WO2015063996A1 - 空気調和システム - Google Patents
空気調和システム Download PDFInfo
- Publication number
- WO2015063996A1 WO2015063996A1 PCT/JP2014/004624 JP2014004624W WO2015063996A1 WO 2015063996 A1 WO2015063996 A1 WO 2015063996A1 JP 2014004624 W JP2014004624 W JP 2014004624W WO 2015063996 A1 WO2015063996 A1 WO 2015063996A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- air conditioner
- air
- indoor
- human detection
- person
- Prior art date
Links
- 238000004378 air conditioning Methods 0.000 title claims description 76
- 238000001514 detection method Methods 0.000 claims description 90
- 230000000284 resting effect Effects 0.000 abstract description 30
- 239000003507 refrigerant Substances 0.000 description 20
- 230000001052 transient effect Effects 0.000 description 16
- 238000000034 method Methods 0.000 description 8
- 230000006870 function Effects 0.000 description 5
- 239000000725 suspension Substances 0.000 description 5
- 238000001816 cooling Methods 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 230000001143 conditioned effect Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 101001139126 Homo sapiens Krueppel-like factor 6 Proteins 0.000 description 1
- 101000661807 Homo sapiens Suppressor of tumorigenicity 14 protein Proteins 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 108090000237 interleukin-24 Proteins 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/62—Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/30—Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/30—Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
- F24F11/46—Improving electric energy efficiency or saving
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/50—Control or safety arrangements characterised by user interfaces or communication
- F24F11/56—Remote control
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/62—Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
- F24F11/63—Electronic processing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/70—Control systems characterised by their outputs; Constructional details thereof
- F24F11/80—Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
- F24F11/83—Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
- F24F11/84—Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/70—Control systems characterised by their outputs; Constructional details thereof
- F24F11/80—Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
- F24F11/86—Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/70—Control systems characterised by their outputs; Constructional details thereof
- F24F11/80—Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
- F24F11/87—Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling absorption or discharge of heat in outdoor units
- F24F11/871—Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling absorption or discharge of heat in outdoor units by controlling outdoor fans
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/62—Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
- F24F11/63—Electronic processing
- F24F11/65—Electronic processing for selecting an operating mode
- F24F11/66—Sleep mode
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2120/00—Control inputs relating to users or occupants
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2120/00—Control inputs relating to users or occupants
- F24F2120/10—Occupancy
Definitions
- the present invention relates to an air conditioning system, and particularly relates to an air conditioning system that performs a rotation operation in which a part of a plurality of air conditioners is sequentially stopped.
- the air conditioning system of Patent Document 2 includes a human detection sensor, and the air conditioner is normally operated while the human detection sensor detects the presence of a person. Moreover, when the human detection sensor does not detect the presence of a person and other certain conditions are satisfied, the power consumption of the air conditioner is reduced. As means for reducing the power consumption, for example, the air conditioner is stopped.
- the air-conditioned space may be excessively conditioned. That is, when the rotation operation is performed, as described above, the air-conditioned space is sufficiently conditioned only by the air conditioner in the operating state.
- the air conditioner that is stopped by the rotation operation is operated based on the detection of the presence of a person by the human detection sensor, the air conditioner is not necessarily required to sufficiently perform the air conditioning of the air-conditioned space. Will be driven (hereinafter referred to as excessive operation). If excessive operation is performed, power is wasted and the life of the entire air conditioning system is shortened.
- the present invention has been made in view of the above points, and an object thereof is to prevent excessive operation and reduce power consumption in an air conditioning system that performs control based on rotation operation and human detection, and at the same time,
- the purpose is to extend the service life.
- a first aspect of the present disclosure is provided in a plurality of air conditioners (10) each having an indoor unit (12) and an outdoor unit (11), and the indoor unit (12) of each air conditioner (10). And a human detection sensor (51) for detecting the presence or absence of a person in the room, the rotation operation in which a part of the plurality of air conditioners (10) is sequentially stopped, and the air conditioners (10) Targeted is an air conditioning system (1) configured to be capable of performing an absence operation while the human detection sensor (51) of the air conditioner (10) detects the absence of a person. .
- each air conditioner (10) is in a resting state while the person detection sensor (51) detects a person's occupancy while the air conditioner (10) is resting by the rotation operation. It is comprised so that it may be hold
- the air conditioning system (1) is configured to be able to perform rotation operation and absence operation.
- rotation operation some of the plurality of air conditioners (10) are sequentially put into a resting state.
- absence operation while the human detection sensor (51) detects the absence of a person, the air conditioner (10) provided with the human detection sensor (51) is put into a dormant state.
- the human detection sensor (51) detects the presence of a person
- the absence operation is not performed on the air conditioner (10) provided with the human detection sensor (51). That is, while the human detection sensor (51) detects the presence of a person, the air conditioner (10) provided with the human detection sensor (51) is in a state where it can be operated.
- the human detection sensor (51) of the air conditioner (10) that is stopped by rotation operation detects the presence of a person. At that time, if the air conditioner (10) is operated without rotating operation, excessive operation is performed.
- each air conditioner (10) is put into a dormant state by rotation operation even if its human detection sensor (51) detects the presence of a person. It is kept in a rest state. That is, the air conditioner (10) that is stopped by the rotation operation does not enter the operation state regardless of the rotation operation. Therefore, in the air conditioning system (1) according to the present invention, excessive operation is not performed.
- the second aspect of the present disclosure is characterized in that, in the first aspect, the execution and stop of the absence operation can be switched.
- the air conditioner (10) is configured to determine whether or not the length of a pause time due to the rotation operation is paused due to the absence operation. It is characterized by not being changed depending on.
- the length of the downtime due to the rotation operation of each air conditioner (10) is not changed depending on whether or not the air conditioner (10) is stopped due to the absence operation.
- the human detection sensor (51) is held in a pause state while detecting the presence of a person. The Thereby, since an excessive operation is not performed, it is possible to reduce power consumption and at the same time extend the life of the entire air conditioning system (1).
- FIG. 1 is a schematic diagram illustrating a schematic configuration of an air conditioning system.
- FIG. 2 is a refrigerant circuit diagram illustrating a schematic configuration of the air conditioner.
- FIG. 3 is a flowchart for explaining the rotation operation of the air conditioning system.
- FIG. 4 is a timing chart for explaining the rotation operation of the air conditioning system.
- FIG. 5 is a flowchart for explaining human detection control of the air conditioning system.
- FIG. 6 is a timing chart for explaining human detection control of the air conditioning system.
- FIG. 7 is a timing chart for explaining a case where the human detection control is stopped in the air conditioning system.
- the air conditioning system (1) includes a plurality of air conditioners (10) that perform indoor air conditioning, and a remote controller (20).
- the plurality of air conditioners (10) are constituted by first to third air conditioners (10a to 10c) and are arranged in the same room.
- a rotation operation in which a part of the first to third air conditioners (10a to 10c) pauses sequentially, and the air conditioner (10) according to the presence or absence of a person in the room Human detection control for switching the driving state is performed. The rotation operation and human detection control will be described in detail later.
- the remote controller (20) includes a display unit (21), an operation unit (22), and a control unit (23).
- the display unit (21) displays information related to the operating state of the air conditioning system (1), information related to the indoor environment (for example, indoor temperature) and the like.
- the operation unit (22) is operated by the user to cause the air conditioning system (1) to perform various operations.
- the operation unit (22) is configured by, for example, operation buttons pressed by the user.
- the control unit (23) is constituted by a CPU, a memory, and the like, and is electrically connected to the first to third air conditioners (10a to 10c) via wiring to be connected to the first to third air conditioners ( Communicate with 10a-10c).
- the control unit (23) controls the first to third air conditioners (10a to 10c) in response to the operation given to the operation unit (22).
- the control unit (23) includes a rotation control unit that performs a rotation operation.
- FIG. 2 shows a configuration example of the air conditioner (10).
- the air conditioner (10) has an outdoor unit (11) and an indoor unit (12).
- the outdoor unit (11) and the indoor unit (12) are connected to each other via a liquid side connecting pipe (13) and a gas side connecting pipe (14).
- the outdoor unit (11), the indoor unit (12), the liquid side connection pipe (13), and the gas side connection pipe (14) form a refrigerant circuit (30).
- the refrigerant circuit (30) is a closed circuit filled with refrigerant, and includes a compressor (31), a four-way switching valve (32), an outdoor heat exchanger (33), an expansion valve (34), and indoor heat. And an exchanger (35).
- the outdoor unit (11) includes a compressor (31), a four-way switching valve (32), an outdoor heat exchanger (33), and an expansion valve (34).
- the indoor unit (12) (35).
- the outdoor unit (11) includes an outdoor fan (36) and an outdoor control unit (41).
- the indoor unit (12) includes an indoor fan (37), an indoor control unit (42), an indoor temperature sensor (50), and a human detection sensor (51).
- the compressor (31) has a discharge side connected to the first port of the four-way switching valve (32) and a suction side connected to the second port of the four-way switching valve (32).
- the outdoor heat exchanger (33), the expansion valve (34), and the indoor heat exchanger are sequentially arranged from the third port to the fourth port of the four-way switching valve (32). (35) is arranged.
- the outdoor fan (36) is disposed in the vicinity of the outdoor heat exchanger (33), and the indoor fan (37) is disposed in the vicinity of the indoor heat exchanger (35).
- the compressor (31) compresses and discharges the refrigerant, and is configured to change its capacity.
- the compressor (31) is constituted by a scroll type or rotary type hermetic compressor.
- the four-way switching valve (32) includes a first state (state indicated by a solid line in FIG. 2) in which the first port communicates with the third port and the second port communicates with the fourth port; It is configured to be switchable to a second state (state indicated by a broken line in FIG. 2) in which the port communicates with the fourth port and the second port communicates with the third port.
- the outdoor fan (36) supplies outdoor air to the outdoor heat exchanger (33).
- the outdoor heat exchanger (33) exchanges heat between the outdoor air conveyed by the outdoor fan (36) and the refrigerant.
- the outdoor heat exchanger (33) is constituted by, for example, a cross-fin type fin-and-tube heat exchanger.
- the expansion valve (34) adjusts the pressure of the refrigerant, and is configured to be able to adjust the opening degree.
- the expansion valve (34) is constituted by, for example, an electronic expansion valve.
- the indoor fan (37) supplies room air to the indoor heat exchanger (35).
- the indoor heat exchanger (35) causes the indoor air conveyed by the indoor fan (37) to exchange heat with the refrigerant.
- the indoor heat exchanger (35) is constituted by, for example, a cross fin type fin-and-tube heat exchanger.
- the indoor temperature sensor (50) is disposed upstream of the indoor heat exchanger (35) in the indoor unit (12) (upstream in the direction of air flow), and the temperature detected by the indoor temperature sensor (50) is The temperature is substantially equal to the room temperature.
- the room temperature detected by the room temperature sensor (50) is transmitted to the room controller (42).
- the human detection sensor (51) is provided in the indoor unit (12).
- the human detection sensor (51) is constituted by first to third human detection sensors (51a to 51c), and detects the presence or absence of a person in the room. More specifically, each person detection sensor (51) detects the presence or absence of a person around the indoor unit (12) in which the person detection sensor (51) is provided.
- the first person detection sensor (51a) provided in the indoor unit (12) of the first air conditioner (10a) can detect a person around the indoor unit (12) of the first air conditioner (10a). Detect the presence or absence. And the information regarding the presence or absence of the person detected by the human detection sensor (51) is transmitted to the indoor control unit (42).
- Each of the outdoor control unit (41) and the indoor control unit (42) is configured by a CPU, a memory, and the like, and is electrically connected to each other via wiring to communicate with each other.
- the outdoor control unit (41) and the indoor control unit (42) are also electrically connected to the control unit (23) of the remote controller (20) via wiring to communicate with the control unit (23). To do.
- the outdoor control unit (41) controls operations of the compressor (31), the four-way switching valve (32), the expansion valve (34), and the outdoor fan (36) provided in the outdoor unit (11).
- the indoor control unit (42) controls the operation of the indoor fan (37) provided in the indoor unit (12).
- the operation of the air conditioner (10) is controlled by controlling the operation of the refrigerant circuit (30) and the operations of the outdoor fan (36) and the indoor fan (37).
- a memory (not shown) of the indoor control unit (42) stores a target temperature preset for the indoor temperature.
- the indoor control unit (42) has a human detection control unit that performs human detection control described later.
- the air conditioner (10) performs indoor air conditioning so that the room temperature detected by the room temperature sensor (50) approaches a preset target temperature. Specifically, the air conditioner (10) performs a cooling operation and a heating operation.
- the outdoor control unit (41) and the indoor control unit (42) set the four-way switching valve (32) to the first state (the state indicated by the solid line in FIG. 2), and the compressor (31) and the outdoor fan (36) and the indoor fan (37) are driven.
- a refrigerant circuit (30) an outdoor heat exchanger (33) functions as a condenser, and an indoor heat exchanger (35) functions as an evaporator.
- the high-pressure refrigerant compressed by the compressor (31) flows into the outdoor heat exchanger (33), dissipates heat to the outdoor air and condenses in the outdoor heat exchanger (33).
- the refrigerant condensed in the outdoor heat exchanger (33) flows into the indoor heat exchanger (35) after being decompressed by the expansion valve (34), and absorbs heat from the indoor air and evaporates in the indoor heat exchanger (35). Thereby, indoor air is cooled.
- the refrigerant evaporated in the indoor heat exchanger (35) is sucked into the compressor (31) and compressed again.
- the outdoor control unit (41) and the indoor control unit (42) set the four-way switching valve (32) to the second state (the state indicated by the broken line in FIG. 2), and the compressor (31) and the outdoor fan (36) and the indoor fan (37) are driven.
- a refrigerant circuit (30) an indoor heat exchanger (35) functions as a condenser
- an outdoor heat exchanger (33) functions as an evaporator.
- the high-pressure refrigerant compressed by the compressor (31) flows into the indoor heat exchanger (35), and dissipates heat to the indoor air and condenses in the indoor heat exchanger (35). Thereby, indoor air is heated.
- the refrigerant condensed in the indoor heat exchanger (35) flows into the outdoor heat exchanger (33) after being decompressed by the expansion valve (34), and absorbs heat from the outdoor air and evaporates in the outdoor heat exchanger (33).
- the refrigerant evaporated in the outdoor heat exchanger (33) is sucked into the compressor (31) and compressed again.
- the air conditioner (10) is either a resting machine or a driving machine.
- a memory bit (not shown) of the indoor control unit (42) of the air conditioner (10) stores a pause bit value indicating whether or not the air conditioner (10) is a pause machine. Has been.
- the air conditioner (10) is a pause machine, the pause bit value is “1”, and when the air conditioner (10) is not a pause machine (ie, the air conditioner ( When 10) is a driver, the pause bit value is “0”.
- the outdoor control unit (41) and the indoor control unit (42) stop the operations of the compressor (31), the outdoor fan (36), and the indoor fan (37).
- the outdoor control unit (41) and the indoor control unit (42) include the compressor (31), the outdoor fan (36), and the indoor fan. Drive (37).
- the compressor (31) and the fans (36, 37) are stopped when the room temperature reaches the specified target temperature range (so-called thermo-off operation) Do).
- the air conditioner (10) is set to one of the resting machine and the operating machine by the control unit (23) of the remote controller (20).
- the control unit (23) indicated a pause command (for example, “1”) to the air conditioner (10) to be selected as a pause machine among the plurality of air conditioners (10).
- Instruction code including a pause bit value.
- the air conditioner (10) that is the destination of the pause command, when the CPU (not shown) of the indoor control unit (42) receives the pause command from the control unit (23), the indoor control unit (42) The pause bit value stored in the memory (not shown) is set to “1”. In this way, the air conditioner (10) is selected as a resting machine.
- control unit (23) instructs the air conditioner (10) to be selected as the operating unit among the plurality of air conditioners (10) to enter a pause release command (for example, a pause bit indicating “0”). Instruction code including value). Then, in the air conditioner (10) that is the destination of the suspension release command, when the CPU of the indoor control unit (42) receives the suspension release command from the control unit (23), the memory of the indoor control unit (42) Is set to "0". In this way, the air conditioner (10) is selected as a driver.
- a pause release command for example, a pause bit indicating “0”. Instruction code including value
- the memory (not shown) of the control unit (23) of the remote controller (20) of the control unit (23) of the remote controller (20) information on the operation order of the air conditioner (10) in the rotation operation (specifically, the stop machine) The number of units, the order of selecting the resting machine, etc.) are stored.
- the memory of the control unit (23) stores information related to the operation time in rotation operation (specifically, initial operation time (T0), partial downtime (T1), transient operation time (T2), etc.) Has been.
- the initial operation time (T0) and the transient operation time (T2) are set to 0.5 hours
- the partial downtime (T1) is any time between 2.5 hours and 95.5 hours. Is set to
- ⁇ Step (ST11)> First, initial operation is performed. In the initial operation, indoor air conditioning is performed by a predetermined number of air conditioners (10) among the plurality of air conditioners (10). It should be noted that the number of air conditioners (10) that serve as operating units in the initial operation is greater than the number of air conditioners (10) that serve as operating units in the partial rest operation. Specifically, a control part (23) selects the air conditioner (10) used as a driving device from several air conditioners (10) based on the predetermined operation order. The air conditioner (10) selected as the operating unit performs a cooling operation or a heating operation (hereinafter collectively referred to as an air conditioning operation).
- an air conditioning operation a cooling operation or a heating operation
- Step (ST12) the control unit (23) determines whether or not a preset initial operation time (T0) has elapsed since the start of the initial operation. Specifically, when the control unit (23) selects the air conditioner (10) as the operating unit in step (ST11), the control unit (23) starts measuring the elapsed time, and the elapsed time reaches the initial operating time (T0). Determine whether or not. If the initial operation time (T0) has elapsed, the process proceeds to step (ST13).
- a partial rest operation is performed.
- some of the air conditioners (10) determined in advance among the plurality of air conditioners (10) are paused, while the remaining air conditioners (10) are used for indoor air conditioning. Is done.
- the control unit (23) selects a pause unit from the air conditioners (10) that are operating units among the plurality of air conditioners (10). Select the air conditioner (10).
- the air conditioner (10) selected as the pause machine pauses the air conditioning operation.
- the control unit (23) determines whether or not a preset partial pause time (T1) has elapsed since the start of the partial pause operation. Specifically, when the control unit (23) selects the air conditioner (10) as a pause machine in step (ST13), the controller (23) starts measuring the elapsed time, and the elapsed time is partially reduced to the pause time (T1). It is determined whether it has been reached. If the partial rest time (T1) has elapsed, the process proceeds to step (ST15).
- transient operation is performed.
- the air conditioner (10) that is scheduled to be the next stop among the multiple air conditioners (10) continues the air conditioner operation, and the air conditioner (10) Part or all of them resume air conditioning operation.
- the control unit (23) based on a predetermined operation order, selects the operating unit from among the air conditioners (10) that are out of service among the plurality of air conditioners (10). Select the air conditioner (10).
- the air conditioner (10) selected as the driver restarts the air conditioning operation.
- the control unit (23) determines whether or not a preset transient operation time (T2) has elapsed since the start of the transient operation. Specifically, when the control unit (23) selects the air conditioner (10) as the operating unit in step (ST15), the control unit (23) starts measuring the elapsed time, and the elapsed time reaches the transient operating time (T2). Determine whether or not. If the transient operation time (T2) has elapsed, the process proceeds to step (ST13).
- one air conditioner is selected from the first to third air conditioners (10a to 10c) in the partial pause operation so that the first air conditioner (10a) becomes one stop at a time. (10) is selected as the resting machine. In the initial operation, all of the first to third air conditioners (10a to 10c) are selected as the operating units.
- a rotation start operation is given to the operation unit (22) of the remote controller (20), and all of the first to third air conditioners (10a to 10c) become operating units.
- the control unit (23) of the remote controller (20) transmits a suspension release command to all of the first to third air conditioners (10a to 10c).
- indoor air conditioning is performed by the three air conditioners (10a to 10c).
- the first air conditioner (10a) is selected from the first to third air conditioners (10a to 10c) that are operating machines. Is selected as the resting machine.
- the control unit (23) transmits a pause command to the first air conditioner (10a).
- indoor air conditioning is performed by the two air conditioners (10b, 10c) excluding the first air conditioner (10a).
- the first air conditioner (10a) that is a pause is selected as the operating unit.
- the control unit (23) transmits a pause release command to the first air conditioner (10a).
- the second air conditioner (10b) scheduled to be the next stop machine continues the air condition operation
- the first air conditioner (10a) that is the stop machine Resume air conditioning is performed by the three air conditioners (10a to 10c).
- the second air conditioner (10b) is selected from the first to third air conditioners (10a to 10c) that are operating machines. Is selected as the resting machine.
- indoor air conditioning is performed by the two air conditioners (10a, 10c) excluding the second air conditioner (10b).
- the second air conditioner (10b) that is a pause is selected as the operating unit.
- the third air conditioner (10c) which is scheduled to be the next stop, continues the air conditioning operation, and the second air conditioner (10b), which is the stop, Resume air conditioning.
- the first air conditioner (10a) also continues the air conditioning operation. Therefore, indoor air conditioning is performed by the three air conditioners (10a to 10c).
- the third air conditioner (10c) is selected from the first to third air conditioners (10a to 10c) that are operating machines. Is selected as the resting machine.
- indoor air conditioning is performed by the two air conditioners (10a, 10b) excluding the third air conditioner (10c).
- the third air conditioner (10c) that is a pause is selected as the operating unit.
- the first air conditioner (10a) scheduled to become the next stop machine continues the air condition operation
- the third air conditioner (10c) that becomes the stop machine Resume air conditioning The second air conditioner (10b) also continues the air conditioning operation. Therefore, indoor air conditioning is performed by the three air conditioners (10a to 10c).
- the first air conditioner (10a) is selected from the first to third air conditioners (10a to 10c) that are operating machines. Is again selected as a dormant machine. Thereby, in the 4th partial rest operation, indoor air conditioning is performed by two air conditioners (10b, 10c) excluding the first air conditioner (10a).
- the operation time of the plurality of air conditioners (10) can be leveled by sequentially stopping a part of the plurality of air conditioners (10).
- the initial operation during the rotation operation start period it is possible to suppress a decrease in the air conditioning capability of the air conditioning system (1) during the rotation operation start period.
- the air conditioner (10) that has become the resting machine is switched from the resting machine to the driving machine, and then scheduled to become the resting machine next.
- the air conditioner (10) can be switched from the operating machine to the resting machine. Thereby, the fall of the air conditioning capability of the air conditioning system (1) by switching from the rest machine of an air conditioner (10) to a driving device can be suppressed.
- the indoor control unit (42) determines whether the human detection sensor (51) of the indoor unit (12) detects the presence of a person or the absence of a person.
- the process proceeds to step (ST22).
- the human detection sensor (51) detects the absence of a person, the process proceeds to step (ST23).
- Step (ST22)> When the human detection sensor (51) detects the presence of a person in the room, the indoor control unit (42) performs air conditioning operation on the air conditioner (10) provided with the human detection sensor (51). Let it be done. Thereby, the air conditioner (10) in which a person exists around performs air conditioning operation. Note that the air conditioner (10) that is selected as a resting machine by rotation operation is selected as a driver even if the human detection sensor (51) of the air conditioner (10) detects the presence of a person It will never be done. Thereafter, the process proceeds again to step (ST21).
- Step (ST23) ⁇ On the other hand, when the human detection sensor (51) detects the absence of a person, the indoor control unit (42) performs an absence operation. That is, the indoor control unit (42) selects the air conditioner (10) provided with the person detection sensor (51) that detects the absence of a person as a resting machine. As a result, the air conditioner (10) in which no person is present is held in a resting state. Thereafter, the process proceeds again to step (ST21).
- the operation state of the air conditioner (10) is switched according to the presence or absence of a person in the room. Then, when the human detection end operation (operation for instructing the end of the human detection control) is given to the operation unit (22) of the remote controller (20), the human detection control is ended.
- human detection control is performed in the air conditioning system (1) in which the rotation operation described above is performed.
- the case of performing human detection control see FIG. 6
- the case of stopping human detection control see FIG. 7
- the third person detection sensor (51c) detects the absence of a person.
- the third air conditioner (10c) is selected as the driver.
- the third air conditioner (10c) stops the air conditioning operation due to the absence operation.
- the first air conditioner (10a) is selected as the operating unit, and the second air conditioner (10b) is selected as the resting unit. Therefore, indoor air conditioning is performed only by the first air conditioner (10a) among the three air conditioners (10a to 10c).
- the third person detection sensor (51c) detects the presence of a person again. Then, the absence operation is not performed, and the third air conditioner (10c) is selected again as the operating unit. Thereby, the 3rd air harmony machine (10c) performs air harmony operation.
- the first air conditioner (10a) is selected as the operating unit
- the second air conditioner (10b) is selected as the resting unit. Therefore, indoor air conditioning is performed by the two air conditioners (10a, 10c) excluding the second air conditioner (10b).
- the first air conditioner (10a) is selected as a resting machine in the rotation operation.
- the first person detection sensor (51a) of the first air conditioner (10a) detects the presence of a person in the same period.
- the first air conditioner (10a) pauses the air conditioning operation. In other words, the first air conditioner (10a) is kept in a resting state while the first person detection sensor (51a) detects the presence of a person while the first air conditioner (10a) is resting due to the rotation operation.
- each air conditioner (10a to 10c) is held in a suspended state while each person detection sensor (51a to 51c) detects a person's occupancy while it is suspended by rotation operation. . Thereby, since an excessive operation is not performed, it is possible to reduce power consumption and at the same time extend the life of the air conditioning system (1).
- the operation is stopped for a part of the stop time (T1).
- the third air conditioner (10c) whose operation was suspended by the absence operation over the period from the time (t8) to the time (t9) is also in the period from the subsequent time (t5) to the time (t6).
- the operation is suspended for part of the downtime (T1).
- whether the first to third air conditioners (10a to 10c) have been paused due to the absence operation due to the length of the suspension time (here, the partial suspension time (T1)) due to the rotation operation. Does not change. Thereby, since it is not necessary to change the rest time in the rotation operation depending on whether or not the absence operation is performed, the control in the rotation operation can be made relatively simple.
- a rotation start operation is given to the operation unit (22) of the remote controller (20), but no human detection start operation is given. Then, the rotation operation described above is started, but the human detection control is not performed. That is, even when the human detection sensor (51) detects the absence of a person, the absence operation is not executed.
- the third person detection sensor (51c) detects the absence of a person.
- the third air conditioner (10c) is selected as the driver.
- the 3rd air conditioner (10c) remains selected as a driving device. Therefore, the third air conditioner (10c) performs the air conditioning operation without stopping even during the period from time (t8) to time (t9).
- the first air conditioner (10a) is selected as the operating unit, and the second air conditioner (10b) is selected as the resting unit. Therefore, indoor air conditioning is performed by the two air conditioners (10a, 10c) excluding the second air conditioner (10b).
- FIG. 7 in order to show the relationship between the presence or absence of a person and the operating state of an air conditioner (10), the detection state of the human detection sensor (51) is displayed. The detection function of the human detection sensor (51) may be stopped.
- the operation state of the air conditioner (10) is not changed depending on the presence or absence of a person in the room. This is extremely useful in an application (for example, a data center) in which a certain number of air conditioners (10) need to perform air conditioning operation even when there are no people in the room.
- the human detection sensor (51) is also paused while detecting the presence of a person. Retained. Thereby, since an excessive operation is not performed, it is possible to reduce power consumption and at the same time extend the life of the entire air conditioning system (1).
- the pause command and the pause release command are transmitted from the control unit (23) of the remote controller (20) to each of the plurality of air conditioners (10).
- the pause command may be configured to circulate. That is, each of the plurality of air conditioners (10) may be configured to set the other air conditioner (10) as one of the resting machine and the operating machine. For example, when an air conditioner (10) receives a pause command, it is set as a pause machine, and when it is set as a pause machine, it switches itself from the pause machine to a driver when a temporary pause time (T1) elapses.
- T1 temporary pause time
- a pause command may be transmitted to a predetermined destination air conditioner (10).
- the rotation operation can be started by transmitting a pause command from the control unit (23) of the remote controller (20) to any one of the plurality of air conditioners (10). . That is, a part of the plurality of air conditioners (10) can be sequentially stopped by the control unit (23) of the remote controller (20).
- the process of human detection control is performed by the indoor control part (42) of each air conditioner (10), it is not restricted to this, For example, the control part (23) of a remote controller (20) May be performed.
- the air conditioner (10) includes one outdoor unit (11) and one indoor unit (12).
- the present invention is not limited to this, and the air conditioner (10) One outdoor unit (11) and two or more indoor units (12) may be provided.
- the present invention is useful for an air conditioning system that performs rotation operation.
- Air conditioning system 10a-10c First to third air conditioners (air conditioners) 11 Outdoor unit 12 Indoor unit 51a to 51c 1st to 3rd person detection sensor (human detection sensor)
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Signal Processing (AREA)
- Thermal Sciences (AREA)
- Fuzzy Systems (AREA)
- Mathematical Physics (AREA)
- Human Computer Interaction (AREA)
- Air Conditioning Control Device (AREA)
Abstract
Description
図1は、実施形態による空気調和システム(1)の構成例を示している。空気調和システム(1)は、室内の空気調和を行う複数の空気調和機(10)と、リモートコントローラ(20)とを備えている。この例では、複数の空気調和機(10)は、第1~第3空気調和機(10a~10c)によって構成され、同一の室内に配置されている。また、この空気調和システム(1)では、第1~第3空気調和機(10a~10c)の一部が順次休止するローテーション運転と、室内における人の有無に応じて空気調和機(10)の運転状態を切り換える人検知制御とが行われる。ローテーション運転および人検知制御については、後で詳しく説明する。
リモートコントローラ(20)は、表示部(21)と、操作部(22)と、制御部(23)とを有している。
図2は、空気調和機(10)の構成例を示している。空気調和機(10)は、室外機(11)と室内機(12)とを有している。室外機(11)と室内機(12)は、液側連絡配管(13)およびガス側連絡配管(14)を介して互いに接続されている。空気調和機(10)では、室外機(11)と室内機(12)と液側連絡配管(13)とガス側連絡配管(14)とによって、冷媒回路(30)が形成されている。
冷媒回路(30)は、冷媒が充填された閉回路であり、圧縮機(31)と、四方切換弁(32)と、室外熱交換器(33)と、膨張弁(34)と、室内熱交換器(35)とを有している。室外機(11)は、圧縮機(31)と、四方切換弁(32)と、室外熱交換器(33)と、膨張弁(34)とを備え、室内機(12)は、室内熱交換器(35)を備えている。さらに、室外機(11)は、室外ファン(36)と、室外制御部(41)とを備えている。一方、室内機(12)は、室内ファン(37)と、室内制御部(42)と、室内温度センサ(50)と、人検知センサ(51)とを備えている。
室内温度センサ(50)は、室内機(12)において室内熱交換器(35)の上流側(空気の流れる方向の上流側)に配置され、この室内温度センサ(50)によって検知された温度は、室内温度と実質的に等しくなっている。また、室内温度センサ(50)によって検知された室内温度は、室内制御部(42)に伝送される。
人検知センサ(51)は、室内機(12)に設けられている。本実施形態では、人検知センサ(51)は、第1~第3人検知センサ(51a~51c)によって構成されていて、室内の人の有無を検知する。より具体的には、各人検知センサ(51)は、それが設けられている室内機(12)の周辺における人の有無を検知する。例えば、第1空気調和機(10a)の室内機(12)に設けられている第1人検知センサ(51a)は、第1空気調和機(10a)の室内機(12)の周辺における人の有無を検知する。そして、人検知センサ(51)によって検知された人の有無に関する情報は、室内制御部(42)に伝送される。
室外制御部(41)および室内制御部(42)の各々は、CPUやメモリ等によって構成され、配線を介して互いに電気的に接続されて互いの間で通信する。また、室外制御部(41)および室内制御部(42)は、配線を介してリモートコントローラ(20)の制御部(23)にも電気的に接続されて制御部(23)との間で通信する。室外制御部(41)は、室外機(11)に設けられた圧縮機(31)、四方切換弁(32)、膨張弁(34)、および室外ファン(36)の動作を制御する。室内制御部(42)は、室内機(12)に設けられた室内ファン(37)の動作を制御する。このように、冷媒回路(30)の動作や室外ファン(36)および室内ファン(37)の動作を制御することにより、空気調和機(10)の運転が制御される。
次に、空気調和機(10)の基本的な運転動作について説明する。空気調和機(10)は、室内温度センサ(50)によって検知される室内温度が予め設定された目標温度に近づくように、室内の空気調和を行う。具体的には、空気調和機(10)は、冷房運転と暖房運転とを行う。
冷房運転では、室外制御部(41)および室内制御部(42)は、四方切換弁(32)を第1状態(図2に実線で示す状態)に設定し、圧縮機(31)と室外ファン(36)と室内ファン(37)とを駆動させる。これにより、冷媒回路(30)では、室外熱交換器(33)が凝縮器として機能し、室内熱交換器(35)が蒸発器として機能する。具体的には、圧縮機(31)によって圧縮された高圧の冷媒は、室外熱交換器(33)に流れ込み、室外熱交換器(33)において室外空気へ放熱して凝縮する。室外熱交換器(33)において凝縮した冷媒は、膨張弁(34)によって減圧された後に室内熱交換器(35)に流れ込み、室内熱交換器(35)において室内空気から吸熱して蒸発する。これにより、室内空気が冷却される。室内熱交換器(35)において蒸発した冷媒は、圧縮機(31)に吸入されて再び圧縮される。
暖房運転では、室外制御部(41)および室内制御部(42)は、四方切換弁(32)を第2状態(図2に破線で示す状態)に設定し、圧縮機(31)と室外ファン(36)と室内ファン(37)とを駆動させる。これにより、冷媒回路(30)では、室内熱交換器(35)が凝縮器として機能し、室外熱交換器(33)が蒸発器として機能する。具体的には、圧縮機(31)によって圧縮された高圧の冷媒は、室内熱交換器(35)に流れ込み、室内熱交換器(35)において室内空気へ放熱して凝縮する。これにより、室内空気が加熱される。室内熱交換器(35)において凝縮した冷媒は、膨張弁(34)によって減圧された後に室外熱交換器(33)に流れ込み、室外熱交換器(33)において室外空気から吸熱して蒸発する。室外熱交換器(33)において蒸発した冷媒は、圧縮機(31)に吸入されて再び圧縮される。
この空気調和システム(1)では、空気調和機(10)は、休止機および運転機のいずれか一方となる。具体的には、空気調和機(10)の室内制御部(42)のメモリ(図示せず)には、空気調和機(10)が休止機となっているか否かを示す休止ビット値が格納されている。空気調和機(10)が休止機となっている場合には、休止ビット値は「1」となっており、空気調和機(10)が休止機となっていない場合(すなわち、空気調和機(10)が運転機となっている場合)には、休止ビット値は「0」となっている。
次に、図3を参照して、ローテーション運転について説明する。リモートコントローラ(20)の操作部(22)に、ローテーション開始操作(ローテーション運転の開始を指示するための操作)が与えられると、空気調和システム(1)において以下の処理(初期運転、一部休止運転、過渡運転)が行われる。
まず、初期運転が行われる。初期運転では、複数の空気調和機(10)のうち予め定められた台数の空気調和機(10)によって室内の空気調和が行われる。なお、初期運転において運転機となる空気調和機(10)の台数は、一部休止運転において運転機となる空気調和機(10)の台数よりも多くなっている。具体的には、制御部(23)は、予め定められた運転順序に基づいて、複数の空気調和機(10)の中から運転機となる空気調和機(10)を選択する。運転機として選択された空気調和機(10)は、冷房運転や暖房運転(以下、これらを総称して空気調和運転という)を行う。
次に、制御部(23)は、初期運転の開始から予め設定された初期運転時間(T0)が経過したか否かを判定する。具体的には、制御部(23)は、ステップ(ST11)において運転機となる空気調和機(10)を選択すると経過時間の計測を開始し、その経過時間が初期運転時間(T0)に到達したか否かを判定する。初期運転時間(T0)が経過している場合には、ステップ(ST13)へ進む。
次に、一部休止運転が行われる。一部休止運転では、複数の空気調和機(10)のうち予め定められた一部の空気調和機(10)が休止機となる一方で、残りの空気調和機(10)によって室内の空気調和が行われる。具体的には、制御部(23)は、予め定められた運転順序に基づいて、複数の空気調和機(10)のうち運転機となっている空気調和機(10)の中から休止機となる空気調和機(10)を選択する。休止機として選択された空気調和機(10)は、空気調和運転を休止する。
次に、制御部(23)は、一部休止運転の開始から予め設定された一部休止時間(T1)が経過したか否かを判定する。具体的には、制御部(23)は、ステップ(ST13)において休止機となる空気調和機(10)を選択すると経過時間の計測を開始し、その経過時間が一部休止時間(T1)に到達したか否かを判定する。一部休止時間(T1)が経過している場合には、ステップ(ST15)へ進む。
次に、過渡運転が行われる。過渡運転では、複数の空気調和機(10)のうち次に休止機となる予定の空気調和機(10)が空気調和運転を継続するとともに、休止機となっている空気調和機(10)の一部または全部が空気調和運転を再開する。具体的には、制御部(23)は、予め定められた運転順序に基づいて、複数の空気調和機(10)のうち休止機となっている空気調和機(10)の中から運転機となる空気調和機(10)を選択する。運転機として選択された空気調和機(10)は、空気調和運転を再開する。
次に、制御部(23)は、過渡運転の開始から予め設定された過渡運転時間(T2)が経過したか否かを判定する。具体的には、制御部(23)は、ステップ(ST15)において運転機となる空気調和機(10)を選択すると経過時間の計測を開始し、その経過時間が過渡運転時間(T2)に到達したか否かを判定する。過渡運転時間(T2)が経過している場合には、ステップ(ST13)へ進む。
次に、図4を参照して、ローテーション運転について具体的に説明する。この例では、第1空気調和機(10a)から一つずつ順に休止機となるように、一部休止運転において第1~第3空気調和機(10a~10c)の中から一つの空気調和機(10)が休止機として選択される。また、初期運転において、第1~第3空気調和機(10a~10c)の全部が運転機として選択される。
次に、図5を参照して、人検知制御について説明する。リモートコントローラ(20)の操作部(22)に、人検知開始操作(人検知制御の開始を指示するための操作)が与えられると、空気調和システム(1)において以下の処理が行われる。なお、以下の処理は、各室内機(12)において個別に行われる。つまり、第1空気調和機(10a)の室内機(12)に設けられた室内制御部(42)は、第1人検知センサ(51a)の出力に基づいてステップ(ST21)~ステップ(ST23)の動作を行う。第2空気調和機(10b)および第3空気調和機(10c)においても同様である。
まず、室内制御部(42)は、室内機(12)の人検知センサ(51)が人の在室を検知しているか、または人の不在を検知しているかを判定する。そして、人検知センサ(51)が人の存在を検知している場合には、ステップ(ST22)へ進む。一方、人検知センサ(51)が人の不在を検知している場合には、ステップ(ST23)へ進む。
人検知センサ(51)が人の在室を検知している場合には、室内制御部(42)は、その人検知センサ(51)が設けられた空気調和機(10)に空気調和運転を行わせる。これにより、周囲に人が存在している空気調和機(10)は、空気調和運転を行う。なお、ローテーション運転によって休止機として選択されている空気調和機(10)については、その空気調和機(10)の人検知センサ(51)が人の在室を検知しても、運転機として選択されることはない。その後、再びステップ(ST21)へ進む。
一方、人検知センサ(51)が人の不在を検知している場合には、室内制御部(42)は、不在時動作を実行する。すなわち、室内制御部(42)は、人の不在を検知している人検知センサ(51)が設けられた空気調和機(10)を休止機として選択する。これにより、周囲に人が存在していない空気調和機(10)は、休止状態に保持される。その後、再びステップ(ST21)へ進む。
次に、図6および図7を参照して、人検知制御について具体的に説明する。この例では、上述したローテーション運転が行われている空気調和システム(1)において人検知制御が行われる。また、不在時動作を含む人検知制御の実行と停止とは、切り換え可能となっている。ここでは、まず、人検知制御を実行する場合(図6を参照)について説明した後、人検知制御を停止させる場合(図7を参照)について説明する。
図6に示すように、時刻(t0)になると、リモートコントローラ(20)の操作部(22)にローテーション開始操作および人検知開始操作が与えられる。すると、上述したローテーション運転が開始されると共に、人検知制御が行われる。つまり、人検知センサ(51)が人の不在を検知した場合に、不在時動作が実行され得る状態となる。
次に、人検知制御を停止させる場合について、人検知制御を実行する場合と異なる部分を、図7を参照して説明する。
本実施形態の空気調和システム(1)では、空気調和機(10)が、ローテーション運転によって休止している間は、人検知センサ(51)が人の在室を検知している間も休止状態に保持される。これにより、過剰運転が行われることがないので、消費電力を抑制すると同時に、空気調和システム(1)全体の長寿命化を図ることができる。
上記実施形態では、リモートコントローラ(20)の制御部(23)から複数の空気調和機(10)の各々に休止指令および休止解除指令が送信されるが、これに限らず、複数の空気調和機(10)において休止指令が循環するように構成されていてもよい。すなわち、複数の空気調和機(10)の各々が他の空気調和機(10)を休止機および運転機のいずれか一方に設定するように構成されていてもよい。例えば、空気調和機(10)は、休止指令を受信すると休止機に設定され、休止機に設定された後に一時休止時間(T1)が経過すると自身を休止機から運転機に切り換え、その後、過渡運転時間(T2)が経過すると予め定められた送信先の空気調和機(10)に対して休止指令を送信するように構成されていてもよい。このように構成した場合も、リモートコントローラ(20)の制御部(23)から複数の空気調和機(10)のいずれか一つに休止指令を送信することにより、ローテーション運転を開始することができる。すなわち、リモートコントローラ(20)の制御部(23)によって複数の空気調和機(10)の一部を順次休止させることができる。
10a~10c 第1~第3空気調和機(空気調和機)
11 室外機
12 室内機
51a~51c 第1~第3人検知センサ(人検知センサ)
Claims (3)
- 室内機(12)および室外機(11)をそれぞれが有する複数の空気調和機(10)と、該各空気調和機(10)の室内機(12)に設けられて室内の人の有無を検知する人検知センサ(51)とを備え、
上記複数の空気調和機(10)の一部が順次休止するローテーション運転と、上記各空気調和機(10)を該空気調和機(10)の上記人検知センサ(51)が人の不在を検知している間は休止状態とする不在時動作とを実行可能に構成された空気調和システム(1)であって、
上記各空気調和機(10)は、上記ローテーション運転によって休止している間は、上記人検知センサ(51)が人の在室を検知している間も休止状態に保持されるように構成されている
ことを特徴とする空気調和システム。 - 請求項1において、
上記不在時動作の実行と停止とが切り換え可能になっている
ことを特徴とする空気調和システム。 - 請求項1または2において、
上記各空気調和機(10)は、上記ローテーション運転による休止時間の長さが、上記不在時動作によって休止したか否かによっては変更されないように構成されている
ことを特徴とする空気調和システム。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201480046080.2A CN105473947B (zh) | 2013-10-31 | 2014-09-09 | 空调系统 |
EP14857969.1A EP3043119B1 (en) | 2013-10-31 | 2014-09-09 | Air-conditioning system |
AU2014341785A AU2014341785B2 (en) | 2013-10-31 | 2014-09-09 | Air-conditioning system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013226705A JP5910610B2 (ja) | 2013-10-31 | 2013-10-31 | 空気調和システム |
JP2013-226705 | 2013-10-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015063996A1 true WO2015063996A1 (ja) | 2015-05-07 |
Family
ID=53003632
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/004624 WO2015063996A1 (ja) | 2013-10-31 | 2014-09-09 | 空気調和システム |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP3043119B1 (ja) |
JP (1) | JP5910610B2 (ja) |
CN (1) | CN105473947B (ja) |
AU (1) | AU2014341785B2 (ja) |
WO (1) | WO2015063996A1 (ja) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106196445A (zh) * | 2016-07-12 | 2016-12-07 | 广东美的制冷设备有限公司 | 空调及其控制方法 |
WO2019049363A1 (ja) * | 2017-09-11 | 2019-03-14 | 三菱電機株式会社 | 空気調和機および空気調和機の制御方法 |
JP2019190768A (ja) * | 2018-04-26 | 2019-10-31 | 三菱電機株式会社 | 環境制御システム |
CN110131845B (zh) * | 2019-05-22 | 2021-03-30 | 广东美的暖通设备有限公司 | 一种空调器及其控制方法、计算机可读存储介质 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02146454A (ja) * | 1988-11-28 | 1990-06-05 | Mitsubishi Electric Corp | 空気調和機 |
JP2000240998A (ja) * | 1999-02-18 | 2000-09-08 | Sanyo Electric Co Ltd | 空気調和機 |
JP2006275458A (ja) | 2005-03-30 | 2006-10-12 | Mitsubishi Electric Corp | 空気調和装置 |
JP2010038375A (ja) * | 2008-07-31 | 2010-02-18 | Mitsubishi Electric Corp | 空調制御装置および空調制御方法 |
JP2012007887A (ja) * | 2011-10-11 | 2012-01-12 | Daikin Industries Ltd | 空気調和システム及び空調管理装置 |
JP2013108693A (ja) | 2011-11-22 | 2013-06-06 | Daikin Industries Ltd | 空気調和機の省電力運転方法、空気調和機の制御システム、及び空気調和システム |
JP2013160477A (ja) * | 2012-02-07 | 2013-08-19 | Mitsubishi Heavy Ind Ltd | 空調システム |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002013784A (ja) * | 2000-06-29 | 2002-01-18 | Sanyo Electric Co Ltd | 空気調和システム |
JP4643067B2 (ja) * | 2001-07-23 | 2011-03-02 | 三機工業株式会社 | 空気調和機の省エネルギシステム |
KR100546616B1 (ko) * | 2004-01-19 | 2006-01-26 | 엘지전자 주식회사 | 멀티공기조화기의 제어방법 |
JP4453679B2 (ja) * | 2005-05-24 | 2010-04-21 | ダイキン工業株式会社 | 設備制御システムおよび設備制御装置 |
JP5436692B2 (ja) * | 2010-10-18 | 2014-03-05 | 三菱電機株式会社 | 空調制御装置、空調制御方法及びプログラム |
JP5708997B2 (ja) * | 2011-06-07 | 2015-04-30 | 清水建設株式会社 | 運転制御装置、運転制御方法、プログラム |
US9046284B2 (en) * | 2011-09-30 | 2015-06-02 | Fujitsu General Limited | Air conditioning apparatus |
CN202660676U (zh) * | 2012-04-19 | 2013-01-09 | 陈宏乔 | 空调用节能控制器 |
-
2013
- 2013-10-31 JP JP2013226705A patent/JP5910610B2/ja active Active
-
2014
- 2014-09-09 CN CN201480046080.2A patent/CN105473947B/zh active Active
- 2014-09-09 AU AU2014341785A patent/AU2014341785B2/en active Active
- 2014-09-09 EP EP14857969.1A patent/EP3043119B1/en active Active
- 2014-09-09 WO PCT/JP2014/004624 patent/WO2015063996A1/ja active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02146454A (ja) * | 1988-11-28 | 1990-06-05 | Mitsubishi Electric Corp | 空気調和機 |
JP2000240998A (ja) * | 1999-02-18 | 2000-09-08 | Sanyo Electric Co Ltd | 空気調和機 |
JP2006275458A (ja) | 2005-03-30 | 2006-10-12 | Mitsubishi Electric Corp | 空気調和装置 |
JP2010038375A (ja) * | 2008-07-31 | 2010-02-18 | Mitsubishi Electric Corp | 空調制御装置および空調制御方法 |
JP2012007887A (ja) * | 2011-10-11 | 2012-01-12 | Daikin Industries Ltd | 空気調和システム及び空調管理装置 |
JP2013108693A (ja) | 2011-11-22 | 2013-06-06 | Daikin Industries Ltd | 空気調和機の省電力運転方法、空気調和機の制御システム、及び空気調和システム |
JP2013160477A (ja) * | 2012-02-07 | 2013-08-19 | Mitsubishi Heavy Ind Ltd | 空調システム |
Non-Patent Citations (1)
Title |
---|
See also references of EP3043119A4 |
Also Published As
Publication number | Publication date |
---|---|
CN105473947A (zh) | 2016-04-06 |
CN105473947B (zh) | 2018-03-23 |
JP2015087067A (ja) | 2015-05-07 |
AU2014341785A1 (en) | 2016-05-19 |
JP5910610B2 (ja) | 2016-04-27 |
EP3043119B1 (en) | 2021-04-07 |
EP3043119A4 (en) | 2017-06-07 |
AU2014341785B2 (en) | 2018-01-25 |
EP3043119A1 (en) | 2016-07-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2148147B1 (en) | Method of controlling air conditioner | |
JP5590980B2 (ja) | 冷凍空調装置 | |
JP2018071886A (ja) | 空調機 | |
JP5511717B2 (ja) | 空気調和機 | |
JP2014190600A (ja) | 空気調和装置 | |
JP5910610B2 (ja) | 空気調和システム | |
JP6019773B2 (ja) | 空気調和機の制御装置 | |
JP5900463B2 (ja) | 空気調和システム | |
JP2007271112A (ja) | 空気調和装置 | |
JP6785867B2 (ja) | 空調システム | |
JP5790738B2 (ja) | 空気調和システム | |
CN109253528B (zh) | 空调及其控制方法 | |
JP4736970B2 (ja) | 空気調和装置 | |
JP5558890B2 (ja) | 空気調和装置 | |
KR100504883B1 (ko) | 동시형 멀티공기조화기의 초기기동방법 | |
KR20150091917A (ko) | 공기조화기 및 그 제어방법 | |
JP6740491B1 (ja) | 室外機、空気調和システムおよびプログラム | |
KR100664504B1 (ko) | 멀티형 공기조화기의 운전제어방법 | |
JP2006170505A (ja) | 空気調和機 | |
JP2006194552A (ja) | 空気調和機 | |
JP2007057191A (ja) | 空気調和装置 | |
JP2005147410A (ja) | 空気調和機 | |
JP2022177978A (ja) | 空気調和機 | |
KR20100079406A (ko) | 공기조화기 및 그 동작방법 | |
JP2009109097A (ja) | 空気調和装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201480046080.2 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14857969 Country of ref document: EP Kind code of ref document: A1 |
|
REEP | Request for entry into the european phase |
Ref document number: 2014857969 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014857969 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2014341785 Country of ref document: AU Date of ref document: 20140909 Kind code of ref document: A |