[go: up one dir, main page]

WO2014061450A1 - 活性エステル樹脂、エポキシ樹脂組成物、その硬化物、プリプレグ、回路基板、及びビルドアップフィルム - Google Patents

活性エステル樹脂、エポキシ樹脂組成物、その硬化物、プリプレグ、回路基板、及びビルドアップフィルム Download PDF

Info

Publication number
WO2014061450A1
WO2014061450A1 PCT/JP2013/076807 JP2013076807W WO2014061450A1 WO 2014061450 A1 WO2014061450 A1 WO 2014061450A1 JP 2013076807 W JP2013076807 W JP 2013076807W WO 2014061450 A1 WO2014061450 A1 WO 2014061450A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
epoxy resin
active ester
resin composition
ester resin
Prior art date
Application number
PCT/JP2013/076807
Other languages
English (en)
French (fr)
Inventor
和郎 有田
智弘 下野
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to US14/436,202 priority Critical patent/US10059798B2/en
Priority to JP2013556926A priority patent/JP5510764B1/ja
Priority to CN201380054569.XA priority patent/CN104736598B/zh
Priority to KR1020157005553A priority patent/KR102088236B1/ko
Publication of WO2014061450A1 publication Critical patent/WO2014061450A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/123Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/137Acids or hydroxy compounds containing cycloaliphatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/249Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs characterised by the additives used in the prepolymer mixture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D167/00Coating compositions based on polyesters obtained by reactions forming a carboxylic ester link in the main chain; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J167/00Adhesives based on polyesters obtained by reactions forming a carboxylic ester link in the main chain; Adhesives based on derivatives of such polymers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2463/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2467/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2467/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2467/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • C08J2467/03Polyesters derived from dicarboxylic acids and dihydroxy compounds the dicarboxylic acids and dihydroxy compounds having the hydroxy and the carboxyl groups directly linked to aromatic rings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24802Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]
    • Y10T428/24917Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.] including metal layer

Definitions

  • the present invention is an active ester resin having excellent solubility in various solvents, low dielectric constant and dielectric loss tangent of cured product, and excellent in low moisture absorption, epoxy resin composition using this as a curing agent, and cured product thereof , Prepreg, circuit board, and build-up film.
  • Epoxy resin compositions containing an epoxy resin and a curing agent as an essential component exhibit excellent heat resistance and insulation in the cured product, and are widely used in electronic component applications such as semiconductors and multilayer printed boards. .
  • electronic component applications in the technical field of insulating materials for multilayer printed circuit boards, in recent years, signal speeds and frequencies have been increasing in various electronic devices.
  • conventional epoxy resin compositions and cured products thereof it is difficult to ensure a sufficiently low dielectric constant and sufficiently low dielectric loss tangent, which are essential performance requirements as the signal speed and frequency increase. It is becoming. Therefore, a thermosetting resin composition capable of obtaining a cured product that exhibits a sufficiently low dielectric constant and a sufficiently low dielectric loss tangent even for a signal that is increased in speed and frequency. Offer was desired.
  • Patent Document 1 As a material capable of realizing a low dielectric constant and a low dielectric loss tangent, a technique using an active ester compound obtained by esterifying dicyclopentadiene phenol resin and ⁇ -naphthol with isophthalic acid chloride as a curing agent for epoxy resin is known. (See Patent Document 1 below).
  • the epoxy resin composition using the active ester compound described in Patent Document 1 succeeded in reducing both the dielectric constant and the dielectric loss tangent as compared with the case of using a phenol novolac type active ester resin which has been conventionally known. It is a thing.
  • the problem to be solved by the present invention is an active ester resin which is excellent in solubility in various solvents, has a low dielectric constant and dielectric loss tangent of the cured product, and is excellent in low hygroscopicity, and uses this as a curing agent.
  • An object of the present invention is to provide an epoxy resin composition, a cured product thereof, a prepreg, a circuit board, and a buildup film.
  • the present inventors have obtained by modifying part or all of the aromatic nucleus of a phenolic compound having an aliphatic cyclic hydrocarbon group with a phenylmethanol compound or a naphthylmethanol compound.
  • An active ester resin obtained by esterifying a modified phenolic compound and an aromatic monohydroxy compound with an aromatic dicarboxylic acid or a halide thereof has high solubility in a solvent with low environmental impact such as butanol and ethyl acetate, And the hardened
  • the structural unit (I) in which a plurality of arylene groups (a) are knotted via an aliphatic cyclic hydrocarbon group is converted into another structural unit (I) via an arylene carbonyloxy group (c).
  • each R 1 independently represents a methyl group or a hydrogen atom
  • Ar 1 represents a phenylene group, a naphthylene group, or a phenylene group having 1 to 3 alkyl groups having 1 to 4 carbon atoms on the aromatic nucleus.
  • Group or naphthylene group, and n is 1 or 2.
  • It has the structural site
  • the present invention further provides an aralkyl-modified phenol by reacting a phenolic compound (A) having a structure in which a plurality of aryl groups having a phenolic hydroxyl group are linked via an aliphatic cyclic hydrocarbon group with an aralkylating agent (B). Then, the obtained aralkyl-modified phenolic compound ( ⁇ ), the aromatic dicarboxylic acid or its halide (C), and the aromatic monohydroxy compound (D) are converted into an aromatic dicarboxylic acid.
  • A phenolic compound having a structure in which a plurality of aryl groups having a phenolic hydroxyl group are linked via an aliphatic cyclic hydrocarbon group
  • B aralkylating agent
  • the phenolic hydroxyl group of the aralkyl-modified phenolic compound ( ⁇ ) is in the range of 0.25 to 0.90 mol with respect to a total of 1 mol of the carboxyl group or acid halide group of the halide (C), and
  • the aromatic monohydroxy compound (D) is reacted at a ratio such that the hydroxyl group of the aromatic monohydroxy compound (D) is in the range of 0.10 to 0.75 mol. That a method of manufacturing of claim 1, wherein the active ester resin.
  • the present invention further relates to an epoxy resin composition containing the active ester resin.
  • the present invention further relates to a cured product obtained by curing the epoxy resin composition.
  • the present invention further relates to a prepreg obtained by impregnating a reinforcing base material with the epoxy resin composition diluted in an organic solvent and semi-curing the resulting impregnated base material.
  • the present invention further relates to a circuit board obtained by obtaining a varnish obtained by diluting the epoxy resin composition in an organic solvent, and heating and press-molding a varnish shaped into a plate shape and a copper foil.
  • the present invention further relates to a build-up film obtained by applying a solution obtained by diluting the epoxy resin composition in an organic solvent on a base film and drying it.
  • an active ester resin that is excellent in solubility in various solvents, has a low dielectric constant and dielectric loss tangent of the cured product, and is excellent in low moisture absorption, an epoxy resin composition using this as an curing agent, Hardened
  • FIG. 1 is a GPC chart of the active ester resin (1) obtained in Example 1.
  • FIG. FIG. 2 is a 13 C-NMR chart of the active ester resin (1) obtained in Example 1.
  • FIG. 3 is a MALDI-MS spectrum of the active ester resin (1) obtained in Example 1.
  • the structural unit (I) in which a plurality of arylene groups (a) are knotted via an aliphatic cyclic hydrocarbon group is converted into another structural unit (arylene carbonyloxy group (c)).
  • each R 1 independently represents a methyl group or a hydrogen atom
  • Ar 1 represents a phenylene group, a naphthylene group, or a phenylene group having 1 to 3 alkyl groups having 1 to 4 carbon atoms on the aromatic nucleus.
  • Group or naphthylene group, and n is 1 or 2.
  • It has the structure site
  • the arylene carbonyloxy group (c) is a so-called active ester group, and is cured by blocking the secondary hydroxyl group generated during the curing reaction with the epoxy resin by the ester residue.
  • the dielectric constant and dielectric loss tangent of the object can be reduced.
  • the structural part (b) represented by the structural formula (i) is a substituent that is further bulky and further increases the effect of reducing the dielectric constant and dielectric loss tangent. Therefore, it contributes to the effect of improving the solubility in various organic solvents.
  • a resin having a three-dimensionally bulky substituent skeleton is excellent in solvent solubility, while the free volume of the cured product tends to increase, so that the hygroscopicity tends to increase. It has succeeded in dramatically improving the solubility in various solvents while keeping the above low.
  • the structural unit (I) in which a plurality of arylene groups (a) are linked via the aliphatic cyclic hydrocarbon group of the active ester resin of the present invention is, for example, unsaturated containing two double bonds in one molecule.
  • Examples include a structure obtained by polyaddition reaction of an aliphatic cyclic hydrocarbon compound and a phenolic compound.
  • the unsaturated aliphatic cyclic hydrocarbon compound containing two double bonds in one molecule includes, for example, dicyclopentadiene, cyclopentadiene multimer, tetrahydroindene, 4-vinylcyclohexene, 5-vinyl-2-norbornene. , Limonene and the like, and each may be used alone or in combination of two or more.
  • dicyclopentadiene is preferable because a cured product having excellent heat resistance and low moisture absorption can be obtained.
  • dicyclopentadiene is contained in petroleum fractions, industrial dicyclopentadiene may contain cyclopentadiene multimers or other aliphatic or aromatic diene compounds as impurities.
  • the phenolic compound is, for example, phenol, cresol, xylenol, ethylphenol, isopropylphenol, butylphenol, octylphenol, nonylphenol, vinylphenol, isopropenylphenol, allylphenol, phenylphenol, benzylphenol, chlorophenol, bromophenol, 1-naphthol, 2-naphthol, 1,4-dihydroxynaphthalene, 2,3-dihydroxynaphthalene, 2,3-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, 2,7-dihydroxynaphthalene, etc. You may use, and may use 2 or more types together. Among these, phenol is preferable because it becomes an active ester resin having high curability and excellent moisture absorption resistance.
  • the active ester resin of the present invention has a structural site in which the structural unit (I) is connected to another structural unit (I) or an aryl group (d) via an arylene carbonyloxy group (c).
  • the arylene carbonyloxy group (c) is, for example, benzene-1,2-dicarbonyloxy group, benzene-1,3-dicarbonyloxy group, benzene-1,4-dicarbonyloxy group, naphthalene-1, 4-dicarbonyloxy group, naphthalene-2,3-dicarbonyloxy group, naphthalene-2,6-dicarbonyloxy group, naphthalene-2,7-dicarbonyloxy group, and these aromatic nuclei have 1 to 4 substituted with an alkyl group or an alkoxy group.
  • an active ester resin having excellent curability is obtained, and since it is easy to produce, a benzene-1,3-dicarbonyloxy group or a benzene-1,4-dicarbonyloxy group is preferable.
  • a benzene-1,3-dicarbonyloxy group is more preferred.
  • the other aryl group (d) is, for example, a phenyl group, o-tolyl group, m-tolyl group, p-tolyl group, 3,5-xylyl group, o-biphenyl group, m-biphenyl group, p -Biphenyl group, 2-benzylphenyl group, 4-benzylphenyl group, 4- ( ⁇ -cumyl) phenyl group, 1-naphthyl group, 2-naphthyl group and the like.
  • a 1-naphthyl group or a 2-naphthyl group is preferable because a cured product having a particularly low dielectric constant and dielectric loss tangent can be obtained.
  • the active ester resin of the present invention has a structure in which the structural unit (I) is connected to another structural unit (I) via an arylene carbonyloxy group (c) as a repeating unit, Having a molecular structure in which an aryl group (d) is knotted, and represented by the following general formula (2)
  • the structural unit (I) has a structure in which a plurality of arylene groups (a) are linked via an aliphatic cyclic hydrocarbon group, and at least one of the arylene groups (a) present in the resin.
  • each R 1 independently represents a methyl group or a hydrogen atom
  • Ar 1 represents a phenylene group, a naphthylene group, or a phenylene group having 1 to 3 alkyl groups having 1 to 4 carbon atoms on the aromatic nucleus.
  • Group or naphthylene group, and n is 1 or 2.
  • It has the structural part (b) represented by these.
  • Ar 1 is a phenylene group, a naphthylene group, or a phenylene group or a naphthylene group having 1 to 3 alkyl groups having 1 to 4 carbon atoms on the aromatic nucleus.
  • a phenylene group is preferable because an active ester resin having excellent solubility in a solvent, low dielectric constant and dielectric loss tangent of the cured product, and excellent low hygroscopicity can be obtained.
  • each R 1 is independently a methyl group or a hydrogen atom, but since a cured product having a lower dielectric constant and dielectric loss tangent and excellent moisture resistance is obtained, both R 1 are hydrogen atoms. Preferably there is.
  • m represents an average value of repeating units, and becomes an active ester resin having excellent solubility in various solvents, and therefore is preferably in the range of 0.25 to 1.5. A range of 0.25 to 1.2 is more preferable.
  • the active ester resin of the present invention can be produced, for example, by the following method. That is, a phenolic compound (A) having a structure in which a plurality of aryl groups having phenolic hydroxyl groups are linked via an aliphatic cyclic hydrocarbon group and an aralkylating agent (B) are reacted to form an aralkyl-modified phenolic compound. ( ⁇ ) is obtained (step 1), and then the obtained aralkyl-modified phenolic compound ( ⁇ ), the aromatic dicarboxylic acid or its halide (C), and the aromatic monohydroxy compound (D) are aromatic.
  • the phenolic hydroxyl group of the aralkyl-modified phenolic compound ( ⁇ ) is in the range of 0.05 to 0.75 mol with respect to 1 mol in total of the carboxyl group or acid halide group of the dicarboxylic acid or its halide (C),
  • the reaction is performed in such a ratio that the hydroxyl group of the aromatic monohydroxy compound (D) is in the range of 0.25 to 0.95 mol.
  • the phenolic compound (A) having a structure in which a plurality of aryl groups having a phenolic hydroxyl group are linked via the aliphatic cyclic hydrocarbon group used in the step 1 includes, for example, two double bonds in one molecule. And those obtained by polyaddition reaction of an unsaturated aliphatic cyclic hydrocarbon compound and a phenolic compound.
  • the unsaturated aliphatic cyclic hydrocarbon compound containing two double bonds in one molecule includes, for example, dicyclopentadiene, cyclopentadiene multimer, tetrahydroindene, 4-vinylcyclohexene, 5-vinyl-2-norbornene. , Limonene and the like, and each may be used alone or in combination of two or more.
  • dicyclopentadiene is preferable because a cured product having excellent heat resistance and low moisture absorption can be obtained.
  • dicyclopentadiene is contained in petroleum fractions, industrial dicyclopentadiene may contain cyclopentadiene multimers or other aliphatic or aromatic diene compounds as impurities.
  • the phenolic compound is, for example, phenol, cresol, xylenol, ethylphenol, isopropylphenol, butylphenol, octylphenol, nonylphenol, vinylphenol, isopropenylphenol, allylphenol, phenylphenol, benzylphenol, chlorophenol, bromophenol, 1-naphthol, 2-naphthol, 1,4-dihydroxynaphthalene, 2,3-dihydroxynaphthalene, 2,3-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, 2,7-dihydroxynaphthalene, etc. You may use, and may use 2 or more types together. Among these, phenol is preferable because it becomes an active ester resin having high curability and excellent moisture resistance.
  • examples of the aralkylating agent (B) to be reacted with the phenolic compound (A) include a phenylmethanol compound, a phenylmethyl halide compound, a naphthylmethanol compound, a naphthylmethyl halide compound, and a styrene compound.
  • benzyl chloride benzyl bromide, benzyl iodide, o-methylbenzyl chloride, m-methylbenzyl chloride, p-methylbenzyl chloride, p-ethylbenzyl chloride, p-isopropylbenzyl chloride, p-tert-butyl Benzyl chloride, p-phenylbenzyl chloride, 5-chloromethylacenaphthylene, 2-naphthylmethyl chloride, 1-chloromethyl-2-naphthalene and their nuclear substituted isomers, ⁇ -methylbenzyl chloride, and ⁇ , ⁇ - Dimethyl benzyl chloride, etc .; benzyl methyl ether, o-methyl benzyl methyl ether, m-methyl benzyl methyl ether, p-methyl benzyl methyl ether, p-ethyl benzyl methyl ether and their
  • benzyl chloride, benzyl bromide, and benzyl alcohol are obtained because an active ester resin is obtained that is excellent in solubility in various solvents, has a low dielectric constant and dielectric loss tangent of the cured product, and is excellent in low moisture absorption. Is preferred.
  • the step 1 can be performed, for example, in the presence of an acid catalyst at a temperature of 100 to 180 ° C.
  • the acid catalyst used here include inorganic acids such as phosphoric acid, sulfuric acid, and hydrochloric acid, oxalic acid, benzenesulfonic acid, toluenesulfonic acid, methanesulfonic acid, fluoromethanesulfonic acid and other organic acids, aluminum chloride, zinc chloride, Examples thereof include Friedel-Crafts catalysts such as stannic chloride, ferric chloride, and diethyl sulfate.
  • the amount of the acid catalyst used can be appropriately selected depending on the desired aralkylation rate, etc.
  • an inorganic acid or an organic acid it is 0.01 to 5.0 parts by mass with respect to 100 parts by mass of the reaction raw material.
  • a Friedel-Crafts catalyst it is preferably used in a range of 0.2 to 3.0 moles with respect to 1 mole of the aralkylating agent (B).
  • the step 1 may be performed in an organic solvent as necessary.
  • organic solvent used herein include ketone solvents such as acetone, methyl ethyl ketone, and cyclohexanone; acetate solvents such as ethyl acetate, butyl acetate, cellosolve acetate, propylene glycol monomethyl ether acetate, and carbitol acetate; cellosolve, butyl carbitol, and the like.
  • Examples thereof include carbitol solvents, aromatic hydrocarbon solvents such as toluene and xylene, dimethylformamide, dimethylacetamide, N-methylpyrrolidone and the like.
  • step 1 After step 1 is completed, subsequent step 2 is performed in the presence of a basic catalyst, and thus the reaction product of step 1 is neutralized, and then the product, the aralkyl-modified phenolic compound ( ⁇ ), is washed with water. preferable.
  • step 2 the aralkyl-modified phenolic compound ( ⁇ ) thus obtained, the aromatic dicarboxylic acid or its halide (C), and the aromatic monohydroxy compound (D) are reacted with each other. To obtain an active ester resin.
  • Examples of the aromatic dicarboxylic acid or its halide (C) used in Step 2 include isophthalic acid, terephthalic acid, naphthalene-1,4-dicarboxylic acid, naphthalene-2,3-dicarboxylic acid, and naphthalene-2,6-dicarboxylic acid.
  • isophthalic acid dichloride or terephthalic acid dichloride is preferable, and isophthalic acid dichloride is more preferable.
  • the aromatic monohydroxy compound (D) used in Step 2 is, for example, an alkylphenol such as phenol, o-cresol, m-cresol, p-cresol, 3,5-xylenol; o-phenylphenol, p-phenylphenol.
  • Aralkylphenols such as 2-benzylphenol, 4-benzylphenol and 4- ( ⁇ -cumyl) phenol; and naphthol compounds such as 1-naphthol and 2-naphthol.
  • 1-naphthol or 2-naphthol is preferable because a cured product having a low dielectric constant and dielectric loss tangent can be obtained.
  • the step 2 can be performed, for example, under the temperature condition of 40 to 65 ° C. in the presence of an alkali catalyst.
  • alkali catalyst examples include sodium hydroxide, potassium hydroxide, triethylamine, and pyridine. Among these, sodium hydroxide or potassium hydroxide is preferable because of high reaction efficiency. These catalysts may be used as a 3.0 to 30% aqueous solution.
  • the step 2 is preferably performed in an organic solvent because the reaction can be easily controlled.
  • organic solvent used herein include ketone solvents such as acetone, methyl ethyl ketone, and cyclohexanone, acetate solvents such as ethyl acetate, butyl acetate, cellosolve acetate, propylene glycol monomethyl ether acetate, and carbitol acetate, cellosolve, butyl carbitol, and the like.
  • Examples thereof include carbitol solvents, aromatic hydrocarbon solvents such as toluene and xylene, dimethylformamide, dimethylacetamide, N-methylpyrrolidone and the like.
  • the phenolic hydroxyl group of the aralkyl-modified phenolic compound ( ⁇ ) is 0 with respect to a total of 1 mol of the carboxyl group or acid halide group of the aromatic dicarboxylic acid or its halide (C).
  • Each raw material is used in such a proportion that the range of .25 to 0.90 mol and the hydroxyl group of the aromatic monohydroxy compound (D) is in the range of 0.10 to 0.75 mol.
  • the phenolic property of the aralkyl-modified phenolic compound ( ⁇ ) has Each raw material is used in such a proportion that the hydroxyl group is in the range of 0.50 to 0.75 mol and the hydroxyl group of the aromatic monohydroxy compound (D) is in the range of 0.25 to 0.50 mol. More preferred.
  • step 2 After completion of step 2, if an aqueous solution of an alkali catalyst is used, the reaction solution is allowed to stand and remove to remove the aqueous layer, and the remaining organic layer is washed with water until the aqueous layer becomes almost neutral. By repeating washing with water, the target active ester resin can be obtained.
  • the active ester resin thus obtained has a high solubility in various organic solvents and is excellent in flame retardancy. Therefore, its softening point is preferably in the range of 60 to 170 ° C. .
  • the functional group equivalent of the active ester resin of the present invention is excellent in curability and has a low dielectric constant and preferential tangent when the total number of arylcarbonyloxy groups and phenolic hydroxyl groups in the resin structure is the number of functional groups of the resin. Since a cured product is obtained, 240 to 400 g / eq. In the range of 300 to 370 g / eq. More preferably, it is the range.
  • the solvent structure has excellent solubility in various solvents, and the dielectric constant and dielectric loss tangent of the cured product are high. Since both are low and excellent in low hygroscopicity, the following general formula (1)
  • X is a benzene ring or a naphthalene ring
  • k is 0 or 1
  • n is 1 or 2
  • l is 1 or 2
  • m is an average of repeating units of 0.25 to 1) .5.
  • m is more preferably in the range of 0.25 to 1.2.
  • the value of m which is the average value of the repeating units, can be obtained by the same method as m in the general formula (2).
  • the epoxy resin composition of the present invention contains the above-mentioned active ester resin and epoxy resin as essential components.
  • epoxy resin used in the present invention examples include bisphenol A type epoxy resin, bisphenol F type epoxy resin, biphenyl type epoxy resin, tetramethylbiphenyl type epoxy resin, polyhydroxynaphthalene type epoxy resin, phenol novolac type epoxy resin, and cresol novolac type.
  • Epoxy resin triphenylmethane type epoxy resin, tetraphenylethane type epoxy resin, dicyclopentadiene-phenol addition reaction type epoxy resin, phenol aralkyl type epoxy resin, naphthol novolak type epoxy resin, naphthol aralkyl type epoxy resin, naphthol-phenol Condensed novolac epoxy resin, naphthol-cresol co-condensed novolac epoxy resin, aromatic hydrocarbon formaldehyde resin modified phenol Fat type epoxy resins, biphenyl-modified novolak type epoxy resins.
  • epoxy resins tetramethylbiphenol type epoxy resin, biphenyl aralkyl type epoxy resin, polyhydroxynaphthalene type epoxy resin, and novolac type epoxy resin are used in that a cured product having excellent flame retardancy can be obtained.
  • a dicyclopentadiene-phenol addition reaction type epoxy resin is preferable in that a cured product having excellent dielectric properties is obtained.
  • the compounding amount of the active ester resin and the epoxy resin is excellent in curability and a cured product having a low dielectric constant and dielectric loss tangent is obtained. It is preferable that the ratio of the epoxy groups in the epoxy resin is 0.8 to 1.2 equivalents with respect to 1 equivalent in total.
  • the active group in the active ester resin refers to an arylcarbonyloxy group and a phenolic hydroxyl group in the resin structure.
  • curing agents used here are, for example, amine compounds such as diaminodiphenylmethane, diethylenetriamine, triethylenetetramine, diaminodiphenylsulfone, isophoronediamine, imidazole, BF 3 -amine complex, guanidine derivatives: dicyandiamide, linolenic acid 2
  • Amide compounds such as polyamide resin synthesized from a monomer and ethylenediamine: phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, maleic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methyl nadic anhydride, Acid anhydrides such as hexahydrophthalic anhydride and methylhexahydrophthalic anhydride: phenol novolak resin, cresol novol
  • phenol novolac resins cresol novolak resins, aromatic hydrocarbon formaldehyde resin-modified phenol resins Phenol aralkyl resin, naphthol aralkyl resin, naphthol novolak resin, naphthol-phenol co-condensed novolak resin, naphthol-cresol co-condensed novolac resin, biphenyl-modified phenol resin, biphenyl-modified naphthol resin, and aminotriazine-modified phenol resin are preferable.
  • the amount used is preferably in the range of 10 to 50 parts by mass in a total of 100 parts by mass of the active ester resin and the other curing agent.
  • the epoxy resin composition of the present invention may contain a curing accelerator as necessary.
  • the curing accelerator used here include phosphorus compounds, tertiary amines, imidazoles, organic acid metal salts, Lewis acids, amine complex salts, and the like.
  • dimethylaminopyridine and imidazole are preferable because of excellent heat resistance, dielectric characteristics, solder resistance, and the like.
  • the active ester resin of the present invention is characterized by expressing excellent solvent solubility, and when the epoxy resin composition of the present invention is used for build-up material applications or circuit board applications, Instead of the solvent such as toluene that has been used, it can be varnished using an alcohol solvent or an ester solvent.
  • Organic solvents that can be used as the solvent of the epoxy resin composition of the present invention include conventionally used aromatic hydrocarbon solvents such as toluene and xylene, ketone solvents such as acetone, methyl ethyl ketone, and cyclohexanone, ethyl acetate, butyl acetate, Acetic acid ester solvents such as cellosolve acetate, propylene glycol monomethyl ether acetate, carbitol acetate, alcohol solvents such as ethanol, propanol, butanol, carbitol solvents such as cellosolve, butyl carbitol, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, etc. Is mentioned.
  • aromatic hydrocarbon solvents such as toluene and xylene
  • ketone solvents such as acetone, methyl ethyl ketone, and cyclohexanone
  • ethyl acetate buty
  • the epoxy resin composition of the present invention is used for printed wiring board applications, it is preferably a polar solvent having a boiling point of 160 ° C. or lower, such as methyl ethyl ketone, acetone, 1-methoxy-2-propanol, etc., and has a nonvolatile content of 40 to 80 It is preferable to use at a ratio of mass%.
  • a polar solvent having a boiling point of 160 ° C. or lower such as methyl ethyl ketone, acetone, 1-methoxy-2-propanol, etc.
  • ketone solvents such as acetone, methyl ethyl ketone, cyclohexanone, etc.
  • acetate solvents such as ethyl acetate, butyl acetate, cellosolve acetate, propylene glycol monomethyl ether acetate, carbitol acetate, ethanol, propanol
  • an alcohol solvent such as butanol, a carbitol solvent such as cellosolve or butyl carbitol, dimethylformamide, dimethylacetamide, N-methylpyrrolidone or the like, and a non-volatile content of 30 to 60% by mass is preferably used.
  • a non-volatile content of 30 to 60% by mass is preferably used. preferable.
  • the epoxy resin composition of the present invention may be used in combination with other thermosetting resins as needed.
  • other thermosetting resins that can be used here include cyanate ester compounds, vinylbenzyl compounds, acrylic compounds, maleimide compounds, and copolymers of styrene and maleic anhydride.
  • the amount used is not particularly limited as long as the effects of the present invention are not impaired, but is in the range of 1 to 50 parts by weight per 100 parts by weight of the epoxy resin composition. It is preferable.
  • a non-halogen flame retardant containing substantially no halogen atoms may be blended.
  • non-halogen flame retardant examples include a phosphorus flame retardant, a nitrogen flame retardant, a silicone flame retardant, an inorganic flame retardant, an organic metal salt flame retardant, and the like. It is not intended to be used alone, and a plurality of the same type of flame retardants may be used, or different types of flame retardants may be used in combination.
  • the phosphorous flame retardant can be either inorganic or organic.
  • the inorganic compounds include red phosphorus, monoammonium phosphate, diammonium phosphate, triammonium phosphate, ammonium phosphates such as ammonium polyphosphate, and inorganic nitrogen-containing phosphorus compounds such as phosphate amide. .
  • the red phosphorus is preferably subjected to a surface treatment for the purpose of preventing hydrolysis and the like.
  • the surface treatment method include (i) magnesium hydroxide, aluminum hydroxide, zinc hydroxide, water A method of coating with an inorganic compound such as titanium oxide, bismuth oxide, bismuth hydroxide, bismuth nitrate or a mixture thereof; (ii) an inorganic compound such as magnesium hydroxide, aluminum hydroxide, zinc hydroxide, titanium hydroxide; and A method of coating with a mixture of a thermosetting resin such as a phenol resin, (iii) thermosetting of a phenol resin or the like on a coating of an inorganic compound such as magnesium hydroxide, aluminum hydroxide, zinc hydroxide, or titanium hydroxide
  • a method of double coating with a resin may be used.
  • organic phosphorus compounds examples include 9,10-dihydro, as well as general-purpose organic phosphorus compounds such as phosphate ester compounds, phosphonic acid compounds, phosphinic acid compounds, phosphine oxide compounds, phosphorane compounds, and organic nitrogen-containing phosphorus compounds.
  • the compounding amount of these phosphorus flame retardants is preferably in the range of 0.1 to 2.0 parts by mass in the case of using red phosphorus in 100 parts by mass of the epoxy resin composition. When used, it is preferably blended in the range of 0.1 to 10.0 parts by mass, and more preferably in the range of 0.5 to 6.0 parts by mass.
  • the phosphorous flame retardant when using the phosphorous flame retardant, may be used in combination with hydrotalcite, magnesium hydroxide, boric compound, zirconium oxide, black dye, calcium carbonate, zeolite, zinc molybdate, activated carbon, etc. Good.
  • nitrogen flame retardant examples include triazine compounds, cyanuric acid compounds, isocyanuric acid compounds, phenothiazines, and the like, and triazine compounds, cyanuric acid compounds, and isocyanuric acid compounds are preferable.
  • triazine compound examples include melamine, acetoguanamine, benzoguanamine, melon, melam, succinoguanamine, ethylene dimelamine, melamine polyphosphate, triguanamine, and the like, for example, sulfuric acid such as guanylmelamine sulfate, melem sulfate, melam sulfate, etc.
  • examples thereof include aminotriazine compounds, aminotriazine-modified phenol resins, and aminotriazine-modified phenol resins that are further modified with tung oil, isomerized linseed oil, and the like.
  • cyanuric acid compound examples include cyanuric acid and melamine cyanurate.
  • the compounding amount of the nitrogen-based flame retardant is preferably in the range of 0.05 to 10 parts by mass, for example, in the range of 0.1 to 5 parts by mass in 100 parts by mass of the epoxy resin composition. Is more preferable.
  • a metal hydroxide, a molybdenum compound or the like may be used in combination.
  • the silicone flame retardant is not particularly limited as long as it is an organic compound containing a silicon atom, and examples thereof include silicone oil, silicone rubber, and silicone resin.
  • the compounding amount of the silicone flame retardant is preferably in the range of 0.05 to 20 parts by mass in 100 parts by mass of the epoxy resin composition, for example. Moreover, when using the said silicone type flame retardant, you may use a molybdenum compound, an alumina, etc. together.
  • inorganic flame retardant examples include metal hydroxide, metal oxide, metal carbonate compound, metal powder, boron compound, and low melting point glass.
  • metal hydroxide examples include aluminum hydroxide, magnesium hydroxide, dolomite, hydrotalcite, calcium hydroxide, barium hydroxide, and zirconium hydroxide.
  • metal oxide examples include zinc molybdate, molybdenum trioxide, zinc stannate, tin oxide, aluminum oxide, iron oxide, titanium oxide, manganese oxide, zirconium oxide, zinc oxide, molybdenum oxide, cobalt oxide, bismuth oxide, Examples thereof include chromium oxide, nickel oxide, copper oxide, and tungsten oxide.
  • metal carbonate compound examples include zinc carbonate, magnesium carbonate, calcium carbonate, barium carbonate, basic magnesium carbonate, aluminum carbonate, iron carbonate, cobalt carbonate, and titanium carbonate.
  • metal powder examples include aluminum, iron, titanium, manganese, zinc, molybdenum, cobalt, bismuth, chromium, nickel, copper, tungsten, and tin.
  • Examples of the boron compound include zinc borate, zinc metaborate, barium metaborate, boric acid, and borax.
  • low melting point glass examples include, for example, Shipley (Bokusui Brown), hydrated glass SiO 2 —MgO—H 2 O, PbO—B 2 O 3 system, ZnO—P 2 O 5 —MgO system, and P 2 O. Glass forms such as 5- B 2 O 3 —PbO—MgO, P—Sn—O—F, PbO—V 2 O 5 —TeO 2 , Al 2 O 3 —H 2 O, lead borosilicate A compound can be mentioned.
  • the amount of the inorganic flame retardant blended is, for example, preferably in the range of 0.05 to 20 parts by weight and in the range of 0.5 to 15 parts by weight in 100 parts by weight of the epoxy resin composition. Is more preferable.
  • organic metal salt flame retardant examples include ferrocene, acetylacetonate metal complex, organic metal carbonyl compound, organic cobalt salt compound, organic sulfonic acid metal salt, metal atom and aromatic compound or heterocyclic compound. And the like.
  • the amount of the organometallic salt flame retardant is preferably in the range of 0.005 to 10 parts by mass, for example, in 100 parts by mass of the epoxy resin composition.
  • the epoxy resin composition of the present invention can be blended with an inorganic filler as necessary.
  • the inorganic filler include fused silica, crystalline silica, alumina, silicon nitride, and aluminum hydroxide.
  • fused silica When particularly increasing the blending amount of the inorganic filler, it is preferable to use fused silica.
  • the fused silica can be used in either a crushed shape or a spherical shape. However, in order to increase the blending amount of the fused silica and suppress an increase in the melt viscosity of the molding material, it is preferable to mainly use a spherical shape.
  • the filling rate is preferably higher in consideration of flame retardancy, and particularly preferably 20% by mass or more with respect to the total amount of the thermosetting resin composition.
  • electroconductive fillers such as silver powder and copper powder, can be used.
  • the epoxy resin composition of the present invention may contain various compounding agents such as a silane coupling agent, a release agent, a pigment, and an emulsifier, if necessary.
  • the epoxy resin composition of the present invention is obtained by uniformly mixing the above-described components, and can be easily made into a cured product by a method similar to the curing of a conventionally known epoxy resin composition.
  • the cured product include molded cured products such as laminates, cast products, adhesive layers, coating films, and films.
  • the epoxy resin composition of the present invention has a low dielectric constant and dielectric loss tangent of the cured product, circuit boards such as hard printed wiring board materials, resin compositions for flexible wiring boards, interlayer insulation materials for build-up boards, etc. It can be suitably used for various electronic materials such as insulating materials for semiconductors, semiconductor sealing materials, conductive pastes, build-up adhesive films, resin casting materials, adhesives and the like. Especially, taking advantage of the high solubility of the active ester resin of the present invention in various organic solvents, especially for circuit board materials such as hard printed wiring board materials, resin compositions for flexible wiring boards, and interlayer insulation materials for build-up boards. It can be preferably used.
  • a varnish obtained by diluting the epoxy resin composition of the present invention in an organic solvent is obtained, and this is formed into a plate shape, laminated with copper foil, and heated and pressed. Can be manufactured.
  • a prepreg is obtained by impregnating a reinforcing base material with a varnish-like epoxy resin composition containing an organic solvent and semi-curing it, and copper foil is laminated on it and heated. It can be manufactured by a method of pressure bonding.
  • the reinforcing substrate that can be used here include paper, glass cloth, glass nonwoven fabric, aramid paper, aramid cloth, glass mat, and glass roving cloth.
  • the varnish-like epoxy resin composition described above is first heated at a heating temperature corresponding to the solvent type used, preferably 50 to 170 ° C. to obtain a prepreg that is a cured product.
  • the mass ratio of the thermosetting resin composition to be used and the reinforcing substrate is not particularly limited, but it is usually preferable that the resin content in the prepreg is 20 to 60 mass%.
  • the prepreg obtained as described above is laminated by a conventional method, and a copper foil is appropriately stacked, and heat-pressed at 170 to 250 ° C. for 10 minutes to 3 hours under a pressure of 1 to 10 MPa, A target circuit board can be obtained.
  • an epoxy resin composition containing an organic solvent is applied to an electrically insulating film using a coating machine such as a reverse roll coater or a comma coater.
  • a coating machine such as a reverse roll coater or a comma coater.
  • heating is performed at 60 to 170 ° C. for 1 to 15 minutes using a heater to volatilize the solvent, and the epoxy resin composition is B-staged.
  • the metal foil is thermocompression bonded to the resin composition layer using a heating roll or the like.
  • the pressure for pressure bonding is preferably 2 to 200 N / cm, and the temperature for pressure bonding is preferably 40 to 200 ° C. If sufficient adhesion performance can be obtained, the process may be completed here. However, if complete curing is required, post-curing is preferably performed at 100 to 200 ° C. for 1 to 24 hours.
  • the thickness of the resin composition layer after final curing is preferably in the range of 5 to 100 ⁇ m.
  • an epoxy resin composition appropriately blended with rubber, filler or the like is applied to a wiring board on which a circuit is formed by a spray coating method or curtain coating. After applying using a method or the like, it is cured. Then, after drilling a predetermined through-hole part etc. as needed, it treats with a roughening agent, forms the unevenness
  • the plating method electroless plating or electrolytic plating treatment is preferable, and examples of the roughening agent include an oxidizing agent, an alkali, and an organic solvent.
  • a build-up base can be obtained by alternately building up and forming the resin insulating layer and the conductor layer having a predetermined circuit pattern.
  • the through-hole portion is formed after the outermost resin insulating layer is formed.
  • a resin-coated copper foil obtained by semi-curing the resin composition on the copper foil is heat-pressed at 170 to 250 ° C. on a circuit board on which a circuit is formed, thereby forming a roughened surface and a plating process. It is also possible to produce a build-up board without the above.
  • the method for producing an adhesive film for buildup from the epoxy resin composition of the present invention is, for example, an adhesive for multilayer printed wiring boards by applying the epoxy resin composition of the present invention on a support film to form a resin composition layer.
  • the method of using a film is mentioned.
  • the adhesive film is softened under the lamination temperature condition (usually 70 ° C. to 140 ° C.) in the vacuum laminating method, and simultaneously with the circuit board lamination, It is important to show fluidity (resin flow) capable of filling the via hole or through hole in the substrate, and it is preferable to blend the above-described components so as to exhibit such characteristics.
  • lamination temperature condition usually 70 ° C. to 140 ° C.
  • the diameter of the through hole of the multilayer printed wiring board is usually 0.1 to 0.5 mm, and the depth is usually 0.1 to 1.2 mm. Usually, it is preferable that the resin can be filled in this range. When laminating both surfaces of the circuit board, it is desirable to fill about 1/2 of the through hole.
  • the method for producing the adhesive film described above is, after preparing the varnish-like epoxy resin composition of the present invention, coating the varnish-like composition on the surface of the support film and further heating, or It can manufacture by drying an organic solvent by hot air spraying etc. and forming the layer ((alpha)) of an epoxy resin composition.
  • the thickness of the layer ( ⁇ ) to be formed is usually not less than the thickness of the conductor layer. Since the thickness of the conductor layer of the circuit board is usually in the range of 5 to 70 ⁇ m, the thickness of the resin composition layer is preferably 10 to 100 ⁇ m.
  • the said layer ((alpha)) may be protected with the protective film mentioned later.
  • a protective film By protecting with a protective film, it is possible to prevent dust and the like from being attached to the surface of the resin composition layer and scratches.
  • the above-mentioned support film and protective film are made of polyolefin such as polyethylene, polypropylene and polyvinyl chloride, polyethylene terephthalate (hereinafter sometimes abbreviated as “PET”), polyester such as polyethylene naphthalate, polycarbonate, polyimide, and further. Examples thereof include metal foil such as pattern paper, copper foil, and aluminum foil.
  • the support film and the protective film may be subjected to a release treatment in addition to the mud treatment and the corona treatment.
  • the thickness of the support film is not particularly limited, but is usually 10 to 150 ⁇ m, preferably 25 to 50 ⁇ m.
  • the thickness of the protective film is preferably 1 to 40 ⁇ m.
  • the support film described above is peeled off after being laminated on a circuit board or after forming an insulating layer by heat curing. If the support film is peeled after the adhesive film is heat-cured, adhesion of dust and the like in the curing process can be prevented. In the case of peeling after curing, the support film is usually subjected to a release treatment in advance.
  • the method for producing a multilayer printed wiring board using the adhesive film obtained as described above is, for example, when the layer ( ⁇ ) is protected with a protective film, Lamination is performed on one or both sides of the circuit board by, for example, vacuum laminating so that ⁇ ) is in direct contact with the circuit board.
  • the laminating method may be a batch method or a continuous method using a roll. Further, the adhesive film and the circuit board may be heated (preheated) as necessary before lamination.
  • the lamination conditions are such that the pressure bonding temperature (laminating temperature) is preferably 70 to 140 ° C., the pressure bonding pressure is preferably 1 to 11 kgf / cm 2 (9.8 ⁇ 10 4 to 107.9 ⁇ 10 4 N / m 2), Lamination is preferably performed under reduced pressure with an air pressure of 20 mmHg (26.7 hPa) or less.
  • the epoxy resin composition of the present invention is used as a conductive paste, for example, a method in which fine conductive particles are dispersed in an epoxy resin composition to form a composition for an anisotropic conductive film, a circuit that is liquid at room temperature
  • a paste resin composition for connection and an anisotropic conductive adhesive examples thereof include a paste resin composition for connection and an anisotropic conductive adhesive.
  • the epoxy resin composition of the present invention can also be used as a resist ink.
  • a vinyl monomer having an ethylenically unsaturated double bond and a cationic polymerization catalyst as a curing agent are blended in the epoxy resin composition, and further a pigment, talc, and filler are added to obtain a resist ink composition. Then, after apply
  • the active ester resin of the present invention has higher solvent solubility compared to conventional active ester resins, it can be easily varnished when applied to the various electronic material applications.
  • organic solvents having a lower environmental load such as ester solvents and alcohol solvents can be used.
  • the cured product of the epoxy resin composition of the present invention has a characteristic that both the dielectric constant and the dielectric loss tangent are low, it can contribute to the realization of a higher calculation speed of the high-frequency device.
  • melt viscosity measurement softening point measurement
  • GPC measurement 13 C-NMR, and MALDI-MS spectrum were measured under the following conditions.
  • GPC Measured under the following conditions. Measuring device: “HLC-8220 GPC” manufactured by Tosoh Corporation Column: Guard column “HXL-L” manufactured by Tosoh Corporation + “TSK-GEL G2000HXL” manufactured by Tosoh Corporation + “TSK-GEL G2000HXL” manufactured by Tosoh Corporation + Tosoh Corporation “TSK-GEL G3000HXL” + “TSK-GEL G4000HXL” manufactured by Tosoh Corporation Detector: RI (Differential refraction diameter)
  • Data processing “GPC-8020 Model II version 4.10” manufactured by Tosoh Corporation Measurement conditions: Column temperature 40 ° C Developing solvent Tetrahydrofuran Flow rate 1.0 ml / min Standard: The following monodisperse polystyrene having a known molecular weight was used according to the measurement manual of “GPC-8020 model II version 4.10”.
  • Example 1 Production of Active Ester Resin (1)
  • 330 g (1.0 mol) of dicyclopentadienephenol resin and 216 g of benzyl alcohol ( 2.0 mol) and 5 g of paratoluenesulfonic acid monohydrate were charged and stirred at room temperature while blowing nitrogen. Then, it heated up at 150 degreeC and stirred for 6 hours, distilling the water to produce
  • aralkyl-modified phenolic compound ( ⁇ -1) was obtained.
  • the obtained aralkyl-modified phenolic compound ( ⁇ -1) was a brown solid and had a hydroxyl group equivalent of 269 grams / equivalent.
  • the solution viscosity of the toluene solution having a nonvolatile content of 65% by mass was 3250 mPa ⁇ S (25 ° C.).
  • the softening point after drying was 140 ° C.
  • the GPC chart of the obtained active ester resin (1) is shown in FIG. 1, the 13 C-NMR chart is shown in FIG. 2, and the MALDI-MS spectrum is shown in FIG.
  • Example 2 Production of Active Ester Resin (2)
  • 330 g (1.0 mol) of dicyclopentadiene phenol resin and 108 g of benzyl alcohol ( 1.0 mol) and 5 g of paratoluenesulfonic acid monohydrate were charged and stirred at room temperature while blowing nitrogen. Then, it heated up at 150 degreeC and stirred for 6 hours, distilling the water to produce
  • the reaction mixture was neutralized by adding 450 g of methyl isobutyl ketone and 5.8 g of 20% aqueous sodium hydroxide solution, and then the aqueous layer was removed by liquid separation, washed with water 450 g for 3 times, and the methyl isobutyl ketone was depressurized. Under removal, 413 g of aralkyl-modified phenolic compound ( ⁇ -2) was obtained. The obtained aralkyl-modified phenolic compound ( ⁇ -2) was a brown solid and had a hydroxyl group equivalent of 197 g / equivalent.
  • a flask equipped with a thermometer, dropping funnel, condenser, fractionator, and stirrer was charged with 203.0 g of isophthalic acid chloride (number of moles of acid chloride group: 2.0 mol) and 1338 g of toluene, and the system was depressurized. It was purged with nitrogen and dissolved.
  • 96.0 g (0.67 mol) of ⁇ -naphthol and 262 g of the aralkyl-modified phenolic compound ( ⁇ -2) (number of moles of phenolic hydroxyl group: 1.33 mol) were charged, and the system was purged with nitrogen under reduced pressure. And dissolved.
  • Example 3 Production of Active Ester Resin (3)
  • a flask equipped with a thermometer, dropping funnel, condenser, fractionator, and stirrer 330 g (1.0 mol) of dicyclopentadienephenol resin, benzyl alcohol 21. 6 g (0.2 mol) and 5 g of paratoluenesulfonic acid monohydrate were charged and stirred at room temperature while blowing nitrogen. Then, it heated up at 150 degreeC and stirred for 6 hours, distilling the water to produce
  • a flask equipped with a thermometer, dropping funnel, condenser, fractionator, and stirrer was charged with 203.0 g of isophthalic acid chloride (number of moles of acid chloride group: 2.0 mol) and 1338 g of toluene, and the system was depressurized. It was purged with nitrogen and dissolved.
  • 96.0 g (0.67 mol) of ⁇ -naphthol and 245 g of the aralkyl-modified phenolic compound ( ⁇ -3) (number of moles of phenolic hydroxyl group: 1.33 mol) were charged, and the system was purged with nitrogen under reduced pressure. And dissolved.
  • Example 4 Production of Active Ester Resin (4)
  • 330 g (1.0 mol) of dicyclopentadienephenol resin, chloromethylnaphthalene 353 .3 g (2.0 mol), toluene 1000 g, and sodium hydroxide 60 g (1.5 mol) were charged, and the mixture was stirred at 80 ° C. for 6 hours while blowing nitrogen.
  • Comparative production example 1 A flask equipped with a thermometer, a dropping funnel, a condenser tube, a fractionating tube, and a stirrer was charged with 203.0 g (1.0 mol) of isophthalic acid chloride and 1254 g of dimethylformamide, and the system was purged with nitrogen under reduced pressure for dissolution. Next, 288.0 g (2.0 mol) of ⁇ -naphthol was charged, and the inside of the system was purged with nitrogen under reduced pressure to be dissolved. Thereafter, while purging with nitrogen gas, the inside of the system was controlled to 60 ° C. or lower, and 400 g of a 20% aqueous sodium hydroxide solution was added dropwise over 3 hours.
  • Comparative production example 2 A flask equipped with a thermometer, dropping funnel, condenser, fractionator, and stirrer was charged with 203.0 g of isophthalic acid chloride (number of moles of acid chloride group: 2.0 mol) and 1800 g of toluene, and the system was under reduced pressure nitrogen Replaced and dissolved. Next, 57.6 g (0.4 mol) of ⁇ -naphthol and 412.5 g of dicyclopentadiene phenol resin (number of moles of phenolic hydroxyl group: 2.5 mol) were charged, and the inside of the system was purged with nitrogen under reduced pressure and dissolved. Thereafter, while purging with nitrogen gas, the inside of the system was controlled to 60 ° C.
  • MEK methyl ethyl ketone
  • MIBK methyl isobutyl ketone
  • MP propylene glycol monomethyl ether acetate
  • NMP N-methylpyrrolidone
  • BuOH normal butanol
  • Examples 4 to 7 and Comparative Examples 1 and 2 ⁇ Preparation of epoxy resin composition and evaluation of physical properties>
  • an epoxy resin “EPICLON HP-7200H” (dicyclopentadiene phenol type epoxy resin, melt viscosity at 150 ° C. of 0.30 poise) manufactured by DIC Corporation, and the active ester resins (1) to (4), ( 1 ') or (2') was used, respectively, and both were blended in such a ratio that the epoxy group in the epoxy resin and the total of ester bonds or phenolic hydroxyl groups in the curing agent were equivalent.
  • a laminate was prepared by curing under the following conditions, and dielectric properties and moisture absorption were evaluated by the following methods. The results are shown in Table 2.
  • ⁇ Laminate production conditions > Base material: Glass cloth “# 2116” (210 ⁇ 280 mm) manufactured by Nitto Boseki Co., Ltd. Number of plies: 6 Condition of prepreg: 160 ° C Curing conditions: 200 ° C., 40 kg / cm 2 for 1.5 hours, post-molding plate thickness: 0.8 mm

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Reinforced Plastic Materials (AREA)
  • Epoxy Resins (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

種々の溶剤への溶解性に優れ、硬化物の誘電率及び誘電正接が共に低く、低吸湿性にも優れる新規活性エステル樹脂、これを硬化剤とするエポキシ樹脂組成物、その硬化物、半導体封止材料、プリプレグ、回路基板、及びビルドアップフィルムを提供する。脂肪族環状炭化水素基を介してアリーレン基(a)が複数結節された構造ユニット(I)が、アリーレンジカルボニルオキシ基(c)を介して他の構造ユニット(I)又はアリール基(d)と結節した構造部位を有し、分子中に存在する前記アリーレン基(a)の少なくとも一つがその芳香核上に下記構造式(i)(式中、Rはそれぞれ独立してメチル基又は水素原子であり、Arはフェニレン基、ナフチレン基、又は、芳香核上に炭素原子数1~4のアルキル基を1~3個有するフェニレン基或いはナフチレン基であり、nは1又は2である。) で表される構造部位(b)を有することを特徴とする活性エステル樹脂。

Description

活性エステル樹脂、エポキシ樹脂組成物、その硬化物、プリプレグ、回路基板、及びビルドアップフィルム
 本発明は、種々の溶剤への溶解性に優れ、硬化物の誘電率及び誘電正接が共に低く、低吸湿性にも優れる活性エステル樹脂、これを硬化剤とするエポキシ樹脂組成物、その硬化物、プリプレグ、回路基板、及びビルドアップフィルムに関する。
 エポキシ樹脂及びその硬化剤を必須成分とするエポキシ樹脂組成物は、その硬化物において優れた耐熱性と絶縁性を発現することから、半導体や多層プリント基板などの電子部品用途において広く用いられている。この電子部品用途のなかでも多層プリント基板用絶縁材料の技術分野では、近年、各種電子機器における信号の高速化、高周波数化が進んでいる。しかしながら、従来のエポキシ樹脂組成物及びその硬化物では、信号の高速化や高周波数化に伴い必須の要求性能となる十分に低い誘電率、かつ、十分に低い誘電正接を確保することが困難になりつつある。従って、高速化、高周波数化された信号に対しても、十分に低い誘電率を発現し、かつ、十分に低い誘電正接を発現する硬化物を得ることが可能な熱硬化性樹脂組成物の提供が望まれていた。
 低誘電率かつ低誘電正接を実現可能な材料として、ジシクロペンタジエンフェノール樹脂とα-ナフトールとをイソフタル酸クロライドでエステル化して得られる活性エステル化合物をエポキシ樹脂の硬化剤として用いる技術が知られている(下記特許文献1参照)。特許文献1記載の活性エステル化合物を用いたエポキシ樹脂組成物は、従来から知られていたフェノールノボラック型の活性エステル樹脂を用いた場合と比較して、誘電率及び誘電正接の両方の低減に成功したものである。しかしながら、このような活性エステル化合物は溶解可能な有機溶剤の種類が限られており、ワニス及びプリプレグ、硬化物の作製に際してトルエンなど環境負荷の高い有機溶剤の使用が必須であった。そのため、誘電率と誘電正接とが共に低く、かつ、エステル溶剤やアルコール溶剤等環境負荷の低い有機溶剤にも溶解可能なエポキシ樹脂硬化剤の開発が求められていた。
特開2009-235165号公報
 従って、本発明が解決しようとする課題は、種々の溶剤への溶解性に優れ、硬化物の誘電率及び誘電正接が共に低く、低吸湿性にも優れる活性エステル樹脂、これを硬化剤とするエポキシ樹脂組成物、その硬化物、プリプレグ、回路基板、及びビルドアップフィルムを提供することにある。
 本発明者らは、前記課題を解決すべく鋭意検討した結果、脂肪族環状炭化水素基を有するフェノール性化合物の芳香核の一部乃至全部をフェニルメタノール化合物又はナフチルメタノール化合物で変性して得られた変性フェノール性化合物と、芳香族モノヒドロキシ化合物とを、芳香族ジカルボン酸又はそのハライドでエステル化して得られる活性エステル樹脂が、ブタノールや酢酸エチルなど環境負荷の低い溶剤への溶解性が高く、かつ、その硬化物において非常に低い誘電率と誘電正接とを示し、吸湿率も低いことを見出し、本発明を完成するに至った。
 即ち、本発明は、脂肪族環状炭化水素基を介してアリーレン基(a)が複数結節された構造ユニット(I)が、アリーレンジカルボニルオキシ基(c)を介して他の構造ユニット(I)又はアリール基(d)と結節した構造部位を有し、樹脂中に存在する前記アリーレン基(a)の少なくとも一つがその芳香核上に下記構造式(i)
Figure JPOXMLDOC01-appb-C000003
(式中、Rはそれぞれ独立してメチル基又は水素原子であり、Arはフェニレン基、ナフチレン基、又は、芳香核上に炭素原子数1~4のアルキル基を1~3個有するフェニレン基或いはナフチレン基であり、nは1又は2である。)
で表される構造部位(b)を有することを特徴とする活性エステル樹脂に関する。
 本発明は更に脂肪族環状炭化水素基を介してフェノール性水酸基を有するアリール基が複数結節された構造を有するフェノール性化合物(A)と、アラルキル化剤(B)とを反応させてアラルキル変性フェノール性化合物(α)を得、次いで、得られたアラルキル変性フェノール性化合物(α)と、芳香族ジカルボン酸又はそのハライド(C)と、芳香族モノヒドロキシ化合物(D)とを、芳香族ジカルボン酸又はそのハライド(C)が有するカルボキシル基又は酸ハライド基の合計1モルに対し、前記アラルキル変性フェノール性化合物(α)が有するフェノール性水酸基が0.25~0.90モルの範囲となり、かつ、前記芳香族モノヒドロキシ化合物(D)が有するヒドロキシル基が0.10~0.75モルの範囲となる割合で反応させる請求項1記載の活性エステル樹脂の製造方法に関する。
 本発明は更に、前記活性エステル樹脂を含有するエポキシ樹脂組成物に関する。
 本発明は更に、前記エポキシ樹脂組成物を硬化させてなる硬化物に関する。
 本発明は更に、前記エポキシ樹脂組成物を有機溶剤に希釈したものを補強基材に含浸し、得られる含浸基材を半硬化させることにより得られるプリプレグに関する。
 本発明は更に、前記エポキシ樹脂組成物を有機溶剤に希釈したワニスを得、これを板状に賦形したものと銅箔とを加熱加圧成型することにより得られる回路基板に関する。
 本発明は更に、前記エポキシ樹脂組成物を有機溶剤に希釈したものを基材フィルム上に塗布し、乾燥させることにより得られるビルドアップフィルムに関する。
 本発明によれば、種々の溶剤への溶解性に優れ、硬化物の誘電率及び誘電正接が共に低く、低吸湿性にも優れる活性エステル樹脂、これを硬化剤とするエポキシ樹脂組成物、その硬化物、プリプレグ、回路基板、及びビルドアップフィルムを提供することができる。
図1は、実施例1で得られた活性エステル樹脂(1)のGPCチャート図である。 図2は、実施例1で得られた活性エステル樹脂(1)の13C-NMRチャート図である。 図3は、実施例1で得られた活性エステル樹脂(1)のMALDI-MSのスペクトルである。
 以下、本発明を詳細に説明する。
 本発明の活性エステル樹脂は、脂肪族環状炭化水素基を介してアリーレン基(a)が複数結節された構造ユニット(I)が、アリーレンジカルボニルオキシ基(c)を介して他の構造ユニット(I)又はアリール基(d)と結節した構造部位を有し、樹脂中に存在する前記アリーレン基(a)の少なくとも一つがその芳香核上に下記構造式(i)
Figure JPOXMLDOC01-appb-I000004
(式中、Rはそれぞれ独立してメチル基又は水素原子であり、Arはフェニレン基、ナフチレン基、又は、芳香核上に炭素原子数1~4のアルキル基を1~3個有するフェニレン基或いはナフチレン基であり、nは1又は2である。)
で表される構造部位(b)を有することを特徴とする。
 本発明の活性エステル樹脂において、前記アリーレンジカルボニルオキシ基(c)は所謂活性エステル基であり、エポキシ樹脂との硬化反応の際に生じる二級の水酸基をエステル残基が封鎖することにより、硬化物における誘電率と誘電正接とを低減させることが出来る。
 また、本発明の活性エステル樹脂において、前記構造式(i)で表される構造部位(b)は、誘電率と誘電正接との低減効果を更に高め、且つ、比較的嵩高い置換基であるために、各種有機溶剤への溶解性を向上させる効果に寄与する。一般に、立体的に嵩高い置換基骨格を有する樹脂は溶剤溶解性に優れる反面、硬化物の自由体積が大きくなることから吸湿性が高くなる傾向にあるが、本発明の活性エステル樹脂は吸湿率を低く抑えたまま、各種溶剤への溶解性を飛躍的に向上させることに成功したものである。
 本発明の活性エステル樹脂が有する脂肪族環状炭化水素基を介してアリーレン基(a)が複数結節された構造ユニット(I)は、例えば、1分子中に二重結合を2個含有する不飽和脂肪族環状炭化水素化合物と、フェノール性化合物とを重付加反応させて得られる構造が挙げられる。
 前記1分子中に二重結合を2個含有する不飽和脂肪族環状炭化水素化合物は、例えば、ジシクロペンタジエン、シクロペンタジエンの多量体、テトラヒドロインデン、4-ビニルシクロヘキセン、5-ビニル-2-ノルボルネン、リモネン等が挙げられ、それぞれ単独で用いても良いし、2種類以上を併用しても良い。これらの中でも、耐熱性に優れ、吸湿率の低い硬化物が得られることからジシクロペンタジエンが好ましい。尚、ジシクロペンタジエンは石油留分中に含まれることから、工業用ジシクロペンタジエンにはシクロペンタジエンの多量体や、他の脂肪族或いは芳香族性ジエン化合物等が不純物として含有されることがあるが、耐熱性、硬化性、成形性等の性能を考慮すると、ジシクロペンタジエンの純度90質量%以上の製品を用いることが望ましい。
 一方、前記フェノール性化合物は、例えば、フェノール、クレゾール、キシレノール、エチルフェノール、イソプロピルフェノール、ブチルフェノール、オクチルフェノール、ノニルフェノール、ビニルフェノール、イソプロペニルフェノール、アリルフェノール、フェニルフェノール、ベンジルフェノール、クロルフェノール、ブロムフェノール、1-ナフトール、2-ナフトール、1,4-ジヒドロキシナフタレン、2,3-ジヒドロキシナフタレン、2,3-ジヒドロキシナフタレン、2,6-ジヒドロキシナフタレン、2,7-ジヒドロキシナフタレン等が挙げられ、それぞれ単独で用いても良いし、2種類以上を併用しても良い。これらの中でも、硬化性が高く耐吸湿性に優れる活性エステル樹脂となることからフェノールが好ましい。
 本発明の活性エステル樹脂は、前記構造ユニット(I)がアリーレンジカルボニルオキシ基(c)を介して他の構造ユニット(I)又はアリール基(d)と結節した構造部位を有する。前記アリーレンジカルボニルオキシ基(c)は、例えば、ベンゼン-1,2-ジカルボニルオキシ基、ベンゼン-1,3-ジカルボニルオキシ基、ベンゼン-1,4-ジカルボニルオキシ基、ナフタレン-1,4-ジカルボニルオキシ基、ナフタレン-2,3-ジカルボニルオキシ基、ナフタレン-2,6-ジカルボニルオキシ基、ナフタレン-2,7-ジカルボニルオキシ基、及びこれらの芳香核に炭素数1~4のアルキル基やアルコキシ基等が置換したものが挙げられる。これらの中でも、硬化性に優れる活性エステル樹脂となり、また、製造も容易であることから、ベンゼン-1,3-ジカルボニルオキシ基又はベンゼン-1,4-ジカルボニルオキシ基であることが好ましく、ベンゼン-1,3-ジカルボニルオキシ基であることがより好ましい。
 また、前記他のアリール基(d)は、例えば、フェニル基、o-トリル基、m-トリル基、p-トリル基、3,5-キシリル基、o-ビフェニル基、m-ビフェニル基、p-ビフェニル基、2-ベンジルフェニル基、4-ベンジルフェニル基、4-(α-クミル)フェニル基、1-ナフチル基、2-ナフチル基等が挙げられる。中でも、特に誘電率及び誘電正接の低い硬化物が得られることから、1-ナフチル基又は2-ナフチル基であることが好ましい。
 本発明の活性エステル樹脂は、より具体的には、前記構造ユニット(I)がアリーレンジカルボニルオキシ基(c)を介して他の構造ユニット(I)と結節した構造を繰り返し単位とし、その末端にアリール基(d)が結節した分子構造を有するものであり、下記一般式(2)
Figure JPOXMLDOC01-appb-C000005
で表すことが出来る。
 ここで構造ユニット(I)は、前述の通り、脂肪族環状炭化水素基を介してアリーレン基(a)が複数結節された構造であり、樹脂中に存在するアリーレン基(a)の少なくとも一つはその芳香核上に下記構造式(i)
Figure JPOXMLDOC01-appb-C000006
(式中、Rはそれぞれ独立してメチル基又は水素原子であり、Arはフェニレン基、ナフチレン基、又は、芳香核上に炭素原子数1~4のアルキル基を1~3個有するフェニレン基或いはナフチレン基であり、nは1又は2である。)
で表される構造部位(b)を有する。
 前記構造式(i)において、Arはフェニレン基、ナフチレン基、又は、芳香核上に炭素原子数1~4のアルキル基を1~3個有するフェニレン基或いはナフチレン基であるが、中でも、種々の溶剤への溶解性に優れ、硬化物の誘電率及び誘電正接が共に低く、低吸湿性にも優れる活性エステル樹脂が得られることからフェニレン基であることが好ましい。また、Rはそれぞれ独立してメチル基又は水素原子であるが、より誘電率及び誘電正接が低く、耐吸湿性にも優れる硬化物が得られることから、2つのRが共に水素原子であることが好ましい。
 また、前記一般式(2)においてmは繰り返し単位の平均値を表し、各種溶剤への溶解性に優れる活性エステル樹脂となることから、0.25~1.5の範囲であることが好ましく、0.25~1.2の範囲であることがより好ましい。
 ここで、前記一般式(2)で表される本発明の活性エステル樹脂のmの値は以下の様にして求めることができる。
[一般式(2)中のmの値の求め方]
 下記条件でのGPC測定により得られるm=1、m=2、m=3、m=4のそれぞれに対応するスチレン換算分子量(α1、α2、α3、α4)の値と、m=1、m=2、m=3、m=4のそれぞれの理論分子量(β1、β2、β3、β4)との比率(β1/α1、β2/α2、β3/α3、β4/α4)を求め、これら(β1/α1~β4/α4)の平均値を求める。GPC測定の結果得られる数平均分子量(Mn)に、この平均値を掛け合わせた値を平均分子量とし、この平均分子量に相当するmの値を算出する。
(GPC測定条件)
 測定装置 :東ソー株式会社製「HLC-8220 GPC」、
 カラム:東ソー株式会社製ガードカラム「HXL-L」
    +東ソー株式会社製「TSK-GEL G2000HXL」
    +東ソー株式会社製「TSK-GEL G2000HXL」
    +東ソー株式会社製「TSK-GEL G3000HXL」
    +東ソー株式会社製「TSK-GEL G4000HXL」
 検出器: RI(示差屈折径)
 データ処理:東ソー株式会社製「GPC-8020モデルIIバージョン4.10」
 測定条件: カラム温度  40℃
       展開溶媒   テトラヒドロフラン
       流速     1.0ml/分
 標準  : 前記「GPC-8020モデルIIバージョン4.10」の測定マニュアル
に準拠して、分子量が既知の下記の単分散ポリスチレンを用いた。
  (使用ポリスチレン)
   東ソー株式会社製「A-500」
   東ソー株式会社製「A-1000」
   東ソー株式会社製「A-2500」
   東ソー株式会社製「A-5000」
   東ソー株式会社製「F-1」
   東ソー株式会社製「F-2」
   東ソー株式会社製「F-4」
   東ソー株式会社製「F-10」
   東ソー株式会社製「F-20」
   東ソー株式会社製「F-40」
   東ソー株式会社製「F-80」
   東ソー株式会社製「F-128」
 試料  : 樹脂固形分換算で1.0質量%のテトラヒドロフラン溶液をマイクロフィ
ルターでろ過したもの(50μl)。
 本発明の活性エステル樹脂は、例えば、以下の方法により製造することが出来る。即ち、脂肪族環状炭化水素基を介してフェノール性水酸基を有するアリール基が複数結節された構造を有するフェノール性化合物(A)と、アラルキル化剤(B)とを反応させてアラルキル変性フェノール性化合物(α)を得(工程1)、次いで、得られたアラルキル変性フェノール性化合物(α)と、芳香族ジカルボン酸又はそのハライド(C)と、芳香族モノヒドロキシ化合物(D)とを、芳香族ジカルボン酸又はそのハライド(C)が有するカルボキシル基又は酸ハライド基の合計1モルに対し、前記アラルキル変性フェノール性化合物(α)が有するフェノール性水酸基が0.05~0.75モルの範囲となり、かつ、前記芳香族モノヒドロキシ化合物(D)が有するヒドロキシル基が0.25~0.95モルの範囲となる割合で反応させる(工程2)ことにより、製造する方法が挙げられる。
 前記工程1で用いる脂肪族環状炭化水素基を介してフェノール性水酸基を有するアリール基が複数結節された構造を有するフェノール性化合物(A)は、例えば、1分子中に二重結合を2個含有する不飽和脂肪族環状炭化水素化合物と、フェノール性化合物とを重付加反応させて得られるものが挙げられる。
 前記1分子中に二重結合を2個含有する不飽和脂肪族環状炭化水素化合物は、例えば、ジシクロペンタジエン、シクロペンタジエンの多量体、テトラヒドロインデン、4-ビニルシクロヘキセン、5-ビニル-2-ノルボネン、リモネン等が挙げられ、それぞれ単独で用いても良いし、2種類以上を併用しても良い。これらの中でも、耐熱性に優れ、吸湿率の低い硬化物が得られることからジシクロペンタジエンが好ましい。尚、ジシクロペンタジエンは石油留分中に含まれることから、工業用ジシクロペンタジエンにはシクロペンタジエンの多量体や、他の脂肪族或いは芳香族性ジエン化合物等が不純物として含有されることがあるが、耐熱性、硬化性、成形性等の性能を考慮すると、ジシクロペンタジエンの純度90質量%以上の製品を用いることが望ましい。
 一方、前記フェノール性化合物は、例えば、フェノール、クレゾール、キシレノール、エチルフェノール、イソプロピルフェノール、ブチルフェノール、オクチルフェノール、ノニルフェノール、ビニルフェノール、イソプロペニルフェノール、アリルフェノール、フェニルフェノール、ベンジルフェノール、クロルフェノール、ブロムフェノール、1-ナフトール、2-ナフトール、1,4-ジヒドロキシナフタレン、2,3-ジヒドロキシナフタレン、2,3-ジヒドロキシナフタレン、2,6-ジヒドロキシナフタレン、2,7-ジヒドロキシナフタレン等が挙げられ、それぞれ単独で用いても良いし、2種類以上を併用しても良い。これらの中でも硬化性が高く耐吸湿性に優れる活性エステル樹脂となることからフェノールが好ましい。
 次に、前記フェノール性化合物(A)と反応させる前記アラルキル化剤(B)は、例えば、フェニルメタノール化合物、フェニルメチルハライド化合物、ナフチルメタノール化合物、ナフチルメチルハライド化合物、及びスチレン化合物等が挙げられる。具体的には、ベンジルクロライド、ベンジルブロマイド、ベンジルアイオダイト、o-メチルベンジルクロライド、m-メチルベンジルクロライド、p-メチルベンジルクロライド、p-エチルベンジルクロライド、p-イソプロピルベンジルクロライド、p-tert-ブチルベンジルクロライド、p-フェニルベンジルクロライド、5-クロロメチルアセナフチレン、2-ナフチルメチルクロライド、1-クロロメチル-2-ナフタレン及びこれらの核置換異性体、α-メチルベンジルクロライド、並びにα,α-ジメチルベンジルクロライド等;ベンジルメチルエーテル、o-メチルベンジルメチルエーテル、m-メチルベンジルメチルエーテル、p-メチルベンジルメチルエーテル、p-エチルベンジルメチルエーテル及びこれらの核置換異性体、ベンジルエチルエーテル、ベンジルプロピルエーテル、ベンジルイソブチルエーテル、ベンジルn-ブチルエーテル、p-メチルベンジルメチルエーテル及びその核置換異性体等;ベンジルアルコール、o-メチルベンジルアルコール、m-メチルベンジルアルコール、p-メチルベンジルアルコール、p-エチルベンジルアルコール、p-イソプロピルベンジルアルコール、ptert-ブチルベンジルアルコール、p-フェニルベンジルアルコール、α-ナフチルメタノール及びこれらの核置換異性体、α-メチルベンジルアルコール、及びα,α-ジメチルベンジルアルコール等;スチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、α-メチルスチレン、β-メチルスチレン等が挙げられる。
 これらの中でも、種々の溶剤への溶解性に優れ、硬化物の誘電率及び誘電正接が共に低く、低吸湿性にも優れる活性エステル樹脂が得られることから、ベンジルクロライド、ベンジルブロマイド、及びベンジルアルコールが好ましい。
 前記工程1は、例えば、酸触媒の存在下、100~180℃の温度条件下で行うことが出来る。ここで用いる酸触媒は、例えば、リン酸、硫酸、塩酸などの無機酸、シュウ酸、ベンゼンスルホン酸、トルエンスルホン酸、メタンスルホン酸、フルオロメタンスルホン酸等の有機酸、塩化アルミニウム、塩化亜鉛、塩化第2錫、塩化第2鉄、ジエチル硫酸などのフリーデルクラフツ触媒が挙げられる。
 上記した酸触媒の使用量は、目的のアラルキル化率などにより適宜選択することができるが、無機酸や有機酸の場合には反応原料100質量部に対し0.01~5.0質量部の範囲で、フリーデルクラフツ触媒の場合はアラルキル化剤(B)1モルに対し、0.2~3.0モルの範囲で用いることが好ましい。
 前記工程1は、必要に応じて有機溶媒中で行っても良い。ここで用いる有機溶媒は、例えば、アセトン、メチルエチルケトン、シクロヘキサノン等のケトン溶媒、酢酸エチル、酢酸ブチル、セロソルブアセテート、プロピレングリコールモノメチルエーテルアセテート、カルビトールアセテート等の酢酸エステル溶媒、セロソルブ、ブチルカルビトール等のカルビトール溶媒、トルエン、キシレン等の芳香族炭化水素溶媒、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン等が挙げられる。
 工程1終了後は、続く工程2を塩基性触媒の存在下で行うことから、工程1の反応生成物を中和した後、生成物であるアラルキル変性フェノール性化合物(α)を水洗することが好ましい。
 次に、工程2では、このようにして得られたアラルキル変性フェノール性化合物(α)と、芳香族ジカルボン酸又はそのハライド(C)と、芳香族モノヒドロキシ化合物(D)と反応させて、目的の活性エステル樹脂を得る。
 工程2で用いる前記芳香族ジカルボン酸又はそのハライド(C)は、例えば、イソフタル酸、テレフタル酸、ナフタレン-1,4-ジカルボン酸、ナフタレン-2,3-ジカルボン酸、ナフタレン-2,6-ジカルボン酸、ナフタレン-2,7-ジカルボン酸、これらの酸フッ化物、酸塩化物、酸臭化物、酸ヨウ化物、及びこれらの芳香核に炭素数1~4のアルキル基やアルコキシ基等が置換したものが挙げられる。これらのなかでも特に反応が優れ、かつ、得られる活性エステルが硬化性に優れるものとなることから、イソフタル酸のジクロライド又はテレフタル酸のジクロライドが好ましく、イソフタル酸のジクロライドがより好ましい。
 また、工程2で用いる芳香族モノヒドロキシ化合物(D)は、例えば、フェノール、o-クレゾール、m-クレゾール、p-クレゾール、3,5-キシレノール等のアルキルフェノール;o-フェニルフェノール、p-フェニルフェノール、2-ベンジルフェノール、4-ベンジルフェノール、4-(α-クミル)フェノール等のアラルキルフェノール;1-ナフトール、2-ナフトール等のナフトール化合物が挙げられる。中でも、特に誘電率及び誘電正接の低い硬化物が得られることから、1-ナフトール又は2-ナフトールであることが好ましい。
 前記工程2は、例えば、アルカリ触媒の存在下、40~65℃の温度条件下で行うことが出来る。ここで使用し得るアルカリ触媒は、例えば、水酸化ナトリウム、水酸化カリウム、トリエチルアミン、ピリジン等が挙げられる。これらのなかでも、反応効率が高いことから水酸化ナトリウム又は水酸化カリウムが好ましい。また、これらの触媒は3.0~30%の水溶液として用いても良い。
 前記工程2は、反応の制御が容易となることから有機溶媒中で行うことが好ましい。ここで用いる有機溶媒は、例えば、アセトン、メチルエチルケトン、シクロヘキサノン等のケトン溶媒、酢酸エチル、酢酸ブチル、セロソルブアセテート、プロピレングリコールモノメチルエーテルアセテート、カルビトールアセテート等の酢酸エステル溶媒、セロソルブ、ブチルカルビトール等のカルビトール溶媒、トルエン、キシレン等の芳香族炭化水素溶媒、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン等が挙げられる。
 前述の通り、前記工程2では、芳香族ジカルボン酸又はそのハライド(C)が有するカルボキシル基又は酸ハライド基の合計1モルに対し、前記アラルキル変性フェノール性化合物(α)が有するフェノール性水酸基が0.25~0.90モルの範囲となり、かつ、前記芳香族モノヒドロキシ化合物(D)が有するヒドロキシル基が0.10~0.75モルの範囲となる割合で各原料を用いる。更に、各種溶剤への溶解性に優れ誘電率と誘電正接とを低減させる効果がより高く、硬化性にも優れる活性エステル樹脂となることから、前記アラルキル変性フェノール性化合物(α)が有するフェノール性水酸基が0.50~0.75モルの範囲となり、かつ、前記芳香族モノヒドロキシ化合物(D)が有するヒドロキシル基が0.25~0.50モルの範囲となる割合で各原料を用いることがより好ましい。
 工程2終了後は、アルカリ触媒の水溶液を用いている場合には反応液を静置分液して水層を取り除き、残った有機層を水で洗浄し、水層がほぼ中性になるまで水洗を繰り返すことにより、目的の活性エステル樹脂を得ることができる。
 このようにして得られる活性エステル樹脂は、各種有機溶剤への溶解性が高く、また、難燃性にも優れるものとなることから、その軟化点が60~170℃の範囲であることが好ましい。
 また、本発明の活性エステル樹脂の官能基当量は、樹脂構造中に有するアリールカルボニルオキシ基およびフェノール性水酸基の合計を樹脂の官能基数とした場合、硬化性に優れ、誘電率及び優先正接の低い硬化物が得られることから、240~400g/eq.の範囲であることが好ましく、300~370g/eq.の範囲であることがより好ましい。
 本発明の活性エステル樹脂の分子構造は、各反応成分の構造を任意に選択することにより様々なものが考えられるが、中でも、種々の溶剤溶解性に優れ、硬化物の誘電率及び誘電正接が共に低く、低吸湿性にも優れることから、下記一般式(1)
Figure JPOXMLDOC01-appb-C000007
(式中、Xはベンゼン環又はナフタレン環であり、kは0又は1であり、nは1又は2であり、lは1又は2であり、mは繰り返し単位の平均で0.25~1.5である。)
で表されるものが好ましく、mの値が0.25~1.2の範囲であるものがより好ましい。
 前記一般式(1)中、繰り返し単位の平均値であるmの値は、前記一般式(2)中のmと同様の方法により求めることが出来る。
 本発明のエポキシ樹脂組成物は、前述の活性エステル樹脂と、エポキシ樹脂とを必須の成分として含有するものである。
 本発明で用いるエポキシ樹脂は、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビフェニル型エポキシ樹脂、テトラメチルビフェニル型エポキシ樹脂、ポリヒドロキシナフタレン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、テトラフェニルエタン型エポキシ樹脂、ジシクロペンタジエン-フェノール付加反応型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、ナフトール-フェノール共縮ノボラック型エポキシ樹脂、ナフトール-クレゾール共縮ノボラック型エポキシ樹脂、芳香族炭化水素ホルムアルデヒド樹脂変性フェノール樹脂型エポキシ樹脂、ビフェニル変性ノボラック型エポキシ樹脂等が挙げられる。これらのエポキシ樹脂の中でも、特に難燃性に優れる硬化物が得られる点においては、テトラメチルビフェノール型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、ポリヒドロキシナフタレン型エポキシ樹脂、ノボラック型エポキシ樹脂を用いることが好ましく、誘電特性に優れる硬化物が得られる点においては、ジシクロペンタジエン-フェノール付加反応型エポキシ樹脂が好ましい。
 本発明のエポキシ樹脂組成物において、前記活性エステル樹脂とエポキシ樹脂との配合量は、硬化性に優れ、誘電率及び誘電正接の低い硬化物が得られることから、活性エステル樹脂中の活性基の合計1当量に対して、前記エポキシ樹脂中のエポキシ基が0.8~1.2当量となる割合であることが好ましい。ここで、活性エステル樹脂中の活性基とは、樹脂構造中に有するアリールカルボニルオキシ基及びフェノール性水酸基を指す。
 本発明のエポキシ樹脂組成物においては、前記した活性エステル樹脂と、その他の硬化剤とを併用してもよい。ここで用いるその他の硬化剤は、例えば、ジアミノジフェニルメタン、ジエチレントリアミン、トリエチレンテトラミン、ジアミノジフェニルスルホン、イソホロンジアミン、イミダゾ-ル、BF-アミン錯体、グアニジン誘導体等のアミン化合物:ジシアンジアミド、リノレン酸の2量体とエチレンジアミンとより合成されるポリアミド樹脂等のアミド化合物:無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水マレイン酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸等の酸無水物:フェノールノボラック樹脂、クレゾールノボラック樹脂、芳香族炭化水素ホルムアルデヒド樹脂変性フェノール樹脂、ジシクロペンタジエンフェノール付加型樹脂、フェノールアラルキル樹脂、ナフトールアラルキル樹脂、トリメチロールメタン樹脂、テトラフェニロールエタン樹脂、ナフトールノボラック樹脂、ナフトール-フェノール共縮ノボラック樹脂、ナフトール-クレゾール共縮ノボラック樹脂、ビフェニル変性フェノール樹脂(ビスメチレン基でフェノール核が連結された多価フェノール化合物)、ビフェニル変性ナフトール樹脂(ビスメチレン基でフェノール核が連結された多価ナフトール化合物)、アミノトリアジン変性フェノール樹脂(メラミンやベンゾグアナミンなどでフェノール核が連結された多価フェノール化合物)等の多価フェノール化合物が挙げられる。
 これらの中でも、芳香族骨格を分子構造内に多く含むものが誘電特性及び耐吸湿性に優れることから好ましく、具体的には、フェノールノボラック樹脂、クレゾールノボラック樹脂、芳香族炭化水素ホルムアルデヒド樹脂変性フェノール樹脂、フェノールアラルキル樹脂、ナフトールアラルキル樹脂、ナフトールノボラック樹脂、ナフトール-フェノール共縮ノボラック樹脂、ナフトール-クレゾール共縮ノボラック樹脂、ビフェニル変性フェノール樹脂、ビフェニル変性ナフトール樹脂、アミノトリアジン変性フェノール樹脂が好ましい。
 上記したその他の硬化剤を併用する場合その使用量は、活性エステル樹脂とその他の硬化剤との合計100質量部中、10~50質量部の範囲であることが好ましい。
 本発明のエポキシ樹脂組成物は、必要に応じて硬化促進剤を含有していても良い。ここで用いる硬化促進剤は、例えば、リン系化合物、第3級アミン、イミダゾール、有機酸金属塩、ルイス酸、アミン錯塩等が挙げられる。特に、本発明のエポキシ樹脂組成物をビルドアップ材料用途や回路基板用途として使用する場合には、耐熱性、誘電特性、耐はんだ性等に優れることから、ジメチルアミノピリジンやイミダゾールが好ましい。
 また、前述の通り本発明の活性エステル樹脂は、優れた溶剤溶解性を発現することを特徴としており、本発明のエポキシ樹脂組成物をビルドアップ材料用途や回路基板用途として使用する場合に、従来用いられてきたトルエン等の溶剤に替えて、アルコール溶剤やエステル溶剤を使用してワニス化することが出来る。本発明のエポキシ樹脂組成物の溶剤として使用できる有機溶剤は、従来用いられてきたトルエン、キシレン等の芳香族炭化水素溶剤の他、アセトン、メチルエチルケトン、シクロヘキサノン等のケトン溶剤、酢酸エチル、酢酸ブチル、セロソルブアセテート、プロピレングリコールモノメチルエーテルアセテート、カルビトールアセテート等の酢酸エステル溶剤、エタノール、プロパノール、ブタノール等のアルコール溶剤、セロソルブ、ブチルカルビトール等のカルビトール溶剤、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン等が挙げられる。
 本発明のエポキシ樹脂組成物をプリント配線基板用途に用いる場合には、メチルエチルケトン、アセトン、1-メトキシ-2-プロパノール等の沸点が160℃以下の極性溶剤であることが好ましく、不揮発分40~80質量%となる割合で使用することが好ましい。一方、ビルドアップ用接着フィルム用途に用いる場合には、アセトン、メチルエチルケトン、シクロヘキサノン等のケトン溶剤、酢酸エチル、酢酸ブチル、セロソルブアセテート、プロピレングリコールモノメチルエーテルアセテート、カルビトールアセテート等の酢酸エステル溶剤エタノール、プロパノール、ブタノール等のアルコール溶剤、セロソルブ、ブチルカルビトール等のカルビトール溶剤、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン等を用いることが好ましく、不揮発分30~60質量%となる割合で使用することが好ましい。
 また、本発明のエポキシ樹脂組成物は、必要に応じて他の熱硬化性樹脂を適宜併用しても良い。ここで使用し得る他の熱硬化性樹脂は、例えばシアネートエステル化合物、ビニルベンジル化合物、アクリル化合物、マレイミド化合物、スチレンとマレイン酸無水物の共重合物などが挙げられる。上記した他の熱硬化性樹脂を併用する場合、その使用量は本発明の効果を阻害しなければ特に制限をうけないが、エポキシ樹脂組成物100質量部中1~50重量部の範囲であることが好ましい。
 本発明の活性エステル樹脂をプリント配線基板用途などより高い難燃性が求められる用途に用いる場合には、実質的にハロゲン原子を含有しない非ハロゲン系難燃剤を配合してもよい。
 前記非ハロゲン系難燃剤は、例えば、リン系難燃剤、窒素系難燃剤、シリコーン系難燃剤、無機系難燃剤、有機金属塩系難燃剤等が挙げられ、それらの使用に際しても何等制限されるものではなく、単独で使用しても、同一系の難燃剤を複数用いても良く、また、異なる系の難燃剤を組み合わせて用いることも可能である。
 前記リン系難燃剤は、無機系、有機系のいずれも使用することができる。無機系化合物としては、例えば、赤リン、リン酸一アンモニウム、リン酸二アンモニウム、リン酸三アンモニウム、ポリリン酸アンモニウム等のリン酸アンモニウム類、リン酸アミド等の無機系含窒素リン化合物が挙げられる。
 また、前記赤リンは、加水分解等の防止を目的として表面処理が施されていることが好ましく、表面処理方法としては、例えば、(i)水酸化マグネシウム、水酸化アルミニウム、水酸化亜鉛、水酸化チタン、酸化ビスマス、水酸化ビスマス、硝酸ビスマス又はこれらの混合物等の無機化合物で被覆処理する方法、(ii)水酸化マグネシウム、水酸化アルミニウム、水酸化亜鉛、水酸化チタン等の無機化合物、及びフェノール樹脂等の熱硬化性樹脂の混合物で被覆処理する方法、(iii)水酸化マグネシウム、水酸化アルミニウム、水酸化亜鉛、水酸化チタン等の無機化合物の被膜の上にフェノール樹脂等の熱硬化性樹脂で二重に被覆処理する方法等が挙げられる。
 前記有機リン系化合物は、例えば、リン酸エステル化合物、ホスホン酸化合物、ホスフィン酸化合物、ホスフィンオキシド化合物、ホスホラン化合物、有機系含窒素リン化合物等の汎用有機リン系化合物の他、9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキシド、10-(2,5―ジヒドロオキシフェニル)-10H-9-オキサ-10-ホスファフェナントレン-10-オキシド、10-(2,7-ジヒドロオキシナフチル)-10H-9-オキサ-10-ホスファフェナントレン-10-オキシド等の環状有機リン化合物及びそれをエポキシ樹脂やフェノール樹脂等の化合物と反応させた誘導体等が挙げられる。
 これらリン系難燃剤の配合量は、例えば、エポキシ樹脂組成物100質量部中、赤リンを用いる場合には0.1~2.0質量部の範囲で配合することが好ましく、有機リン化合物を用いる場合には0.1~10.0質量部の範囲で配合することが好ましく、0.5~6.0質量部の範囲で配合することがより好ましい。
 また前記リン系難燃剤を使用する場合、該リン系難燃剤にハイドロタルサイト、水酸化マグネシウム、ホウ化合物、酸化ジルコニウム、黒色染料、炭酸カルシウム、ゼオライト、モリブデン酸亜鉛、活性炭等を併用してもよい。
 前記窒素系難燃剤は、例えば、トリアジン化合物、シアヌル酸化合物、イソシアヌル酸化合物、フェノチアジン等が挙げられ、トリアジン化合物、シアヌル酸化合物、イソシアヌル酸化合物が好ましい。
 前記トリアジン化合物は、例えば、メラミン、アセトグアナミン、ベンゾグアナミン、メロン、メラム、サクシノグアナミン、エチレンジメラミン、ポリリン酸メラミン、トリグアナミン等の他、例えば、硫酸グアニルメラミン、硫酸メレム、硫酸メラムなどの硫酸アミノトリアジン化合物、前記アミノトリアジン変性フェノール樹脂、及び該アミノトリアジン変性フェノール樹脂を更に桐油、異性化アマニ油等で変性したもの等が挙げられる。
 前記シアヌル酸化合物は、例えば、シアヌル酸、シアヌル酸メラミン等を挙げることができる。
 前記窒素系難燃剤の配合量は、例えば、エポキシ樹脂組成物100質量部中、0.05~10質量部の範囲で配合することが好ましく、0.1~5質量部の範囲で配合することがより好ましい。
 また前記窒素系難燃剤を使用する際、金属水酸化物、モリブデン化合物等を併用してもよい。
 前記シリコーン系難燃剤は、ケイ素原子を含有する有機化合物であれば特に制限がなく使用でき、例えば、シリコーンオイル、シリコーンゴム、シリコーン樹脂等が挙げられる。
 前記シリコーン系難燃剤の配合量は、例えば、エポキシ樹脂組成物100質量部中、0.05~20質量部の範囲で配合することが好ましい。また前記シリコーン系難燃剤を使用する際、モリブデン化合物、アルミナ等を併用してもよい。
 前記無機系難燃剤は、例えば、金属水酸化物、金属酸化物、金属炭酸塩化合物、金属粉、ホウ素化合物、低融点ガラス等が挙げられる。
 前記金属水酸化物は、例えば、水酸化アルミニウム、水酸化マグネシウム、ドロマイト、ハイドロタルサイト、水酸化カルシウム、水酸化バリウム、水酸化ジルコニウム等を挙げることができる。
 前記金属酸化物は、例えば、モリブデン酸亜鉛、三酸化モリブデン、スズ酸亜鉛、酸化スズ、酸化アルミニウム、酸化鉄、酸化チタン、酸化マンガン、酸化ジルコニウム、酸化亜鉛、酸化モリブデン、酸化コバルト、酸化ビスマス、酸化クロム、酸化ニッケル、酸化銅、酸化タングステン等を挙げることができる。
 前記金属炭酸塩化合物は、例えば、炭酸亜鉛、炭酸マグネシウム、炭酸カルシウム、炭酸バリウム、塩基性炭酸マグネシウム、炭酸アルミニウム、炭酸鉄、炭酸コバルト、炭酸チタン等を挙げることができる。
 前記金属粉は、例えば、アルミニウム、鉄、チタン、マンガン、亜鉛、モリブデン、コバルト、ビスマス、クロム、ニッケル、銅、タングステン、スズ等を挙げることができる。
 前記ホウ素化合物は、例えば、ホウ酸亜鉛、メタホウ酸亜鉛、メタホウ酸バリウム、ホウ酸、ホウ砂等を挙げることができる。
 前記低融点ガラスのは、例えば、シープリー(ボクスイ・ブラウン社)、水和ガラスSiO-MgO-HO、PbO-B系、ZnO-P-MgO系、P-B-PbO-MgO系、P-Sn-O-F系、PbO-V-TeO系、Al-HO系、ホウ珪酸鉛系等のガラス状化合物を挙げることができる。
 前記無機系難燃剤の配合量は、例えば、エポキシ樹脂組成物100質量部中、0.05~20質量部の範囲で配合することが好ましく、0.5~15質量部の範囲で配合することがより好ましい。
 前記有機金属塩系難燃剤は、例えば、フェロセン、アセチルアセトナート金属錯体、有機金属カルボニル化合物、有機コバルト塩化合物、有機スルホン酸金属塩、金属原子と芳香族化合物又は複素環化合物がイオン結合又は配位結合した化合物等が挙げられる。
 前記有機金属塩系難燃剤の配合量は、例えば、エポキシ樹脂組成物100質量部中、0.005~10質量部の範囲で配合することが好ましい。
 本発明のエポキシ樹脂組成物は、必要に応じて無機質充填材を配合することができる。前記無機質充填材は、例えば、溶融シリカ、結晶シリカ、アルミナ、窒化珪素、水酸化アルミ等が挙げられる。前記無機充填材の配合量を特に大きくする場合は溶融シリカを用いることが好ましい。前記溶融シリカは破砕状、球状のいずれでも使用可能であるが、溶融シリカの配合量を高め且つ成形材料の溶融粘度の上昇を抑制するためには、球状のものを主に用いる方が好ましい。更に球状シリカの配合量を高めるためには、球状シリカの粒度分布を適当に調整することが好ましい。その充填率は難燃性を考慮して、高い方が好ましく、熱硬化性樹脂組成物の全体量に対して20質量%以上が特に好ましい。また導電ペーストなどの用途に使用する場合は、銀粉や銅粉等の導電性充填剤を用いることができる。
 本発明のエポキシ樹脂組成物は、この他、必要に応じて、シランカップリング剤、離型剤、顔料、乳化剤等の種々の配合剤を添加することができる。
 本発明のエポキシ樹脂組成物は、上記した各成分を均一に混合することにより得られ、従来知られているエポキシ樹脂組成物の硬化と同様の方法により容易に硬化物とすることができる。該硬化物としては積層物、注型物、接着層、塗膜、フィルム等の成形硬化物が挙げられる。
 本発明のエポキシ樹脂組成物は、その硬化物の誘電率及び誘電正接が共に低いことから、硬質プリント配線板材料、フレキシルブル配線基板用樹脂組成物、ビルドアップ基板用層間絶縁材料等の回路基板用絶縁材料、半導体封止材料、導電ペースト、ビルドアップ用接着フィルム、樹脂注型材料、接着剤等の各種電子材料用途に好適に用いることが出来る。中でも、本発明の活性エステル樹脂が有する各種有機溶剤への高い溶解性を活かし、硬質プリント配線板材料、フレキシブル配線基板用樹脂組成物、ビルドアップ基板用層間絶縁材料等の回路基板用材料に特に好ましく用いることが出来る。
 このうち回路基板用途へ応用する場合には、本発明のエポキシ樹脂組成物を有機溶剤に希釈したワニスを得、これを板状に賦形したものを銅箔と積層し、加熱加圧成型して製造することが出来る。また、硬質プリント配線基板用途へ応用する場合には、有機溶剤を含むワニス状のエポキシ樹脂組成物を補強基材に含浸し、半硬化させることによってプリプレグを得、これに銅箔を重ねて加熱圧着させる方法により製造することが出来る。ここで使用し得る補強基材は、紙、ガラス布、ガラス不織布、アラミド紙、アラミド布、ガラスマット、ガラスロービング布などが挙げられる。かかる方法を更に詳述すれば、先ず、前記したワニス状のエポキシ樹脂組成物を、用いた溶剤種に応じた加熱温度、好ましくは50~170℃で加熱することによって硬化物であるプリプレグを得る。この際、用いる熱硬化性樹脂組成物と補強基材の質量割合は特に限定されないが、通常、プリプレグ中の樹脂分が20~60質量%となるように調製することが好ましい。次いで、上記のようにして得られたプリプレグを、常法により積層し、適宜銅箔を重ねて、1~10MPaの加圧下に170~250℃で10分~3時間、加熱圧着させることにより、目的とする回路基板を得ることができる。
 本発明のエポキシ樹脂組成物からフレキシルブル配線基板を製造するには、有機溶剤を配合したエポキシ樹脂組成物をリバースロールコータ、コンマコータ等の塗布機を用いて電気絶縁性フィルムに塗布する。次いで、加熱機を用いて60~170℃で1~15分間加熱し、溶媒を揮発させてエポキシ樹脂組成物をB-ステージ化する。次いで、加熱ロール等を用いて、樹脂組成物層に金属箔を熱圧着する。その際の圧着圧力は2~200N/cm、圧着温度は40~200℃が好ましい。それで十分な接着性能が得られれば、ここで終えても構わないが、完全硬化が必要な場合は、さらに100~200℃で1~24時間の条件で後硬化させることが好ましい。最終的に硬化させた後の樹脂組成物層の厚みは、5~100μmの範囲が好ましい。
 本発明のエポキシ樹脂組成物からビルドアップ基板用層間絶縁材料を製造するには、例えば、ゴム、フィラーなどを適宜配合したエポキシ樹脂組成物を、回路を形成した配線基板にスプレーコーティング法、カーテンコーティング法等を用いて塗布した後、硬化させる。その後、必要に応じて所定のスルーホール部等の穴あけを行った後、粗化剤により処理し、その表面を湯洗することによって、凹凸を形成させ、銅などの金属をめっき処理する。前記めっき方法としては、無電解めっき、電解めっき処理が好ましく、また前記粗化剤としては酸化剤、アルカリ、有機溶剤等が挙げられる。このような操作を所望に応じて順次繰り返し、樹脂絶縁層及び所定の回路パターンの導体層を交互にビルドアップして形成することにより、ビルドアップ基盤を得ることができる。但し、スルーホール部の穴あけは、最外層の樹脂絶縁層の形成後に行う。また、銅箔上で樹脂組成物を半硬化させた樹脂付き銅箔を、回路を形成した配線基板上に、170~250℃で加熱圧着することで、粗化面を形成、メッキ処理の工程を省き、ビルドアップ基板を作製することも可能である。
 本発明のエポキシ樹脂組成物からビルドアップ用接着フィルムを製造する方法は、例えば、本発明のエポキシ樹脂組成物を支持フィルム上に塗布し樹脂組成物層を形成させて多層プリント配線板用の接着フィルムとする方法が挙げられる。
 本発明のエポキシ樹脂組成物をビルドアップ用接着フィルムに用いる場合、該接着フィルムは、真空ラミネート法におけるラミネートの温度条件(通常70℃~140℃)で軟化し、回路基板のラミネートと同時に、回路基板に存在するビアホール或いはスルーホール内の樹脂充填が可能な流動性(樹脂流れ)を示すことが肝要であり、このような特性を発現するよう上記各成分を配合することが好ましい。
 ここで、多層プリント配線板のスルーホールの直径は通常0.1~0.5mm、深さは通常0.1~1.2mmであり、通常この範囲で樹脂充填を可能とするのが好ましい。なお回路基板の両面をラミネートする場合はスルーホールの1/2程度充填されることが望ましい。
 上記した接着フィルムを製造する方法は、具体的には、ワニス状の本発明のエポキシ樹脂組成物を調製した後、支持フィルムの表面に、このワニス状の組成物を塗布し、更に加熱、あるいは熱風吹きつけ等により有機溶剤を乾燥させてエポキシ樹脂組成物の層(α)を形成させることにより製造することができる。
 形成される層(α)の厚さは、通常、導体層の厚さ以上とする。回路基板が有する導体層の厚さは通常5~70μmの範囲であるので、樹脂組成物層の厚さは10~100μmの厚みを有するのが好ましい。
 なお、前記層(α)は、後述する保護フィルムで保護されていてもよい。保護フィルムで保護することにより、樹脂組成物層表面へのゴミ等の付着やキズを防止することができる。
 前記した支持フィルム及び保護フィルムは、ポリエチレン、ポリプロピレン、ポリ塩化ビニル等のポリオレフィン、ポリエチレンテレフタレート(以下「PET」と略称することがある。)、ポリエチレンナフタレート等のポリエステル、ポリカーボネート、ポリイミド、更には離型紙や銅箔、アルミニウム箔等の金属箔などを挙げることができる。なお、支持フィルム及び保護フィルムはマッド処理、コロナ処理の他、離型処理を施してあってもよい。
 支持フィルムの厚さは特に限定されないが、通常10~150μmであり、好ましくは25~50μmの範囲で用いられる。また保護フィルムの厚さは1~40μmとするのが好ましい。
 上記した支持フィルムは、回路基板にラミネートした後に、或いは加熱硬化することにより絶縁層を形成した後に、剥離される。接着フィルムを加熱硬化した後に支持フィルムを剥離すれば、硬化工程でのゴミ等の付着を防ぐことができる。硬化後に剥離する場合、通常、支持フィルムには予め離型処理が施される。
 次に、上記のようして得られた接着フィルムを用いて多層プリント配線板を製造する方法は、例えば、層(α)が保護フィルムで保護されている場合はこれらを剥離した後、層(α)を回路基板に直接接するように、回路基板の片面又は両面に、例えば真空ラミネート法によりラミネートする。ラミネートの方法はバッチ式であってもロールでの連続式であってもよい。またラミネートを行う前に接着フィルム及び回路基板を必要により加熱(プレヒート)しておいてもよい。
 ラミネートの条件は、圧着温度(ラミネート温度)を好ましくは70~140℃、圧着圧力を好ましくは1~11kgf/cm(9.8×10~107.9×10N/m2)とし、空気圧20mmHg(26.7hPa)以下の減圧下でラミネートすることが好ましい。
 本発明のエポキシ樹脂組成物を導電ペーストとして使用する場合には、例えば、微細導電性粒子をエポキシ樹脂組成物中に分散させ異方性導電膜用組成物とする方法、室温で液状である回路接続用ペースト樹脂組成物や異方性導電接着剤とする方法が挙げられる。
 また、本発明のエポキシ樹脂組成物は、レジストインキとして使用することも可能である。この場合、エポキシ樹脂組成物にエチレン性不飽和二重結合を有するビニル系モノマーと、硬化剤としてカチオン重合触媒を配合し、更に、顔料、タルク、及びフィラーを加えてレジストインキ用組成物とした後、スクリーン印刷方式にてプリント基板上に塗布した後、レジストインキ硬化物とする方法が挙げられる。
 前述の通り、本発明の活性エステル樹脂は従来型の活性エステル樹脂と比較して高い溶剤溶解性を有することから、前記各種電子材料用途に応用する際に容易にワニス化することが出来、また、従来主流であったトルエン等の環境負荷の高い溶剤に替えて、エステル溶剤やアルコール溶剤等のより環境負荷の低い有機溶剤を使用することが出来る。また、本発明のエポキシ樹脂組成物の硬化物は誘電率及び誘電正接の両方が低い特徴を有することから、高周波デバイスの演算速度の高速化の実現に貢献することが出来る。
 次に本発明を実施例、比較例により具体的に説明するが、以下において「部」及び「%」は特に断わりのない限り質量基準である。尚、溶融粘度測定、軟化点測定、GPC測定、13C-NMR、MALDI-MSスペクトルは以下の条件にて測定した。
1)180℃における溶融粘度:ASTM D4287に準拠した。
2)軟化点測定法:JIS K7234に準拠した。
3)GPC:以下の条件により測定した。
 測定装置 :東ソー株式会社製「HLC-8220 GPC」、
 カラム:東ソー株式会社製ガードカラム「HXL-L」
    +東ソー株式会社製「TSK-GEL G2000HXL」
    +東ソー株式会社製「TSK-GEL G2000HXL」
    +東ソー株式会社製「TSK-GEL G3000HXL」
    +東ソー株式会社製「TSK-GEL G4000HXL」
 検出器: RI(示差屈折径)
 データ処理:東ソー株式会社製「GPC-8020モデルIIバージョン4.10」
 測定条件: カラム温度  40℃
       展開溶媒   テトラヒドロフラン
       流速     1.0ml/分
 標準  : 前記「GPC-8020モデルIIバージョン4.10」の測定マニュアルに準拠して、分子量が既知の下記の単分散ポリスチレンを用いた。
  (使用ポリスチレン)
   東ソー株式会社製「A-500」
   東ソー株式会社製「A-1000」
   東ソー株式会社製「A-2500」
   東ソー株式会社製「A-5000」
   東ソー株式会社製「F-1」
   東ソー株式会社製「F-2」
   東ソー株式会社製「F-4」
   東ソー株式会社製「F-10」
   東ソー株式会社製「F-20」
   東ソー株式会社製「F-40」
   東ソー株式会社製「F-80」
   東ソー株式会社製「F-128」
 試料  : 樹脂固形分換算で1.0質量%のテトラヒドロフラン溶液をマイクロフィルターでろ過したもの(50μl)。
4)13C-NMR:日本電子株式会社製「JNM-ECA500」により測定した。
5)MALDI-MS:島津バイオテック製「AXIMA-TOF2」により測定した。
実施例1 活性エステル樹脂(1)の製造
 温度計、滴下ロート、冷却管、分留管、撹拌器を取り付けたフラスコに、ジシクロペンタジエンフェノール樹脂を330g(1.0モル)、ベンジルアルコール216g(2.0モル)、パラトルエンスルホン酸・1水和物5gを仕込み、室温下、窒素を吹き込みながら撹拌した。その後、150℃に昇温し、生成する水を系外に留去しながら6時間攪拌した。反応終了後、メチルイソブチルケトン500g、20%水酸化ナトリウム水溶液5.8gを添加して中和した後、分液により水層を除去し、水500gで3回水洗を行い、メチルイソブチルケトンを減圧下除去してアラルキル変性フェノール性化合物(α-1)を502g得た。得られたアラルキル変性フェノール性化合物(α-1)は褐色固体であり、水酸基当量は269グラム/当量であった。
 温度計、滴下ロート、冷却管、分留管、撹拌器を取り付けたフラスコに、イソフタル酸クロリド203.0g(酸クロリド基のモル数:2.0モル)とトルエン1338gを仕込み、系内を減圧窒素置換し溶解させた。次いで、α-ナフトール96.0g(0.67モル)、前記アラルキル変性フェノール性化合物(α-1)を358g(フェノール性水酸基のモル数:1.33モル)を仕込み、系内を減圧窒素置換し溶解させた。その後、窒素ガスパージを施しながら、系内を60℃以下に制御して、20%水酸化ナトリウム水溶液400gを3時間かけて滴下した。次いでこの条件下で1.0時間撹拌を続けた。反応終了後、静置分液し、水層を取り除いた。更に反応物が溶解しているトルエン相に水を投入して約15分間撹拌混合し、静置分液して水層を取り除いた。水層のpHが7になるまでこの操作を繰り返した。その後、デカンタ脱水で水分を除去し不揮発分65%のトルエン溶液状態にある活性エステル樹脂(1)を得た。この不揮発分65質量%のトルエン溶液の溶液粘度は3250mPa・S(25℃)であった。また、乾燥後の軟化点は140℃であった。得られた活性エステル樹脂(1)のGPCチャートを図1に、13C-NMRチャートを図2に、MALDI-MSスペクトルを図3に示す。
実施例2 活性エステル樹脂(2)の製造
 温度計、滴下ロート、冷却管、分留管、撹拌器を取り付けたフラスコに、ジシクロペンタジエンフェノール樹脂を330g(1.0モル)、ベンジルアルコール108g(1.0モル)、パラトルエンスルホン酸・1水和物5gを仕込み、室温下、窒素を吹き込みながら撹拌した。その後、150℃に昇温し、生成する水を系外に留去しながら6時間攪拌した。反応終了後、メチルイソブチルケトン450g、20%水酸化ナトリウム水溶液5.8gを添加して中和した後、分液により水層を除去し、水450gで3回水洗を行い、メチルイソブチルケトンを減圧下除去してアラルキル変性フェノール性化合物(α-2)を413g得た。得られたアラルキル変性フェノール性化合物(α-2)は褐色固体であり、水酸基当量は197グラム/当量であった。
 温度計、滴下ロート、冷却管、分留管、撹拌器を取り付けたフラスコに、イソフタル酸クロリド203.0g(酸クロリド基のモル数:2.0モル)とトルエン1338gを仕込み、系内を減圧窒素置換し溶解させた。次いで、α-ナフトール96.0g(0.67モル)、前記アラルキル変性フェノール性化合物(α-2)を262g(フェノール性水酸基のモル数:1.33モル)を仕込み、系内を減圧窒素置換し溶解させた。その後、窒素ガスパージを施しながら、系内を60℃以下に制御して、20%水酸化ナトリウム水溶液400gを3時間かけて滴下した。次いでこの条件下で1.0時間撹拌を続けた。反応終了後、静置分液し、水層を取り除いた。更に反応物が溶解しているトルエン相に水を投入して約15分間撹拌混合し、静置分液して水層を取り除いた。水層のpHが7になるまでこの操作を繰り返した。その後、デカンタ脱水で水分を除去し不揮発分65%のトルエン溶液状態にある活性エステル樹脂(2)を得た。この不揮発分65質量%のトルエン溶液の溶液粘度は3430mPa・S(25℃)であった。また、乾燥後の軟化点は140℃であった。
実施例3 活性エステル樹脂(3)の製造
 温度計、滴下ロート、冷却管、分留管、撹拌器を取り付けたフラスコに、ジシクロペンタジエンフェノール樹脂を330g(1.0モル)、ベンジルアルコール21.6g(0.2モル)、パラトルエンスルホン酸・1水和物5gを仕込み、室温下、窒素を吹き込みながら撹拌した。その後、150℃に昇温し、生成する水を系外に留去しながら6時間攪拌した。反応終了後、メチルイソブチルケトン350g、20%水酸化ナトリウム水溶液5.8gを添加して中和した後、分液により水層を除去し、水350gで3回水洗を行い、メチルイソブチルケトンを減圧下除去してアラルキル変性フェノール性化合物(α-3)を341g得た。得られたアラルキル変性フェノール性化合物(α-3)は褐色固体であり、水酸基当量は184グラム/当量であった。
 温度計、滴下ロート、冷却管、分留管、撹拌器を取り付けたフラスコに、イソフタル酸クロリド 203.0g(酸クロリド基のモル数:2.0モル)とトルエン 1338gを仕込み、系内を減圧窒素置換し溶解させた。次いで、α-ナフトール96.0g(0.67モル)、前記アラルキル変性フェノール性化合物(α-3)を245g(フェノール性水酸基のモル数:1.33モル)を仕込み、系内を減圧窒素置換し溶解させた。その後、窒素ガスパージを施しながら、系内を60℃以下に制御して、20%水酸化ナトリウム水溶液400gを3時間かけて滴下した。次いでこの条件下で1.0時間撹拌を続けた。反応終了後、静置分液し、水層を取り除いた。更に反応物が溶解しているトルエン相に水を投入して約15分間撹拌混合し、静置分液して水層を取り除いた。水層のpHが7になるまでこの操作を繰り返した。その後、デカンタ脱水で水分を除去し不揮発分65%のトルエン溶液状態にある活性エステル樹脂(3)を得た。この不揮発分65質量%のトルエン溶液の溶液粘度は3450mPa・S(25℃)であった。また、乾燥後の軟化点は144℃であった。
 実施例4 活性エステル樹脂(4)の製造
 温度計、滴下ロート、冷却管、分留管、撹拌器を取り付けたフラスコに、ジシクロペンタジエンフェノール樹脂を330g(1.0モル)、クロロメチルナフタレン353.3g(2.0モル)、トルエン1000g、水酸化ナトリウム60g(1.5モル)を仕込み、80℃下、窒素を吹き込みながら6時間撹拌した。反応終了後、第一リン酸ソーダ60gを添加して中和した後、分液により水層を除去し、水650gで3回水洗を行い、トルエンを減圧下除去してアラルキル変性フェノール性化合物(α-4)を626g得た。得られたアラルキル変性フェノール性化合物(α-4)は褐色固体であり、水酸基当量は321グラム/当量であった。
温度計、滴下ロート、冷却管、分留管、撹拌器を取り付けたフラスコに、イソフタル酸クロリド 203.0g(酸クロリド基のモル数:2.0モル)とトルエン 1338gを仕込み、系内を減圧窒素置換し溶解させた。次いで、α-ナフトール96.0g(0.67モル)、前記アラルキル変性フェノール性化合物(α-4)を427g(フェノール性水酸基のモル数:1.33モル)を仕込み、系内を減圧窒素置換し溶解させた。その後、窒素ガスパージを施しながら、系内を60℃以下に制御して、20%水酸化ナトリウム水溶液400gを3時間かけて滴下した。次いでこの条件下で1.0時間撹拌を続けた。反応終了後、静置分液し、水層を取り除いた。更に反応物が溶解しているトルエン相に水を投入して約15分間撹拌混合し、静置分液して水層を取り除いた。水層のpHが7になるまでこの操作を繰り返した。その後、デカンタ脱水で水分を除去し不揮発分65%のトルエン溶液状態にある活性エステル樹脂(4)を得た。この不揮発分65質量%のトルエン溶液の溶液粘度は3850mPa・S(25℃)であった。また、乾燥後の軟化点は152℃であった。
比較製造例1
温度計、滴下ロート、冷却管、分留管、撹拌器を取り付けたフラスコにイソフタル酸クロリド203.0g(1.0モル)とジメチルホルムアミド1254gを仕込み、系内を減圧窒素置換し溶解させた。次いで、α-ナフトール288.0g(2.0モル)を仕込み、系内を減圧窒素置換し溶解させた。その後、窒素ガスパージを施しながら、系内を60℃以下に制御して、20%水酸化ナトリウム水溶液400gを3時間かけて滴下した。次いでこの条件下で1.0時間撹拌を続けた。反応終了後、静置分液し、水層を取り除いた。更に反応物が溶解しているトルエン相に水を投入して約15分間撹拌混合し、静置分液して水層を取り除いた。水槽のpHが7になるまでこの操作を繰り返した。その後、デカンタ脱水で水分を除去し不揮発分65%のジメチルホルムアミド溶液の活性エステル樹脂(1’)を得た。この不揮発分65質量%のトルエン溶液の溶液粘度は860mPa・S(25℃)あった。
比較製造例2
温度計、滴下ロート、冷却管、分留管、撹拌器を取り付けたフラスコにイソフタル酸クロリド203.0g(酸クロリド基のモル数:2.0モル)とトルエン1800gを仕込み、系内を減圧窒素置換し溶解させた。次いで、α-ナフトール57.6g(0.4モル)、ジシクロペンタジエンフェノール樹脂412.5g(フェノール性水酸基のモル数:2.5モル)を仕込み、系内を減圧窒素置換し溶解させた。その後、窒素ガスパージを施しながら、系内を60℃以下に制御して、20%水酸化ナトリウム水溶液400gを3時間かけて滴下した。次いでこの条件下で1.0時間撹拌を続けた。反応終了後、静置分液し、水層を取り除いた。更に反応物が溶解しているトルエン相に水を投入して約15分間撹拌混合し、静置分液して水層を取り除いた。水槽のpHが7になるまでこの操作を繰り返した。その後、デカンタ脱水で水分を除去し不揮発分65質量%のトルエン溶液状態にある活性エステル樹脂(2’)を得た。得られた活性エステル樹脂(2’)の乾燥後の軟化点は184℃であった。
<溶剤溶解性の評価>
 実施例1~4又は比較製造例1、2で得た前記活性エステル樹脂(1)~(3)、(1’)及び(2’)について、それぞれの溶剤溶液を150℃、真空減圧にて12時間乾燥させ、乾燥した固形樹脂を得た。この固形樹脂を25℃の条件下でトルエン、メチルエチルケトン(以下「MEK」と略記する。)、メチルイソブチルケトン(以下「MIBK」と略記する。)、シクロヘキサノン、1-メトキシ-2-プロパノール(以下「MP」と略記する。)、プロピレングリコールモノメチルエーテルアセテート(以下「PGMAC」と略記する。)、N-メチルピロリドン(以下「NMP」と略記する。)、ノルマルブタノール(以下「BuOH」と略記する。)、酢酸エチルの各溶剤に溶解させ、各溶剤100gに対する固形分の溶解量(g)を評価した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000008
実施例4~7、及び比較例1、2
<エポキシ樹脂組成物の調整及び物性評価>
 エポキシ樹脂として、DIC株式会社製「EPICLON HP-7200H」(ジシクロペンタジエンフェノール型エポキシ樹脂、150℃における溶融粘度0.30ポイズ)、硬化剤として前記活性エステル樹脂(1)~(4)、(1’)又は(2’)をそれぞれ用い、エポキシ樹脂中のエポキシ基と、硬化剤中のエステル結合又はフェノール性水酸基の合計とが当量となる割合で両者を配合した。これに、硬化触媒としてジメチルアミノピリジン0.5phrを加え、最終的に各組成物の不揮発分(N.V.)が58質量%となるようにメチルエチルケトンを配合して調整した。次いで、下記の如き条件で硬化させて積層板を試作し、下記の方法で誘電特性及び吸湿率を評価した。結果を表2に示す。
<積層板作製条件>
 基材:日東紡績株式会社製 ガラスクロス「#2116」(210×280mm)
 プライ数:6 プリプレグ化条件:160℃
 硬化条件:200℃、40kg/cmで1.5時間、成型後板厚:0.8mm
<誘電率及び誘電正接の測定>
 JIS-C-6481に準拠し、アジレント・テクノロジー株式会社製インピーダンス・マテリアル・アナライザ「HP4291B」により、絶乾後23℃、湿度50%の室内に24時間保管した後の試験片の1GHzでの誘電率および誘電正接を測定した。
<吸湿率の測定>
50×25×2mmのサイズに試験片を切り出し、プレッシャークッカー試験機を使用し、121℃、2.1気圧、100%RHの条件において試験片を2時間保持後、その前後の重量変化を測定した。
Figure JPOXMLDOC01-appb-T000009

Claims (8)

  1. 脂肪族環状炭化水素基を介してアリーレン基(a)が複数結節された構造ユニット(I)が、アリーレンジカルボニルオキシ基(c)を介して他の構造ユニット(I)又はアリール基(d)と結節した構造部位を有し、樹脂中に存在する前記アリール基(a)の少なくとも一つがその芳香核上に下記構造式(i)
    Figure JPOXMLDOC01-appb-C000001
    (式中、Rはそれぞれ独立してメチル基又は水素原子であり、Arはフェニレン基、ナフチレン基、又は、芳香核上に炭素原子数1~4のアルキル基を1~3個有するフェニレン基或いはナフチレン基であり、nは1又は2である。)
    で表される構造部位(c)を有することを特徴とする活性エステル樹脂。
  2. 脂肪族環状炭化水素基を介してフェノール性水酸基を有するアリール基が複数結節された構造を有するフェノール性化合物(A)と、アラルキル化剤(B)とを反応させてアラルキル変性フェノール性化合物(α)を得、次いで、得られたアラルキル変性フェノール性化合物(α)と、芳香族ジカルボン酸又はそのハライド(C)と、芳香族モノヒドロキシ化合物(D)とを、芳香族ジカルボン酸又はそのハライド(C)が有するカルボキシル基又は酸ハライド基の合計1モルに対し、前記アラルキル変性フェノール性化合物(α)が有するフェノール性水酸基が0.25~0.90モルの範囲となり、かつ、前記芳香族モノヒドロキシ化合物(D)が有するヒドロキシル基が0.10~0.75モルの範囲となる割合で反応させる請求項1記載の活性エステル樹脂の製造方法。
  3. 下記構造式(1)
    Figure JPOXMLDOC01-appb-C000002
    (式中、Xはベンゼン環又はナフタレン環であり、Rはそれぞれ独立してメチル基又は水素原子であり、kは0又は1であり、nは1又は2であり、lは1又は2であり、mは繰り返し単位の平均で0.25~1.5である。)
    で表される分子構造を有する請求項1記載の活性エステル樹脂。
  4. エポキシ樹脂及び活性エステル樹脂を必須成分とするエポキシ樹脂組成物であって、前記活性エステル樹脂として請求項1記載の活性エステル樹脂を用いるエポキシ樹脂組成物。
  5. 請求項3記載のエポキシ樹脂組成物硬化させて得られる硬化物。
  6. 請求項4記載のエポキシ樹脂組成物を有機溶剤に希釈したものを補強基材に含浸し、得られる含浸基材を半硬化させることにより得られるプリプレグ。
  7. 請求項4記載のエポキシ樹脂組成物を有機溶剤に希釈したワニスを得、これを板状に賦形したものと銅箔とを加熱加圧成型することにより得られる回路基板。
  8. 請求項4記載のエポキシ樹脂組成物を有機溶剤に希釈したものを基材フィルム上に塗布し、乾燥させることにより得られるビルドアップフィルム。
PCT/JP2013/076807 2012-10-17 2013-10-02 活性エステル樹脂、エポキシ樹脂組成物、その硬化物、プリプレグ、回路基板、及びビルドアップフィルム WO2014061450A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/436,202 US10059798B2 (en) 2012-10-17 2013-10-02 Active ester resin, epoxy resin composition, cured product thereof, prepreg, circuit board, and build-up film
JP2013556926A JP5510764B1 (ja) 2012-10-17 2013-10-02 活性エステル樹脂、エポキシ樹脂組成物、その硬化物、プリプレグ、回路基板、及びビルドアップフィルム
CN201380054569.XA CN104736598B (zh) 2012-10-17 2013-10-02 活性酯树脂、环氧树脂组合物、其固化物、预浸料、电路基板、及积层薄膜
KR1020157005553A KR102088236B1 (ko) 2012-10-17 2013-10-02 활성 에스테르 수지, 에폭시 수지 조성물, 그 경화물, 프리프레그, 회로 기판, 및 빌드업 필름

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012229811 2012-10-17
JP2012-229811 2012-10-17

Publications (1)

Publication Number Publication Date
WO2014061450A1 true WO2014061450A1 (ja) 2014-04-24

Family

ID=50488021

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/076807 WO2014061450A1 (ja) 2012-10-17 2013-10-02 活性エステル樹脂、エポキシ樹脂組成物、その硬化物、プリプレグ、回路基板、及びビルドアップフィルム

Country Status (6)

Country Link
US (1) US10059798B2 (ja)
JP (1) JP5510764B1 (ja)
KR (1) KR102088236B1 (ja)
CN (1) CN104736598B (ja)
TW (1) TWI572665B (ja)
WO (1) WO2014061450A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016028135A (ja) * 2014-07-08 2016-02-25 Dic株式会社 エポキシ樹脂組成物、硬化性樹脂組成物、活性エステル、硬化物、半導体封止材料、半導体装置、プレプリグ、フレキシルブル配線基板、回路基板、ビルドアップフィルム、ビルドアップ基板、繊維強化複合材料、成形品
JP2016098321A (ja) * 2014-11-21 2016-05-30 Dic株式会社 エポキシ樹脂組成物、硬化性樹脂組成物、活性エステル、硬化物、半導体封止材料、半導体装置、プレプリグ、フレキシルブル配線基板、回路基板、ビルドアップフィルム、ビルドアップ基板、繊維強化複合材料、成形品
US20180016387A1 (en) * 2015-12-28 2018-01-18 Shengyi Technology Co., Ltd. An Epoxy Resin Composition, Prepreg and Laminate Prepared Therefrom
TWI650371B (zh) * 2014-10-29 2019-02-11 日本瑞翁股份有限公司 硬化性環氧組成物、薄膜、積層薄膜、預浸材、積層體、硬化物及複合體
JP2019137622A (ja) * 2018-02-07 2019-08-22 Dic株式会社 ポリエステル樹脂
WO2019188333A1 (ja) * 2018-03-29 2019-10-03 Dic株式会社 硬化性組成物及びその硬化物
US10696844B2 (en) 2014-02-25 2020-06-30 Shengyi Technology Co., Ltd. Halogen-free flame retardant type resin composition
WO2023190020A1 (ja) 2022-03-29 2023-10-05 味の素株式会社 活性エステル樹脂
WO2024071129A1 (ja) * 2022-09-30 2024-04-04 日鉄ケミカル&マテリアル株式会社 活性エステル樹脂、エポキシ樹脂組成物、その硬化物、プリプレグ、積層板、及びビルドアップフィルム

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105906785B (zh) 2015-02-19 2019-12-03 Icl-Ip美国有限公司 含有膦酸根和次膦酸根官能团的环氧树脂阻燃剂
CN105542128A (zh) * 2015-12-15 2016-05-04 广东广山新材料有限公司 一种环氧树脂固化剂及其制备方法和用途
KR102320490B1 (ko) * 2016-06-03 2021-11-02 디아이씨 가부시끼가이샤 치환 또는 비치환 알릴기 함유 말레이미드 화합물 및 그 제조 방법, 그리고 상기 화합물을 사용한 조성물 및 경화물
TWI751266B (zh) * 2017-03-24 2022-01-01 日商迪愛生股份有限公司 活性酯組成物
US11299448B2 (en) * 2017-05-12 2022-04-12 Dic Corporation Active ester compound
KR102628710B1 (ko) * 2017-06-21 2024-01-25 디아이씨 가부시끼가이샤 활성 에스테르 수지 그리고 이것을 사용한 조성물 및 경화물
TWI820025B (zh) * 2017-06-28 2023-11-01 日商迪愛生股份有限公司 硬化性組成物、硬化物、半導體密封材料及印刷配線基板
JP7255411B2 (ja) * 2019-07-30 2023-04-11 味の素株式会社 樹脂組成物
KR20230163426A (ko) * 2021-03-29 2023-11-30 아지노모토 가부시키가이샤 폴리에스테르 수지

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004169021A (ja) * 2002-10-31 2004-06-17 Dainippon Ink & Chem Inc エポキシ樹脂組成物およびその硬化物
WO2012002119A1 (ja) * 2010-07-02 2012-01-05 Dic株式会社 熱硬化性樹脂組成物、その硬化物、活性エステル樹脂、半導体封止材料、プリプレグ、回路基板、及びビルドアップフィルム
JP2012012534A (ja) * 2010-07-02 2012-01-19 Dic Corp 熱硬化性樹脂組成物、その硬化物、活性エステル樹脂、半導体封止材料、プリプレグ、回路基板、及びビルドアップフィルム
JP2012246367A (ja) * 2011-05-26 2012-12-13 Dic Corp 熱硬化性樹脂組成物、その硬化物、半導体封止材料、プリプレグ、回路基板、及びビルドアップフィルム

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07113057B2 (ja) * 1988-09-28 1995-12-06 帝人株式会社 芳香族ポリエステルおよびその製造法
US7141627B2 (en) * 2002-10-31 2006-11-28 Dainippon Ink And Chemicals, Inc. Epoxy resin composition
MY143372A (en) * 2005-03-18 2011-04-29 Dainippon Ink & Chemicals Epoxy resin composition and cured article thereof, novel epoxy resin and production method thereof, and novel phenol resin
JP5181769B2 (ja) 2008-03-26 2013-04-10 Dic株式会社 エポキシ樹脂組成物、及びその硬化物
US8168731B2 (en) * 2008-10-22 2012-05-01 Dic Corporation Curable resin composition, cured product thereof, printed wiring board, epoxy resin, and process for producing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004169021A (ja) * 2002-10-31 2004-06-17 Dainippon Ink & Chem Inc エポキシ樹脂組成物およびその硬化物
WO2012002119A1 (ja) * 2010-07-02 2012-01-05 Dic株式会社 熱硬化性樹脂組成物、その硬化物、活性エステル樹脂、半導体封止材料、プリプレグ、回路基板、及びビルドアップフィルム
JP2012012534A (ja) * 2010-07-02 2012-01-19 Dic Corp 熱硬化性樹脂組成物、その硬化物、活性エステル樹脂、半導体封止材料、プリプレグ、回路基板、及びビルドアップフィルム
JP2012246367A (ja) * 2011-05-26 2012-12-13 Dic Corp 熱硬化性樹脂組成物、その硬化物、半導体封止材料、プリプレグ、回路基板、及びビルドアップフィルム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HIROSHI TAKEUCHI ET AL.: "Shinki Kassei Ester no Gosei to Epoxy Jushi Kokazai eno Oyo", DAI 59 KAI PROCEEDINGS OF THE THERMOSETTING PLASTICS SYMPOSIUM JAPAN, 15 October 2009 (2009-10-15), pages 85 - 88 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10696844B2 (en) 2014-02-25 2020-06-30 Shengyi Technology Co., Ltd. Halogen-free flame retardant type resin composition
JP2016028135A (ja) * 2014-07-08 2016-02-25 Dic株式会社 エポキシ樹脂組成物、硬化性樹脂組成物、活性エステル、硬化物、半導体封止材料、半導体装置、プレプリグ、フレキシルブル配線基板、回路基板、ビルドアップフィルム、ビルドアップ基板、繊維強化複合材料、成形品
TWI650371B (zh) * 2014-10-29 2019-02-11 日本瑞翁股份有限公司 硬化性環氧組成物、薄膜、積層薄膜、預浸材、積層體、硬化物及複合體
JP2016098321A (ja) * 2014-11-21 2016-05-30 Dic株式会社 エポキシ樹脂組成物、硬化性樹脂組成物、活性エステル、硬化物、半導体封止材料、半導体装置、プレプリグ、フレキシルブル配線基板、回路基板、ビルドアップフィルム、ビルドアップ基板、繊維強化複合材料、成形品
US10544255B2 (en) * 2015-12-28 2020-01-28 Shengyi Technology Co., Ltd. Epoxy resin composition, prepreg and laminate prepared therefrom
US20180016387A1 (en) * 2015-12-28 2018-01-18 Shengyi Technology Co., Ltd. An Epoxy Resin Composition, Prepreg and Laminate Prepared Therefrom
JP2019137622A (ja) * 2018-02-07 2019-08-22 Dic株式会社 ポリエステル樹脂
JP7056196B2 (ja) 2018-02-07 2022-04-19 Dic株式会社 ポリエステル樹脂
WO2019188333A1 (ja) * 2018-03-29 2019-10-03 Dic株式会社 硬化性組成物及びその硬化物
JPWO2019188333A1 (ja) * 2018-03-29 2021-03-11 Dic株式会社 硬化性組成物及びその硬化物
JP7057905B2 (ja) 2018-03-29 2022-04-21 Dic株式会社 硬化性組成物及びその硬化物
WO2023190020A1 (ja) 2022-03-29 2023-10-05 味の素株式会社 活性エステル樹脂
KR20240164902A (ko) 2022-03-29 2024-11-21 아지노모토 가부시키가이샤 활성 에스테르 수지
WO2024071129A1 (ja) * 2022-09-30 2024-04-04 日鉄ケミカル&マテリアル株式会社 活性エステル樹脂、エポキシ樹脂組成物、その硬化物、プリプレグ、積層板、及びビルドアップフィルム

Also Published As

Publication number Publication date
JPWO2014061450A1 (ja) 2016-09-05
TW201418361A (zh) 2014-05-16
JP5510764B1 (ja) 2014-06-04
US20150344617A1 (en) 2015-12-03
CN104736598A (zh) 2015-06-24
KR102088236B1 (ko) 2020-03-12
TWI572665B (zh) 2017-03-01
US10059798B2 (en) 2018-08-28
CN104736598B (zh) 2016-04-06
KR20150073161A (ko) 2015-06-30

Similar Documents

Publication Publication Date Title
JP5510764B1 (ja) 活性エステル樹脂、エポキシ樹脂組成物、その硬化物、プリプレグ、回路基板、及びビルドアップフィルム
JP6042054B2 (ja) 熱硬化性樹脂組成物、その硬化物、半導体封止材料、プリプレグ、回路基板、及びビルドアップフィルム
CN102985485B (zh) 热固性树脂组合物、其固化物、活性酯树脂、半导体密封材料、预浸料、电路基板、及积层薄膜
CN103221442B (zh) 活性酯树脂、其制造方法、热固性树脂组合物、其固化物、半导体密封材料、预浸料、电路基板、及积层薄膜
US9963544B2 (en) Active ester resin containing phosphorus atom, epoxy resin composition and cured product thereof, prepreg, circuit board, and build-up film
JP5500408B2 (ja) 活性エステル樹脂、熱硬化性樹脂組成物、その硬化物、半導体封止材料、プリプレグ、回路基板、及びビルドアップフィルム
JP5907319B2 (ja) 活性エステル樹脂、エポキシ樹脂組成物、その硬化物、プリプレグ、回路基板、及びビルドアップフィルム
JP6278239B2 (ja) 活性エステル樹脂、エポキシ樹脂組成物、その硬化物、プリプレグ、回路基板、及びビルドアップフィルム
JP6171760B2 (ja) リン原子含有活性エステル樹脂、エポキシ樹脂組成物、その硬化物、プリプレグ、回路基板、及びビルドアップフィルム
JP6255624B2 (ja) 活性エステル樹脂、エポキシ樹脂組成物、その硬化物、プリプレグ、回路基板、及びビルドアップフィルム
JP6119392B2 (ja) 変性ポリアリーレンエーテル樹脂、エポキシ樹脂組成物、その硬化物、プリプレグ、回路基板、及びビルドアップフィルム
JP6040725B2 (ja) フェノキシ樹脂、硬化性樹脂組成物、その硬化物、プリプレグ、回路基板、及びビルドアップフィルム
JP6127640B2 (ja) 変性ポリアリーレンエーテル樹脂、エポキシ樹脂組成物、その硬化物、プリプレグ、回路基板、及びビルドアップフィルム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380054569.X

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2013556926

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13846338

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157005553

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14436202

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 13846338

Country of ref document: EP

Kind code of ref document: A1