WO2014196471A1 - Si基板上に成長した閃亜鉛鉱型(立方晶とも言う。)AlyInxGa1-y-xN結晶(y≧0、x>0)からなる母結晶にナノドット(「量子ドット」とも言う。)を有する活性領域及びこれを用いた発光デバイス(LED及びLD) - Google Patents
Si基板上に成長した閃亜鉛鉱型(立方晶とも言う。)AlyInxGa1-y-xN結晶(y≧0、x>0)からなる母結晶にナノドット(「量子ドット」とも言う。)を有する活性領域及びこれを用いた発光デバイス(LED及びLD) Download PDFInfo
- Publication number
- WO2014196471A1 WO2014196471A1 PCT/JP2014/064448 JP2014064448W WO2014196471A1 WO 2014196471 A1 WO2014196471 A1 WO 2014196471A1 JP 2014064448 W JP2014064448 W JP 2014064448W WO 2014196471 A1 WO2014196471 A1 WO 2014196471A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- crystal
- substrate
- type
- dots
- emitting device
- Prior art date
Links
- 239000013078 crystal Substances 0.000 title claims abstract description 290
- 239000000758 substrate Substances 0.000 title claims abstract description 92
- WGPCGCOKHWGKJJ-UHFFFAOYSA-N sulfanylidenezinc Chemical compound [Zn]=S WGPCGCOKHWGKJJ-UHFFFAOYSA-N 0.000 title claims abstract description 39
- 229910052984 zinc sulfide Inorganic materials 0.000 title claims abstract description 37
- 239000002096 quantum dot Substances 0.000 title claims description 13
- 239000011159 matrix material Substances 0.000 title abstract 4
- 239000004065 semiconductor Substances 0.000 claims description 13
- 239000012535 impurity Substances 0.000 claims description 12
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 8
- 229910052710 silicon Inorganic materials 0.000 claims description 8
- 239000010703 silicon Substances 0.000 claims description 8
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 5
- 239000011701 zinc Substances 0.000 claims description 5
- 229910052725 zinc Inorganic materials 0.000 claims description 5
- 229910002601 GaN Inorganic materials 0.000 description 77
- 239000010410 layer Substances 0.000 description 65
- 239000007789 gas Substances 0.000 description 62
- IBEFSUTVZWZJEL-UHFFFAOYSA-N trimethylindium Chemical compound C[In](C)C IBEFSUTVZWZJEL-UHFFFAOYSA-N 0.000 description 15
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 14
- 229910001873 dinitrogen Inorganic materials 0.000 description 12
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 10
- 238000010438 heat treatment Methods 0.000 description 10
- 229910052738 indium Inorganic materials 0.000 description 9
- 238000000034 method Methods 0.000 description 9
- 230000004048 modification Effects 0.000 description 9
- 238000012986 modification Methods 0.000 description 9
- 230000000694 effects Effects 0.000 description 7
- 230000003287 optical effect Effects 0.000 description 7
- 239000002994 raw material Substances 0.000 description 7
- XCZXGTMEAKBVPV-UHFFFAOYSA-N trimethylgallium Chemical compound C[Ga](C)C XCZXGTMEAKBVPV-UHFFFAOYSA-N 0.000 description 7
- 239000012298 atmosphere Substances 0.000 description 6
- 229910052782 aluminium Inorganic materials 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 230000006798 recombination Effects 0.000 description 5
- 238000005215 recombination Methods 0.000 description 5
- JLTRXTDYQLMHGR-UHFFFAOYSA-N trimethylaluminium Chemical compound C[Al](C)C JLTRXTDYQLMHGR-UHFFFAOYSA-N 0.000 description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 4
- 238000005530 etching Methods 0.000 description 4
- 229910052733 gallium Inorganic materials 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- HDZGCSFEDULWCS-UHFFFAOYSA-N monomethylhydrazine Chemical compound CNN HDZGCSFEDULWCS-UHFFFAOYSA-N 0.000 description 4
- 229910052594 sapphire Inorganic materials 0.000 description 4
- 239000010980 sapphire Substances 0.000 description 4
- 238000000926 separation method Methods 0.000 description 4
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910052950 sphalerite Inorganic materials 0.000 description 3
- DIIIISSCIXVANO-UHFFFAOYSA-N 1,2-Dimethylhydrazine Chemical compound CNNC DIIIISSCIXVANO-UHFFFAOYSA-N 0.000 description 2
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 2
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- 239000012159 carrier gas Substances 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 239000008710 crystal-8 Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000005012 migration Effects 0.000 description 2
- 238000013508 migration Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000012299 nitrogen atmosphere Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 2
- 229910010271 silicon carbide Inorganic materials 0.000 description 2
- MHYQBXJRURFKIN-UHFFFAOYSA-N C1(C=CC=C1)[Mg] Chemical compound C1(C=CC=C1)[Mg] MHYQBXJRURFKIN-UHFFFAOYSA-N 0.000 description 1
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000003486 chemical etching Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- SZEJQLSRYARYHS-UHFFFAOYSA-N dimethylindium Chemical compound C[In]C SZEJQLSRYARYHS-UHFFFAOYSA-N 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 150000004715 keto acids Chemical class 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229910000073 phosphorus hydride Inorganic materials 0.000 description 1
- FAIAAWCVCHQXDN-UHFFFAOYSA-N phosphorus trichloride Chemical compound ClP(Cl)Cl FAIAAWCVCHQXDN-UHFFFAOYSA-N 0.000 description 1
- 238000001020 plasma etching Methods 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- FAQYAMRNWDIXMY-UHFFFAOYSA-N trichloroborane Chemical compound ClB(Cl)Cl FAQYAMRNWDIXMY-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/822—Materials of the light-emitting regions
- H10H20/824—Materials of the light-emitting regions comprising only Group III-V materials, e.g. GaP
- H10H20/825—Materials of the light-emitting regions comprising only Group III-V materials, e.g. GaP containing nitrogen, e.g. GaN
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/02—Structural details or components not essential to laser action
- H01S5/0206—Substrates, e.g. growth, shape, material, removal or bonding
- H01S5/021—Silicon based substrates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/30—Structure or shape of the active region; Materials used for the active region
- H01S5/34—Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
- H01S5/341—Structures having reduced dimensionality, e.g. quantum wires
- H01S5/3412—Structures having reduced dimensionality, e.g. quantum wires quantum box or quantum dash
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/30—Structure or shape of the active region; Materials used for the active region
- H01S5/34—Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
- H01S5/343—Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/30—Structure or shape of the active region; Materials used for the active region
- H01S5/34—Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
- H01S5/343—Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
- H01S5/34333—Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer based on Ga(In)N or Ga(In)P, e.g. blue laser
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/811—Bodies having quantum effect structures or superlattices, e.g. tunnel junctions
- H10H20/812—Bodies having quantum effect structures or superlattices, e.g. tunnel junctions within the light-emitting regions, e.g. having quantum confinement structures
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/815—Bodies having stress relaxation structures, e.g. buffer layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S2301/00—Functional characteristics
- H01S2301/17—Semiconductor lasers comprising special layers
- H01S2301/173—The laser chip comprising special buffer layers, e.g. dislocation prevention or reduction
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S2304/00—Special growth methods for semiconductor lasers
- H01S2304/04—MOCVD or MOVPE
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/01—Manufacture or treatment
- H10H20/011—Manufacture or treatment of bodies, e.g. forming semiconductor layers
- H10H20/013—Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials
- H10H20/0133—Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials with a substrate not being Group III-V materials
- H10H20/01335—Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials with a substrate not being Group III-V materials the light-emitting regions comprising nitride materials
Definitions
- nanodots are formed on a mother crystal composed of zinc blende-type Al y In x Ga 1-yx N crystal (y ⁇ 0, x> 0) grown on a Si substrate. And an light emitting device (LED and LD) using the active region.
- LED and LD light emitting device
- GaN-based crystals are known as short wavelength light emitting devices. Usually, a GaN-based crystal is formed on a sapphire substrate by epitaxial growth through a buffer layer. However, if it can be epitaxially grown on the Si substrate, a composite device of a light emitting device and a semiconductor integrated circuit is possible.
- GaN-based crystals There are two types of GaN-based crystals: a wurtzite structure with excellent piezoelectric characteristics and a zinc blende crystal with almost no piezoelectric characteristics and excellent light emission characteristics, information transmission functions, and information processing functions. Regarding the difference in crystal structure and the change in characteristics, detailed results at the present time are shown in Prior Art Document 1 described later.
- the wurtzite structure is a stable crystal structure.
- the metastable zinc blende crystal promotes good carrier recombination, the luminous efficiency is remarkably increased. Therefore, zinc blende type crystals are strongly required as a material for light emitting elements.
- the zinc blende structure is the same as that of GaAs crystal and Si crystal.
- Ga and In when Ga and In are mixed and grown, whether or not they are mixed as crystals depends on the ratio of Ga and In concentrations.
- a region that does not mix as a crystal is referred to as an unmixed region (immiscibility gap) here.
- the tendency of whether or not an unmixed region is formed depends on the ratio of Ga and In concentrations becomes prominent. .
- the contents relating to the mixed growth of Ga and In in any of the prior art documents mostly indicate the supply of gas in this unmixed region.
- An object of the present invention is to provide a structure of a high-brightness LED and a high-brightness LD by forming a zinc blende GaN-based crystal on a Si substrate via a BP crystal as an intermediate crystal.
- a high-luminance light-emitting device having a nanodot structure having a small band gap and a high concentration of In atoms with a zincblende structure crystal that is difficult to grow as a base crystal is provided.
- Al y In x Ga z N which is a mother crystal that maintains a zinc blende type crystal structure on a zinc blende type BP crystal layer formed on a Si substrate. It has In dots having a higher In concentration than the crystal (y ⁇ 0, x> 0) and the Al y In x Ga 1- yxN crystal (y ⁇ 0, x> 0) which is a mother crystal.
- a light emitting device is provided.
- the x value of nanodots of Al y In x Ga 1-yx N (y ⁇ 0, x> 0) is preferably in the range of 0.15 to 0.9.
- the diameter of the nano dot of Al y In x Ga 1-yx N (y ⁇ 0, x> 0) is desirably 100 nm or less.
- the density of the nano dots of Al y In x Ga 1-yx N (y ⁇ 0, x> 0) is preferably 10 3 / cm 2 or more and 10 4 / cm 2 or less.
- a light-emitting device is a Si substrate, which is processed by inclining in the range of 5 degrees to 10 degrees from the (100) plane to the (110) plane direction, and the crystal A buffer layer containing a BP crystal formed on a substrate, an n-type GaN-based crystal formed on the buffer layer containing a BP crystal, and a zinc blende-type Al formed on the n-type GaN-based crystal y in x Ga 1-y- x N (y ⁇ 0, x> 0) of the host crystals and sphalerite Al y in x Ga 1-y -x N (y ⁇ 0, x> 0) in the host crystals
- the n-type GaN-based crystal is preferably added with silicon as an impurity.
- the concentration of silicon added to the n-type GaN crystal is preferably 5 ⁇ 10 18 cm ⁇ 3 or more and 5 ⁇ 10 20 cm ⁇ 3 or less.
- a light-emitting device is a Si substrate, in the range from 5 degrees to 10 degrees in the (110) plane direction from the (100) plane and from the (100) plane ( 111) formed on the crystal substrate processed by tilting in the range of 5 degrees or more and 10 degrees or less in the plane direction, a buffer layer including BP crystals formed on the crystal substrate, and a buffer layer including BP crystals.
- n-type GaN-based crystal zinc-blende-type Al y In x Ga 1-yxN (y ⁇ 0, x> 0) mother crystal formed on the n-type GaN-based crystal and zinc-blende-type Al y In x Ga 1-yx N (y ⁇ 0, x> 0) zinc-blende-type Al y In x Ga 1-yx N (y ⁇ 0, x> 0) na high in concentration than the mother crystal Al y in x Ga 1-y -x N (y ⁇ 0, x> 0) It is desirable to have an active region and a dots.
- a light emitting device includes a Si substrate, a buffer layer including a BP crystal formed on the Si substrate, and an n formed on the buffer layer including the BP crystal.
- the In concentration of In x Ga 1-x N of amorphous imperfect crystallinity is lower than the In concentration of nanodots of Al y In x Ga 1-x N (y ⁇ 0, x> 0) Is desirable.
- a semiconductor laser according to the present invention includes an Si substrate, a buffer layer including a BP crystal formed on the Si substrate, and an n formed on the buffer layer including the BP crystal.
- An active region having nanodots, the tips of the nanodots of Al y In x Ga 1-xy N (y ⁇ 0, x
- the present invention it is possible to provide a high-intensity light-emitting device having a nanodot structure with a high concentration of In atoms with a small band gap, using a zinc-blende structure crystal that is difficult to grow as a base crystal. Become.
- FIG. 1 is a schematic diagram of a structure of a light emitting device according to an embodiment of the present invention.
- the gas growth pressure is 500 mbar
- the ratio of the dot diameter, the dot density, the In concentration, and the GaN concentration of In dots 6 derived from a plurality of experiments and using In x Ga 1-x N as a mother crystal is grown.
- a table summarizing temperature relationships When the gas growth pressure is set to 800 mbar, the ratio of the dot diameter, dot density, In density, and GaN density of In dots 6 derived from a plurality of experiments and using In x Ga 1-x N as a mother crystal is grown.
- FIG. 1 shows a schematic diagram of the structure of a light emitting device according to an embodiment of the present invention.
- Reference numeral 1 denotes a Si substrate for growing a GaN-based semiconductor crystal.
- As a substrate for GaN semiconductor crystal growth various substrates such as a sapphire substrate, a silicon carbide substrate, a gallium nitride substrate, and an aluminum nitride substrate can be used.
- a substrate for GaN semiconductor crystal growth various substrates such as a sapphire substrate, a silicon carbide substrate, a gallium nitride substrate, and an aluminum nitride substrate can be used.
- the Si substrate is used as a growth substrate, a composite device of a light emitting device and a semiconductor integrated circuit is possible.
- Reference numeral 2 denotes a buffer layer having a BP crystal.
- the buffer layer is composed of BP crystals
- the GaN-based crystals grown thereon can be zinc-blende crystals.
- Reference numeral 3 denotes an n-type GaN crystal doped with Si. Since the buffer layer is a BP crystal, the n-type GaN-based crystal 3 is a zinc blende crystal. On the n-type GaN-based crystal 3, an n-electrode (symbol 9) is provided.
- Reference numerals 4 and 7 are Al y Ga 1-y N crystals. The Al y Ga 1-y N crystal is also a zinc blende type crystal.
- the Al y Ga 1-y N crystals 4 and 5 are layers sandwiching an active region described below. By including Al in the layer sandwiching the active region, the band gap of the layer sandwiching the active region can be made sufficiently larger than that of the active region.
- the Al y Ga 1-y N crystal 4 can be omitted. Holes have a lower mobility than electrons. Therefore, even if there is no Al y Ga 1-y N crystal 4 that serves as a hole stopper, the luminous efficiency is not greatly affected.
- Reference numeral 5 denotes zinc-blende-type Al y In x Ga 1- yx N (y ⁇ 0, x> 0) as a mother crystal
- reference numeral 6 denotes Al y In x formed in the mother crystal.
- Ga 1-yx N (y ⁇ 0, x> 0) nanodots hereinafter referred to as “In dots”. That is, In dots 6 are formed on the base of the mother crystal 5, and the spaces between the In dots 6 are filled with the mother crystal 5.
- In dots 6 constitute an active region of the present invention.
- the In dot 6 contains In at a higher concentration than In contained in the Al y In x Ga z N (y ⁇ 0, x> 0) crystal that is the mother crystal.
- the In dot 6 preferably has a diameter of 100 nm or less. This is because the current concentration can be efficiently performed by setting the thickness to 100 nm or less. Furthermore, in order to obtain a quantum effect, it is desirable to control the diameter of the In dots 6 to 25 nm or less.
- the density of the In dots 6 is desirably 10 3 pieces / cm 2 or more and 10 4 pieces / cm 2 or less. By controlling the density of the In dots 6 in this way, the current density can be obtained so that high luminous efficiency can be obtained.
- the In concentration of the In dots 6 can be adjusted to control the wavelength of light emission. For example, by changing the value of x Al y In x Ga 1-y -x N (y ⁇ 0, x> 0) from 0.15 to 0.9, to control the 850nm wavelength from 450nm It becomes possible.
- Reference numeral 8 denotes a p-type GaN-based crystal.
- Mg is added to the GaN-based crystal.
- a p-type electrode is formed on the p-type GaN crystal 8 via a current diffusion layer, for example.
- a Si substrate 1 is prepared as a growth substrate for growing a GaN-based crystal, and a BP crystal is epitaxially grown as a buffer layer 2 on the surface. More specifically, the Si substrate is an n-type Si substrate doped with P (phosphorus).
- the epitaxial growth of BP crystal for example, PCl 3 mixed gas (phosphorus trichloride) and BCl 3 (boron trichloride), and H 2 is used as a carrier gas as a source gas. Examples of other source gases include a mixed gas of PH 3 (phosphine) and B 2 H 6 (diborane).
- any GaN-based crystal grown thereon becomes a zinc blende type crystal.
- the thickness of the BP crystal is preferably 150 nm or more if it can be 100 nm or more in consideration of the introduction of crystal defects (dislocations).
- (C 2 H 5 ) 3 In (trimethylindium) gas is further used on the buffer layer made of BP crystal to form an In film of about 1 atomic layer (about 0.5 nm). After the lamination, it is desirable to grow a GaN-based crystal thereon.
- the GaN-based crystal becomes a good zinc blende crystal. Since the In film of about 1 atomic layer (about 0.5 nm) laminated on the buffer layer made of BP crystal is thin, the zinc blende type crystal structure is maintained.
- An In film of about 1 atomic layer (about 0.5 nm) is detected as an In spot when a GaN-based crystal grows thereon.
- the GaN-based crystal is a good flash with a low dislocation density.
- the reason for the zinc ore type is not clear.
- the lattice constant of the BP crystal is about 0.454 nm
- the lattice constant of the GaN crystal is about 0.451 nm. Since the lattice constant of InGaN crystals increases as the In ratio increases, the In film inserted by the above growth method, together with the GaN film on it, is effectively an InGaN with a relatively large In content? It is thought that the mismatch of lattice constants has been eliminated.
- InGaN having a relatively large In content of about 1 to several atomic layers (about 0.5 to 2 nm)
- C 2 H 5 ) 3 Ga A mixed gas of (trimethylgallium) and (C 2 H 5 ) 3 In (trimethylindium) is used.
- the InGaN film preferably has a thickness of about 1 to several atomic layers (about 0.5 to 2 nm). Since the InGaN film is thin, the zinc blende type crystal structure is maintained.
- the InAl mixed film having a relatively large In content of about 1 atomic layer (about 0.5 nm) is stacked, (C 2 H 5 ) 3 In (trimethylindium) and (C 2 H 5 ) 3 Al ( Trimethylaluminum) and mixed gas are used.
- the thickness of the InAl mixed film is preferably about 1 to several atomic layers (about 0.5 to 2 nm). Since the InAl mixed film is thin, the zinc blende type crystal structure is maintained.
- the layer formed between the buffer layer made of BP crystal and the GaN-based crystal has a total film thickness of 14 nm made of a laminated structure of GaInN / GaN / GaInN / GaN / GaInN / GaN / GaInN / GaN / GaInN / GaN / GaInN / GaN / GaInN / GaN. It is also possible to use a superlattice layer maintaining the zinc blende type.
- the manufacturing method uses (1) a mixed gas of CH 3 —NH—NH 2 (monomethylhydrazine), (C 2 H 5 ) 3 Ga (trimethylgallium) and (C 2 H 5 ) 3 In (trimethylindium).
- a 1.4 nm InGaN layer is formed, and a 1.4 nm GaN layer is formed using a mixed gas of (2) CH 3 —NH—NH 2 (monomethylhydrazine) and (C 2 H 5 ) 3 Ga (trimethylgallium). Form. Furthermore, by repeating the steps (1) and (2) four times, a GaInN / GaN / GaInN / GaN / GaInN / GaN / GaInN / GaN / GaInN / GaN / GaInN / GaN / GaInN / GaN stacked structure is formed on the buffer layer made of BP crystal. A superlattice layer maintaining a zinc blende type with a total film thickness of 14 nm is laminated.
- CH 3 —NH—NH 2 (monomethylhydrazine) is used as the nitrogen source, but DMHy (dimethylhydrazine) may be used.
- n-type GaN crystal 3 is formed on the BP crystal.
- trimethylgallium (Ga (CH 3 ) 3 , TMG) and ammonia (NH 3 ) are used as the source gas for GaN.
- Si is doped as an n-type impurity.
- the n-type GaN crystal 3 is a zinc blende crystal.
- An Al y Ga 1-y N crystal 4 is grown on the n-type GaN-based crystal 3.
- source gases for the Al y Ga 1-y N crystal 4 include trimethylgallium (TMG), trimethylaluminum (TMA; (CH 3 ) 3 Al), and cyclopentadienylmagnesium (Cp 2 Mg) ammonia (NH 3 ). ) Is used.
- TMG trimethylgallium
- TMA trimethylaluminum
- Cp 2 Mg cyclopentadienylmagnesium
- NH 3 cyclopentadienylmagnesium
- H 2 is used as a carrier gas for transporting the raw material.
- the mother crystal 5 is a zinc blende type crystal.
- X of Al y In x Ga 1-yx N (y ⁇ 0, x> 0) can be adjusted within a range of 0.01 or more and 0.9.
- the emitted light is green, it is desirable to supply the raw material so that it becomes 0.4.
- the inventor has shown that the In concentration, the dot diameter, and the dot density of the In dot 6 can be controlled by controlling the growth temperature, the amount of In source gas supplied, and the source gas pressure. I found out.
- the growth temperature of In x Ga 1-x N crystal is set to 700 ° C.
- the raw material concentration is set so that the In concentration x is 0.40.
- Nitrogen gas is used as the growth atmosphere gas.
- In dots 6 which are regions with a high In concentration are grown at a density of about 10 9 / cm 2 as In dot nuclei immediately after growth.
- the diameter is in the range of 10 nm to 50 nm.
- 10 9 as the density of the In dot 6 / cm 2 is too high. Therefore, next, the In source gas amount is the same, and the substrate temperature is raised to 800.degree.
- In excess region region with excessive In content
- In reduced region region with low In content
- In dot 6 merges.
- An In dot 6 having a relatively large diameter grows, and the In dot 6 having a relatively small diameter is absorbed by the In dot 6 having a relatively large diameter.
- the density of the In dots 6 becomes about 10 4 / cm 2 .
- 10 4 pieces / cm 2 is a current density that makes it possible to obtain high luminous efficiency.
- an optical active region having In dots 6 is completed.
- the concentration of the atmospheric gas may be changed as a control of the In concentration in the In dots 6.
- the supply amount of supplied TMI gas (trimethylindium gas) or DMI gas (dimethylindium gas) is changed. This is because if the flow rate [partial pressure] of TMI (trimethylindium) gas is increased in nitrogen gas, the In concentration in the In dots tends to increase.
- hydrogen gas may be mixed into nitrogen gas.
- the heat treatment for lowering the temperature during the growth process, the heat treatment for lowering the temperature after growth, or changing the supply gas amount can control the In concentration of the In dots 6, the dot diameter, and the dot density.
- the In concentration, the dot diameter and the dot density of the In dot 6 can be obtained by a combination of a heat treatment that lowers the temperature during the growth process and a change in the supply gas amount, or a combination of a heat treatment that lowers the temperature after the growth and a change in the supply gas amount. You may control.
- Table 1 in FIG. 2 and Table 2 in FIG. 3 show the dot diameter, dot density, In concentration, and GaN concentration of In dot 6 having In x Ga 1-x N as a parent crystal, derived from a plurality of experiments. It is the table
- the Al y In x Ga 1-yx N crystal according to the present invention is a zinc blende type crystal because it grows on the BP crystal.
- the Al source gas is supplied so that the ratio (y) in the crystal is about 0.3. . Further, a gas with an amount of In less than 0.1 in the crystal is supplied.
- the growth temperature is 770 ° C.
- In dots 6 in which Al is mixed to some extent (hereinafter simply referred to as “In dots 6”) are formed.
- the In dots 6 grow as In dot nuclei at a density of about 10 6 pieces / cm 2 immediately after the growth. At this time, the diameter of the In dot 6 is not less than 10 nm and not more than 20 nm. As the density of the In dots 6, about 10 6 pieces / cm 2 is too high.
- the substrate temperature is raised to about 900 ° C. without changing the amounts of the Al source gas and the In source gas.
- the separation between the In excess region and the In decreased region is further increased. That is, In dot 6 merges.
- In dots 6 having a relatively large diameter grow, and In dots 6 having a relatively small diameter are absorbed therein.
- the density of In dots 6 is about 10 3 / cm 2 .
- the density of the In dots 6 is 10 3 / cm 2 , a current density capable of obtaining high luminous efficiency can be obtained.
- an optically active region having In dots is completed.
- the concentration of In in the In dots can be controlled by changing the atmospheric gas. For example, the supply amount of the supplied TMI gas may be changed. This is because if the flow rate [partial pressure] of TMI (trimethylindium) gas is increased in nitrogen gas, the In concentration in the In dots tends to increase. Alternatively, even if about 5% of hydrogen gas is mixed in nitrogen gas, the concentration of In in the In dots 6 can be almost halved. This is because the solubility of In atoms in hydrogen gas is high under conditions where the substrate temperature is relatively high such as 700 ° C. Therefore, when the hydrogen gas is mixed into the nitrogen gas with the temperature and pressure conditions being constant under the condition that the substrate temperature is high (for example, 700 ° C. or higher), the In concentration in the In dots 6 decreases.
- the shape of the In dots 6 is thread-like and easily extends upward.
- a dot shape was obtained, and at 1000 ° C. or more, In was in a liquid or liquid state and the shape became unstable, so the diameter of In dot 6 could not be measured.
- the In concentration, the dot diameter, and the dot density of the In dots 6 can be controlled by the growth temperature, the supply amount of the In source gas, and the source gas pressure. A method for forming In dots 6 more stably will be described below.
- Epitaxial growth is performed using a crystal substrate processed by tilting a Si substrate, which is a growth substrate for a GaN-based crystal, in a range of 5 degrees to 10 degrees from the (100) plane to the (110) plane direction.
- Si was doped to grow an n-type GaN-based crystal.
- the n-type GaN crystal is a zinc blende type. Steps grow on the n-type GaN crystal plane at almost equal intervals. The step interval is related to the degree of inclination of the surface, the amount of added impurities, and the like.
- the impurity concentration exceeds 10 18 cm ⁇ 3 , the growth rate becomes slow, and the step becomes high (tens of atoms) and the step interval becomes wide due to the bunching effect.
- silicon is added to the n-type GaN crystal at 5 ⁇ 10 18 cm ⁇ 3 or more and 5 ⁇ 10 20 cm ⁇ 3 or less.
- the impurity concentration was 5 ⁇ 10 18 cm ⁇ 3 .
- the substrate temperature is lowered to 750 ° C. or less, and a source gas for growing an Al y In x Ga 1-yx N crystal (y ⁇ 0, x> 0) is supplied. .
- An Al y In x Ga 1-yx N crystal (y ⁇ 0, x> 0) using 100% nitrogen gas as the atmosphere gas is grown sparsely with x being about 0.15, and then the same atmosphere Thereafter, the substrate temperature is raised to 850 ° C. or higher, and then the migration of particles containing In on the crystal surface is performed for about 10 minutes in a nitrogen atmosphere containing 3% hydrogen gas. Thereafter, as shown in FIG. 4, the In-containing crystals are gathered in steps separated from each other by 5 to 8 ⁇ m to form a linear one-dimensional active layer.
- the In dot is preferentially increased when the growth temperature is increased in the stage of growing the Al y In x Ga 1-yx N crystal (y ⁇ 0, x> 0). Tend to grow.
- the growth temperature is lowered, quantum wires are formed. Whether it becomes an In dot or a quantum wire depends largely on the growth rate. If the growth rate is fast, it becomes a quantum wire, and if the growth rate is slow, it becomes an In dot. If the crystal growth conditions are controlled, in the first modification, In dots and In quantum wires can be produced according to the application.
- (Modification 2) Crystal processed by tilting in the range of 5 degrees to 10 degrees from the (100) plane of the Si substrate to the (110) plane orientation and in the range of 5 degrees to 10 degrees from the (100) plane to the (111) plane direction
- Epitaxial growth is performed using the substrate.
- Si was doped to grow an n-type GaN crystal.
- the n-type GaN crystal is a zinc blende type.
- Step lattices grow on the crystal plane of the n-type GaN crystal at almost equal intervals.
- the step interval is related to the degree of surface inclination, the amount of added impurities, and the like. As the angle of inclination of the surface increases, the step interval decreases.
- the concentration of the impurity added is desirably 5 ⁇ 10 18 cm ⁇ 3 or more and 5 ⁇ 10 20 cm ⁇ 3 or less to the n-type GaN-based crystal.
- 5 ⁇ 10 18 cm ⁇ 3 of silicon was added to the GaN crystal as an n-type impurity.
- Al y In x Ga 1- y-x N crystal (x 0.15) in order to grow the Al y In x Ga 1- the raw material gas of y-x N supplies about 1 minute.
- the atmosphere gas is 100% nitrogen gas.
- migration of particles containing In on the surface of Al y In x Ga 1-yx N (y ⁇ 0, x> 0)
- In-containing crystals that is, In dots, gather at the intersection of the steps, and a dot-like 0-dimensional active region is formed. This is shown in FIG.
- Modification 3 relates to the structure of the active region after the growth of In dots 6 having In x Ga 1-x N as a mother crystal.
- a mother crystal 5 of In x Ga z N (y ⁇ 0, x> 0) was grown, and an In dot 6 containing In at a higher concentration than the mother crystal 5 was grown thereon (still, the In dot 6 Is not filled with In x Ga z N (y ⁇ 0, x> 0) mother crystal 5), and then the substrate temperature is lowered from 800 ° C. to 100 ° C. to 200 ° C. to supply the Ga source gas. Is increased about twice.
- an imperfect amorphous-like In x Ga 1-x N having a lower In concentration than In dots 6 grows so as to fill the gaps between the In dots 6, and the gaps between the In dots 6 are crystallized.
- the surface is flattened with amorphous-like In x Ga 1-x N having incomplete properties.
- the gap between the In dots 6 is not a mother crystal composed of In x Ga 1-x N, but is an amorphous amorphous In x Ga 1 having a low crystallinity compared to the In dots 6 and having a low crystallinity.
- the In dots 6 are filled with amorphous In x Ga 1-x N having a large electrical resistance, holes and electrons are concentrated on the In dots, and recombination takes place preferentially and light is emitted efficiently.
- the In concentration of In x Ga 1-x N with imperfect crystallinity is lower than the In dot 6, the band gap of In x Ga 1-x N with imperfect crystallinity is similar to In dot 6. The point that is larger than In dots is also a factor for improving the light emission efficiency.
- Some light emitting devices may require a more reproducible crystal growth process.
- high-intensity semiconductor lasers, multicolor semiconductor lasers, and the like are products that require repeated epitaxial processes, chemical etching, processing processes, and the like. In the case of such a product, it becomes necessary to generate more stable quantum dots. In particular, in order to withstand heat treatment, a quantum dot that is stable in terms of crystal structure is necessary.
- a multi-direction tilt type substrate in which the (100) plane Si crystal substrate is tilted in the range of 3 degrees to 10 degrees in the (110) plane direction and in the range of 3 degrees to 10 degrees in the (111) direction is used. .
- a Si substrate crystal inclined in two directions is used.
- a BP crystal film is grown on the substrate, and an n-type GaN crystal is epitaxially grown thereon.
- the substrate is taken out from the growth furnace.
- the substrate taken out from the growth furnace is etched at 150 ° C. for about 10 minutes using a potassium hydroxide (KOH) solution. Thereafter, cleaning is performed so that potassium element does not remain on the substrate.
- KOH potassium hydroxide
- the substrate is set in an epitaxial growth furnace, and an In 0.25 Ga 0.75 N crystal is grown in nitrogen gas or an atmospheric gas containing hydrogen gas in a range of 1% to 5%.
- the growth temperature is set in the range of 300 ° C. or more and 550 ° C. or less so that the difference in growth rate due to the difference in the plane direction appears strongly.
- the mother crystal In 0.25 Ga 0.75 N is grown to a thickness of 10 to 70 atomic layers, for example, a thickness of 30 nm to 100 nm
- 400 Heat treatment is performed for about 10 minutes so that the In dots 6 gather at the crossing points of the kinks.
- In dots grow.
- the In dots 6 grow as zinc-blende In dots 6 that are the same as the mother crystal. In this case, the maximum diameter of the In dots 6 is about 20 nm, and the active region is completed.
- etching was performed for about 10 minutes at 150 ° C. using a potassium hydroxide (KOH) solution.
- KOH potassium hydroxide
- laser irradiation was performed in advance on the position where the In dots 6 would be formed. It is desirable to increase the etching rate by performing the above. This is because the inclined step can be deepened, and the In dots 6 can easily grow in a region surrounded by the inclined step.
- the n-type is used regardless of the inclination angle of the growth substrate surface.
- a crystal film of SiN 3 is deposited on the surface thereof to a thickness of about 20 nm, and further, for example, holes are formed at intervals of 30 nm to 100 nm in diameter by plasma etching or the like so that quantum dots can be easily grown. It may be processed.
- Ga dots Ga-rich dots
- Al y Ga 1-y N crystal Al y Ga 1-y N crystal
- a source gas of Al y Ga 1-y N is supplied so that the Al component and the Ga component of the Al y Ga 1-y N crystal are 0.5 respectively.
- the growth temperature is 900 ° C., for example.
- the substrate temperature is raised to, for example, 1000 ° C.
- the substrate begins to grow separately into an Al excess region and a Ga excess region.
- Ga dots grow as Ga dot nuclei of about 10 8 / cm 2 immediately after growth.
- the diameter of the Ga dot is 50 nm or more and 100 nm or less. In this state, the density of Ga dots is too high. Therefore, next, the amount of Ga source gas is the same, and the substrate temperature is raised to about 1100.degree.
- Ga dots having a relatively large diameter grow, and Ga dots having a relatively small diameter are absorbed therein. Thereafter, the density of Ga dots becomes about 10 3 pieces / cm 2 . 10 3 / cm 2 is a current density that enables efficient light emission. In this way, an optically active region having Ga dots is completed.
- the Ga concentration in the Ga dot may be controlled.
- the Ga concentration may be controlled by changing the atmospheric gas.
- the supply amount of Ga gas to be supplied may be increased.
- the Ga gas supply amount may be increased from 70,000 cc / s to 100,000 cc / s to increase the Ga concentration in the Ga dots.
- a source gas of In is also flowed during the growth of Ga dots, and the mother crystal Al y Ga 1-y N crystal.
- Ga dots introduced with more In may be grown.
- the wavelength of the light emitting device can be set to 200 nm, 300 nm, and 350 nm.
- the In dots 6 according to the present invention are used as an active region of a semiconductor laser, the In dots 6 are desirably formed with periodicity. Therefore, as shown in the first to fourth modifications, an inclined surface is provided on the surface of the growth substrate, and substantially equidistant steps or kinks formed on the surface of the n-type GaN crystal grown thereon are used. Thus, it is desirable to form In dots 6.
- the leading edge of the In dot 6 is left on the crystal of the mother crystal without being buried in the Al y In x Ga 1-yx N crystal (y ⁇ 0, x> 0) as the mother crystal. .
- Mg-doped p-type GaN is grown, and then Al x Ga 1-x N is grown at two or more types of Al x Ga 1-x N layers by changing the Al concentration. With such a configuration, a semiconductor laser with low power consumption can be manufactured.
- the leading edge of the In dot 6 is left on the crystal of the mother crystal without being embedded in the Al y In x Ga 1-yx N crystal which is the mother crystal, and then further doped with Mg-doped p-type
- the configuration of growing GaN can also be applied to LEDs.
- An LED having such a configuration can emit light by applying a low voltage and has an advantage of low power consumption.
- a structure for further promoting carrier recombination in the structure of a light emitting device having In dots or Ga dots as an active region as described above will be described below.
- a Si substrate inclined by 8 degrees from the (100) plane to the (110) plane direction is used as the growth substrate.
- An n-type BP crystal doped with Si element is grown on the Si substrate.
- the thickness of the BP crystal is made to grow at least 200 nm in consideration of introducing crystal defects [dislocations]. Even if the BP crystal is grown by about 300 nm, the tilt angle of the growth substrate can be maintained substantially.
- a mixed gas of TMA (trimethylaluminum) and TMI (trimethylindium) is supplied to the substrate in a nitrogen atmosphere at a substrate temperature of 470 ° C. on the BP crystal, so that a mixed metal layer of Al and In is at least one atomic layer. Deposit an atomic layer below the atomic layer.
- the mixed metal layer of Al and In is preferably deposited in a range of 2 atomic layers to 5 atomic layers.
- the deposition ratio of Al and In in the mixed metal layer of Al and In is 80% for Al and 20% for In.
- Si element may be added as an impurity.
- an n-type GaN crystal is grown at about 600 ° C.
- an Al y In x Ga 1-yx N crystal having a high Al concentration and a band gap larger than that of the GaN crystal grows immediately above the BP crystal. As a result, it becomes a structure that can promote carrier recombination in the active region during the fabrication of the optical device.
- the layer constituting the active region has been described as a single layer.
- the active region may be formed not only in one layer but also in a plurality of layers.
- the claims of the present invention can be applied in this case.
- the Si substrate has been mainly described as the growth substrate, a crystal substrate other than Si using a SiC substrate crystal, a GaAs substrate crystal, a sapphire substrate, or the like may be used. Even when a sapphire substrate or the like is used, the effect of tilting the substrate surface can be sufficiently expected.
- the active region having the quantum dots according to the present invention can be applied to a field effect transistor, a pnp-type transistor, an npn-type transistor, an integrated device including these, and the like.
- the structure and features of this report are useful for the fusion type of electronic device and optical device.
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Led Devices (AREA)
- Semiconductor Lasers (AREA)
Abstract
Description
図1は、本発明の一実施例に係る発光デバイスの構造の概略図を示す。符号1は、GaN系半導体結晶成長用のSi基板である。GaN半導体結晶成長用の基板としては、サファイア基板、炭化シリコン基板、ガリウムナイトライド基板、窒化アルミニウム基板等様々な基板を用いることが可能である。しかしながら、Si基板を成長用基板とした場合、発光デバイスと半導体集積回路との複合デバイスが可能となる。
GaN系結晶の成長基板であるSi基板を(100)面から(110)面方向に5度以上10度以下の範囲で傾けて加工した結晶基板を用いてエピタキシャル成長を行う。該Si基板にBP結晶を成長させた後、Siをドープしてn型GaN系結晶を成長した。n型GaN系結晶は閃亜鉛鉱型である。n型GaN系結晶面にはほぼ等間隔にステップが成長する。ステップ間隔は面の傾斜程度、添加した不純物量等が関係する。例えば、不純物の濃度が1018個cm-3を超えると成長速度が遅くなり、バンチング効果によってステップが高く(数十原子)なりステップ間隔も広くなる。望ましくは、n型GaN系結晶にケイ素を5×1018個cm-3以上5×1020個cm-3以下添加するとよい。本実施例では、不純物の濃度を5×1018個cm-3とした。n型GaN系結晶の成長後、基板温度を750℃以下に降下し、AlyInxGa1-y-xN結晶(y≧0、x>0)を成長するための原料ガスを供給する。
Si基板の(100)面から(110)面方位に5度以上10度以下の範囲で、及び(100)面から(111)面方向に5度以上10度以下の範囲で傾けて加工した結晶基板を用いてエピタキシャル成長を行う。該Si基板にBP結晶を成長させた後、Siをドープしてn型GaN系結晶を成長させた。n型GaN系結晶は閃亜鉛鉱型である。n型GaN系結晶の結晶面にほぼ等間隔にステップ格子が成長する。ステップ間隔としては面の傾斜程度、添加した不純物量等が関係する。面の傾斜角度が大きくなればステップの間隔は狭くなる。添加する不純物量の濃度が高くなるとステップ間隔はやや広がり高さが高くなる(バンチング効果)。添加する不純物量の濃度としては,望ましくは、n型GaN系結晶にケイ素を5×1018個cm-3以上5×1020個cm-3以下添加するとよい。本実施例においてはn型不純物としてGaN系結晶にケイ素を5×1018個cm-3添加した。n型GaN系結晶の成長後、基板温度を750℃以下に降下し、AlyInxGa1-y-xN結晶(x=0.15)を成長させるためにAlyInxGa1-y-xNの原料ガスを約1分間供給する。雰囲気ガスは窒素ガス100%を用いる。次に同一雰囲気下で基板温度を850℃以上に上昇させた後、AlyInxGa1-y-xN(y≧0、x>0)の表面におけるInを含む粒子のマイグレーションを水素ガスを10%含む窒素ガスと水素ガスの混合雰囲気下で約15分間実施する。その後、Inを含む結晶、すなわちInドットがステップの交点に集まり、点状の0次元活性領域が形成される。その様子を図5に示す。
変形例3は,InxGa1-xNを母結晶とするInドット6を成長させた後の活性領域の構造に関するものである。InxGazN(y≧0、x>0)の母結晶5を成長させ、その上に母結晶5よりも高濃度のInを含有するInドット6を成長させた(未だ、Inドット6はInxGazN(y≧0、x>0)の母結晶5によって埋め尽くされていない状態。)後,基板温度を800℃から100℃乃至200℃下げてGaの原料ガスの供給量を2倍程度増やす。そうすると,In濃度がInドット6に比べて低い結晶性の不完全なアモルファスライクのInxGa1-xNがInドット6間の隙間を埋めるように成長し,Inドット6間の隙間が結晶性の不完全なアモルファスライクのInxGa1-xNで埋まり表面が平坦化する。つまり、本変形例では、Inドット6の隙間はInxGa1-xNからなる母結晶ではなく、In濃度がInドット6に比べて低い結晶性の不完全なアモルファスライクのInxGa1-xNによって埋め尽くされるようにした。
そこで、(100)面のSi結晶基板を(110)面方向に3度以上10度以下の範囲で、(111)方向に3度以上10度以下の範囲で傾けた複数方向傾斜型基板を用いる。2方向に傾斜するSi基板結晶を用いる。該基板上にBP結晶膜を成長させ、その上にn型GaN系結晶をエピタキシャル成長させる。n型GaN系結晶を1μm程度成長させた後、基板を成長炉から取り出す。例えば、該成長炉から取り出した基板を水酸化カリウム(KOH)溶液を用いて150℃で約10分間エッチングを施す。その後、カリウム元素が基板に残らないように洗浄を実施する。この段階で基板の表面を顕微鏡観察すると、約100nm四方間隔で(100)面が傾斜型ステップに囲まれて発生している。図5で示したステップをさらに深くした構造である。
AlyGa1-yN結晶を母結晶とするGa過剰なドット(以下、「Gaドット」と言う。)の製造方法について説明する。なお、AlyGa1-yN結晶の結晶構造が閃亜鉛鉱型であり、y=0.8より小さい値ではAlyGa1-yN結晶は直接遷移結晶の性質を有する。
本発明にかかるInドット6を半導体レーザの活性領域として用いる場合、Inドット6は周期性を有して形成されることが望ましい。したがって、変形例1乃至4で示したとおり、成長基板の表面に傾斜面を設け、その上に成長させたn型GaN系結晶の表面に形成されるほぼ等間隔のステップやキンク等を利用してInドット6を形成することが望ましい。
これまで説明してきたInドットまたはGaドットを活性領域とする発光デバイスの構成において、よりキャリア再結合を促進する構造を以下に説明する。
例えば、(100)面から(110)面方向に8度傾いたSi基板を成長基板とする。該Si基板上にSi元素を添加したn型BP結晶を成長させる。BP結晶の厚みは、結晶欠陥[転位]を導入させることを考慮して少なくとも200nm以上で成長させる。BP結晶を約300nm成長させても成長基板の傾斜角度はほぼ保つことができる。しかる後、BP結晶上にTMA(トリメチルアルミニウム)、TMI(トリメチルインジウム)の混合ガスを基板温度470℃とし窒素雰囲気内で基板に供給して、AlとInの混合金属層を1原子層以上15原子層以下の原子層を堆積させる。なお、AlとInの混合金属層は2原子層以上5原子層以下堆積させることが望ましい。InあるいはAlを2原子層以上5原子層以下の厚みで全面に付着させるとその後積層される層の成長が順調となる。
2 BP結晶を有するバッファ層
3 Siがドープされたn型GaN系結晶
4 AlyGa1-yN結晶
5 母結晶である閃亜鉛鉱型のAlyInxGa1-y-xN(y≧0、x>0)
6 母結晶内に形成されるAlyInxGa1-y-xN(y≧0、x>0)のナノドット
7 AlyGa1-yN結晶
8 p型GaN系結晶
9 n型電極
Claims (10)
- Si基板と、
前記Si基板の上に形成されたBP結晶を含むバッファ層と、
前記BP結晶を含むバッファ層の上に形成されたn型GaN系結晶と、
前記n型GaN系結晶上に形成された閃亜鉛鉱型のAlyInxGa1-y-xN(y≧0、x>0)母結晶と前記閃亜鉛鉱型のAlyInxGa1-y-xN(y≧0、x>0)母結晶内に形成された前記閃亜鉛鉱型のAlyInxGa1-y-xN(y≧0、x>0)母結晶よりもIn濃度の高いAlyInxGa1-y-xN(y≧0、x>0)のナノドットとを有する活性領域と、
を有することを特徴する発光デバイス。 - 前記n型GaN系結晶はケイ素が不純物として添加されていることを特徴する請求項1に記載の発光デバイス。
- 前記n型GaN系結晶に添加されているケイ素の濃度は5×1018個cm-3以上5×1020個cm-3以下であることを特徴する請求項2に記載の発光デバイス。
- 前記Si基板は、その(100)面から(110)面方向に5度以上10度以下の範囲で傾けて加工した結晶基板であることを特徴する請求項1に記載の発光デバイス。
- 前記Si基板は、その(100)面から(110)面方向に5度以上10度以下の範囲及び(100)面から(111)面方面に5度以上10度以下の範囲で傾けて加工した結晶基板であることを特徴する請求項1に記載の発光デバイス。
- 前記n型GaN系結晶はケイ素が不純物として添加されていることを特徴する請求項5に記載の発光デバイス。
- 前記n型GaN系結晶に添加されているケイ素の濃度は5×1018個cm-3以上5×1020個cm-3以下であることを特徴する請求項6に記載の発光デバイス。
- Si基板と、
前記Si基板の上に形成されたBP結晶を含むバッファ層と、
前記BP結晶を含むバッファ層の上に形成されたn型GaN系結晶と、
前記n型GaN系結晶上に形成された閃亜鉛鉱型構造のAlyGa1-yN結晶と、
前記閃亜鉛鉱型構造のAlyGa1-yN結晶の上に形成された閃亜鉛鉱型のAlyInxGa1-y-xN(y≧0、x>0)母結晶と前記閃亜鉛鉱型のAlyInxGa1-y-xN(y≧0、x>0)母結晶の上に形成された前記閃亜鉛鉱型のAlyInxGa1-y-xN(y≧0、x>0)母結晶よりもIn濃度の高いAlyInxGa1-y-xN(y≧0、x>0)のナノドットとを有する活性領域とを有し、
前記活性領域は前記AlyInxGa1-y-xN(y≧0、x>0)のナノドット間の隙間に前記隙間を埋めるように形成された結晶性の不完全なアモルファスライクのInxGa1-xNによって表面が平坦化されていることを特徴とする発光デバイス。 - 前記結晶性の不完全なアモルファスライクのInxGa1-xNのInの濃度は前記AlyInxGa1-y-xN(y≧0、x>0)のナノドットのIn濃度よりも低いことを特徴する請求項8に記載の発光デバイス。
- Si基板と、
前記Si基板の上に形成されたBP結晶を含むバッファ層と、
前記BP結晶を含むバッファ層の上に形成されたn型GaN系結晶と、
前記n型GaN系結晶上に形成された閃亜鉛鉱型構造のAlyGa1-yN結晶と、
前記閃亜鉛鉱型構造のAlyGa1-yN結晶の上に形成された閃亜鉛鉱型のAlyInxGa1-y-xN(y≧0、x>0)母結晶と前記閃亜鉛鉱型のAlyInxGa1-y-xN(y≧0、x>0)母結晶内に形成された前記閃亜鉛鉱型のAlyInxGa1-y-xN(y≧0、x>0)母結晶よりもIn濃度の高いAlyInxGa1-y-xN(y≧0、x>0)のナノドットとを有する活性領域とを有し、
前記AlyInxGa1-y-xN(y≧0、x>0)のナノドットの先端部は前記閃亜鉛鉱型のAlyInxGa1-y-xN(y≧0、x>0)母結晶に埋没されていないことを特徴する半導体レーザ。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015521429A JP6298462B2 (ja) | 2013-06-05 | 2014-05-30 | Si基板上に成長した閃亜鉛鉱型(立方晶とも言う。)AlyInxGa1−y−xN結晶(y≧0、x>0)からなる母結晶にナノドット(「量子ドット」とも言う。)を有する活性領域及びこれを用いた発光デバイス(LED及びLD) |
DE112014002691.3T DE112014002691B4 (de) | 2013-06-05 | 2014-05-30 | Anregungsbereich, der Nanopunkte (auch als "Quantenpunkte" bezeichnet) in einem Matrixkristall umfasst, der auf Si-Substrat gezüchtet wurde und aus AlyInxGa1-y-xN-Kristall (y ≧ 0, x > 0) mit Zinkblendestruktur (auch als "kubisch" bezeichnet) besteht, und lichtemittierende Vorrichtung (LED und LD), die unter Verwendung desselben erhalten wurde |
GB1521427.3A GB2529594B (en) | 2013-06-05 | 2014-05-30 | Light emittng device including an active region containing nanodots in a zinc-blende type crystal |
US14/959,420 US9755111B2 (en) | 2013-06-05 | 2015-12-04 | Active region containing nanodots (also referred to as “quantum dots”) in mother crystal formed of zinc blende-type (also referred to as “cubic crystal-type”) AlyInxGal-y-xN Crystal (y[[□]][≧] 0, x > 0) grown on Si substrate, and light emitting device using the same (LED and LD) |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-118851 | 2013-06-05 | ||
JP2013118851 | 2013-06-05 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/959,420 Continuation US9755111B2 (en) | 2013-06-05 | 2015-12-04 | Active region containing nanodots (also referred to as “quantum dots”) in mother crystal formed of zinc blende-type (also referred to as “cubic crystal-type”) AlyInxGal-y-xN Crystal (y[[□]][≧] 0, x > 0) grown on Si substrate, and light emitting device using the same (LED and LD) |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014196471A1 true WO2014196471A1 (ja) | 2014-12-11 |
Family
ID=52008116
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/064448 WO2014196471A1 (ja) | 2013-06-05 | 2014-05-30 | Si基板上に成長した閃亜鉛鉱型(立方晶とも言う。)AlyInxGa1-y-xN結晶(y≧0、x>0)からなる母結晶にナノドット(「量子ドット」とも言う。)を有する活性領域及びこれを用いた発光デバイス(LED及びLD) |
Country Status (5)
Country | Link |
---|---|
US (1) | US9755111B2 (ja) |
JP (1) | JP6298462B2 (ja) |
DE (1) | DE112014002691B4 (ja) |
GB (1) | GB2529594B (ja) |
WO (1) | WO2014196471A1 (ja) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10454239B2 (en) * | 2015-08-28 | 2019-10-22 | International Business Machines Corporation | Wafer scale monolithic integration of lasers, modulators, and other optical components using ALD optical coatings |
US11018473B1 (en) * | 2018-11-28 | 2021-05-25 | Cisco Technology, Inc. | Selective-area growth of III-V materials for integration with silicon photonics |
WO2021064005A1 (en) * | 2019-10-04 | 2021-04-08 | Cambridge Enterprise Limited | POLARISED EMISSION FROM QUANTUM WIRES IN CUBIC GaN |
JP7543862B2 (ja) * | 2020-11-13 | 2024-09-03 | 株式会社デンソー | 半導体レーザ装置 |
JP7619195B2 (ja) * | 2021-07-13 | 2025-01-22 | 株式会社デンソー | 光半導体素子 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02288388A (ja) * | 1989-04-28 | 1990-11-28 | Toshiba Corp | 半導体レーザ |
JP2000012961A (ja) * | 1998-06-23 | 2000-01-14 | Fujitsu Ltd | 半導体レーザ |
JP2000349335A (ja) * | 1999-06-08 | 2000-12-15 | Showa Denko Kk | Iii族窒化物半導体発光素子 |
JP2008258561A (ja) * | 2007-03-13 | 2008-10-23 | Covalent Materials Corp | 窒化物半導体単結晶 |
JP2009010168A (ja) * | 2007-06-28 | 2009-01-15 | Toshiba Corp | 半導体量子ドット素子、その製造方法、光スイッチ、半導体レーザ、および光検出器 |
JP2010010678A (ja) * | 2008-06-27 | 2010-01-14 | Sharp Corp | 量子ドットデバイスおよびその製造方法 |
JP2011503893A (ja) * | 2007-11-20 | 2011-01-27 | モザイク クリスタルス リミテッド | アモルファスiii−v族半導体材料及びその製造方法 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6835962B2 (en) * | 2001-08-01 | 2004-12-28 | Showa Denko Kabushiki Kaisha | Stacked layer structure, light-emitting device, lamp, and light source unit |
US6730987B2 (en) | 2001-09-10 | 2004-05-04 | Showa Denko K.K. | Compound semiconductor device, production method thereof, light-emitting device and transistor |
US6645885B2 (en) * | 2001-09-27 | 2003-11-11 | The National University Of Singapore | Forming indium nitride (InN) and indium gallium nitride (InGaN) quantum dots grown by metal-organic-vapor-phase-epitaxy (MOCVD) |
US6967355B2 (en) | 2003-10-22 | 2005-11-22 | University Of Florida Research Foundation, Inc. | Group III-nitride on Si using epitaxial BP buffer layer |
KR100631980B1 (ko) | 2005-04-06 | 2006-10-11 | 삼성전기주식회사 | 질화물 반도체 소자 |
JP5260502B2 (ja) | 2006-09-22 | 2013-08-14 | エージェンシー フォー サイエンス,テクノロジー アンド リサーチ | Iii族窒化物白色発光ダイオード |
US20080224268A1 (en) | 2007-03-13 | 2008-09-18 | Covalent Materials Corporation | Nitride semiconductor single crystal substrate |
GB2460666A (en) | 2008-06-04 | 2009-12-09 | Sharp Kk | Exciton spin control in AlGaInN quantum dots |
JP2010245491A (ja) | 2009-03-17 | 2010-10-28 | Qd Laser Inc | 半導体レーザ |
JP2011003803A (ja) | 2009-06-19 | 2011-01-06 | Qd Laser Inc | 半導体レーザ及びそれを用いた光モジュール |
JP2011044539A (ja) | 2009-08-20 | 2011-03-03 | Qd Laser Inc | 半導体レーザ及びその製造方法、光モジュール、光伝送システム |
CN103187498B (zh) | 2011-12-29 | 2016-08-03 | 比亚迪股份有限公司 | 一种半导体结构及其形成方法 |
-
2014
- 2014-05-30 GB GB1521427.3A patent/GB2529594B/en active Active
- 2014-05-30 DE DE112014002691.3T patent/DE112014002691B4/de active Active
- 2014-05-30 WO PCT/JP2014/064448 patent/WO2014196471A1/ja active Application Filing
- 2014-05-30 JP JP2015521429A patent/JP6298462B2/ja active Active
-
2015
- 2015-12-04 US US14/959,420 patent/US9755111B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02288388A (ja) * | 1989-04-28 | 1990-11-28 | Toshiba Corp | 半導体レーザ |
JP2000012961A (ja) * | 1998-06-23 | 2000-01-14 | Fujitsu Ltd | 半導体レーザ |
JP2000349335A (ja) * | 1999-06-08 | 2000-12-15 | Showa Denko Kk | Iii族窒化物半導体発光素子 |
JP2008258561A (ja) * | 2007-03-13 | 2008-10-23 | Covalent Materials Corp | 窒化物半導体単結晶 |
JP2009010168A (ja) * | 2007-06-28 | 2009-01-15 | Toshiba Corp | 半導体量子ドット素子、その製造方法、光スイッチ、半導体レーザ、および光検出器 |
JP2011503893A (ja) * | 2007-11-20 | 2011-01-27 | モザイク クリスタルス リミテッド | アモルファスiii−v族半導体材料及びその製造方法 |
JP2010010678A (ja) * | 2008-06-27 | 2010-01-14 | Sharp Corp | 量子ドットデバイスおよびその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
DE112014002691T5 (de) | 2016-03-03 |
GB2529594B (en) | 2018-09-05 |
US20160087153A1 (en) | 2016-03-24 |
GB201521427D0 (en) | 2016-01-20 |
JP6298462B2 (ja) | 2018-03-20 |
GB2529594A (en) | 2016-02-24 |
US9755111B2 (en) | 2017-09-05 |
DE112014002691B4 (de) | 2018-03-08 |
JPWO2014196471A1 (ja) | 2017-02-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5995302B2 (ja) | 窒化物半導体発光素子の製造方法 | |
TWI500072B (zh) | 發光元件之製造方法 | |
JP4882618B2 (ja) | GaN系半導体発光ダイオードの製造方法 | |
CN102341922A (zh) | 氮化物半导体元件及其制造方法 | |
JPH11354839A (ja) | GaN系半導体発光素子 | |
US8728237B2 (en) | Crystal growth method for nitride semiconductor having a multiquantum well structure | |
CN105514232B (zh) | 一种发光二极管外延片、发光二极管及外延片的制作方法 | |
CN106784216A (zh) | 一种GaN基发光二极管的外延片及其生长方法 | |
JP6298462B2 (ja) | Si基板上に成長した閃亜鉛鉱型(立方晶とも言う。)AlyInxGa1−y−xN結晶(y≧0、x>0)からなる母結晶にナノドット(「量子ドット」とも言う。)を有する活性領域及びこれを用いた発光デバイス(LED及びLD) | |
CN106653971B (zh) | 一种GaN基发光二极管的外延片及其生长方法 | |
CN107180899A (zh) | 一种深紫外led | |
CN104916748A (zh) | 光半导体元件 | |
US8193021B2 (en) | Nitride semiconductor and method for manufacturing same | |
WO2004017432A1 (en) | Nitride semiconductor and fabrication method thereof | |
CN103367572B (zh) | 第iii族氮化物化合物半导体发光器件及其制造方法 | |
JPH11354843A (ja) | Iii族窒化物系量子ドット構造の製造方法およびその用途 | |
JP2015115343A (ja) | 窒化物半導体素子の製造方法 | |
JP2006140530A (ja) | p型窒化物半導体の製造方法 | |
JP2018022814A (ja) | 窒化物半導体素子及びその製造方法 | |
JP2008227103A (ja) | GaN系半導体発光素子 | |
CN106299057A (zh) | 一种可提高亮度带3d层的led外延结构 | |
JP5120861B2 (ja) | 光半導体素子及びその製造方法 | |
JP2004096129A (ja) | 窒化物半導体素子 | |
JP2006237091A (ja) | Iii族窒化物系化合物半導体素子又は発光素子の製造方法 | |
WO2014034687A1 (ja) | GaN系結晶及び半導体素子の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14807100 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015521429 Country of ref document: JP Kind code of ref document: A Ref document number: 1521427 Country of ref document: GB Kind code of ref document: A Free format text: PCT FILING DATE = 20140530 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 112014002691 Country of ref document: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14807100 Country of ref document: EP Kind code of ref document: A1 |