[go: up one dir, main page]

WO2016002707A1 - 酸化ガリウム基板及びその製造方法 - Google Patents

酸化ガリウム基板及びその製造方法 Download PDF

Info

Publication number
WO2016002707A1
WO2016002707A1 PCT/JP2015/068661 JP2015068661W WO2016002707A1 WO 2016002707 A1 WO2016002707 A1 WO 2016002707A1 JP 2015068661 W JP2015068661 W JP 2015068661W WO 2016002707 A1 WO2016002707 A1 WO 2016002707A1
Authority
WO
WIPO (PCT)
Prior art keywords
gallium oxide
oxide substrate
plane
cylindrical block
main surface
Prior art date
Application number
PCT/JP2015/068661
Other languages
English (en)
French (fr)
Inventor
優 山岡
建和 増井
嘉克 森島
康孝 阿部
Original Assignee
株式会社タムラ製作所
株式会社光波
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社タムラ製作所, 株式会社光波 filed Critical 株式会社タムラ製作所
Publication of WO2016002707A1 publication Critical patent/WO2016002707A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H9/00Machining specially adapted for treating particular metal objects or for obtaining special effects or results on metal objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B27/00Other grinding machines or devices
    • B24B27/06Grinders for cutting-off
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories

Definitions

  • the present invention relates to a gallium oxide substrate and a manufacturing method thereof.
  • Patent Document 1 it intersects at 90 ⁇ 5 degrees with respect to (100) of the gallium oxide substrate, and also intersects at 90 ⁇ 5 degrees with respect to the main surface constituted by the surface excluding (100).
  • a first orientation flat formed on the peripheral edge of the main surface 15 is formed within an error of ⁇ 5 degrees in rotation angle with a normal passing through the center point of the surface as the rotation axis, and further, the main orientation of the gallium oxide substrate is formed.
  • a second orientation flat is formed at the periphery of the other main surface with the center point of the surface as the symmetry point.
  • defects generated in the gallium oxide substrate can be removed by forming the first and second orientation flats on the gallium oxide substrate obtained by the circular punching of the gallium oxide single crystal by the core drill. Yes.
  • a defect-free gallium oxide substrate can be obtained by performing a circle punching process after performing a process for forming the first and second orientation flats on the gallium oxide single crystal.
  • An object of the present invention is to provide a gallium oxide substrate manufacturing method capable of obtaining a gallium oxide substrate from a gallium oxide single crystal ingot while suppressing the occurrence of defects, and a structure capable of suppressing the occurrence of defects during processing. It is to provide a gallium oxide substrate having the same.
  • One embodiment of the present invention provides a method for producing a gallium oxide substrate according to [1] to [5] in order to achieve the above object.
  • the main surface of the gallium oxide substrate is a surface different from the (100) surface, and the orientation flats are a first orientation flat and a second orientation flat provided at opposite positions on the side surface of the cylindrical block, respectively.
  • the first orientation flat and the second orientation flat are along a direction within ⁇ 2 ° with respect to a direction parallel to the intersection line between the main surface of the gallium oxide substrate and the (100) plane.
  • the gallium oxide substrate according to [2], wherein the gallium oxide substrate is provided with a length of 6 mm or more and at least one of peripheral grinding, beveling, polishing, and cleaning is applied to the gallium oxide substrate.
  • another aspect of the present invention provides a method for producing a gallium oxide substrate according to [6] below.
  • a manufacturing method of a gallium oxide substrate capable of obtaining a gallium oxide substrate from a gallium oxide single crystal ingot while suppressing the occurrence of defects, and a structure capable of suppressing the occurrence of defects during processing.
  • a gallium oxide substrate can be provided.
  • FIG. 1A is a perspective view schematically illustrating a state of circular punching of a gallium oxide ingot according to an embodiment.
  • FIG. 1B is a perspective view of a cylindrical block of a gallium oxide single crystal cut out by a circular punching process of a gallium oxide ingot.
  • FIG. 2A is a side view of a cylindrical block.
  • FIG. 2B is a side view of a gallium oxide substrate obtained by slicing a cylindrical block.
  • FIG. 3 is a plan view of the gallium oxide substrate.
  • FIG. 4A is a diagram schematically illustrating how a crack is generated in a gallium oxide substrate.
  • FIG. 4B is a diagram schematically illustrating how a crack is generated in the gallium oxide substrate.
  • FIG. 1A is a perspective view schematically showing a state of circular cutting of the gallium oxide ingot 2 according to the embodiment.
  • FIG. 1B is a perspective view of a cylindrical block 20 of a gallium oxide single crystal cut out by circular cutting of the gallium oxide ingot 2.
  • the circular cutting of the gallium oxide ingot 2 is performed by wire electric discharge machining using the wire electrode 1 as an electrode.
  • the wire electrode 1 In a state where a discharge is generated between the wire electrode 1 and the gallium oxide ingot 2, the wire electrode 1 is turned into the gallium oxide ingot 2 along the contour shape of the cylindrical block 20 as shown in FIGS. Move against. A portion of the gallium oxide ingot 2 adjacent to the wire electrode 1 is melted by electric discharge, and the cylindrical block 20 is cut out.
  • the wire electrode 1 is made of a conductive material such as brass or tungsten, and has a diameter of 0.02 to 0.36 mm, for example.
  • the gallium oxide ingot 2 to be processed also has conductivity, a discharge can be generated between the wire electrode 1 and the gallium oxide ingot 2.
  • the gallium oxide ingot 2 is, for example, a flat gallium oxide single crystal ingot grown by the EFG method.
  • the gallium oxide ingot 2 is separated from the seed crystal using a diamond blade, for example, after growth, after annealing for the purpose of relaxing thermal strain during growth and improving electrical characteristics.
  • the radial cross section (cross section parallel to the radial direction) of the cylindrical block 20 is a plane different from the (100) plane of the gallium oxide single crystal, for example, the ( ⁇ 201) plane, the (101) plane, or the (001) plane. Matches.
  • the gallium oxide single crystal has a high cleavage property in the (100) plane
  • the cylindrical block 20 is cut out from the gallium oxide ingot 2. , Defects such as cracks are likely to occur on the (100) plane.
  • the inventors of the present application have intensively studied to suppress the occurrence of this defect, and as a result, found that the occurrence of a defect in a cylindrical block can be suppressed by performing a circle punching process by wire electric discharge machining.
  • defects are generated in the cylindrical block when coring with a core drill or processing with a grinder. Although it is easy, generation
  • the gallium oxide ingot 2 is punched by wire electric discharge machining, the occurrence of defects such as cracks in the cylindrical block 20 can be suppressed.
  • the main surface becomes ( A gallium oxide substrate having a ⁇ 201) plane, a (101) plane, or a (001) plane can be obtained.
  • the main surface of the gallium oxide substrate is the ( ⁇ 201) surface or the (101) surface, the GaN-based semiconductor layer is easily epitaxially grown on the main surface, so that it can be used as an excellent substrate for a GaN-based semiconductor device.
  • the main surface of the gallium oxide substrate is the (001) surface, it is possible to homoepitaxially grow a high-quality Ga 2 O 3 based semiconductor layer on the main surface, so that it can be used as an excellent substrate for electronic devices. Can do.
  • the orientation flat of the cylindrical block 20 is the orientation flat of the gallium oxide substrate when the cylindrical block 20 is sliced to form a gallium oxide substrate.
  • the orientation flats 21 and 22 shown in FIG. 1B are examples of orientation flats, and there may be only one orientation flat.
  • the orientation flat can be formed on the cylindrical block 20 at the same time as the circular punching process, there is a possibility that defects are generated in the cylindrical block 20 as compared with the case where the circular punching process and the formation of the orientation flat are performed in separate processes. Can be made lower.
  • the orientation flat cannot be formed at the same time. It is necessary to form an orientation flat.
  • the orientation flat is formed using, for example, a slicing machine.
  • the single crystal has a highly cleaved surface, defects such as chipping may occur.
  • the orientation flats formed on the cylindrical block 20 are preferably the orientation flats 21 and 22 shown in FIGS. 1A and 1B. This is because by providing the orientation flats 21 and 22 on the gallium oxide substrate obtained from the cylindrical block 20, it is possible to suppress generation of defects in a process such as polishing. Details thereof will be described later. Orientation flats 21 and 22 are respectively provided at opposing positions on the side surface of the cylindrical block 20.
  • FIG. 2A is a side view of the cylindrical block 20
  • FIG. 2B is a side view of a gallium oxide substrate 30 obtained by slicing the cylindrical block 20.
  • FIG. 1A is a side view of the cylindrical block 20
  • FIG. 2B is a side view of a gallium oxide substrate 30 obtained by slicing the cylindrical block 20.
  • the gallium oxide substrate 30 is formed by slicing the cylindrical block 20 along its radial direction (direction perpendicular to the thickness direction). Therefore, the main surface 31 of the gallium oxide substrate 30 coincides with a surface other than the (100) plane, for example, the ( ⁇ 201) plane, the (101) plane, or the (001) plane.
  • the cylindrical block 20 may be sliced along a direction offset by a predetermined angle from the radial direction. Even in this case, the main surface 31 of the gallium oxide substrate 30 is sliced so as to coincide with a surface other than the (100) plane, for example, the ( ⁇ 201) plane, the (101) plane, or the (001) plane.
  • FIG. 3 is a plan view of the gallium oxide substrate 30.
  • the orientation flats 21 and 22 are provided at opposing positions, and are provided along directions within ⁇ 2 ° with respect to a direction parallel to the intersection line of the main surface 31 and the (100) plane. And has a length of 6 mm or more.
  • L2 and L3 in FIG. 3 represent the lengths of the orientation flats 21 and 22, respectively. That is, L2 and L3 are 6 mm or more.
  • L2 or L3 is 16 mm or more which is the length of a general orientation flat.
  • the surfaces of the orientation flats 21 and 22 are preferably perpendicular to the main surface 31 in the same manner as a general orientation flat surface.
  • the gallium oxide substrate 30 has the orientation flats 21 and 22, it is possible to suppress the occurrence of cracking (chipping) due to the force applied to the gallium oxide substrate 30 when performing peripheral grinding, beveling, polishing, or cleaning. The reason will be described below.
  • FIGS. 4A and 4B are diagrams schematically showing how a crack is generated in the gallium oxide substrate 30.
  • FIG. 4A and 4B are a plan view and a cross-sectional view of the gallium oxide substrate 30, respectively.
  • FIG. 4B shows a cross section of the gallium oxide substrate 30 having the main surface 31 of ( ⁇ 201) cut in a direction perpendicular to the b-axis of the gallium oxide single crystal.
  • a crack surface 40 shown in FIGS. 4A and 4B is a (100) surface where cracks are generated.
  • the length L0 of the edge on the main surface 31 is 5 mm or less due to external force applied in these steps.
  • Crack surface 40 is likely to occur.
  • the edge of the crack surface 40 on the main surface 31 is parallel to the line of intersection of the main surface 31 and the (100) surface.
  • the orientation flat 21 is provided along a direction within ⁇ 2 ° with respect to a direction parallel to the intersection line of the main surface 31 and the (100) plane, and has a length of 6 mm or more.
  • the cylindrical block 20 is sliced to a thickness of about 1 mm by, for example, a multi-wire saw, and the gallium oxide substrate 30 is obtained.
  • the wire saw is preferably a fixed abrasive type.
  • the slicing speed is preferably about 0.125 to 0.3 mm per minute.
  • annealing is performed on the gallium oxide substrate 30 for the purpose of relaxing processing strain, improving electrical characteristics, and improving permeability.
  • annealing is performed in an oxygen atmosphere when the temperature is raised, and annealing is performed in an inert atmosphere such as a nitrogen atmosphere, an argon atmosphere, or a helium atmosphere while the temperature is maintained after the temperature is raised.
  • the holding temperature is preferably 1400 to 1600 ° C.
  • the outer periphery of the gallium oxide substrate 30 is ground using a diamond grinding wheel until a desired outer size is obtained.
  • the grain size of the grindstone is preferably about # 400 to 1000 (specified by JISB4131). Since the gallium oxide substrate 30 has the orientation flats 21 and 22, the occurrence of cracks in this step is suppressed.
  • the edge of the gallium oxide substrate 30 is beveled (chamfered) at a desired angle. Since the gallium oxide substrate 30 has the orientation flats 21 and 22, the occurrence of cracks in this step is suppressed.
  • the main surface 31 of the gallium oxide substrate 30 is ground to a desired thickness using a diamond grinding wheel.
  • the grain size of the grindstone is preferably about # 800 to 1000 (specified by JISB4131). Since the gallium oxide substrate 30 has the orientation flats 21 and 22, the occurrence of cracks in this step is suppressed.
  • the main surface 31 of the gallium oxide substrate 30 is polished to a desired thickness using a polishing surface plate and diamond slurry.
  • the polishing surface plate is preferably made of a metal or glass material.
  • the particle size of the diamond abrasive grains contained in the diamond slurry is preferably about 0.5 ⁇ m. Since the gallium oxide substrate 30 has the orientation flats 21 and 22, the occurrence of cracks in this step is suppressed.
  • the main gallium oxide substrate 30 The surface 31 is polished.
  • the polishing cloth is preferably made of nylon, silk fiber, urethane or the like. It is preferable to use colloidal silica for the abrasive grains of the slurry. Since the gallium oxide substrate 30 has the orientation flats 21 and 22, the occurrence of cracks in this step is suppressed.
  • the gallium oxide substrate 30 is cleaned. Specifically, for example, ultrasonic cleaning for 3 minutes, ultrasonic cleaning for 3 minutes, ultrasonic cleaning for 3 minutes, cleaning with methanol for 5 minutes, washing with running water for 5 minutes, washing with sulfuric acid for 5 minutes, washing with running water for 5 minutes. Do it sequentially. Since the gallium oxide substrate 30 has the orientation flats 21 and 22, the occurrence of cracks in this step is suppressed.
  • the cylindrical block 20 of a gallium oxide single crystal with few defects can be obtained by performing the circular punching process of the gallium oxide ingot 2 by wire electric discharge machining.
  • a high-quality gallium oxide substrate 30 can be obtained by slicing the cylindrical block 20 of gallium oxide single crystal with few defects.
  • the orientation flat by forming the orientation flat at the same time as the circular punching process, it is possible to suppress the occurrence of defects in the cylindrical block as compared to the case where the orientation flat is formed in a separate process from the circular punching process.
  • orientation flats (orientation flats 21 and 22) satisfying predetermined conditions on the gallium oxide substrate 30
  • generation of cracks when the outer peripheral grinding, beveling, polishing, or cleaning is performed on the gallium oxide substrate 30 is suppressed. be able to.
  • a method of manufacturing a gallium oxide substrate capable of obtaining a gallium oxide substrate from a gallium oxide single crystal ingot while suppressing generation of defects, and a gallium oxide substrate having a structure capable of suppressing generation of defects during processing are provided. To do.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

 欠陥の発生を抑えつつ、酸化ガリウム単結晶のインゴットから酸化ガリウム基板を得ることのできる酸化ガリウム基板の製造方法、及び加工の際の欠陥の発生を抑えることのできる構造を有する酸化ガリウム基板を提供する。 一実施の形態において、ワイヤー放電加工により、酸化ガリウム単結晶のインゴット2から、径方向に平行な断面が(100)面と異なる酸化ガリウム単結晶の円柱状ブロック20を切り出す工程と、円柱状ブロック20をスライスして酸化ガリウム基板30を得る工程と、を含む、酸化ガリウム基板の製造方法を提供する。

Description

酸化ガリウム基板及びその製造方法
 本発明は、酸化ガリウム基板及びその製造方法に関する。
 従来、コアドリルを用いた酸化ガリウム単結晶の円抜き加工により形成される酸化ガリウム基板のチッピング、クラック、剥離等の欠陥を除去する、又は欠陥の発生を防ぐ技術が知られている(例えば、特許文献1参照)。
 特許文献1によれば、酸化ガリウム基板の(100)に対して90±5度で交わり、かつ(100)を除く面で構成される主面に対しても90±5度で交わり、さらに主面の中心点を通る法線を回転軸として、回転角度にして±5度の誤差内で、主面15の周縁部に形成された第1のオリエンテーションフラットを形成し、更に酸化ガリウム基板の主面の中心点を対称点にして第2のオリエンテーションフラットを他方の主面周縁に形成する。
 コアドリルによる酸化ガリウム単結晶の円抜き加工により得られた酸化ガリウム基板に、これら第1及び第2のオリエンテーションフラットを形成することにより、酸化ガリウム基板に生じた欠陥を除去することができるとされている。また、第1及び第2のオリエンテーションフラットを形成するための加工を酸化ガリウム単結晶に施した後に円抜き加工を行うことにより、欠陥の無い酸化ガリウム基板を得ることができるとされている。
特開2013-67524号公報
 本発明の目的は、欠陥の発生を抑えつつ、酸化ガリウム単結晶のインゴットから酸化ガリウム基板を得ることのできる酸化ガリウム基板の製造方法、及び加工の際の欠陥の発生を抑えることのできる構造を有する酸化ガリウム基板を提供することにある。
 本発明の一態様は、上記目的を達成するために、[1]~[5]の酸化ガリウム基板の製造方法を提供する。
[1]ワイヤー放電加工により、酸化ガリウム単結晶のインゴットから、径方向に平行な断面が(100)面と異なる酸化ガリウム単結晶の円柱状ブロックを切り出す工程と、前記円柱状ブロックをスライスして酸化ガリウム基板を得る工程と、を含む、酸化ガリウム基板の製造方法。
[2]前記ワイヤー放電加工により、その側面にオリエンテーションフラットを有する前記円柱状ブロックを切り出す、前記[1]に記載の酸化ガリウム基板の製造方法。
[3]前記円柱状ブロックの前記径方向に平行な断面が(-201)面、(101)面、又は(001)面である、前記[1]又は[2]に記載の酸化ガリウム基板の製造方法。
[4]前記酸化ガリウム基板の主面は(100)面と異なる面であり、前記オリエンテーションフラットは、前記円柱状ブロックの側面の対向する位置にそれぞれ設けられる第1のオリエンテーションフラット及び第2のオリエンテーションフラットであり、前記第1のオリエンテーションフラット及び前記第2のオリエンテーションフラットは、前記酸化ガリウム基板の主面と(100)面との交線に平行な方向を基準として±2°以内の方向に沿って設けられ、6mm以上の長さを有し、前記酸化ガリウム基板に外周研削、ベベル加工、研磨、洗浄のうちの少なくともいずれか1つを施す、前記[2]に記載の酸化ガリウム基板の製造方法。
[5]前記酸化ガリウム基板の前記主面が(-201)面、(101)面、又は(001)面である、前記[4]に記載の酸化ガリウム基板の製造方法。
 また、本発明の他の態様は、上記目的を達成するために、下記[6]の酸化ガリウム基板の製造方法を提供する。
[6]酸化ガリウム単結晶からなる酸化ガリウム基板であって、主面が(100)面と異なる面であり、対向する位置にそれぞれ設けられた、前記主面と(100)面との交線に平行な方向を基準として±2°以内の方向に沿って設けられ、6mm以上の長さを有する、2つのオリエンテーションフラットを有する、酸化ガリウム基板。
 本発明によれば、欠陥の発生を抑えつつ、酸化ガリウム単結晶のインゴットから酸化ガリウム基板を得ることのできる酸化ガリウム基板の製造方法、及び加工の際の欠陥の発生を抑えることのできる構造を有する酸化ガリウム基板を提供することができる。
図1Aは、実施の形態に係る酸化ガリウムインゴットの円抜き加工の様子を概略的に表す斜視図である。 図1Bは、酸化ガリウムインゴットの円抜き加工により切り出された酸化ガリウム単結晶の円柱状ブロックの斜視図である。 図2Aは円柱状ブロックの側面図である。 図2Bは円柱状ブロックをスライスすることにより得られる酸化ガリウム基板の側面図である。 図3は、酸化ガリウム基板の平面図である。 図4Aは、酸化ガリウム基板にクラックが発生する様子を模式的に表す図である。 図4Bは、酸化ガリウム基板にクラックが発生する様子を模式的に表す図である。
〔実施の形態〕
(酸化ガリウムインゴットの円抜き加工工程)
 図1Aは、実施の形態に係る酸化ガリウムインゴット2の円抜き加工の様子を概略的に表す斜視図である。図1Bは、酸化ガリウムインゴット2の円抜き加工により切り出された酸化ガリウム単結晶の円柱状ブロック20の斜視図である。
 酸化ガリウムインゴット2の円抜き加工は、ワイヤー電極1を電極として用いるワイヤー放電加工により行われる。
 ワイヤー電極1と酸化ガリウムインゴット2との間で放電を発生させた状態で、図1A及び図1Bに示されるように、円柱状ブロック20の輪郭形状に沿ってワイヤー電極1を酸化ガリウムインゴット2に対して動かす。酸化ガリウムインゴット2のワイヤー電極1に近接する部分は放電により溶かされ、円柱状ブロック20が切り出される。
 ワイヤー電極1は、黄銅、タングステン等の導電性の材料からなり、例えば、0.02~0.36mmの直径を有する。なお、加工対象である酸化ガリウムインゴット2も導電性を有するため、ワイヤー電極1との間で放電を発生させることができる。
 酸化ガリウムインゴット2は、例えば、EFG法により育成された平板状の酸化ガリウム単結晶のインゴットである。酸化ガリウムインゴット2は、例えば、育成後、育成時の熱歪緩和と電気特性の向上を目的とするアニールが施された後、ダイヤモンドブレードを用いて種結晶と分離される。
 円柱状ブロック20の径方向の断面(径方向に平行な断面)は、酸化ガリウム単結晶の(100)面と異なる面、例えば、(-201)面、(101)面、又は(001)面と一致する。
 酸化ガリウムの単結晶は(100)面において高い劈開性を有するため、円柱状ブロック20の径方向の断面が(100)面と異なる場合は、酸化ガリウムインゴット2から円柱状ブロック20を切り出す際に、(100)面においてクラック等の欠陥が発生しやすい。
 本願発明者らは、この欠陥の発生を抑えるべく鋭意研究を重ねた結果、ワイヤー放電加工により円抜き加工を行うことにより、円柱状ブロックにおける欠陥の発生を抑制できることを見出した。具体的には、径方向の断面が(100)面と異なる酸化ガリウム単結晶の円柱状ブロックを形成するために、コアドリルによるコアリングやグラインダーによる加工を行う場合は円柱状ブロックに欠陥が発生しやすいが、ワイヤー放電加工を行う場合は欠陥の発生を抑えることができる。
 本実施の形態においては、ワイヤー放電加工により酸化ガリウムインゴット2の円抜き加工を行うため、円柱状ブロック20におけるクラック等の欠陥の発生を抑えることができる。
 円柱状ブロック20の径方向の断面が酸化ガリウム単結晶の(-201)面、(101)面、又は(001)面と一致する場合、円柱状ブロック20をスライスすることにより、主面が(-201)面、(101)面、又は(001)面である酸化ガリウム基板を得ることができる。酸化ガリウム基板の主面が(-201)面又は(101)面である場合、主面上にGaN系半導体層がエピタキシャル成長しやすいため、優れたGaN系半導体デバイス用の基板として用いることができる。また、酸化ガリウム基板の主面が(001)面である場合は、主面上に高品質なGa系半導体層のホモエピタキシャル成長が可能なため、優れた電子デバイス用の基板として用いることができる。
 また、ワイヤー放電加工により、その側面にオリエンテーションフラットを有する円柱状ブロック20を切り出すことが好ましい。ここで、円柱状ブロック20のオリエンテーションフラットは、円柱状ブロック20をスライスして酸化ガリウム基板を形成したときに、酸化ガリウム基板のオリエンテーションフラットとなる。なお、図1Bに示されるオリエンテーションフラット21、22は、オリエンテーションフラットの一例であり、オリエンテーションフラットは1つであってもよい。
 円抜き加工と同時に円柱状ブロック20にオリエンテーションフラットを形成することができるため、円抜き加工とオリエンテーションフラットの形成を別工程で行う場合と比較して、円柱状ブロック20に欠陥が発生する可能性をより低くすることができる。
 例えば、コアドリルを用いてコアリングする場合、円筒形の砥石を回転させてインゴットを削ることにより円筒形ブロックをくり抜くため、当然ながら、オリエンテーションフラットを同時に形成することはできず、コアリングと別工程でオリエンテーションフラットを形成する必要がある。この場合、オリエンテーションフラットは、例えば、スライシングマシンを用いて形成されるが、単結晶が劈開性の強い面を有する場合、チッピング等の欠陥が生じるおそれがある。
 円柱状ブロック20に形成されるオリエンテーションフラットは、図1A及び図1Bに示されるオリエンテーションフラット21、22であることが好ましい。これは、円柱状ブロック20から得られる酸化ガリウム基板にオリエンテーションフラット21、22が設けられることにより、研磨等の工程における欠陥の発生を抑えることができるからである。その詳細は後述する。オリエンテーションフラット21、22は、円柱状ブロック20の側面の対向する位置にそれぞれ設けられる。
(円柱状ブロックからの基板の製造工程)
 図2Aは円柱状ブロック20の側面図であり、図2Bは円柱状ブロック20をスライスすることにより得られる酸化ガリウム基板30の側面図である。
 酸化ガリウム基板30は、円柱状ブロック20をその径方向(厚さ方向に垂直な方向)に沿ってスライスすることにより形成される。このため、酸化ガリウム基板30の主面31は、(100)面以外の面、例えば(-201)面、(101)面、又は(001)面と一致する。なお、円柱状ブロック20をその径方向から所定の角度だけオフセットした方向に沿ってスライスしてもよい。この場合であっても、酸化ガリウム基板30の主面31が(100)面以外の面、例えば(-201)面、(101)面、又は(001)面と一致するようにスライスされる。
 図3は、酸化ガリウム基板30の平面図である。酸化ガリウム基板30において、オリエンテーションフラット21、22は、対向する位置にそれぞれ設けられ、主面31と(100)面との交線に平行な方向を基準として±2°以内の方向に沿って設けられ、6mm以上の長さを有する。図3におけるL2、L3は、それぞれオリエンテーションフラット21、22の長さを表す。すなわち、L2、L3は6mm以上である。
 なお、L2、L3のいずれかは、一般的なオリエンテーションフラットの長さである16mm以上であることが好ましい。また、オリエンテーションフラット21、22の面は、一般的なオリエンテーションフラットの面と同様に、主面31に対して垂直であることが好ましい。
 酸化ガリウム基板30がオリエンテーションフラット21、22を有することにより、外周研削、ベベル加工、研磨、又は洗浄を施す際に酸化ガリウム基板30に加わる力による割れ(チッピング)の発生を抑えることができる。以下に、その理由を説明する。
 図4A、4Bは、酸化ガリウム基板30にクラックが発生する様子を模式的に表す図である。図4A、4Bは、それぞれ酸化ガリウム基板30の平面図と断面図である。図4Bは、主面31が(-201)である酸化ガリウム基板30を酸化ガリウム単結晶のb軸に垂直な方向に切断したときの断面を示す。
 上述のように、酸化ガリウムの単結晶は(100)面において高い劈開性を有するため、(100)面においてクラック等の欠陥が発生しやすい。このため、円形の酸化ガリウム基板30においては、外縁に近い領域41において、(100)面に発生するクラックによる割れが発生しやすい。図4A、Bに示されるクラック面40は、クラックの発生した(100)面である。
 具体的には、酸化ガリウム基板30に施される外周研削、ベベル加工、研磨、又は洗浄においては、これらの工程において加わる外力により、主面31上の縁の長さL0が5mm以下であるようなクラック面40が発生しやすい。ここで、クラック面40は(100)面であるため、クラック面40の主面31上の縁は、主面31と(100)面との交線に平行である。
 このため、本実施の形態では、主面31と(100)面との交線に平行な方向を基準として±2°以内の方向に沿って設けられ、6mm以上の長さを有するオリエンテーションフラット21、22を酸化ガリウム基板30に設けることにより、長さL0が5mm以下であるクラック面40が発生する領域を除去している。これにより、酸化ガリウム基板30に外周研削、ベベル加工、研磨、又は洗浄を施す際の割れの発生を抑えることができる。
 以下に、円柱状ブロック20から酸化ガリウム基板30を製造する工程の具体例について述べる。
 円柱状ブロック20は、例えば、マルチワイヤーソーにより、1mm程度の厚さにスライスされ、酸化ガリウム基板30が得られる。ワイヤーソーは固定砥粒方式のものを用いることが好ましい。スライス速度は毎分0.125~0.3mm程度が好ましい。
 次に、加工歪の緩和、及び電気特性向上、透過性向上を目的とするアニールを酸化ガリウム基板30に施す。例えば、昇温時には酸素雰囲気下でアニールを行い、昇温後に温度を保持する間は窒素雰囲気、アルゴン雰囲気、ヘリウム雰囲気等の不活性雰囲気下でアニールを行う。保持温度は1400~1600℃であることが好ましい。
 次に、ダイヤモンドの研削砥石を用いて、所望の外形サイズになるまで酸化ガリウム基板30の外周を研削する。砥石の粒度は#400~1000(JISB4131による規定)程度であることが好ましい。酸化ガリウム基板30はオリエンテーションフラット21、22を有するため、本工程における割れの発生が抑えられる。
 次に、酸化ガリウム基板30のエッジに所望の角度でのべベル(面取り)加工を施す。酸化ガリウム基板30はオリエンテーションフラット21、22を有するため、本工程における割れの発生が抑えられる。
 次に、ダイヤモンドの研削砥石を用いて、所望の厚さになるまで酸化ガリウム基板30の主面31を研削する。砥石の粒度は#800~1000(JISB4131による規定)程度であることが好ましい。酸化ガリウム基板30はオリエンテーションフラット21、22を有するため、本工程における割れの発生が抑えられる。
 次に、研磨定盤とダイヤモンドスラリーを用いて、所望の厚さになるまで酸化ガリウム基板30の主面31を研磨する。研磨定盤は金属系やガラス系の材質のものが好ましい。ダイヤモンドスラリーに含まれるダイヤモンド砥粒の粒径は0.5μm程度が好ましい。酸化ガリウム基板30はオリエンテーションフラット21、22を有するため、本工程における割れの発生が抑えられる。
 次に、ポリッシングクロスとCMP(Chemical Mechanical Polishing)用のスラリーを用いて、原子レベルの平坦性(例えば、平均粗さRaが0.05~0.1nm)が得られるまで酸化ガリウム基板30の主面31を研磨する。ポリッシングクロスはナイロン、絹繊維、ウレタン等の材質のものが好ましい。スラリーの砥粒にはコロイダルシリカを用いることが好ましい。酸化ガリウム基板30はオリエンテーションフラット21、22を有するため、本工程における割れの発生が抑えられる。
 その後、酸化ガリウム基板30を洗浄する。具体的には、例えば、3分間のメタノール超音波洗浄、3分間のアセトン超音波洗浄、3分間のメタノール超音波洗浄、5分間の流水洗浄、5分間の硫酸加水洗浄、5分間の流水洗浄を順次行う。酸化ガリウム基板30はオリエンテーションフラット21、22を有するため、本工程における割れの発生が抑えられる。
(実施の形態の効果)
 上記の実施の形態によれば、ワイヤー放電加工により酸化ガリウムインゴット2の円抜き加工を行うことにより、欠陥の少ない酸化ガリウム単結晶の円柱状ブロック20を得ることができる。また、この欠陥の少ない酸化ガリウム単結晶の円柱状ブロック20をスライスすることにより、高品質の酸化ガリウム基板30を得ることができる。
 また、円抜き加工と同時にオリエンテーションフラットを形成することにより、円抜き加工と別工程でオリエンテーションフラットを形成する場合と比較して、円柱状ブロックの欠陥の発生を抑えることができる。
 また、所定の条件を満たすオリエンテーションフラット(オリエンテーションフラット21、22)を酸化ガリウム基板30に設けることにより、酸化ガリウム基板30に外周研削、ベベル加工、研磨、又は洗浄を施す際の割れの発生を抑えることができる。
 以上、本発明の実施の形態を説明したが、本発明は、上記実施の形態に限定されず、発明の主旨を逸脱しない範囲内において種々変形実施が可能である。
 また、上記に記載した実施の形態は請求の範囲に係る発明を限定するものではない。また、実施の形態の中で説明した特徴の組合せの全てが発明の課題を解決するための手段に必須であるとは限らない点に留意すべきである。
 欠陥の発生を抑えつつ、酸化ガリウム単結晶のインゴットから酸化ガリウム基板を得ることのできる酸化ガリウム基板の製造方法、及び加工の際の欠陥の発生を抑えることのできる構造を有する酸化ガリウム基板を提供する。
1…ワイヤー電極、2…酸化ガリウムインゴット、20…円柱状ブロック、21、22…オリエンテーションフラット、30…酸化ガリウム基板、31…主面

Claims (6)

  1.  ワイヤー放電加工により、酸化ガリウム単結晶のインゴットから、径方向に平行な断面が(100)面と異なる酸化ガリウム単結晶の円柱状ブロックを切り出す工程と、
     前記円柱状ブロックをスライスして酸化ガリウム基板を得る工程と、
     を含む、酸化ガリウム基板の製造方法。
  2.  前記ワイヤー放電加工により、その側面にオリエンテーションフラットを有する前記円柱状ブロックを切り出す、
     請求項1に記載の酸化ガリウム基板の製造方法。
  3.  前記円柱状ブロックの前記径方向に平行な断面が(-201)面、(101)面、又は(001)面である、
     請求項1又は2に記載の酸化ガリウム基板の製造方法。
  4.  前記酸化ガリウム基板の主面は(100)面と異なる面であり、
     前記オリエンテーションフラットは、前記円柱状ブロックの側面の対向する位置にそれぞれ設けられる第1のオリエンテーションフラット及び第2のオリエンテーションフラットであり、
     前記第1のオリエンテーションフラット及び前記第2のオリエンテーションフラットは、前記酸化ガリウム基板の主面と(100)面との交線に平行な方向を基準として±2°以内の方向に沿って設けられ、6mm以上の長さを有し、
     前記酸化ガリウム基板に外周研削、ベベル加工、研磨、洗浄のうちの少なくともいずれか1つを施す、
     請求項2に記載の酸化ガリウム基板の製造方法。
  5.  前記酸化ガリウム基板の前記主面が(-201)面、(101)面、又は(001)面である、
     請求項4に記載の酸化ガリウム基板の製造方法。
  6.  酸化ガリウム単結晶からなる酸化ガリウム基板であって、
     主面が(100)面と異なる面であり、
     対向する位置にそれぞれ設けられた、前記主面と(100)面との交線に平行な方向を基準として±2°以内の方向に沿って設けられ、6mm以上の長さを有する、2つのオリエンテーションフラットを有する、酸化ガリウム基板。
PCT/JP2015/068661 2014-06-30 2015-06-29 酸化ガリウム基板及びその製造方法 WO2016002707A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014135452A JP5816343B1 (ja) 2014-06-30 2014-06-30 酸化ガリウム基板及びその製造方法
JP2014-135452 2014-06-30

Publications (1)

Publication Number Publication Date
WO2016002707A1 true WO2016002707A1 (ja) 2016-01-07

Family

ID=54602096

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/068661 WO2016002707A1 (ja) 2014-06-30 2015-06-29 酸化ガリウム基板及びその製造方法

Country Status (2)

Country Link
JP (1) JP5816343B1 (ja)
WO (1) WO2016002707A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW202242211A (zh) 2020-12-24 2022-11-01 日商三星鑽石工業股份有限公司 氧化鎵基板的加工方法
KR102527924B1 (ko) * 2022-09-14 2023-05-02 한국세라믹기술원 베타 산화갈륨의 분열 특성을 이용한 기계적 박리 방식의 전사 방법
JP2025016840A (ja) 2023-07-24 2025-02-05 株式会社ディスコ β酸化ガリウム基板の製造方法
CN117020898B (zh) * 2023-09-28 2023-12-26 和研半导体设备(沈阳)有限公司 一种划片机及半导体材料加工设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004186589A (ja) * 2002-12-05 2004-07-02 Denso Corp 半導体基板の製造方法および製造装置
JP2008177233A (ja) * 2007-01-16 2008-07-31 Hitachi Cable Ltd 化合物半導体ウェハ及びその製造方法
JP2011068503A (ja) * 2009-09-24 2011-04-07 Sumitomo Electric Ind Ltd 窒化物半導体基板
WO2013035464A1 (ja) * 2011-09-08 2013-03-14 株式会社タムラ製作所 結晶積層構造体及びその製造方法
JP2013067524A (ja) * 2011-09-21 2013-04-18 Namiki Precision Jewel Co Ltd 酸化ガリウム基板とその製造方法
JP2013237591A (ja) * 2012-05-16 2013-11-28 Namiki Precision Jewel Co Ltd 酸化ガリウム融液、酸化ガリウム単結晶、酸化ガリウム基板、および酸化ガリウム単結晶の製造方法
JP2014086458A (ja) * 2012-10-19 2014-05-12 Tamura Seisakusho Co Ltd 酸化ガリウム系基板の製造方法
JP2014221692A (ja) * 2013-05-13 2014-11-27 株式会社タムラ製作所 β−Ga2O3系単結晶の育成方法、並びにβ−Ga2O3系単結晶基板及びその製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007073761A (ja) * 2005-09-07 2007-03-22 Sumitomo Electric Ind Ltd 窒化物半導体基板及び窒化物半導体基板の加工方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004186589A (ja) * 2002-12-05 2004-07-02 Denso Corp 半導体基板の製造方法および製造装置
JP2008177233A (ja) * 2007-01-16 2008-07-31 Hitachi Cable Ltd 化合物半導体ウェハ及びその製造方法
JP2011068503A (ja) * 2009-09-24 2011-04-07 Sumitomo Electric Ind Ltd 窒化物半導体基板
WO2013035464A1 (ja) * 2011-09-08 2013-03-14 株式会社タムラ製作所 結晶積層構造体及びその製造方法
JP2013067524A (ja) * 2011-09-21 2013-04-18 Namiki Precision Jewel Co Ltd 酸化ガリウム基板とその製造方法
JP2013237591A (ja) * 2012-05-16 2013-11-28 Namiki Precision Jewel Co Ltd 酸化ガリウム融液、酸化ガリウム単結晶、酸化ガリウム基板、および酸化ガリウム単結晶の製造方法
JP2014086458A (ja) * 2012-10-19 2014-05-12 Tamura Seisakusho Co Ltd 酸化ガリウム系基板の製造方法
JP2014221692A (ja) * 2013-05-13 2014-11-27 株式会社タムラ製作所 β−Ga2O3系単結晶の育成方法、並びにβ−Ga2O3系単結晶基板及びその製造方法

Also Published As

Publication number Publication date
JP5816343B1 (ja) 2015-11-18
JP2016013929A (ja) 2016-01-28

Similar Documents

Publication Publication Date Title
CN100435288C (zh) 硅晶片的制造方法
JP4918229B2 (ja) 貼り合わせウエーハの製造方法
CN110468446B (zh) 倒角的碳化硅衬底以及倒角的方法
JP6279619B2 (ja) 半導体基板の製造方法
US8562390B2 (en) Double-disc grinding apparatus and method for producing wafer
KR102537796B1 (ko) 인화인듐 기판 및 인화인듐 기판의 제조 방법
WO2016002707A1 (ja) 酸化ガリウム基板及びその製造方法
JP2018027893A (ja) Iii族窒化物半導体単結晶の製造方法
KR20160002323A (ko) β-Ga2O3계 단결정 기판
JP5836999B2 (ja) β−Ga2O3系単結晶の育成方法、及びβ−Ga2O3系単結晶基板の製造方法
US20160096248A1 (en) Ingot and methods for ingot grinding
WO2016021681A1 (ja) Ga2O3系単結晶基板
JP2019125731A (ja) 貼り合わせウェーハの製造方法
JP2021160999A (ja) 半導体基板及びその製造方法
TWI810847B (zh) 磷化銦基板
JP3648239B2 (ja) シリコンウエハの製造方法
WO2002019404A1 (fr) Procede de traitement d'un lingot monocristallin de silicium
JP5726061B2 (ja) ウェハの製造方法および半導体装置の製造方法
JP2009302478A (ja) 半導体ウェーハの製造方法
TWI737339B (zh) 單結晶矽的電阻率測定方法
JP2016013930A (ja) 酸化ガリウム基板の製造方法
JP2014224041A (ja) β−Ga2O3系単結晶基板
JP2016007690A (ja) サファイア基板の製造方法
TWI807347B (zh) 半導體基底以及半導體裝置的製造方法
JP2016074553A (ja) Iii族窒化物半導体単結晶基板の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15815481

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15815481

Country of ref document: EP

Kind code of ref document: A1