WO2014171400A1 - 水系のスライム付着状況のモニタリング方法及びモニタリング装置 - Google Patents
水系のスライム付着状況のモニタリング方法及びモニタリング装置 Download PDFInfo
- Publication number
- WO2014171400A1 WO2014171400A1 PCT/JP2014/060456 JP2014060456W WO2014171400A1 WO 2014171400 A1 WO2014171400 A1 WO 2014171400A1 JP 2014060456 W JP2014060456 W JP 2014060456W WO 2014171400 A1 WO2014171400 A1 WO 2014171400A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- slime
- water
- monitoring
- hollow fiber
- fiber membrane
- Prior art date
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 133
- 238000000034 method Methods 0.000 title claims abstract description 52
- 238000012544 monitoring process Methods 0.000 title claims abstract description 49
- 239000012528 membrane Substances 0.000 claims abstract description 106
- 239000012510 hollow fiber Substances 0.000 claims abstract description 77
- 238000002347 injection Methods 0.000 claims description 26
- 239000007924 injection Substances 0.000 claims description 26
- 239000012466 permeate Substances 0.000 claims description 16
- 239000000126 substance Substances 0.000 claims description 16
- 238000012806 monitoring device Methods 0.000 claims description 10
- 239000011148 porous material Substances 0.000 claims description 8
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 7
- 239000001301 oxygen Substances 0.000 claims description 7
- 229910052760 oxygen Inorganic materials 0.000 claims description 7
- 238000005259 measurement Methods 0.000 claims description 6
- 239000008239 natural water Substances 0.000 claims 2
- 230000033116 oxidation-reduction process Effects 0.000 claims 2
- 238000001914 filtration Methods 0.000 abstract description 5
- 239000007787 solid Substances 0.000 abstract 2
- 239000003814 drug Substances 0.000 description 7
- 229940079593 drug Drugs 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 239000003795 chemical substances by application Substances 0.000 description 6
- 239000000498 cooling water Substances 0.000 description 6
- 230000007423 decrease Effects 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000000926 separation method Methods 0.000 description 4
- 239000004372 Polyvinyl alcohol Substances 0.000 description 3
- 229920001131 Pulp (paper) Polymers 0.000 description 3
- 239000003242 anti bacterial agent Substances 0.000 description 3
- 244000005700 microbiome Species 0.000 description 3
- -1 polyethylene Polymers 0.000 description 3
- 229920002451 polyvinyl alcohol Polymers 0.000 description 3
- 238000004065 wastewater treatment Methods 0.000 description 3
- FMNZAHDAULEOSO-UHFFFAOYSA-N 2,2-dibromo-2-nitroethanol Chemical compound OCC(Br)(Br)[N+]([O-])=O FMNZAHDAULEOSO-UHFFFAOYSA-N 0.000 description 2
- GCAXGCSCRRVVLF-UHFFFAOYSA-N 3,3,4,4-tetrachlorothiolane 1,1-dioxide Chemical compound ClC1(Cl)CS(=O)(=O)CC1(Cl)Cl GCAXGCSCRRVVLF-UHFFFAOYSA-N 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 2
- 239000002033 PVDF binder Substances 0.000 description 2
- DMSMPAJRVJJAGA-UHFFFAOYSA-N benzo[d]isothiazol-3-one Chemical compound C1=CC=C2C(=O)NSC2=C1 DMSMPAJRVJJAGA-UHFFFAOYSA-N 0.000 description 2
- 239000012320 chlorinating reagent Substances 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000004299 exfoliation Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- JWZXKXIUSSIAMR-UHFFFAOYSA-N methylene bis(thiocyanate) Chemical compound N#CSCSC#N JWZXKXIUSSIAMR-UHFFFAOYSA-N 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 238000001223 reverse osmosis Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 230000036962 time dependent Effects 0.000 description 2
- UUIVKBHZENILKB-UHFFFAOYSA-N 2,2-dibromo-2-cyanoacetamide Chemical compound NC(=O)C(Br)(Br)C#N UUIVKBHZENILKB-UHFFFAOYSA-N 0.000 description 1
- YMVICGPFTOKTIL-UHFFFAOYSA-N 4,5-dichlorodithiolan-3-one Chemical compound ClC1SSC(=O)C1Cl YMVICGPFTOKTIL-UHFFFAOYSA-N 0.000 description 1
- GBKXRWNDORMHSG-UHFFFAOYSA-N 5-chloro-2,4,6-trifluorobenzene-1,3-dicarbonitrile Chemical compound FC1=C(Cl)C(F)=C(C#N)C(F)=C1C#N GBKXRWNDORMHSG-UHFFFAOYSA-N 0.000 description 1
- QDHHCQZDFGDHMP-UHFFFAOYSA-N Chloramine Chemical compound ClN QDHHCQZDFGDHMP-UHFFFAOYSA-N 0.000 description 1
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- DHNRXBZYEKSXIM-UHFFFAOYSA-N chloromethylisothiazolinone Chemical compound CN1SC(Cl)=CC1=O DHNRXBZYEKSXIM-UHFFFAOYSA-N 0.000 description 1
- OGQPUOLFKIMRMF-UHFFFAOYSA-N chlorosulfamic acid Chemical compound OS(=O)(=O)NCl OGQPUOLFKIMRMF-UHFFFAOYSA-N 0.000 description 1
- 238000005352 clarification Methods 0.000 description 1
- JSYGRUBHOCKMGQ-UHFFFAOYSA-N dichloramine Chemical compound ClNCl JSYGRUBHOCKMGQ-UHFFFAOYSA-N 0.000 description 1
- 150000004662 dithiols Chemical class 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000010999 medical injection Methods 0.000 description 1
- 239000002207 metabolite Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- QLNJFJADRCOGBJ-UHFFFAOYSA-N propionamide Chemical compound CCC(N)=O QLNJFJADRCOGBJ-UHFFFAOYSA-N 0.000 description 1
- 229940080818 propionamide Drugs 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000000108 ultra-filtration Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/14—Ultrafiltration; Microfiltration
- B01D61/22—Controlling or regulating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D63/00—Apparatus in general for separation processes using semi-permeable membranes
- B01D63/02—Hollow fibre modules
- B01D63/031—Two or more types of hollow fibres within one bundle or within one potting or tube-sheet
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/008—Control or steering systems not provided for elsewhere in subclass C02F
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/18—Water
- G01N33/1826—Organic contamination in water
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2315/00—Details relating to the membrane module operation
- B01D2315/10—Cross-flow filtration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2321/00—Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
- B01D2321/40—Automatic control of cleaning processes
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/44—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
- C02F1/444—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/50—Treatment of water, waste water, or sewage by addition or application of a germicide or by oligodynamic treatment
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2103/00—Nature of the water, waste water, sewage or sludge to be treated
- C02F2103/02—Non-contaminated water, e.g. for industrial water supply
- C02F2103/023—Water in cooling circuits
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2103/00—Nature of the water, waste water, sewage or sludge to be treated
- C02F2103/26—Nature of the water, waste water, sewage or sludge to be treated from the processing of plants or parts thereof
- C02F2103/28—Nature of the water, waste water, sewage or sludge to be treated from the processing of plants or parts thereof from the paper or cellulose industry
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2209/00—Controlling or monitoring parameters in water treatment
- C02F2209/005—Processes using a programmable logic controller [PLC]
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2209/00—Controlling or monitoring parameters in water treatment
- C02F2209/03—Pressure
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2209/00—Controlling or monitoring parameters in water treatment
- C02F2209/04—Oxidation reduction potential [ORP]
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2209/00—Controlling or monitoring parameters in water treatment
- C02F2209/22—O2
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2303/00—Specific treatment goals
- C02F2303/20—Prevention of biofouling
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A20/00—Water conservation; Efficient water supply; Efficient water use
- Y02A20/20—Controlling water pollution; Waste water treatment
Definitions
- the present invention can accurately and continuously detect the adhesion of slime, which is a problem in water circulation systems such as open cooling water systems, sealed cooling water systems, membrane concentrated water systems, paper pulp manufacturing process systems, and wastewater treatment process systems, in a relatively short time.
- the present invention relates to a monitoring method and apparatus.
- the present invention also relates to a slime removing agent injection control method and apparatus for accurately controlling the injection of a slime removing agent into an aqueous system based on the monitoring result.
- microorganisms grow at interfaces where water and equipment are in contact, such as pipes and heat exchangers.
- An inorganic substance or the like is involved in a viscous secretion secreted from microorganisms, and slime adheres to an aqueous member, and fouling occurs.
- Slime causes heat transfer failure and lowers the heat efficiency of the heat exchanger, or secretes organic acid and active oxygen species in the lower part of the deposit, corroding the heat exchanger and piping, etc., causing a penetration accident.
- the slime itself clogs the membrane, or the exfoliation of the slime induces clogging of the piping.
- the slime exfoliation adheres to the product, resulting in a reduction in product quality.
- a treatment for adding a slime remover (slime control agent or antibacterial agent) to the target water system is usually performed according to the adhesion state of the slime.
- a slime remover slime control agent or antibacterial agent
- the degree of slime adhesion varies depending on the quality of water supplied to the target water system and the operating conditions.
- the state of slime adhesion always changes depending on the environment such as temperature and operating conditions. Therefore, accurately grasping the state of slime adhesion is an important factor for carrying out appropriate chemical injection control and continuing stable operation.
- the flow conditions of the slime adhesion portion are controlled to be constant, and the short tubes are removed in order to reduce the amount of slime adhesion. There is a way to evaluate.
- Patent Document 1 as a method for evaluating the state of contamination of a separation membrane, a base material made of the same material as that of the separation membrane is disposed for a predetermined period in a branch flow channel branched from an inflow treated water flow channel or an outflow concentrated water flow channel to the separation membrane. Then, a method is disclosed in which a small piece is cut out from the base material to which the slime is attached, the small piece is immersed in an ATP extraction solution to extract slime-derived ATP, and the contamination state of the separation membrane is evaluated based on the amount of ATP.
- the flow rate condition can be arbitrarily set, and the slime under any conditions can be set. It is possible to accurately grasp the state of adhesion of the material. However, it takes a complicated operation and a long time to measure the amount of slime deposited on the removed short pipe and the removed short pipe, and since it is an evaluation for each removed short pipe, continuous changes in the state of slime adhesion could not be grasped in real time.
- the method of monitoring the slime adhesion status from the pressure change before and after the membrane by filtering the entire amount of the evaluation water with the MF membrane installed in the water flow line causes the pressure change to occur due to factors other than slime (SS component in water, etc.). It is not possible to accurately monitor the slime adhesion.
- Patent Document 1 requires a complicated operation and a long time in order to perform ATP extraction by cutting out the base material in the branch flow path, and cannot recognize a continuous change in the slime adhesion state in real time. .
- the present invention solves such problems of the conventional method, and accurately and continuously monitors the adhesion state of slime in a short time without being affected by factors other than slime such as SS components in water. Therefore, it is an object of the present invention to provide a monitoring method and a monitoring device for an aqueous slime adhesion state capable of accurately grasping a continuous change in the slime adhesion state in real time.
- Another object of the present invention is to provide a method and an apparatus for accurately performing chemical injection control of a slime remover to an aqueous system based on the monitoring result.
- the present inventor passed water sampled from the target water system through the hollow fiber membrane module in a cross-flow manner, and a membrane made of slime that adheres to the surface of the hollow fiber membrane. From the pressure change before and after, we found that the slime adhesion situation can be grasped continuously in a relatively short time.
- the present inventor has found that the cross-flow method is not easily affected by factors other than slime, such as the SS component in water, as in the case of the total filtration method.
- the present inventor has found that accurate monitoring can be performed by examining changes in the dissolved oxygen concentration or redox potential of the permeated water with respect to the raw water of the hollow fiber membrane.
- the present invention has been achieved on the basis of such knowledge, and the gist thereof is as follows.
- a method for monitoring the adhesion state of an aqueous slime water collected from the aqueous system (hereinafter referred to as “raw water”) is passed through a hollow fiber membrane module by a cross flow method, and the hollow fiber A method for monitoring the state of slime adhesion in an aqueous system, wherein the state of slime adhesion is monitored from a change in differential pressure between the raw water inflow side and the permeate outflow side of the membrane.
- [2] A monitoring method of an aqueous slime adhesion state according to [1], wherein the hollow fiber membrane has a pore diameter of 0.01 to 0.1 ⁇ m.
- a hollow fiber membrane module in which water collected from the aqueous system (hereinafter referred to as “raw water”) is passed in a cross-flow manner in an apparatus for monitoring the adhesion state of the aqueous slime, and the hollow fiber A means for measuring the pressure on the raw water inflow side of the membrane and a means for measuring the pressure on the permeate outflow side, and monitoring the slime adhesion state from the change in the differential pressure between the raw water inflow side and the permeate outflow side
- a monitoring device for water slime adhesion is referred to as “raw water”
- the hollow fiber membrane has a pore diameter of 0.01 to 0.1 ⁇ m, and is a water-based slime adhesion monitoring device.
- the hollow fiber membrane has means for measuring dissolved oxygen concentration or redox potential of water on the raw water inflow side and permeate outflow side of the hollow fiber membrane, An apparatus for monitoring the state of slime adhesion in an aqueous system, wherein the state of slime adhesion is monitored based on the change in the differential pressure.
- a slime remover chemical injection control device comprising means for controlling the amount of the slime remover added.
- the water sampled from the target water system is passed through the hollow fiber membrane module by the cross flow method, and the pressure change before and after the membrane by the slime formed on the surface of the hollow fiber membrane is monitored.
- the slime adhesion state can be accurately monitored continuously in a short period of time with almost no influence from factors other than the slime in the water.
- DO dissolved oxygen
- ORP redox potential
- the present invention it is possible to accurately prevent the slime-fouling failure by accurately controlling the injection of the slime remover based on the monitoring result.
- FIG. 2a is a graph showing changes over time in the column pressure and permeation pressure of the hollow fiber membrane in Example 1
- FIG. 2b is a graph showing changes over time in the differential pressure.
- 2 is a graph showing changes over time in DO on the column side and transmission side in Example 1.
- FIG. It is a graph which shows a time-dependent change of the differential pressure
- water collected from a monitoring target water system (hereinafter referred to as “raw water”) is passed through a hollow fiber membrane module by a cross flow method, and the raw water of the hollow fiber membrane is supplied.
- Slime adhesion is monitored from the change in differential pressure between the inflow side and the permeate outflow side.
- FIG. 1 is a schematic diagram showing an example of the monitoring apparatus of the present invention suitable for implementing the monitoring method of the present invention.
- a hollow fiber membrane module 1 is an external pressure type hollow fiber membrane module in which a plurality of hollow fiber membranes 3 are loaded in a column 2, and raw water is introduced from a pipe 11 to form a membrane surface of the hollow fiber membrane 3. And the concentrated water is discharged from the pipe 12.
- the permeated water that has permeated through the hollow fiber membrane 3 is discharged from the pipe 13.
- the pipe 12 is provided with a pressure gauge 4A for measuring the pressure on the raw water side (primary side), and the pipe 13 is provided with a pressure gauge 4B for measuring the pressure on the permeate water side (secondary side).
- the column 2 is provided with a DO meter 5A for measuring the DO concentration of water in the column, and the pipe 13 is provided with a DO meter 5B for measuring the DO concentration of permeated water.
- the target water system for monitoring the slime adhesion status includes water circulation systems such as an open cooling water system, a sealed cooling water system, a membrane concentrated water system, a paper pulp manufacturing process system, and a wastewater treatment process system. It is not limited to aqueous systems.
- the present invention is applicable to any water system in which fouling due to slime is a concern.
- water is continuously collected from such a target water system and passed through the hollow fiber membrane module by a cross flow method.
- a branch pipe for separating the water in the system is provided in a circulation pipe or the like of the target water system to pass water through the hollow fiber membrane module.
- the hollow fiber membrane module used in the present invention is not particularly limited as long as raw water can be passed through the cross flow method.
- the hollow fiber membrane module includes an external pressure type in which raw water is passed outside the hollow fiber membrane and an internal pressure type in which raw water is passed inside the hollow fiber membrane. In the internal pressure type, it becomes difficult to recover when the inside is blocked.
- the hollow fiber membrane module is made of acrylic or transparent PVC, the appearance of slime adhesion to the hollow fiber membrane can be observed. Therefore, the hollow fiber membrane used in the present invention is preferably an external pressure type.
- the hollow fiber membrane is not particularly limited, but usually, a hollow fiber membrane having an inner diameter of 0.3 to 1.0 mm, an outer diameter of 0.5 to 1.5 mm, and an effective length of about 100 to 200 mm is used.
- a hollow fiber module having a total membrane area of about 0.02 to 0.1 m 2 in which 50 to 200 hollow fiber membranes are loaded in a column is suitable.
- the membrane material of the hollow fiber membrane is not particularly limited, but is generally made of PVDF (polyvinylidene fluoride), polyethylene, polysulfone, polypropylene, polytetrafluoroethylene (PTFE), polyimide, or the like.
- the pore diameter of the hollow fiber membrane is preferably about 0.01 to 0.1 ⁇ m, particularly about 0.01 to 0.05 ⁇ m.
- the surfaces of the hollow fiber membrane at least the surface on the raw water side is subjected to a hydrophilization treatment with a PVA (polyvinyl alcohol) coating or the like, so that even when a biological metabolite is contained in the raw water, It becomes difficult for these to adhere to the film surface, and it becomes possible to more accurately monitor the adhesion state of the slime itself.
- a PVA polyvinyl alcohol
- raw water is not particularly restricted in the hollow fiber membrane module, but the cross flow flow rate is 0.05 to 0.2 m / sec, the water flow rate is 2 to 7 L / min, especially about 5 L / min. It is preferable to do.
- the pressure on the raw water side (column pressure) is preferably equal to or lower than the pressure resistance of the raw water and concentrated water piping, for example, about 0.02 to 0.3 MPa, and is almost constant at all times.
- the initial pressure on the permeate side is preferably about 1 / 1.5 to 1 / 2.5 of the column pressure, particularly about 1/2.
- the permeated water pipe 13 with a DO meter 5B that measures DO on the permeate side. A change in the DO value on the permeate side with respect to the DO value on the raw water side is examined, and based on this result, it can be determined whether the increase in the differential pressure is due to adhesion of slime or other factors.
- an ORP meter can be provided in place of the DO meters 5A and 5B to confirm the cause of the differential pressure increase.
- an ORP meter can be provided in place of the DO meters 5A and 5B to confirm the cause of the differential pressure increase.
- the DO meter 5A (or ORP meter) in FIG. 1 may be provided in the raw water pipe 11 or the concentrated water pipe 12.
- the slime remover to be added to the target aqueous system is not particularly limited, and a conventionally known slime control agent or antibacterial agent can be used.
- a conventionally known slime control agent or antibacterial agent can be used.
- MBT methylenebisthiocyanate
- DBNPA 2,2-dibromo-3-nitrilo
- DBNE 2,2-dibromo-2-nitroethanol
- BBAB bis-1,4-bromoacetoxy-2-butene
- MIT 5-chloro-2-methyl-4-isothiazoline-3- ON), dithiol (4,5-dichloro-1,2-dithiolane-3-one), CFIPN (5-chloro-2,4,6-trifluoroisophthalonitrile), HBDS (hexabromodimethylsulfone), TCS (3,3,4,4-tetrachlorotetrahydrothiophene-1,1-dioxide), BNP (2- Romo-2-nitropropane
- a hollow fiber membrane module having the following specifications was used, and water was passed by a cross flow method under the following water flow conditions.
- Membrane material PVDF (PVA coating)
- Hollow fiber membrane inner diameter 0.6mm
- Hollow fiber membrane outer diameter 1.0mm
- Hollow fiber membrane effective length 145mm
- Membrane pore size 0.02 ⁇ m
- Number of hollow fiber membranes 110
- Total membrane area 0.05 m 2
- Water flow conditions Water flow rate: 5L / min
- Cross flow velocity 0.16m / sec
- Column pressure about 0.030 MPa Permeation pressure: Start evaluation at half the column pressure
- Example 1 At the reverse osmosis (RO) membrane treatment site, raw water was collected from a line after the pressurizing pump provided upstream of the RO membrane module. This raw water was passed through the cross flow method under the above water flow conditions through the slime adhesion monitoring device shown in FIG. 1 using the hollow fiber membrane module. Raw water side pressure (column pressure) and permeate side pressure (permeation pressure) were measured. The differential pressure was calculated from this measurement result, and the change with time was examined. As a result, as shown in FIGS. 2a and 2b, it was recognized that the pressure before and after the membrane changes due to the formation of slime on the surface of the hollow fiber membrane.
- RO reverse osmosis
- Example 2 Two series of slime adhesion monitoring devices using the hollow fiber membrane module shown in FIG. 1 were provided.
- the raw water sampled in the same manner as in Example 1 was supplied with a slime remover (stabilized chlorine agent “Kuriverter (registered trademark) IK-110” manufactured by Kurita Kogyo Co., Ltd.) on one monitoring device (chemical injection system). 1 mg / L (as the total effective chlorine concentration) was added, and the other monitoring device (no chemical injection) was passed through the cross-flow method under the above water flow conditions without adding the slime remover.
- a slime remover stabilized chlorine agent “Kuriverter (registered trademark) IK-110” manufactured by Kurita Kogyo Co., Ltd.
- 1 mg / L as the total effective chlorine concentration
- the other monitoring device no chemical injection
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Water Supply & Treatment (AREA)
- Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- Physics & Mathematics (AREA)
- Medicinal Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Food Science & Technology (AREA)
- Hydrology & Water Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Organic Chemistry (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
水中のSS成分などのスライム以外の因子の影響を受けることなく、スライム付着状況の連続的な変化をリアルタイムで正確に把握することができる水系のスライム付着状況のモニタリング方法及びモニタリング装置が提供される。水系から採水した水(原水)を、中空糸膜にクロスフロー方式で通水し、該中空糸膜の原水流入側と透過水流出側との差圧の変化からスライムの付着状況をモニタリングする。対象水系から採水した水を、中空糸膜モジュールにクロスフロー方式で通水することにより、中空糸膜表面に付着するスライムによる膜前後の圧力変化から、比較的短時間で、連続的にスライム付着状況を把握することができ、しかも全量濾過方式のように、水中のSS成分などのスライム以外の因子の影響も受け難い。
Description
本発明は、開放冷却水系、密閉冷却水系、膜濃縮水系、紙パルプ製造プロセス系、排水処理プロセス系などの水循環系において問題となるスライムの付着状況を比較的短時間で連続的に、的確にモニタリングする方法及び装置に関する。本発明はまた、このモニタリング結果に基いて、水系へのスライム除去剤の薬注制御を的確に行うスライム除去剤の薬注制御方法及び装置に関する。
開放冷却水系、密閉冷却水系、膜濃縮水系、紙パルプ製造プロセス系、排水処理プロセス系などの水循環系においては、配管や熱交換器など、水と機材が接する界面において微生物が増殖する。微生物から分泌される粘質性の分泌物に無機物等が巻き込まれ、スライムが水系の部材に付着し、ファウリングが発生する。
スライムは、伝熱障害を引き起こして熱交換器の熱効率を低下させたり、付着下部で有機酸や活性酸素種を分泌することで熱交換器や配管等を腐食させて貫通事故を引き起こす。スライム自体が膜を閉塞させたり、スライムの剥離物が配管等の閉塞を誘発する。紙パルプ製造プロセスでは、スライムの剥離物が製品に付着して、製品品質の低下をもたらす。
スライムによるファウリングに起因する障害を回避するために、通常、スライムの付着状況に応じて、対象水系にスライム除去剤(スライムコントロール剤や抗菌剤)を添加する処理が施される。しかしながら、対象水系に補給される水の水質や運転条件などにより、スライムの付着の程度は様々である。温度等の環境や運転条件の変化によってもスライムの付着状況は常に変化する。従って、スライムの付着状況を正確に把握することは、適切な薬注制御を行って、安定運転を継続するために重要な要素である。
水系におけるスライムの付着状況をモニタリングする方法として、スライドガラスやゴム板よりなるテストピースを水系に浸漬させておき、任意の時期に引き上げて、付着しているスライムを剥ぎ取って、スライムの付着量を測定する方法が広く行われている。しかし、この方法は、大まかなスライムの付着状況を把握することは可能であるが、テストピースを浸漬させる場所の流動条件を一定にすることが難しく、正確にスライムの付着状況を把握することは困難である。また、スライムの付着状況の変化を連続的に把握することはできない。
スライムの付着状況を正確に把握可能な方法として、例えば、複数の短管を直列に接続することでスライムの付着部分の流動条件を一定に制御し、順次短管を取り外してスライムの付着量を評価する方法がある。
通水ラインに全量濾過タイプの限外濾過(MF)膜を設置し、スライム付着による膜閉塞による膜前後の圧力変化からスライム付着状況をモニタリングする方法も知られている。
特許文献1は、分離膜の汚染状況を評価する方法として、分離膜への流入被処理水流路又は流出濃縮水流路から分岐した分岐流路に、分離膜と同材質の基材を所定期間配置し、スライムが付着した基材から小片を切り取り、この小片をATP抽出溶液に浸漬してスライム由来のATPを抽出し、このATP量に基づいて分離膜の汚染状況を評価する方法を開示する。
上記従来法のうち、直列に接続した複数の短管から順次短管を取り外してスライムの付着量を評価する方法では、流速条件を任意に設定することが可能であり、任意の条件でのスライムの付着状況を正確に把握することが可能である。しかしながら、短管の取り外し、取り外した短管のスライム付着量の測定に煩雑な操作と長時間を要し、また、取り外した短管毎の評価であるため、スライムの付着状況の連続的な変化をリアルタイムで把握することができなかった。
通水ラインに設置したMF膜で評価水を全量濾過して膜前後の圧力変化からスライムの付着状況をモニタリングする方法は、スライム以外の要因(水中のSS成分など)によっても圧力変化が起こるため、スライムの付着状況を的確にモニタリングすることはできない。
特許文献1の方法は、分岐流路内の基材を切り取ってATP抽出を行うために、煩雑な操作と長時間を要し、スライム付着状況の連続的な変化をリアルタイムで把握することができない。
本発明は、このような従来法の問題点を解決し、水中のSS成分などのスライム以外の因子の影響を受けることなく、短時間でスライムの付着状況を的確にかつ連続的にモニタリングすることができ、従って、スライム付着状況の連続的な変化をリアルタイムで正確に把握することができる水系のスライム付着状況のモニタリング方法及びモニタリング装置を提供することを目的とする。
本発明はまた、このモニタリング結果に基いて、水系へのスライム除去剤の薬注制御を的確に行う方法及び装置を提供することを目的とする。
本発明者は、上記課題を解決すべく鋭意検討を重ねた結果、対象水系から採水した水を、中空糸膜モジュールにクロスフロー方式で通水し、中空糸膜表面に付着するスライムによる膜前後の圧力変化から、比較的短時間で、連続的にスライム付着状況を把握することができることを見出した。本発明者は、クロスフロー方式であれば全量濾過方式のように、水中のSS成分などのスライム以外の因子の影響も受け難いことを見出した。
本発明者は、中空糸膜の原水に対する透過水の溶存酸素濃度又は酸化還元電位の変化を調べることにより、的確なモニタリングを行えることを見出した。
本発明はこのような知見に基いて達成されたものであり、以下を要旨とする。
[1] 水系のスライムの付着状況をモニタリングする方法において、該水系から採水した水(以下、「原水」と称す。)を、中空糸膜モジュールにクロスフロー方式で通水し、該中空糸膜の原水流入側と透過水流出側との差圧の変化からスライム付着状況をモニタリングすることを特徴とする水系のスライム付着状況のモニタリング方法。
[2] [1]において、前記中空糸膜の孔径が0.01~0.1μmであることを特徴とする水系のスライム付着状況のモニタリング方法。
[3] [1]又は[2]において、前記中空糸膜の原水流入側表面が親水化処理されていることを特徴とする水系のスライム付着状況のモニタリング方法。
[4] [1]ないし[3]のいずれかにおいて、前記中空糸膜の原水流入側及び透過水流出側の水の溶存酸素濃度又は酸化還元電位を測定し、該測定結果と前記差圧の変化に基づいてスライム付着状況をモニタリングすることを特徴とする水系のスライム付着状況のモニタリング方法。
[5] 水系へのスライム除去剤の添加量を制御する方法において、[1]ないし[4]のいずれかに記載の水系のスライム付着状況のモニタリング方法のモニタリング結果に基いて、該水系へのスライム除去剤の添加量を制御することを特徴とするスライム除去剤の薬注制御方法。
[6] 水系のスライムの付着状況をモニタリングする装置において、該水系から採水した水(以下、「原水」と称す。)がクロスフロー方式で通水される中空糸膜モジュールと、該中空糸膜の原水流入側の圧力を測定する手段と、透過水流出側の圧力を測定する手段とを有し、該原水流入側と透過水流出側の差圧の変化からスライム付着状況をモニタリングすることを特徴とする水系のスライム付着状況のモニタリング装置。
[7] [6]において、前記中空糸膜の孔径が0.01~0.1μmであることを特徴と水系のするスライム付着状況のモニタリング装置。
[8] [6]又は[7]において、前記中空糸膜の原水流入側表面が親水化処理されていることを特徴とする水系のスライム付着状況のモニタリング装置。
[9] [6]ないし[8]のいずれかにおいて、前記中空糸膜の原水流入側及び透過水流出側の水の溶存酸素濃度又は酸化還元電位を測定する手段を有し、該測定結果と前記差圧の変化に基づいてスライム付着状況をモニタリングすることを特徴とする水系のスライム付着状況のモニタリング装置。
[10] 水系へのスライム除去剤の添加量を制御する装置において、[6]ないし[9]のいずれかに記載の水系のスライム付着状況のモニタリング装置のモニタリング結果に基いて、該水系へのスライム除去剤の添加量を制御する手段を有することを特徴とするスライム除去剤の薬注制御装置。
本発明によれば、対象水系から採水した水を中空糸膜モジュールにクロスフロー方式で通水して中空糸膜表面に形成されるスライムによる膜前後の圧力変化を監視することにより、水系のスライム付着状況を、短時間で連続的に、水中のスライム以外の因子の影響を殆ど受けることなく的確にモニタリングすることができる。中空糸膜の原水に対する透過水の溶存酸素(DO)濃度又は酸化還元電位(ORP)の変化を調べることにより、膜差圧の変化がスライム以外の要因であるか否かを確認することができ、より一層的確なモニタリングを行える。
本発明によれば、このようなモニタリング結果に基いて、スライム除去剤の薬注制御を的確に行って、スライムによるファウリング障害を確実に防止することができる。
本発明によるモニタリング結果に基づいて、水系の運転管理を的確に行うこともでき、長期に亘り安定運転を継続することが可能となる。
以下に本発明の実施の形態を詳細に説明する。
本発明のスライム付着状況のモニタリング方法では、モニタリング対象水系から採水した水(以下、「原水」と称す。)を、中空糸膜モジュールにクロスフロー方式で通水し、該中空糸膜の原水流入側と透過水流出側との差圧の変化からスライムの付着状況をモニタリングする。
図1は、このような本発明のモニタリング方法の実施に好適な本発明のモニタリング装置の一例を示す模式図である。図1において、中空糸膜モジュール1は、カラム2内に中空糸膜3が複数本装填された外圧式中空糸膜モジュールであって、原水は配管11より導入されて中空糸膜3の膜面に沿ってクロスフロー方式で通水され、濃縮水は配管12より排出される。中空糸膜3を透過した透過水は配管13より排出される。配管12には原水側(一次側)の圧力を測定するための圧力計4Aが設けられ、配管13には透過水側(二次側)の圧力を測定するための圧力計4Bが設けられている。カラム2には、カラム内の水のDO濃度を測定するためのDO計5Aが設けられ、配管13には、透過水のDO濃度を測定するためのDO計5Bが設けられている。
[対象水系]
本発明に従って、スライム付着状況のモニタリングを行う対象水系としては、開放冷却水系、密閉冷却水系、膜濃縮水系、紙パルプ製造プロセス系、排水処理プロセス系などの水循環系が挙げられるが、何らこれらの水系に限定されるものではない。本発明は、スライムによるファウリングが懸念されるあらゆる水系に適用可能である。
本発明に従って、スライム付着状況のモニタリングを行う対象水系としては、開放冷却水系、密閉冷却水系、膜濃縮水系、紙パルプ製造プロセス系、排水処理プロセス系などの水循環系が挙げられるが、何らこれらの水系に限定されるものではない。本発明は、スライムによるファウリングが懸念されるあらゆる水系に適用可能である。
本発明では、このような対象水系から連続的に水を採水して中空糸膜モジュールにクロスフロー方式で通水する。具体的には、対象水系の循環配管等に系内の水を分取する分岐配管を設けて中空糸膜モジュールに通水するのが好ましい。
[中空糸膜モジュール]
本発明で用いる中空糸膜モジュールとしては、原水をクロスフロー方式で通水することができるものであればよく、特に制限はない。中空糸膜モジュールには中空糸膜の外側に原水を通水する外圧式と中空糸膜の内側に原水を通水する内圧式とがある。内圧式では内部が閉塞すると回復困難になる。中空糸膜モジュールをアクリルや透明塩ビにすると中空糸膜へのスライム付着状態を外観観察することができる。従って、本発明で用いる中空糸膜は外圧式であることが好ましい。
本発明で用いる中空糸膜モジュールとしては、原水をクロスフロー方式で通水することができるものであればよく、特に制限はない。中空糸膜モジュールには中空糸膜の外側に原水を通水する外圧式と中空糸膜の内側に原水を通水する内圧式とがある。内圧式では内部が閉塞すると回復困難になる。中空糸膜モジュールをアクリルや透明塩ビにすると中空糸膜へのスライム付着状態を外観観察することができる。従って、本発明で用いる中空糸膜は外圧式であることが好ましい。
中空糸膜は、特に制限はないが、通常、内径0.3~1.0mm、外径0.5~1.5mm、有効長さ100~200mm程度のものが用いられる。このような中空糸膜が50~200本カラム内に装填された全膜面積0.02~0.1m2程度の中空糸モジュールが適当である。
中空糸膜の膜素材は、特に制限はないが、PVDF(ポリフッ化ビニリデン)、ポリエチレン、ポリスルホン、ポリプロピレン、ポリテトラフルオロエチレン(PTFE)、ポリイミド等よりなるものが一般的である。
中空糸膜の孔径は、小さ過ぎるとスライム以外の因子、例えばSSが膜孔に詰まるおそれがあり、大き過ぎるとスライム源となる微生物も透過されてしまうようになり、膜面にスライムが形成され難くなる。従って、中空糸膜の孔径は0.01~0.1μm程度、特に0.01~0.05μm程度であることが好ましい。
中空糸膜の表面のうち、少なくとも原水側の表面を、PVA(ポリビニルアルコール)コーティングなどにより親水化処理を施しておくことにより、原水中に生物処理による生物代謝物が含まれている場合でも、これらが膜面に付着し難くなり、スライムそのものの付着状況をより的確にモニタリングすることができるようになる。
[通水条件]
モニタリングしているときに、中空糸膜モジュールに原水を、特に制限はないが、クロスフロー流速0.05~0.2m/sec、通水流量2~7L/min特に約5L/min程度通水することが好ましい。原水側の圧力(カラム圧)は原水及び濃縮水配管の耐圧圧力以下、例えば0.02~0.3MPa程度で常時ほぼ一定とすることが好ましい。初期の透過水側の圧力はカラム圧の1/1.5~1/2.5程度、特に約1/2程度であることが好ましい。
モニタリングしているときに、中空糸膜モジュールに原水を、特に制限はないが、クロスフロー流速0.05~0.2m/sec、通水流量2~7L/min特に約5L/min程度通水することが好ましい。原水側の圧力(カラム圧)は原水及び濃縮水配管の耐圧圧力以下、例えば0.02~0.3MPa程度で常時ほぼ一定とすることが好ましい。初期の透過水側の圧力はカラム圧の1/1.5~1/2.5程度、特に約1/2程度であることが好ましい。
[スライム付着状況の判断]
原水を中空糸膜モジュールにクロスフロー方式で連続的に通水しているときに、中空糸膜の差圧に変化がなければ、対象水系はスライムによるファウリングの問題はないと判断する。中空糸膜の差圧が経時により上昇する場合は、対象水系はスライムが付着する傾向にあると判断する。中空糸膜の差圧の上昇速度が小さい場合は、スライムの付着傾向は小さく、逆に大きい場合はスライムの付着傾向が大きく、早期にファウリングに到る可能性があると判断する。
原水を中空糸膜モジュールにクロスフロー方式で連続的に通水しているときに、中空糸膜の差圧に変化がなければ、対象水系はスライムによるファウリングの問題はないと判断する。中空糸膜の差圧が経時により上昇する場合は、対象水系はスライムが付着する傾向にあると判断する。中空糸膜の差圧の上昇速度が小さい場合は、スライムの付着傾向は小さく、逆に大きい場合はスライムの付着傾向が大きく、早期にファウリングに到る可能性があると判断する。
[DO又はORPの測定]
本発明によれば、原水を中空糸膜モジュールにクロスフロー方式で通水するため、全量濾過方式の場合に比べて、SS等のスライム以外の因子による差圧の変化を防止することができる。
本発明によれば、原水を中空糸膜モジュールにクロスフロー方式で通水するため、全量濾過方式の場合に比べて、SS等のスライム以外の因子による差圧の変化を防止することができる。
差圧の変化がスライムによるものであるか、スライム以外の因子によるものであるかをより確実に把握するために、図1に示すように、原水側のDOを測定するDO計5Aをカラム2に挿入して設けると共に、透過水側のDOを測定するDO計5Bを透過水配管13に設けることが好ましい。原水側のDO値に対する透過水側のDO値の変化を調べ、この結果に基づいて、差圧の上昇がスライムの付着によるものか、それ以外の因子によるものかを判断することができる。
即ち、膜表面にスライムが付着すると、原水のDOに対して透過水のDOが大きく低下するので、このDOの変化をとらえることで、差圧の上昇がスライムに起因するものであることを確認することができる。一方、このような透過水のDOの低下が認められないのに差圧が上昇する場合は、スライム以外の要因により差圧が上昇すると考えられる。
ORPについてもDOと同様の現象が起こる。即ち、膜表面にスライムが付着すると、原水のORPに対して透過水のORPが大きく低下するので、このORPの変化をとらえることで、差圧の上昇がスライムに起因するものであることを確認することができる。一方、このような透過水のORPの低下が認められないのに差圧が上昇する場合は、スライム以外の要因により差圧が上昇すると考えられる。
従って、図1において、DO計5A、5Bの代りにORP計を設けて、差圧上昇の要因の確認を行うこともできる。ORP計とDO計の両方を設けることも可能であるが、ORP計及びDO計の一方のみを設けるので十分である。
図1におけるDO計5A(又はORP計)は、原水配管11又は濃縮水配管12に設けてもよい。
[薬注制御]
本発明によるスライム付着状況のモニタリング結果に基いて、対象水系へのスライム除去剤の薬注制御を行うことができる。
本発明によるスライム付着状況のモニタリング結果に基いて、対象水系へのスライム除去剤の薬注制御を行うことができる。
(i) 中空糸膜の差圧に変化がない場合には、対象水系はスライムによるファウリングはないことから、以下の(1)又は(2)の操作を行う。
(1) 無薬注の場合は、そのまま無薬注で運転を行う。
(2) 薬注を行っている場合は、そのままの薬注量で運転を行うか、或いは、薬注量を低減するか無薬注として、その後、差圧が変化するかモニタリングする。
(1) 無薬注の場合は、そのまま無薬注で運転を行う。
(2) 薬注を行っている場合は、そのままの薬注量で運転を行うか、或いは、薬注量を低減するか無薬注として、その後、差圧が変化するかモニタリングする。
(ii) 中空糸膜の差圧が経時的に上昇する場合、或いは、中空糸膜の差圧が経時的に上昇しかつDO又はORPの測定結果から、その要因がスライムであることが確認された場合には、次の(3)又は(4)の操作を行う。
(3) 無薬注の場合は薬注を開始する。
(4) 薬注を行っている場合は、薬注量を増加する。
上記(3),(4)において、差圧の上昇速度が大きい場合には、薬注量又はその増加量を多くし、差圧の上昇速度が小さい場合には、薬注量又はその増加量を少なくする。
(3) 無薬注の場合は薬注を開始する。
(4) 薬注を行っている場合は、薬注量を増加する。
上記(3),(4)において、差圧の上昇速度が大きい場合には、薬注量又はその増加量を多くし、差圧の上昇速度が小さい場合には、薬注量又はその増加量を少なくする。
(iii) 中空糸膜の差圧が経時的に上昇するが、DO又はORPの測定結果から、その要因がスライムではないことが確認された場合には、必要に応じて対象水系の除濁処理、スケール処理等を行う。
対象水系に添加するスライム除去剤としては特に制限はなく、従来公知のスライムコントロール剤や抗菌剤を用いることができ、例えば、MBT(メチレンビスチオシアネート)、DBNPA(2,2-ジブロモ-3-ニトリロプロピオンアミド)、DBNE(2,2-ジブロモ-2-ニトロエタノール)、BBAB(ビス-1,4-ブロモアセトキシ-2-ブテン)、MIT(5-クロロ-2-メチル-4-イソチアゾリン-3-オン)、ジチオール(4,5-ジクロロ-1,2-ジチオラン-3-オン)、CFIPN(5-クロロ-2,4,6-トリフルオロイソフタロニトリル)、HBDS(ヘキサブロモジメチルスルホン)、TCS(3,3,4,4-テトラクロロテトラヒドロチオフェン-1,1-ジオキシド)、BNP(2-ブロモ-2-ニトロプロパン-1,3-ジオール)、BIT(ベンゾイソチアゾリン-3-オン)、GA(グルタールアルデヒド)などのスライムコントロール剤を用いることができる。また、モノクロラミン、ジクロラミン、N-クロロスルファマート等の結合塩素剤(安定化塩素剤)などの抗菌剤を用いることもできる。
以下に実施例を挙げて本発明をより具体的に説明する。
以下の実施例において、中空糸膜モジュールとしては、下記仕様のものを用い、以下の通水条件でクロスフロー方式にて通水を行った。
[中空糸膜モジュール]
膜素材:PVDF(PVAコーティング)
中空糸膜内径:0.6mm
中空糸膜外径:1.0mm
中空糸膜有効長さ:145mm
膜孔径:0.02μm
中空糸膜本数:110本
全膜面積:0.05m2
[通水条件]
通水流量:5L/min
クロスフロー流速:0.16m/sec
カラム圧:約0.030MPa
透過圧:カラム圧の1/2の圧力で評価開始
[中空糸膜モジュール]
膜素材:PVDF(PVAコーティング)
中空糸膜内径:0.6mm
中空糸膜外径:1.0mm
中空糸膜有効長さ:145mm
膜孔径:0.02μm
中空糸膜本数:110本
全膜面積:0.05m2
[通水条件]
通水流量:5L/min
クロスフロー流速:0.16m/sec
カラム圧:約0.030MPa
透過圧:カラム圧の1/2の圧力で評価開始
[実施例1]
逆浸透(RO)膜処理現場で、RO膜モジュールの上流に設けられた加圧ポンプ後段のラインから原水を採水した。この原水を、上記中空糸膜モジュールを用いた図1に示すスライム付着状況のモニタリング装置に上記の通水条件でクロスフロー方式で通水した。原水側圧力(カラム圧)と透過水側圧力(透過圧)を測定した。この測定結果から差圧を算出し、その経時変化を調べた。その結果、図2a,2bに示す通り、中空糸膜表面にスライムが形成されることによって、膜前後の圧力が変化することが認められた。
逆浸透(RO)膜処理現場で、RO膜モジュールの上流に設けられた加圧ポンプ後段のラインから原水を採水した。この原水を、上記中空糸膜モジュールを用いた図1に示すスライム付着状況のモニタリング装置に上記の通水条件でクロスフロー方式で通水した。原水側圧力(カラム圧)と透過水側圧力(透過圧)を測定した。この測定結果から差圧を算出し、その経時変化を調べた。その結果、図2a,2bに示す通り、中空糸膜表面にスライムが形成されることによって、膜前後の圧力が変化することが認められた。
このとき、カラム側と透過側の水のDOを同時に計測した結果、図3に示す通り、カラム側の水のDO値に対して、透過側の水のDO値が経時的に低下することが確認された。したがって、上記の評価で差圧が上昇した理由は、スライムによるものであると判断された。
[実施例2]
上記中空糸膜モジュールを用いた図1に示すスライム付着状況のモニタリング装置を2系列設けた。実施例1と同様に採水した原水を、一方のモニタリング装置(薬注系)には、スライム除去剤(栗田工業(株)製安定化塩素剤「クリバーター(登録商標)IK-110」)を1mg/L(全有効塩素濃度として)添加して、他方のモニタリング装置(無薬注)にはスライム除去剤を添加せずに、それぞれ、上記の通水条件でクロスフロー方式で通水した。差圧の経時変化を調べたところ、図4に示す通り、無薬注系では中空糸膜表面に徐々にスライムが形成され、それに伴い差圧が上昇していくことが認められた。薬注系ではスライムの形成がなく、差圧上昇が認められなかった。
上記中空糸膜モジュールを用いた図1に示すスライム付着状況のモニタリング装置を2系列設けた。実施例1と同様に採水した原水を、一方のモニタリング装置(薬注系)には、スライム除去剤(栗田工業(株)製安定化塩素剤「クリバーター(登録商標)IK-110」)を1mg/L(全有効塩素濃度として)添加して、他方のモニタリング装置(無薬注)にはスライム除去剤を添加せずに、それぞれ、上記の通水条件でクロスフロー方式で通水した。差圧の経時変化を調べたところ、図4に示す通り、無薬注系では中空糸膜表面に徐々にスライムが形成され、それに伴い差圧が上昇していくことが認められた。薬注系ではスライムの形成がなく、差圧上昇が認められなかった。
本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更が可能であることは当業者に明らかである。
本出願は、2013年4月17日付で出願された日本特許出願2013-086732に基づいており、その全体が引用により援用される。
本出願は、2013年4月17日付で出願された日本特許出願2013-086732に基づいており、その全体が引用により援用される。
Claims (10)
- 水系のスライムの付着状況をモニタリングする方法において、該水系から採水した水(以下、「原水」と称す。)を、中空糸膜モジュールにクロスフロー方式で通水し、該中空糸膜の原水流入側と透過水流出側との差圧の変化からスライムの付着状況をモニタリングすることを特徴とする水系のスライム付着状況のモニタリング方法。
- 請求項1において、前記中空糸膜の孔径が0.01~0.1μmであることを特徴とする水系のスライム付着状況のモニタリング方法。
- 請求項1又は2において、前記中空糸膜の原水流入側表面が親水化処理されていることを特徴とする水系のスライム付着状況のモニタリング方法。
- 請求項1ないし3のいずれか1項において、前記中空糸膜の原水流入側及び透過水流出側の水の溶存酸素濃度又は酸化還元電位を測定し、該測定結果と前記差圧の変化に基づいてスライム付着状況をモニタリングすることを特徴とする水系のスライム付着状況のモニタリング方法。
- 水系へのスライム除去剤の添加量を制御する方法において、請求項1ないし4のいずれか1項に記載の水系のスライム付着状況のモニタリング方法のモニタリング結果に基いて、該水系へのスライム除去剤の添加量を制御することを特徴とするスライム除去剤の薬注制御方法。
- 水系のスライムの付着状況をモニタリングする装置において、該水系から採水した水(以下、「原水」と称す。)がクロスフロー方式で通水される中空糸膜モジュールと、該中空糸膜の原水流入側の圧力を測定する手段と、透過水流出側の圧力を測定する手段とを有し、該原水流入側と透過水流出側の差圧の変化からスライム付着状況をモニタリングすることを特徴とする水系のスライム付着状況のモニタリング装置。
- 請求項6において、前記中空糸膜の孔径が0.01~0.1μmであることを特徴とする水系のスライム付着状況のモニタリング装置。
- 請求項6又は7において、前記中空糸膜の原水流入側表面が親水化処理されていることを特徴とする水系のスライム付着状況のモニタリング装置。
- 請求項6ないし8のいずれか1項において、前記中空糸膜の原水流入側及び透過水流出側の水の溶存酸素濃度又は酸化還元電位を測定する手段を有し、該測定結果と前記差圧の変化に基づいてスライム付着状況をモニタリングすることを特徴とする水系のスライム付着状況のモニタリング装置。
- 水系へのスライム除去剤の添加量を制御する装置において、請求項6ないし9のいずれか1項に記載の水系のスライム付着状況のモニタリング装置のモニタリング結果に基いて、該水系へのスライム除去剤の添加量を制御する手段を有することを特徴とするスライム除去剤の薬注制御装置。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013086732A JP2014211327A (ja) | 2013-04-17 | 2013-04-17 | 水系のスライム付着状況のモニタリング方法及びモニタリング装置 |
JP2013-086732 | 2013-04-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014171400A1 true WO2014171400A1 (ja) | 2014-10-23 |
Family
ID=51731342
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/060456 WO2014171400A1 (ja) | 2013-04-17 | 2014-04-11 | 水系のスライム付着状況のモニタリング方法及びモニタリング装置 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2014211327A (ja) |
WO (1) | WO2014171400A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015178161A1 (ja) * | 2014-05-19 | 2015-11-26 | 栗田工業株式会社 | 循環冷却水系における冷却水処理薬剤の濃度調整方法、冷却排出水の回収方法及び冷却排出水の処理装置 |
WO2020005070A1 (en) | 2018-06-29 | 2020-01-02 | Oasen N.V. | A system for monitoring fouling issues in a drinking water distribution network |
CN113272045A (zh) * | 2019-01-28 | 2021-08-17 | 栗田工业株式会社 | 药液注入控制方法 |
IT202100010016A1 (it) * | 2021-04-20 | 2022-10-20 | Inthebubble S R L | Sistema di rilevamento per la valutazione quantitativa della carica batterica in acqua |
EP4230282A4 (en) * | 2020-10-27 | 2024-10-09 | Kuraray Co., Ltd. | WATER TREATMENT DEVICE AND ESTIMATION METHOD |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105064453A (zh) * | 2015-08-12 | 2015-11-18 | 重庆电子工程职业学院 | 一种雨水回收利用控制系统故障诊断方法 |
WO2018198245A1 (ja) * | 2017-04-26 | 2018-11-01 | 三菱重工エンジニアリング株式会社 | 逆浸透膜プラント及び逆浸透膜プラントの運転方法 |
JP7181809B2 (ja) * | 2019-02-25 | 2022-12-01 | オルガノ株式会社 | 膜ろ過装置 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0775787A (ja) * | 1992-12-17 | 1995-03-20 | Katayama Chem Works Co Ltd | 用水中のスライム障害の処理方法 |
JPH08323351A (ja) * | 1995-06-05 | 1996-12-10 | Hitachi Zosen Corp | 膜組込型水処理装置の膜洗浄方法および膜洗浄装置 |
JP2002320968A (ja) * | 2001-04-27 | 2002-11-05 | Japan Organo Co Ltd | 膜分離方法 |
JP2006317163A (ja) * | 2005-05-10 | 2006-11-24 | Japan Organo Co Ltd | 水質測定方法および装置 |
JP2008032691A (ja) * | 2006-06-29 | 2008-02-14 | Fuji Electric Systems Co Ltd | 水質監視システムおよび水質監視方法 |
JP2009085960A (ja) * | 2008-10-20 | 2009-04-23 | Somar Corp | 薬剤添加制御管理方法及び薬剤添加制御管理装置 |
JP2009165949A (ja) * | 2008-01-15 | 2009-07-30 | Japan Organo Co Ltd | 抗菌性分離膜、その製造方法、および抗菌性分離膜の製造装置 |
JP2009241018A (ja) * | 2008-03-31 | 2009-10-22 | Somar Corp | スライムコントロール方法及び装置 |
-
2013
- 2013-04-17 JP JP2013086732A patent/JP2014211327A/ja active Pending
-
2014
- 2014-04-11 WO PCT/JP2014/060456 patent/WO2014171400A1/ja active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0775787A (ja) * | 1992-12-17 | 1995-03-20 | Katayama Chem Works Co Ltd | 用水中のスライム障害の処理方法 |
JPH08323351A (ja) * | 1995-06-05 | 1996-12-10 | Hitachi Zosen Corp | 膜組込型水処理装置の膜洗浄方法および膜洗浄装置 |
JP2002320968A (ja) * | 2001-04-27 | 2002-11-05 | Japan Organo Co Ltd | 膜分離方法 |
JP2006317163A (ja) * | 2005-05-10 | 2006-11-24 | Japan Organo Co Ltd | 水質測定方法および装置 |
JP2008032691A (ja) * | 2006-06-29 | 2008-02-14 | Fuji Electric Systems Co Ltd | 水質監視システムおよび水質監視方法 |
JP2009165949A (ja) * | 2008-01-15 | 2009-07-30 | Japan Organo Co Ltd | 抗菌性分離膜、その製造方法、および抗菌性分離膜の製造装置 |
JP2009241018A (ja) * | 2008-03-31 | 2009-10-22 | Somar Corp | スライムコントロール方法及び装置 |
JP2009085960A (ja) * | 2008-10-20 | 2009-04-23 | Somar Corp | 薬剤添加制御管理方法及び薬剤添加制御管理装置 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015178161A1 (ja) * | 2014-05-19 | 2015-11-26 | 栗田工業株式会社 | 循環冷却水系における冷却水処理薬剤の濃度調整方法、冷却排出水の回収方法及び冷却排出水の処理装置 |
JP2015217353A (ja) * | 2014-05-19 | 2015-12-07 | 栗田工業株式会社 | 循環冷却水系における冷却水処理薬剤の濃度調整方法、冷却排出水の回収方法及び水処理設備 |
WO2020005070A1 (en) | 2018-06-29 | 2020-01-02 | Oasen N.V. | A system for monitoring fouling issues in a drinking water distribution network |
CN113272045A (zh) * | 2019-01-28 | 2021-08-17 | 栗田工业株式会社 | 药液注入控制方法 |
EP4230282A4 (en) * | 2020-10-27 | 2024-10-09 | Kuraray Co., Ltd. | WATER TREATMENT DEVICE AND ESTIMATION METHOD |
IT202100010016A1 (it) * | 2021-04-20 | 2022-10-20 | Inthebubble S R L | Sistema di rilevamento per la valutazione quantitativa della carica batterica in acqua |
EP4080206A1 (en) * | 2021-04-20 | 2022-10-26 | Inthebubble S.r.l. | A detection system for quantitative assessment of bacteria in water |
Also Published As
Publication number | Publication date |
---|---|
JP2014211327A (ja) | 2014-11-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2014171400A1 (ja) | 水系のスライム付着状況のモニタリング方法及びモニタリング装置 | |
US11192069B2 (en) | Method and apparatus for assessing a state of fouling of a reverse osmosis system | |
Salinas-Rodriguez et al. | The Modified Fouling Index Ultrafiltration constant flux for assessing particulate/colloidal fouling of RO systems | |
EP2572739B1 (de) | Vorrichtung zur Erzeugung von Reinstwasser | |
KR20130085220A (ko) | 역삼투 막의 막오염 진단 기능을 가지는 해수담수화장치 | |
JP2015042385A (ja) | 淡水化システム | |
JP2015134322A (ja) | 水処理システム | |
JP2015134327A (ja) | 分離膜面評価方法、水処理システムの制御方法、および水処理システム | |
JP5595956B2 (ja) | 分離膜のファウリングの評価方法及び膜分離設備の運転方法 | |
US20170036928A1 (en) | Methods of Inhibiting Fouling in Liquid Systems | |
Kim et al. | A two-fiber, bench-scale test of ultrafiltration (UF) for investigation of fouling rate and characteristics | |
JP2011255301A (ja) | 分離膜の汚染評価方法、これを利用した分離膜運転管理方法及びろ過装置 | |
US20050061741A1 (en) | Method for treating reverse osmosis membranes with chlorine dioxide | |
CN102964023B (zh) | 水处理方法和水处理装置 | |
CN112752604B (zh) | 分离膜模块的检查方法 | |
WO2022201978A1 (ja) | フィルタ評価装置、浄化装置、及びフィルタ評価方法 | |
JP2005351707A (ja) | 膜ろ過性能の検知方法、検知装置、膜ろ過方法および膜ろ過装置 | |
Kim et al. | Comparative analysis of fouling mechanisms of ceramic and polymeric micro-filtration membrane for algae harvesting | |
JP2016221427A (ja) | 水処理装置の運転方法 | |
JP2016190212A (ja) | 分離膜ろ過プラントにおける分離膜の酸化リスク評価方法 | |
US12145105B2 (en) | Filtration apparatus and operation method therefor | |
JP2013233484A (ja) | 膜モジュールを用いた膜ろ過装置及びろ過膜洗浄方法 | |
JP7387560B2 (ja) | 中空糸膜の膜汚染速度推定方法および中空糸膜を有する浸漬型膜モジュールの薬品洗浄間隔推定方法 | |
JP7593509B2 (ja) | 分離膜の酸化リスク評価方法、酸化リスク評価プログラム、記録媒体、および評価装置 | |
JP2016077932A (ja) | 水処理システム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14785826 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14785826 Country of ref document: EP Kind code of ref document: A1 |