDIN摩耗試験機(GOTECH TESTING MACHINES社製、製品名「DIN摩耗試験機 GT-7012-D」)を用いて、次のようにして、上記実施例および比較例で得た熱可塑性エラストマー組成物の成形体の耐摩耗性を調べた。
 まず、実施例および比較例で得られた熱可塑性エラストマー組成物のペレットを用いて、射出成形機(東芝機械(株)製「IS-55EPN」、型締圧55×10kg)を使用して、溶融温度230℃、金型温度40℃の条件下にて射出成形して、110mm×110mm×5mm(縦×横×厚さ)のシート状成形品を製造し、その後、直径16mmの円柱状に打ち抜き、これを摩耗試験用サンプルとした。
 DIN摩耗試験機は、表面に#60の研磨紙を巻きつけた直径150mm、幅460mmのドラムを0.32m/secの速度で回転させ、このドラムの研磨紙に摩耗試験用サンプルを荷重10Nで押し付けて摩耗させる試験機である。試験に際して摩耗面を平滑にするため、まず予備摩りを行った。予備摩りは、摩耗試験用サンプルのドラムに対する押し付けを23℃雰囲気下で20m行った。その後、この予備摩り後の摩耗試験用サンプルの重量を測定し、本試験を実施した。本試験は、予備摩り後のサンプルのドラムに対する押し付けを40m行った後、重量を測定した。本試験前の重量と本試験後の重量の差を求めた(この差を摩耗重量という)。なお、研磨紙の消耗状態の影響を無くすため、標準ゴムの摩耗重量も上記と同様な手順で測定した。
 ここで、標準ゴムの摩耗重量をW、摩耗試験用サンプルの摩耗重量をW、摩耗試験用サンプルの比重をSとすると、各摩耗試験用サンプルの摩耗体積(摩耗量)A(mm)は、以下の式から求められる。摩耗量の値が小さいほど耐摩耗性に優れる。
   A=(W×200)/(W×S)
(3)引張破断強度および引張破断伸びの測定
 ペレット状の熱可塑性エラストマー組成物から、上記した耐摩耗性評価の場合と同様の射出成形によりシートを作製し、このシートからJIS K6251に準拠したダンベル5号型の試験片を打ち抜いた。得られた試験片に対し、23℃、引張速度500mm/分およびチャック間距離5cmの条件で引張試験を実施して引張破断強度(MPa)および引張破断伸び(%)を測定した。
(4)表面平滑性の評価
 ペレット状の熱可塑性エラストマー組成物から、上記した耐摩耗性評価の場合と同様の射出成形によりシートを作製し、下記評価基準に従って評価した。
 A:目視にて、成形品の表面にフローマークを確認できる。
 C:目視では、成形品の表面にフローマークを確認できない。
Figure JPOXMLDOC01-appb-T000004
 表4より、本発明の熱可塑性エラストマー組成物は、機械的特性と共に、耐摩耗性および表面平滑性にも優れていることがわかる。
 一方、水添ブロック共重合体(Y1)もしくは(Y2)を含有しないか、またはその含有量が少ない比較例1および2では、表面平滑性が明らかに低下した。また、架橋助剤(IV)の含有量を1質量部未満として得られた架橋組成物(X2)を用いた比較例3では、耐摩耗性が大幅に低下した。さらに、架橋組成物(X1)を熱処理して架橋させる前の未架橋の組成物に水添ブロック共重合体(Y1)を加えてから溶融混練した比較例4では、耐摩耗性および表面平滑性が大幅に低下し、機械的特性も満足できるものではなかった。
 本発明の熱可塑性重合体組成物は、その特性を活かして、例えば、インストルメントパネル、ラック&オピニオンブーツ、サスペンションブーツ、等速ジョイントブーツ、バンパー、サイドモール、ウェザーストリップ、マットガード、エンブレム、レザーシート、フロアーマット、アームレスト、エアバッグカバー、ステアリングホイール被覆、ベルトラインモール、フラッシュマウント、ギア類、ノブ類等の自動車内外装材部品;耐圧ホース、消防ホース、塗装用ホース、洗濯機ホース、燃料チューブ、油・空圧チューブ、透析用チューブ等のホース、チューブ;各種製品(例えば、はさみ、ドライバー、歯ブラシ、ペン、カメラ等)用のグリップ材;冷蔵庫ガスケット、掃除機バンパー、携帯電話保護フィルム、防水ボディー等の家電部品;コピー機送りローラー、巻き取りローラー等の事務機部品;ソファー、チェアーシート等の家具;スイッチカバー、キャスター、ストッパー、足ゴム等の部品;被覆鋼板、被覆合板等の建材;水中眼鏡、スノーケル、スキーストック、スキーブーツ、スノーボードブーツ、スキー板・スノーボード表皮材、ゴルフボールカバー等のスポーツ用品;シリンジガスケット、ローリングチューブ等の医療用品;コンベアーベルト、電動ベルト、ペレタイザーロール等の工業資材;紙おむつ、ハップ剤、包帯等の衛生材料の伸縮部材;ヘアーバンド、リストバンド、時計バンド、眼鏡バンド等のバンド用途;スノーチェーン、電線被覆材、トレイ、フィルム、シート、文房具、玩具、日用雑貨等の幅広い用途に有効に使用することができる。

Claims (8)

  1.  下記架橋組成物(X)と下記水添ブロック共重合体(Y)とを質量比(X):(Y)=10:90~90:10で含有する熱可塑性エラストマー組成物。
    ・架橋組成物(X):
     芳香族ビニル化合物に由来する構造単位から主としてなり、炭素数1~8のアルキル基がベンゼン環に結合したスチレンに由来する構造単位(a)を1質量%以上含有する重合体ブロックAと、共役ジエン化合物に由来する構造単位から主としてなる重合体ブロックBとを有するブロック共重合体およびその水素添加物からなる群から選ばれる少なくとも1種のブロック共重合体(I)100質量部、オレフィン系樹脂(II)10~300質量部、架橋剤(III)0.01~20質量部、架橋助剤(IV)1~50質量部、およびゴム用軟化剤(V)30~250質量部を含有する組成物を溶融条件下で熱処理することにより得られる組成物。
    ・水添ブロック共重合体(Y):
     芳香族ビニル化合物に由来する構造単位から主としてなる重合体ブロックCを少なくとも2個および共役ジエン化合物に由来する構造単位から主としてなる重合体ブロックDを少なくとも1個有するブロック共重合体を水素添加してなる水添ブロック共重合体(但し、前記ブロック共重合体(I)は含まれない。)。
  2.  前記水添ブロック共重合体(Y)が有する重合体ブロックCが、スチレンまたはα-メチルスチレンに由来する構造単位から主としてなる重合体ブロックである、請求項1に記載の熱可塑性エラストマー組成物。
  3.  前記水添ブロック共重合体(Y)が有する重合体ブロックCが、α-メチルスチレンに由来する構造単位から主としてなる重合体ブロックである、請求項1に記載の熱可塑性エラストマー組成物。
  4.  水添ブロック共重合体(Y)の数平均分子量(Mn)が30,000~300,000である、請求項1~3のいずれかに記載の熱可塑性エラストマー組成物。
  5.  前記水添ブロック共重合体(Y)が、
    (1)数平均分子量1,000~50,000の重合体ブロックCと、
    (2)数平均分子量が1,000~30,000であって、重合体ブロックを構成する共役ジエン化合物に由来する構造単位の1,4-結合量が30モル%未満である重合体ブロックd1と、数平均分子量が10,000~290,000であって、重合体ブロックを構成する共役ジエン化合物に由来する構造単位の1,4-結合量が30モル%以上である重合体ブロックd2とを含む重合体ブロックD
    を有する水添ブロック共重合体である、請求項1~4のいずれかに記載の熱可塑性エラストマー組成物。
  6.  前記構造単位(a)が、p-メチルスチレンに由来する構造単位である、請求項1~5のいずれかに記載の熱可塑性エラストマー組成物。
  7.  前記架橋剤(III)が、有機過酸化物から選ばれる少なくとも1種である、請求項1~6のいずれかに記載の熱可塑性エラストマー組成物。
  8.  前記架橋助剤(IV)が、メタクリロイル基およびアクリロイル基からなる群から選ばれる少なくとも1種の官能基を2個以上有する化合物である、請求項1~7のいずれかに記載の熱可塑性エラストマー組成物。
PCT/JP2015/074546 2014-08-29 2015-08-28 熱可塑性エラストマー組成物 WO2016031992A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020177004548A KR102367517B1 (ko) 2014-08-29 2015-08-28 열 가소성 엘라스토머 조성물
CN201580045720.2A CN106661309B (zh) 2014-08-29 2015-08-28 热塑性弹性体组合物
US15/505,825 US10259933B2 (en) 2014-08-29 2015-08-28 Thermoplastic elastomer composition
CA2959473A CA2959473C (en) 2014-08-29 2015-08-28 Thermoplastic elastomer composition
JP2015560460A JP5933140B1 (ja) 2014-08-29 2015-08-28 熱可塑性エラストマー組成物
EP15835064.5A EP3187537B1 (en) 2014-08-29 2015-08-28 Thermoplastic elastomer composition
ES15835064T ES2711149T3 (es) 2014-08-29 2015-08-28 Composición de elastómero termoplástico

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-175799 2014-08-29
JP2014175799 2014-08-29

Publications (1)

Publication Number Publication Date
WO2016031992A1 true WO2016031992A1 (ja) 2016-03-03

Family

ID=55399873

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/074546 WO2016031992A1 (ja) 2014-08-29 2015-08-28 熱可塑性エラストマー組成物

Country Status (8)

Country Link
US (1) US10259933B2 (ja)
EP (1) EP3187537B1 (ja)
JP (1) JP5933140B1 (ja)
KR (1) KR102367517B1 (ja)
CN (1) CN106661309B (ja)
CA (1) CA2959473C (ja)
ES (1) ES2711149T3 (ja)
WO (1) WO2016031992A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5933141B1 (ja) * 2014-08-29 2016-06-08 株式会社クラレ 熱可塑性エラストマー組成物および成形品
CA3065502A1 (en) * 2017-05-31 2018-12-06 Kuraray Co., Ltd. Gel composition, cable filler, cable, and crumb for gel composition
WO2021024369A1 (ja) * 2019-08-06 2021-02-11 株式会社アシックス 射出成形品および靴

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003020383A (ja) * 2001-05-01 2003-01-24 Kuraray Co Ltd 熱可塑性エラストマー組成物
JP2003277575A (ja) * 2002-01-17 2003-10-02 Riken Technos Corp 熱可塑性エラストマー組成物
JP2004136594A (ja) * 2002-10-18 2004-05-13 Kuraray Co Ltd 複層成形体
JP2004162049A (ja) * 2002-10-22 2004-06-10 Kuraray Co Ltd ポリオレフィン系樹脂組成物およびその用途
JP2005089656A (ja) * 2003-09-18 2005-04-07 Mitsubishi Chemicals Corp スチレン系熱可塑性エラストマー組成物
JP2005187536A (ja) * 2003-12-24 2005-07-14 Kuraray Co Ltd 熱可塑性エラストマー組成物
JP2006335901A (ja) * 2005-06-02 2006-12-14 Kaneka Corp エラストマー組成物
JP2008248148A (ja) * 2007-03-30 2008-10-16 Kuraray Co Ltd 熱可塑性エラストマー組成物
JP2010159363A (ja) * 2009-01-09 2010-07-22 Kuraray Co Ltd 熱可塑性重合体組成物

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0994153B1 (en) * 1996-11-29 2003-10-15 Riken Technos Corporation Thermoplastic elastomeric resin composition
US7053145B1 (en) * 1998-08-31 2006-05-30 Riken Technos Corporation Fire-retardant resin composition and molded part using the same
EP1923425B1 (en) 2001-05-01 2014-08-06 Kuraray Co., Ltd. Thermoplastic elastomer composition
JP2002363376A (ja) * 2001-06-01 2002-12-18 Kuraray Co Ltd 伸縮性材料
WO2002102895A1 (fr) 2001-06-18 2002-12-27 Kuraray Co., Ltd. Procede de production d'une composition elastomere thermoplastique
WO2004037918A1 (ja) 2002-10-22 2004-05-06 Kuraray Co., Ltd. ポリオレフィン系樹脂組成物およびその用途
JP4547178B2 (ja) * 2004-03-30 2010-09-22 株式会社クラレ 熱可塑性エラストマー組成物の製造方法
US20090247688A1 (en) * 2006-03-28 2009-10-01 Kuraray Co., Ltd. Thermoplastic elastomer composition

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003020383A (ja) * 2001-05-01 2003-01-24 Kuraray Co Ltd 熱可塑性エラストマー組成物
JP2003277575A (ja) * 2002-01-17 2003-10-02 Riken Technos Corp 熱可塑性エラストマー組成物
JP2004136594A (ja) * 2002-10-18 2004-05-13 Kuraray Co Ltd 複層成形体
JP2004162049A (ja) * 2002-10-22 2004-06-10 Kuraray Co Ltd ポリオレフィン系樹脂組成物およびその用途
JP2005089656A (ja) * 2003-09-18 2005-04-07 Mitsubishi Chemicals Corp スチレン系熱可塑性エラストマー組成物
JP2005187536A (ja) * 2003-12-24 2005-07-14 Kuraray Co Ltd 熱可塑性エラストマー組成物
JP2006335901A (ja) * 2005-06-02 2006-12-14 Kaneka Corp エラストマー組成物
JP2008248148A (ja) * 2007-03-30 2008-10-16 Kuraray Co Ltd 熱可塑性エラストマー組成物
JP2010159363A (ja) * 2009-01-09 2010-07-22 Kuraray Co Ltd 熱可塑性重合体組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3187537A4 *

Also Published As

Publication number Publication date
KR20170046652A (ko) 2017-05-02
EP3187537B1 (en) 2018-12-05
CA2959473A1 (en) 2016-03-03
ES2711149T3 (es) 2019-04-30
KR102367517B1 (ko) 2022-02-24
CN106661309B (zh) 2019-04-16
EP3187537A1 (en) 2017-07-05
CN106661309A (zh) 2017-05-10
US10259933B2 (en) 2019-04-16
EP3187537A4 (en) 2018-04-04
US20170275440A1 (en) 2017-09-28
JPWO2016031992A1 (ja) 2017-04-27
JP5933140B1 (ja) 2016-06-08
CA2959473C (en) 2022-08-23

Similar Documents

Publication Publication Date Title
JP5428856B2 (ja) 熱可塑性重合体組成物
JP5933141B1 (ja) 熱可塑性エラストマー組成物および成形品
JP6423276B2 (ja) 熱可塑性重合体組成物、シューズおよびアウターソール
JP5933140B1 (ja) 熱可塑性エラストマー組成物
JP2004136594A (ja) 複層成形体
JP4522728B2 (ja) 熱可塑性重合体組成物
KR20050073577A (ko) 중합체 조성물
JP4522729B2 (ja) 熱可塑性エラストマー組成物
JP2011105856A (ja) 熱可塑性重合体組成物
JP4133206B2 (ja) フィルム
JP2007126527A (ja) 熱可塑性エラストマー組成物及びその射出成形品

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015560460

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15835064

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177004548

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015835064

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015835064

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15505825

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2959473

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE