WO2014038324A1 - 吸水性樹脂、吸収体及び吸収性物品 - Google Patents
吸水性樹脂、吸収体及び吸収性物品 Download PDFInfo
- Publication number
- WO2014038324A1 WO2014038324A1 PCT/JP2013/070919 JP2013070919W WO2014038324A1 WO 2014038324 A1 WO2014038324 A1 WO 2014038324A1 JP 2013070919 W JP2013070919 W JP 2013070919W WO 2014038324 A1 WO2014038324 A1 WO 2014038324A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- water
- absorbent resin
- crosslinking agent
- ethylenically unsaturated
- unsaturated monomer
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F13/00—Bandages or dressings; Absorbent pads
- A61F13/15—Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
- A61F13/45—Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the shape
- A61F13/49—Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the shape specially adapted to be worn around the waist, e.g. diapers, nappies
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F13/00—Bandages or dressings; Absorbent pads
- A61F13/15—Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
- A61F13/53—Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L15/00—Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
- A61L15/16—Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
- A61L15/42—Use of materials characterised by their function or physical properties
- A61L15/60—Liquid-swellable gel-forming materials, e.g. super-absorbents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/22—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
- B01J20/26—Synthetic macromolecular compounds
- B01J20/265—Synthetic macromolecular compounds modified or post-treated polymers
- B01J20/267—Cross-linked polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F122/00—Homopolymers of compounds having one or more unsaturated aliphatic radicals each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides or nitriles thereof
- C08F122/02—Acids; Metal salts or ammonium salts thereof, e.g. maleic acid or itaconic acid
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2/00—Processes of polymerisation
- C08F2/12—Polymerisation in non-solvents
- C08F2/14—Organic medium
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2/00—Processes of polymerisation
- C08F2/12—Polymerisation in non-solvents
- C08F2/16—Aqueous medium
- C08F2/18—Suspension polymerisation
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2/00—Processes of polymerisation
- C08F2/32—Polymerisation in water-in-oil emulsions
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/02—Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
- C08J3/03—Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
- C08J3/075—Macromolecular gels
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/24—Crosslinking, e.g. vulcanising, of macromolecules
- C08J3/245—Differential crosslinking of one polymer with one crosslinking type, e.g. surface crosslinking
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L33/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
- C08L33/02—Homopolymers or copolymers of acids; Metal or ammonium salts thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2333/00—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
- C08J2333/02—Homopolymers or copolymers of acids; Metal or ammonium salts thereof
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31855—Of addition polymer from unsaturated monomers
Definitions
- the present invention relates to a water-absorbent resin, and an absorbent body and an absorbent article using the same. More specifically, the present invention relates to a water-absorbent resin having excellent physiological saline water retention ability, high physiological saline water absorption capacity under load and excellent viscoelasticity, and an absorbent body and an absorbent article using the same.
- water-absorbent resins have been widely used in various fields such as sanitary materials such as disposable diapers and sanitary products, agricultural and horticultural materials such as water retention agents and soil conditioners, and industrial materials such as water-stopping agents and anti-condensation agents. .
- sanitary materials such as disposable diapers and sanitary products
- agricultural and horticultural materials such as water retention agents and soil conditioners
- industrial materials such as water-stopping agents and anti-condensation agents.
- these fields are often used for sanitary materials such as disposable diapers and sanitary products.
- water-absorbing resin examples include a hydrolyzate of starch-acrylonitrile graft copolymer, a neutralized product of starch-acrylic acid graft polymer, a saponified product of vinyl acetate-acrylic acid ester copolymer, and acrylic acid.
- a crosslinked product of a partially neutralized polymer is known.
- absorbent articles such as disposable diapers, sanitary napkins, and incontinence pads are in contact with the body, which mainly absorbs and retains body fluids such as urine and menstrual blood excreted from the body.
- the absorber is normally comprised from hydrophilic fibers, such as a pulp, and water absorbing resin.
- the absorber temporarily holds the liquid that has entered through the surface sheet with hydrophilic fibers, and then holds the liquid with a water absorbent resin.
- a water absorbent resin In order to improve the liquid absorption amount of the absorbent body, it is effective to increase the amount of the water-absorbing resin and relatively reduce the amount of hydrophilic fibers.
- the absorber absorbs the liquid, the volume of the absorber increases due to the swelling of the water-absorbing resin, and as a result, the fibers or the water-absorbing resin And has the disadvantage of reducing fiber entanglement.
- Patent Document 1 As a method for preventing the deformation of the absorbent body, the heat melting fiber is mixed in the pulp to develop an adhesive force between the heat melting fibers and between the pulp and the heat melting fiber, and the shape of the absorber is maintained.
- Patent Document 1 A method for improving the property is known (see Patent Document 1).
- Patent Document 1 improves the shape retention of the absorbent body, but has a drawback in that the liquid permeation rate and the amount of absorption decrease because the hot-melt fiber is hydrophobic.
- the present inventors conducted reverse phase suspension polymerization of a water-soluble ethylenically unsaturated monomer in a hydrocarbon dispersion medium using a radical polymerization initiator.
- the water-absorbing property is satisfied by satisfying the physiological water retention capacity, the physiological saline water-absorbing capacity under a load of 4.14 kPa, and the tan ⁇ of the gel at 50-fold swelling within a specific range.
- the penetration rate of the liquid is fast and the reverse of the liquid once absorbed can be suppressed, and an absorber having excellent absorption performance and shape retention is obtained.
- Item 2. The water-soluble ethylenically unsaturated monomer is at least one selected from the group consisting of (meth) acrylic acid and salts thereof, (meth) acrylamide, and N, N-dimethylacrylamide. Water-absorbent resin.
- Item 3. Item 3. The water absorbent resin according to Item 1 or 2, wherein the water absorbent resin is crosslinked by an internal crosslinking agent and a postcrosslinking agent.
- the amount of internal crosslinking agent used was 0.000015 to 0.00020 mol per mole of water-soluble ethylenically unsaturated monomer subjected to polymerization, and the amount of post-crosslinking agent used was subjected to polymerization.
- the water absorbent resin according to Item 3 wherein the amount is 0.00025 to 0.0010 mol per mol of the water-soluble ethylenically unsaturated monomer.
- Item 5. The water absorbent resin according to Item 3 or 4, wherein the internal crosslinking agent and the postcrosslinking agent are polyglycidyl compounds.
- Item 6. An absorbent body comprising the water absorbent resin according to any one of Items 1 to 5 and hydrophilic fibers.
- a method for producing a water absorbent resin comprising:
- the water absorbent resin has the following characteristics (1) to (3): (1)
- the physiological saline water retention capacity is 38 g / g or more, (2)
- the physiological saline water absorption capacity under a load of 4.14 kPa is 15 mL / g or more, (3)
- the tan ⁇ of the gel at 50 times swelling is 2.10 ⁇ 10 ⁇ 2 or more,
- a method for producing a water-absorbent resin characterized in that Item 9.
- the water-soluble ethylenically unsaturated monomer is at least one selected from the group consisting of (meth) acrylic acid and salts thereof, (meth) acrylamide, and N, N-dimethylacrylamide.
- a method for producing a water-absorbent resin Item 10.
- the amount of the internal crosslinking agent used in the first step is 0.000015 to 0.00020 mol per mol of the water-soluble ethylenically unsaturated monomer subjected to the polymerization, Item 10.
- the water-absorbing resin of the present invention has an ability to absorb saline using a water-absorbing resin by satisfying a specific range of physiological saline water-retaining ability, physiological saline water-absorbing capacity under a load of 4.14 kPa, and tan ⁇ of 50-fold swelling gel. Because the body can have excellent shape retention, when used as a sanitary material, even if compression or shear force is applied due to the movement of the wearer, deformation of the absorbent body can be suppressed, cracking, or biased Can be prevented. In addition, the water absorbent resin of the present invention satisfies the above characteristics, so that the absorbent body using the water absorbent resin can also have excellent absorption performance, the liquid permeation rate is high, and the liquid once absorbed. It is also possible to suppress the return.
- the water-absorbent resin of the present invention is excellent in water absorption performance, and can be used for absorbers and absorbent articles for various uses.
- the water-absorbent resin of the present invention can be suitably used for sanitary materials such as disposable diapers.
- FIG. 1 It is a schematic diagram which shows schematic structure of the apparatus for measuring the physiological saline water absorption ability under the 4.14kPa load of water absorbing resin. It is the top view seen from the top which shows schematic structure at the time of measuring the deformation time of an absorbent article.
- the water absorbent resin of the present invention is a water absorbent resin obtained by subjecting a water-soluble ethylenically unsaturated monomer to reverse phase suspension polymerization using a radical polymerization initiator in a hydrocarbon dispersion medium, It has the characteristics (1) to (3).
- the physiological saline water retention capacity is 38 g / g or more
- the physiological saline water absorption capacity under a load of 4.14 kPa is 15 mL / g or more
- the tan ⁇ of the gel at 50 times swelling is 2.10 ⁇ 10 ⁇ 2 or more.
- the water absorbent resin of the present invention will be specifically described.
- the physiological saline water absorption capacity under the load is preferably 18 to 30 mL / g, more preferably 21 to 28 mL / g, still more preferably 21 to 25 mL / g.
- the physiological saline water absorption capacity under the load of 4.14 kPa of the water-absorbent resin is a value measured according to the measurement method described in “Saline water absorption capacity under the load of 4.14 kPa” described later. is there.
- the tan ⁇ of the gel obtained by swelling 50 times with physiological saline is 2.10 ⁇ 10 ⁇ 2 or more, preferably 2.15 ⁇ 10 -2 or more.
- the upper limit value of tan ⁇ is not particularly limited, and examples thereof include 2.80 ⁇ 10 ⁇ 2 or less, preferably 2.40 ⁇ 10 ⁇ 2 or less.
- the tan ⁇ is preferably 2.10 ⁇ 10 ⁇ 2 to 2.80 ⁇ 10 ⁇ 2 , more preferably 2.15 ⁇ 10 ⁇ 2 to 2.40 ⁇ 10 ⁇ 2 . Details of tan ⁇ are described, for example, in "Viscoelasticity of Polymers" (John D.
- the water-absorbent resin of the present invention satisfies the above characteristics (1) to (3), so that the absorber using the water-absorbent resin can absorb the liquid even when it is compressed or sheared. It is possible to suppress the cracking or unevenness of the material, to stably hold the shape of the absorber, and to have excellent shape retention.
- the water absorbent resin of the present invention satisfies the above three characteristics, so that the absorbent body using the water absorbent resin can have excellent absorption performance, the liquid absorption capacity is large, and the liquid permeation rate is high. In addition to being accelerated, the gel blocking phenomenon that occurs when the liquid is absorbed can be suppressed, and the absorption performance can be stably maintained.
- the “gel blocking phenomenon” means that when a large amount of water-absorbing resin is used for the absorber, a large amount of water-absorbing resin existing near the surface layer absorbs the liquid, and the soft gel near the surface layer becomes more dense. As a result, the penetration of the liquid into the water absorbent resin is hindered, and the water absorbent resin cannot efficiently absorb the liquid. Further, the water-absorbent resin of the present invention satisfies the characteristics (1) to (3), so that the action of holding the liquid once absorbed in the absorbent body using the water-absorbent resin is improved, and deformation and compression are achieved. It is also possible to suppress the return of the liquid due to the like.
- the median particle diameter of the water-absorbent resin of the present invention is not particularly limited, and examples thereof include 200 to 600 ⁇ m, preferably 250 to 550 ⁇ m, and more preferably 300 to 500 ⁇ m.
- the median particle size of the water-absorbent resin is a value measured according to the measurement method described in “Medium particle size” described later.
- the water-absorbent resin of the present invention is obtained by subjecting a water-soluble ethylenically unsaturated monomer to reverse-phase suspension polymerization using a radical polymerization initiator in a hydrocarbon dispersion medium, and suspension polymerized particles Can be obtained by adjusting the cross-linking density to a predetermined range. More specifically, the water-absorbent resin of the present invention can be obtained through the following first and second steps.
- water-soluble ethylenically unsaturated monomers preferably (meth) acrylic acid and its salt, (meth) acrylamide, N, N-dimethylacrylamide; more preferably (meth) acrylic acid and its salt, Examples include acrylamide.
- the water-soluble ethylenically unsaturated monomer may be used as an aqueous solution in order to increase the dispersion efficiency in the hydrocarbon dispersion medium during reverse phase suspension polymerization.
- concentration of the above monomer in such an aqueous solution is not particularly limited, but is usually 20% by mass or more and a saturated concentration or less, preferably 25 to 70% by mass, more preferably 30 to 55% by mass. Is mentioned.
- the acid group is neutralized with an alkaline neutralizing agent. It may be summed up.
- an alkaline neutralizer sodium hydroxide, potassium hydroxide, ammonia or the like can be used. These alkaline neutralizers may be used alone or in combination of two or more.
- the degree of neutralization of all the water-soluble ethylenically unsaturated monomers by the alkaline neutralizer increases the water absorption capacity by increasing the osmotic pressure of the resulting water-absorbent resin, and the presence of excess alkaline neutralizer Therefore, it may be set so as not to cause a problem in safety and the like, for example, 10 to 100 mol%, preferably 30 to 80 mol%.
- the hydrocarbon dispersion medium is not particularly limited as long as it is a hydrocarbon compound that can be used as a dispersion medium in the reverse phase suspension polymerization of a water-soluble ethylenically unsaturated monomer.
- n-hexane, n-heptane Aliphatic hydrocarbons such as 2-methylhexane, 3-methylhexane, 2,3-dimethylpentane, 3-ethylpentane and n-octane; cyclohexane, methylcyclohexane, cyclopentane, methylcyclopentane, trans-1,2 -Alicyclic hydrocarbons such as dimethylcyclopentane, cis-1,3-dimethylcyclopentane and trans-1,3-dimethylcyclopentane; aromatic hydrocarbons such as benzene, toluene and xylene.
- hydrocarbon dispersion media n-hexane, n-heptane, and cyclohexane are preferable because they are easily available industrially, have stable quality, and are inexpensive.
- These hydrocarbon dispersion media may be used individually by 1 type, and may be used in combination of 2 or more type.
- Preferable examples of the mixture of the hydrocarbon dispersion medium include commercially available Exol heptane (manufactured by ExxonMobil Corporation: containing 75 to 85% by mass of heptane and isomer hydrocarbon).
- the amount of the hydrocarbon dispersion medium used is usually 50 to 600 parts by weight, preferably 100 parts by weight, preferably 100 parts by weight with respect to 100 parts by weight of the water-soluble ethylenically unsaturated monomer, from the viewpoint of removing the heat of polymerization and making the polymerization temperature easy to control. 80 to 550 parts by mass can be mentioned.
- radical polymerization initiator examples include persulfates such as potassium persulfate, ammonium persulfate, and sodium persulfate; methyl ethyl ketone peroxide, methyl isobutyl ketone peroxide, di-t-butyl peroxide, t-butyl cumyl peroxide , T-butylperoxyacetate, t-butylperoxyisobutyrate, t-butylperoxypivalate, and peroxides such as hydrogen peroxide; 2,2′-azobis (2-amidinopropane) 2 hydrochloric acid Salt, 2,2′-azobis [2- (N-phenylamidino) propane] dihydrochloride, 2,2′-azobis [2- (N-allylamidino) propane] dihydrochloride, 2,2′-azobis ⁇ 2- [1- (2-hydroxyethyl) -2-imidazolin
- radical polymerization initiators potassium persulfate, ammonium persulfate, sodium persulfate and 2,2′-azobis (2-amidinopropane) dihydrochloride are preferable from the viewpoint of availability and ease of handling. It is done.
- radical polymerization initiators may be used alone or in combination of two or more.
- the radical polymerization initiator can also be used as a redox polymerization initiator in combination with a reducing agent such as sodium sulfite, sodium hydrogen sulfite, ferrous sulfate, and L-ascorbic acid.
- a reducing agent such as sodium sulfite, sodium hydrogen sulfite, ferrous sulfate, and L-ascorbic acid.
- the amount of the radical polymerization initiator used is not particularly limited, and examples thereof include 0.00005 to 0.01 mol with respect to 1 mol of the water-soluble ethylenically unsaturated monomer. By satisfying such a use amount, a rapid polymerization reaction can be avoided and the polymerization reaction can be completed in an appropriate time.
- the internal cross-linking agent is used to give an appropriate cross-linking density to the suspension polymerization particles and to provide the water absorbent resin finally obtained with excellent water absorption performance.
- Unsaturated polyesters obtained by reacting with acids bisacrylamides such as N, N-methylenebisacrylamide; di- or tri (meth) acrylic esters obtained by reacting polyepoxides with (meth) acrylic acid ;
- diglycidyl compounds such as (poly) ethylene glycol diglycidyl ether, (poly) propylene glycol diglycidyl ether, (poly) glycerin diglycidyl ether, and triglycidyl Polyglycid
- these internal cross-linking agents preferably a polyglycidyl compound, more preferably a diglycidyl ether compound, and still more preferably (poly) ethylene glycol diglycidyl ether.
- These internal crosslinking agents may be used alone or in combination of two or more.
- the amount of the internal crosslinking agent used may be set to 0.000015 to 0.00020 mol per mol of the water-soluble ethylenically unsaturated monomer subjected to the polymerization, but preferably 0.000020 to 0.000150. Mol, more preferably 0.000030 to 0.000080 mol.
- a dispersion stabilizer In the reverse phase suspension polymerization performed in the first step, a dispersion stabilizer may be used as necessary for the purpose of stabilizing the dispersion of the water-soluble ethylenically unsaturated monomer.
- the dispersion stabilizer include a surfactant.
- surfactants used as dispersion stabilizers include nonionic surfactants such as sorbitan fatty acid esters, polyglycerin fatty acid esters, sucrose fatty acid esters, sorbitol fatty acid esters, polyoxyethylene alkylphenyl ethers; fatty acids Examples thereof include anionic surfactants such as salts, alkylbenzene sulfonates, alkylmethyl taurates, polyoxyethylene alkylphenyl ether sulfates, and polyoxyethylene alkyl ether sulfonates.
- nonionic surfactants such as sorbitan fatty acid esters, polyglycerin fatty acid esters, sucrose fatty acid esters, sorbitol fatty acid esters, polyoxyethylene alkylphenyl ethers
- anionic surfactants such as salts, alkylbenzene sulfonates, alkylmethyl taurates, polyoxyethylene alkylphenyl ether sulfates
- a polymeric dispersant may be used in combination with the surfactant.
- the polymeric dispersant used include ethyl cellulose, ethyl hydroxyethyl cellulose, polyethylene oxide, maleic anhydride-modified polyethylene, maleic anhydride-modified ethylene / propylene copolymer, maleic anhydride-modified polybutadiene, and maleic anhydride-EPDM (ethylene- Propylene-diene-terpolymer) and the like.
- the amount of the polymeric dispersant used may be appropriately set within a range in which the dispersion state of the water-soluble ethylenically unsaturated monomer in the hydrocarbon dispersion medium is kept good and a dispersion effect commensurate with the amount used can be obtained. Is, for example, 0.1 to 5 parts by weight, preferably 0.2 to 3 parts by weight, based on 100 parts by weight of the water-soluble ethylenically unsaturated monomer.
- a predetermined amount of a water-soluble ethylenically unsaturated monomer, a radical polymerization initiator, an internal cross-linking agent, and, if necessary, a dispersion stabilizer is added to a hydrocarbon dispersion medium. And heating.
- the reaction temperature of the reverse phase suspension polymerization reaction varies depending on the type of the radical polymerization initiator used and cannot be defined uniformly, but is usually 20 to 110 ° C., preferably 40 to 80 ° C. By setting to such a reaction temperature, it is possible to carry out a smooth polymerization reaction by removing the heat of polymerization while suppressing an increase in polymerization time.
- the reaction time of the reverse phase suspension polymerization reaction may be appropriately set in consideration of the type and amount of the raw material compound to be used, the reaction temperature, etc., and usually 0.5 to 4 hours can be mentioned.
- the reverse phase suspension polymerization reaction in the first step may be performed in one stage, or may be performed in two or more stages.
- the number of stages is preferably 2 or 3 from the viewpoint of increasing productivity.
- the reaction mixture obtained by the first-stage polymerization reaction is mixed with water-soluble ethylene.
- the unsaturated unsaturated monomer may be added and mixed, and reverse phase suspension polymerization of the second and subsequent stages may be performed in the same manner as in the first stage.
- a radical polymerization initiator, an internal cross-linking agent, etc. are added in the opposite phase suspension in each stage after the second stage.
- Adding the water-soluble ethylenically unsaturated monomer within the range of the molar ratio of each component to the water-soluble ethylenically unsaturated monomer described above based on the amount of the water-soluble ethylenically unsaturated monomer added during the turbid polymerization Reverse-phase suspension polymerization may be performed under the same conditions as those described above.
- the suspension polymerization particles obtained in the first step are post-crosslinked with a post-crosslinking agent.
- the suspension polymerization particles obtained in the first step are appropriately cross-linked, and the water-absorbent resin has excellent water absorption performance. be able to.
- the post-crosslinking agent is not particularly limited as long as it can react with a functional group (for example, carboxyl group) of the water-absorbent resin.
- a functional group for example, carboxyl group
- ethylene glycol, (poly) propylene glycol, 1,4-butane Diols such as diol, trimethylolpropane, (poly) glycerin;
- post-crosslinking agents preferably a polyglycidyl compound, more preferably a diglycidyl compound, and still more preferably (poly) ethylene glycol diglycidyl ether.
- post-crosslinking agents may be used alone or in combination of two or more.
- the amount of the post-crosslinking agent may be set to 0.00025 to 0.0010 mol per 1 mol of the total amount of the water-soluble ethylenically unsaturated monomer used in the reverse phase suspension polymerization reaction in the first step. However, it is preferably 0.00044 to 0.00080 mol, more preferably 0.00044 to 0.00076 mol.
- the suspension polymer particles obtained in the first step can be provided with an appropriate cross-linking density. Excellent water absorption performance can be imparted.
- the timing for adding the post-crosslinking agent is not particularly limited as long as it is after the end of the first step.
- the post-crosslinking agent may be added in the presence of water in the range of 1 to 400 parts by mass with respect to 100 parts by mass of the total amount of the water-soluble ethylenically unsaturated monomer used to obtain the water-absorbent resin.
- it is added in the presence of water in the range of 5 to 200 parts by mass, more preferably in the presence of water in the range of 10 to 100 parts by mass.
- a solvent such as water or a hydrophilic organic solvent
- the hydrophilic organic solvent used as a solvent for the post-crosslinking treatment include lower alcohols such as methyl alcohol, ethyl alcohol, n-propyl alcohol, and isopropyl alcohol; ketones such as acetone and methyl ethyl ketone; diethyl ether, dioxane, tetrahydrofuran And ethers; amides such as N, N-dimethylformamide, sulfoxides such as dimethyl sulfoxide, and the like.
- These hydrophilic organic solvents may be used individually by 1 type, and may be used in combination of 2 or more types.
- the solvent used for a post-crosslinking process may use only one of water or a hydrophilic organic solvent, and may be used as a mixed solvent of water and a hydrophilic organic solvent.
- the reaction temperature of the post-crosslinking treatment is not particularly limited, and examples thereof include 50 to 250 ° C., preferably 60 to 180 ° C., more preferably 60 to 140 ° C., and further preferably 70 to 120 ° C.
- reaction time of the post-crosslinking treatment varies depending on the reaction temperature, the type and amount of post-crosslinking agent, and cannot be defined uniformly, but is usually 1 to 300 minutes, preferably 5 to 200 minutes.
- a water absorbent resin that is excellent in water absorption performance and can improve the shape retention of the absorber when used in the absorber is manufactured.
- the hydrocarbon dispersion medium and solvent may be removed.
- the method for removing the hydrocarbon dispersion medium and the solvent is not particularly limited, and examples thereof include a drying process.
- the drying treatment may be performed under normal pressure or under reduced pressure. Moreover, in order to improve drying efficiency, you may perform a drying process under airflow, such as nitrogen.
- the drying temperature is, for example, 70 to 250 ° C., preferably 80 to 180 ° C., more preferably 80 to 140 ° C., and still more preferably 90 to 130 ° C.
- the drying temperature is, for example, 60 to 100 ° C., preferably 70 to 90 ° C.
- the absorbent body of the present invention comprises the above-described water-absorbent resin of the present invention and hydrophilic fibers.
- the structure of the absorbent body is not particularly limited. For example, a mixing structure in which a water-absorbing resin and a hydrophilic fiber are uniformly blended, a sandwich structure in which a water-absorbing resin is held between layered hydrophilic fibers, and a water-absorbing resin And a structure in which a hydrophilic fiber is wrapped with a wrap sheet such as a tissue.
- a heat-fusible synthetic fiber in addition to the water-absorbent resin and the hydrophilic fiber, if necessary, a heat-fusible synthetic fiber, a hot melt adhesive, and an adhesive property for enhancing the shape retention of the absorbent body.
- An adhesive binder such as an emulsion may be added.
- the content of the water-absorbent resin in the absorbent body of the present invention is not particularly limited, and examples thereof include 30 to 85% by mass, preferably 40 to 80% by mass, and more preferably 45 to 70% by mass.
- the water-absorbing resin satisfies the above-described content, the liquid absorption amount of the absorber is increased, liquid leakage and reversion can be suppressed, and a good feeling in use can be obtained.
- the absorber of the present invention by holding the above-described absorber of the present invention between a liquid-permeable sheet (top sheet) through which liquid can pass and a liquid-impermeable sheet (back sheet) through which liquid cannot pass, It can be set as an absorbent article.
- the liquid permeable sheet is disposed on the side in contact with the body, and the liquid impermeable sheet is disposed on the opposite side in contact with the body.
- liquid permeable sheet examples include air-through type, spun bond type, chemical bond type, needle punch type nonwoven fabrics and porous synthetic resin sheets made of fibers such as polyethylene, polypropylene, and polyester.
- liquid impermeable sheet examples include synthetic resin films made of resins such as polyethylene, polypropylene, and polyvinyl chloride.
- absorbent article For example, sanitary materials, such as a paper diaper, a sanitary napkin, an incontinence pad; Urine absorption material for pets; Civil engineering building materials, such as a packing material; A drip absorbent, a cold preservation agent Food freshness-keeping materials such as; agricultural and horticultural articles such as soil water retention materials.
- sanitary materials since sanitary materials are used in contact with the human body, they have excellent usability (fast liquid penetration rate and low liquid reversal amount), and resistance to compression and shear forces applied when worn. (Shape retention) is required, and it is suitable as an absorbent article of the present invention.
- the physiological saline water retention capacity, physiological saline water absorption capacity under 4.14 kPa load, tan ⁇ of 50-fold swollen gel, and median particle diameter are as follows: It was measured by the method shown.
- the measuring device X shown in FIG. 1 includes a burette unit 1, a conduit 2, a measuring table 3, and a measuring unit 4 placed on the measuring table 3.
- the burette unit 1 has a rubber stopper 14 connected to the upper part of the burette 10, an air introduction pipe 11 and a cock 12 connected to the lower part, and a cock 13 located on the upper part of the air introduction pipe 11.
- a conduit 2 is attached from the burette part 1 to the measuring table 3, and the diameter of the conduit 2 is 6 mm.
- a hole with a diameter of 2 mm is provided at the center of the measuring table 3 and the conduit 2 is connected to the measuring table 3.
- the measuring unit 4 includes a cylinder 40, a nylon mesh 41 attached to the bottom of the cylinder 40, and a weight 42.
- the inner diameter of the cylinder 40 is 2.0 cm.
- a predetermined amount of water-absorbing resin 5 is uniformly distributed on a 200 mesh (mesh 75 ⁇ m) nylon mesh 41.
- the weight 42 has a diameter of 1.9 cm and a mass of 119.6 g. The weight 42 is placed on the water absorbent resin 5 so that a load of 4.14 kPa can be uniformly applied to the water absorbent resin 5.
- the cock 12 and the cock 13 of the burette unit 1 are closed, and physiological saline adjusted to 25 ° C. is introduced from the upper part of the burette 10, and the stopper at the upper part of the burette is sealed with the rubber plug 14.
- the cock 12 and the cock 13 of the burette part 1 are opened.
- the height of the measurement table 3 is adjusted so that the tip of the conduit 2 at the center of the measurement table 3 and the air introduction port of the air introduction tube 11 have the same height.
- the water-absorbing resin 5 is uniformly spread on the nylon mesh 41 of the cylinder 40, and the weight 42 is placed on the water-absorbing resin 5.
- the measuring part 4 is placed so that the center part thereof coincides with the conduit port of the central part of the measuring table 3.
- ⁇ Tan ⁇ of 50-fold swelling gel> A gel (50-fold swollen gel) obtained by swelling a water-absorbent resin 50 times with physiological saline was prepared by the following method. In a 100 mL beaker, 49.0 g of physiological saline was weighed, a magnetic stirrer bar (8 mm ⁇ ⁇ 30 mm without ring) was placed, and placed on a magnetic stirrer (manufactured by Iuchi: HS-30D). The magnetic stirrer bar was adjusted to rotate at 600 rpm.
- the measurement is performed using a dynamic viscoelasticity measuring device rheometer (manufactured by TA Instruments Japan Co., Ltd., product number AR2000eZ), and storage elastic modulus G ′ (Pa) and loss elastic modulus G ′′ (Pa).
- Frequency ⁇ (rad / sec) dispersion was measured.
- the sample holder was a parallel plate with a diameter of 60 mm, and the distance between the plates was 3 mm.
- the measurement temperature is 25 ⁇ 2 ° C.
- the value was defined as tan ⁇ of the 50-fold swollen gel of the water absorbent resin.
- ⁇ Medium particle size> As a lubricant, 0.25 g of amorphous silica (Degussa Japan Co., Ltd., Sipernat 200) was mixed with 50 g of the water absorbent resin.
- ⁇ A> From the top of the JIS standard sieve, a sieve having an opening of 425 ⁇ m, a sieve having an opening of 250 ⁇ m, a sieve having an opening of 180 ⁇ m, a sieve having an opening of 150 ⁇ m, a sieve having an opening of 106 ⁇ m, a sieve having an opening of 75 ⁇ m, and a sieve having an opening of 45 ⁇ m.
- the above water-absorbing resin was put into the combined uppermost sieve and classified by shaking for 20 minutes using a low-tap shaker.
- Example 1 As a reflux condenser, a dropping funnel, a nitrogen gas introduction tube, and a stirrer, a round bottom cylindrical separable flask with an inner diameter of 100 mm equipped with a stirring blade having two inclined paddle blades with a blade diameter of 50 mm in two stages was prepared.
- HLB3 sucrose stearate manufactured by Mitsubishi Chemical Foods Co., Ltd., Ryoto Sugar Ester S-370
- maleic anhydride-modified ethylene / propylene copolymer Mitsubishi Chemical Foods Co., Ltd., High Wax 1105A 0.80 g was added, the temperature was raised to 80 ° C. to dissolve the surfactant, and then cooled to 50 ° C.
- HEC AW-15F hydroxyethyl cellulose
- potassium persulfate a radical polymerization initiator
- internal crosslinking 0.011 g (0.0000631 mol) of ethylene glycol diglycidyl ether was added and dissolved as an agent to prepare a first aqueous monomer solution.
- the first aqueous monomer solution was added to the separable flask, and the system was replaced with nitrogen, maintained at 35 ° C. for 30 minutes, then immersed in a 70 ° C. water bath and heated. By performing the polymerization, a first post-polymerization slurry was obtained.
- the post-polymerization slurry was cooled to 25 ° C., the second-stage monomer aqueous solution was added to the system, and maintained for 30 minutes while being replaced with nitrogen. Again, the flask was immersed in a 70 ° C. water bath, the temperature was raised, and polymerization was carried out to obtain a second post-polymerization slurry.
- Example 3 In Example 1, the amount of water extracted during the azeotropic distillation was changed to 273.8 g, and the 2% mass ethylene glycol diglycidyl ether aqueous solution as a post-crosslinking agent was changed to 13.25 g (0.00152 mol). Except for the above, the same operation as in Example 1 was performed to obtain 227.4 g of a water absorbent resin. Table 1 shows the measurement results of each performance.
- Example 4 In Example 1, the cooling temperature before adding the second stage monomer aqueous solution was changed to 23 ° C., the amount of water extracted during azeotropic distillation was changed to 274.4 g, and the post-crosslinking agent was used. Except for changing the 2% mass ethylene glycol diglycidyl ether aqueous solution to 13.25 g (0.00152 mol), the same operation as in Example 1 was performed to obtain 228.2 g of a water absorbent resin. Table 1 shows the measurement results of each performance.
- Example 5 As a reflux condenser, a dropping funnel, a nitrogen gas introduction tube, and a stirrer, a round bottom cylindrical separable flask with an inner diameter of 100 mm equipped with a stirring blade having two inclined paddle blades with a blade diameter of 50 mm in two stages was prepared. To this flask, 500 ml of n-heptane was added, 0.80 g of HLB3 sucrose stearate (manufactured by Mitsubishi Chemical Foods Co., Ltd., Ryoto Sugar Ester S-370) was added, and the temperature was raised to 80 ° C. for surface activity. After dissolving the agent, it was cooled to 50 ° C.
- HEC AW-15F hydroxyethyl cellulose
- 2,2′-azobis (2-amidinopropane) dihydrochloride as a radical polymerization initiator 0.05 g (0.000184 mol) and 0.006 g (0.0000344 mol) of ethylene glycol diglycidyl ether as an internal crosslinking agent were added and dissolved to prepare a first-stage monomer aqueous solution.
- the first aqueous monomer solution was added to the separable flask, and the system was replaced with nitrogen, maintained at 35 ° C. for 30 minutes, then immersed in a 70 ° C. water bath and heated. By performing the polymerization, a first post-polymerization slurry was obtained.
- the post-polymerization slurry was cooled to 25 ° C., the second-stage monomer aqueous solution was added to the system, and maintained for 30 minutes while being replaced with nitrogen. Again, the flask was immersed in a 70 ° C. water bath, the temperature was raised, and polymerization was carried out to obtain a second post-polymerization slurry.
- Example 1 In Example 1, the amount of water withdrawn during azeotropic distillation was changed to 260.2 g, and the 2% mass ethylene glycol diglycidyl ether aqueous solution as a post-crosslinking agent was changed to 4.48 g (0.000514 mol). Except for the above, the same operation as in Example 1 was performed to obtain 231.2 g of a water absorbent resin. Table 1 shows the measurement results of each performance.
- Example 2 In Example 1, the amount of ethylene glycol diglycidyl ether added to the first and second monomer aqueous solutions was changed to 0.038 g (0.000218 mol) and 0.053 g (0.000304 mol), respectively. Then, the same operation as in Example 1 was carried out except that the amount of water extracted during azeotropy was changed to 284.8 g, to obtain 228.4 g of a water absorbent resin. Table 1 shows the measurement results of each performance.
- Example 3 In Example 1, 0.008 g (0.0000459 mol) and 0.011 g (0.0000631 mol) of ethylene glycol diglycidyl ether to be added to the first and second monomer aqueous solutions, Example 1 except that the post-crosslinking agent 2% by mass ethylene glycol diglycidyl ether aqueous solution was changed to 4.91 g (0.000563 mol), and the amount of water withdrawn during azeotropy was changed to 272.3 g. The same operation was performed to obtain 229.6 g of a water absorbent resin. Table 1 shows the measurement results of each performance.
- Example 4 In Example 1, the ethylene glycol diglycidyl ether added to the first and second monomer aqueous solutions was changed to 0.002 g (0.0000114 mol) and 0.003 g (0.0000172 mol), respectively. Except for this, the same operation as in Example 1 was performed to obtain 228.7 g of a water absorbent resin. Table 1 shows the measurement results of each performance.
- Example 5 In Example 1, the cooling temperature before adding the second-stage monomer aqueous solution was changed to 26 ° C., the amount of water extracted during azeotropic distillation was changed to 286.3 g, and the post-crosslinking agent was used. Except having changed into 4% mass ethylene glycol diglycidyl ether aqueous solution to 11.76g (0.00270mol), operation similar to Example 1 was performed and 229.8g of water absorbing resins were obtained. Table 1 shows the measurement results of each performance.
- an absorbent article A was obtained by sandwiching the absorbent body.
- Absorbent article B was prepared by cutting absorbent article A into a size of 30 cm ⁇ 12 cm.
- the absorbent article A was used for evaluating the liquid permeation rate and the liquid reversion amount, and the absorbent article B was used for evaluating the shape retention (deformation time).
- (C) Liquid penetration rate The absorbent article A was placed on a horizontal table. Place a measuring instrument equipped with a 10 cm ⁇ 10 cm, 2 kg weight injection cylinder at the center of the absorbent article A, and put 50 mL of the test solution into the cylinder all at once. Using a watch, the time until the test solution completely disappeared from the cylinder was measured and used as the first permeation time (seconds). Next, remove the cylinder, store the absorbent article as it is, and perform the same operation using the measuring instrument at the same position as the first time 30 minutes and 60 minutes after starting the first test liquid charging. And the second and third permeation times (seconds) were measured. The total time of the first to third times was defined as the liquid penetration rate. It can be said that the smaller the liquid penetration rate, the more preferable the absorbent article. For example, the liquid penetration rate is preferably 400 seconds or less, and more preferably 350 seconds or less.
- the deformation of the absorbent body in the article B due to the absorbent resin and the unevenness of the pulverized pulp was visually confirmed, and the time when the deformation was recognized was defined as the deformation time.
- the measurement was performed up to 40 minutes, and when the deformation of the absorber was not observed, it was defined as over 40 minutes.
- the deformation time is an evaluation value indicating the shape retention when the absorbent body is wet, preferably 35 minutes or more, and more preferably 40 minutes or more.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Polymers & Plastics (AREA)
- Medicinal Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- Epidemiology (AREA)
- Dispersion Chemistry (AREA)
- Vascular Medicine (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Hematology (AREA)
- Materials Engineering (AREA)
- Analytical Chemistry (AREA)
- Absorbent Articles And Supports Therefor (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Polymerisation Methods In General (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Processes Of Treating Macromolecular Substances (AREA)
Abstract
Description
項1. 水溶性エチレン性不飽和単量体を、炭化水素分散媒中で、ラジカル重合開始剤を用いて逆相懸濁重合を行って得られる吸水性樹脂であって、下記(1)~(3)の特性を備えていることを特徴とする吸水性樹脂:
(1)生理食塩水保水能が38g/g以上であること、
(2)4.14kPa荷重下での生理食塩水吸水能が15mL/g以上であること、
(3)50倍膨潤時ゲルのtanδが2.10×10-2以上であること。
項2. 前記水溶性エチレン性不飽和単量体が、(メタ)アクリル酸及びその塩、(メタ)アクリルアミド、並びにN,N-ジメチルアクリルアミドよりなる群から選択される少なくとも1種である、項1に記載の吸水性樹脂。
項3. 吸水性樹脂が内部架橋剤及び後架橋剤により架橋されてなる、項1又は2に記載の吸水性樹脂。
項4. 内部架橋剤の使用量が、重合に付された水溶性エチレン性不飽和単量体1モル当たり、0.000015~0.00020モルであり、後架橋剤の使用量が、重合に付された水溶性エチレン性不飽和単量体1モル当たり、0.00025~0.0010モルである、項3に記載の吸水性樹脂。
項5. 内部架橋剤及び後架橋剤が、ポリグリシジル化合物である、項3又は4に記載の吸水性樹脂。
項6. 項1~5のいずれかに記載の吸水性樹脂と親水性繊維を含む吸収体。
項7. 項6に記載の吸収体を、液体透過性シートと液体不透過性シートとの間に保持してなる吸収性物品。
項8. 吸水性樹脂の製造方法であって、
吸水性樹脂が、下記(1)~(3)の特性を備えるものであり、
(1)生理食塩水保水能が38g/g以上であること、
(2)4.14kPa荷重下での生理食塩水吸水能が15mL/g以上であること、
(3)50倍膨潤時ゲルのtanδが2.10×10-2以上であること、
且つ、下記第1工程及び第2工程を含む、
炭化水素分散媒中で、ラジカル重合開始剤及び内部架橋剤存在下で水溶性エチレン性不飽和単量体の逆相懸濁重合を行う第1工程、
前記第1工程で得られた懸濁重合粒子を後架橋剤によって架橋させる第2工程、
ことを特徴とする、吸水性樹脂の製造方法。
項9. 前記水溶性エチレン性不飽和単量体が、(メタ)アクリル酸及びその塩、(メタ)アクリルアミド、並びにN,N-ジメチルアクリルアミドよりなる群から選択される少なくとも1種である、項8に記載の吸水性樹脂の製造方法。
項10. 第1工程における内部架橋剤の使用量が、重合に付された水溶性エチレン性不飽和単量体1モル当たり、0.000015~0.00020モルであり、
第2工程における後架橋剤の使用量が、重合に付された水溶性エチレン性不飽和単量体1モル当たり、0.00025~0.0010モルである、項8又は9に記載の吸水性樹脂の製造方法。
項11. 内部架橋剤及び後架橋剤が、ポリグリシジル化合物である、項8~10のいずれかに記載の吸水性樹脂の製造方法。
(1)生理食塩水保水能が38g/g以上であること、
(2)4.14kPa荷重下での生理食塩水吸水能が15mL/g以上であること、
(3)50倍膨潤時ゲルのtanδが2.10×10-2以上であること。
以下、本発明の吸水性樹脂について具体的に説明する。
(1)生理食塩水保水能
本発明の吸水性樹脂は、生理食塩水保水能が38g/g以上であり、好ましくは40g/g以上である。当該生理食塩水保水能の上限値については、特に制限されないが、例えば60g/g以下、好ましくは50g/g以下、より好ましくは47g/gが挙げられる。当該生理食塩水保水能として、好ましくは38~60g/g、より好ましくは40~50g/g、更に好ましくは40~47g/gが挙げられる。なお、吸水性樹脂の生理食塩水保水能は、後述する「生理食塩水保水能」に記載されている測定方法に従って測定される値である。
本発明の吸水性樹脂は、4.14kPa荷重下での生理食塩水吸水能が15mL/g以上であり、好ましくは18ml/g以上であり、より好ましくは21ml/g以上である。当該荷重下での生理食塩水吸水能の上限値については、特に制限されないが、例えば30mL/g以下、好ましくは28mL/g以下、より好ましくは25mL/g以下が挙げられる。当該荷重下での生理食塩水吸水能として、好ましくは18~30mL/g、より好ましくは21~28mL/g、更に好ましくは21~25mL/gが挙げられる。なお、吸水性樹脂の4.14kPa荷重下での生理食塩水吸水能とは、後述する「4.14kPa荷重下での生理食塩水吸水能」に記載されている測定方法に従って測定される値である。
本発明の吸水性樹脂は、生理食塩水で50倍に膨潤させることにより得られるゲルのtanδが2.10×10-2以上であり、好ましくは2.15×10-2以上である。当該tanδの上限値については、特に制限されないが、例えば2.80×10-2以下、好ましくは2.40×10-2以下が挙げられる。当該tanδとして、好ましくは2.10×10-2~2.80×10-2、より好ましくは2.15×10-2~2.40×10-2が挙げられる。
tanδの詳細は、例えば「高分子の粘弾性」(John D. Ferry著、祖父江 寛監訳、村上 譲吉、高橋 正夫共訳、東京化学同人、1964年10月発行)28~34頁に記載されている。一般的に粘弾性評価において、高分子材料は弾性成分と粘性成分から成るモデルで表される。前者は、衝撃エネルギーを反発エネルギーに変換する成分であり、後者は衝撃エネルギーを散逸エネルギーに変換する成分である。振動ひずみによる動的粘弾性測定においては、物理的に、複素弾性率G*=G'+iG''(iは虚数単位)が示される。ここで、G'(貯蔵弾性率)及びG''(損失弾性率)はそれぞれ高分子材料の弾性成分及び粘性成分の大きさを表している。そして、tanδ(損失係数)=G''/G'は、材料が変形する際に失われるエネルギーの指標である。なお、吸水性樹脂の膨潤時の粘弾性(生理食塩水で50倍に膨潤させたゲルのtanδ)は、後述する「50倍膨潤ゲルのtanδ」に記載されている測定方法に従って測定される値である。
本発明の吸水性樹脂は、水溶性エチレン性不飽和単量体を、炭化水素分散媒中、ラジカル重合開始剤を用いて逆相懸濁重合を行い、懸濁重合粒子の架橋密度を所定範囲に調整することにより得ることができる。より具体的には、本発明の吸水性樹脂は、下記第1及び2工程を経ることにより得ることができる。
炭化水素分散媒中で、ラジカル重合開始剤及び所定量の内部架橋剤存在下で水溶性エチレン性不飽和単量体の逆相懸濁重合を行う第1工程、
前記第1工程で得られた懸濁重合粒子を所定量の後架橋剤によって架橋させる第2工程。
第1工程では、炭化水素分散媒中で、ラジカル重合開始剤及び所定量の内部架橋剤存在下で水溶性エチレン性不飽和単量体の逆相懸濁重合を行うことにより、懸濁重合粒子を得る。
原料として用いる水溶性エチレン性不飽和単量体としては、特に制限されないが、例えば、(メタ)アクリル酸(本明細書においては「アクリル」及び「メタクリル」を合わせて「(メタ)アクリル」と表記する。以下同様)、及びその塩;2-(メタ)アクリルアミド-2-メチルプロパンスルホン酸、及びその塩;(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、2-ヒドロキシエチル(メタ)アクリレート、N-メチロール(メタ)アクリルアミド、ポリエチレングリコールモノ(メタ)アクリレート等の非イオン性単量体;N,N-ジエチルアミノエチル(メタ)アクリレート、N,N-ジエチルアミノプロピル(メタ)アクリレート、ジエチルアミノプロピル(メタ)アクリルアミド等のアミノ基含有不飽和単量体、及びその4級化物等が挙げられる。これらの水溶性エチレン性不飽和単量体は、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。
炭化水素分散媒は、水溶性エチレン性不飽和単量体の逆相懸濁重合において分散媒として使用できる炭化水素化合物であることを限度として特に制限されないが、例えば、n-ヘキサン、n-ヘプタン、2-メチルヘキサン、3-メチルヘキサン、2,3-ジメチルペンタン、3-エチルペンタン、n-オクタン等の脂肪族炭化水素;シクロヘキサン、メチルシクロヘキサン、シクロペンタン、メチルシクロペンタン、trans-1,2-ジメチルシクロペンタン、cis-1,3-ジメチルシクロペンタン、trans-1,3-ジメチルシクロペンタン等の脂環族炭化水素;ベンゼン、トルエン、キシレン等の芳香族炭化水素等が挙げられる。これらの炭化水素分散媒の中でも、工業的に入手が容易であり、品質が安定しており、かつ安価である点で、好ましくは、n-ヘキサン、n-ヘプタン及びシクロヘキサンが挙げられる。これらの炭化水素分散媒は、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。前記炭化水素分散媒の混合物の好適な例として、市販されているエクソールヘプタン(エクソンモービル社製:ヘプタン及び異性体の炭化水素75~85質量%含有)等が挙げられる。
ラジカル重合開始剤としては、例えば、過硫酸カリウム、過硫酸アンモニウム、および過硫酸ナトリウム等の過硫酸塩類;メチルエチルケトンパーオキシド、メチルイソブチルケトンパーオキシド、ジ-t-ブチルパーオキシド、t-ブチルクミルパーオキシド、t-ブチルパーオキシアセテート、t-ブチルパーオキシイソブチレート、t-ブチルパーオキシピバレート、および過酸化水素等の過酸化物類;2,2'-アゾビス(2-アミジノプロパン)2塩酸塩、2,2'-アゾビス〔2-(N-フェニルアミジノ)プロパン〕2塩酸塩、2,2'-アゾビス〔2-(N-アリルアミジノ)プロパン〕2塩酸塩、2,2'-アゾビス{2-〔1-(2-ヒドロキシエチル)-2-イミダゾリン-2-イル〕プロパン}2塩酸塩、2,2'-アゾビス{2-メチル-N-〔1,1-ビス(ヒドロキシメチル)-2-ヒドロキシエチル〕プロピオンアミド}、2,2'-アゾビス〔2-メチル-N-(2-ヒドロキシエチル)-プロピオンアミド〕、および4,4'-アゾビス(4-シアノ吉草酸)等のアゾ化合物等が挙げられる。これらのラジカル重合開始剤の中でも、入手が容易で取り扱い安居という観点から、好ましくは、過硫酸カリウム、過硫酸アンモニウム、過硫酸ナトリウム及び2,2'-アゾビス(2-アミジノプロパン)2塩酸塩が挙げられる。これらラジカル重合開始剤は、1種単独で用いてもよく、また2種以上を組み合わせて用いてもよい。
内部架橋剤は、懸濁重合粒子に適度な架橋密度を与え、最終的に得られる吸水性樹脂に優れた吸水性能を備えさせるために使用される。
前記第1工程で行われる逆相懸濁重合では、水溶性エチレン性不飽和単量体の分散を安定させる目的で、必要に応じて、分散安定剤を用いてもよい。分散安定剤としては、例えば、界面活性剤が挙げられる。分散安定剤として使用される界面活性剤として、具体的には、ソルビタン脂肪酸エステル、ポリグリセリン脂肪酸エステル、ショ糖脂肪酸エステル、ソルビトール脂肪酸エステル、ポリオキシエチレンアルキルフェニルエーテル等のノニオン系界面活性剤;脂肪酸塩、アルキルベンゼンスルホン酸塩、アルキルメチルタウリン酸塩、ポリオキシエチレンアルキルフェニルエーテル硫酸エステル塩、ポリオキシエチレンアルキルエーテルスルホン酸塩等のアニオン系界面活性剤等が例示される。これらの界面活性剤の中でも、水溶性エチレン性不飽和単量体の分散安定性の面から、好ましくは、ソルビタン脂肪酸エステル、ポリグリセリン脂肪酸エステル及びショ糖脂肪酸エステルが挙げられる。これらの界面活性剤は、1種単独で用いてもよく、また2種以上を組み合わせて用いてもよい。
前記第1工程における逆相懸濁重合は、炭化水素分散媒中に、水溶性エチレン性不飽和単量体、ラジカル重合開始剤、内部架橋剤、及び必要に応じて分散安定剤を所定量添加し、加熱することにより行われる。
第2工程では、前記第1工程で得られた懸濁重合粒子を後架橋剤によって後架橋処理する。このように懸濁重合粒子を後架橋剤によって後架橋処理することにより、前記第1工程で得られた懸濁重合粒子に適度な架橋が施され、吸水性樹脂に優れた吸水性能を備えさせることができる。
本発明の吸収体は、上記した本発明の吸水性樹脂と親水性繊維とから構成されるものである。該吸収体の構成としては、特に制限されないが、例えば、吸水性樹脂と親水性繊維を均一にブレンドしたミキシング構造、層状の親水性繊維の間に吸水性樹脂を保持したサンドイッチ構造、吸水性樹脂と親水性繊維とをティッシュ等のラップシートで包んだ構造等が挙げられる。
500mL容のビーカーに、0.9質量%塩化ナトリウム水溶液(生理食塩水)500gを量り取り、600回転/分で撹拌しながら、吸水性樹脂2.0gを、ママコが発生しないように分散させた。撹拌した状態で30分間放置し、吸水性樹脂を十分に膨潤させた。その後、綿袋(メンブロード60番、横100mm×縦200mm)中に注ぎ込み、綿袋の上部を輪ゴムで縛り、遠心力が167Gとなるよう設定した脱水機(国産遠心機株式会社製、品番:H-122)を用いて綿袋を1分間脱水し、脱水後の膨潤ゲルを含んだ綿袋の質量Wa(g)を測定した。吸水性樹脂を添加せずに同様の操作を行ない、綿袋の湿潤時の空質量Wb(g)を測定し、以下の式から保水能を算出した。
生理食塩水保水能(g/g)=[Wa-Wb](g)/吸水性樹脂の質量(g)
吸水性樹脂の4.14kPa荷重下での生理食塩水吸水能は、図1に概略構成を示した測定装置Xを用いて測定した。
4.14kPa荷重下での生理食塩水吸水能(mL/g)=Wc(mL)÷0.10(g)
吸水性樹脂を生理食塩水で50倍に膨潤させたゲル(50倍膨潤ゲル)は、以下の方法により作成した。100mL容のビーカーに、生理食塩水49.0gを量り取り、マグネチックスターラーバー(8mmφ×30mmのリング無し)を投入し、マグネチックスターラー(iuchi社製:HS-30D)の上に配置し、マグネチックスターラーバーを600回転/分で回転するように調整した。次に、吸水性樹脂1.0gを攪拌中のビーカー内に投入し、回転渦が消えて液面が水平になるまで攪拌を続け、50倍膨潤ゲルを調製した。この50倍膨潤ゲルを遠沈管に移し、遠心力が671Gとなるように設定した遠心機(国産遠心機株式会社製、品番H-103NA SERIES)に4分間かけて脱気し、測定試料とした。
吸水性樹脂50gに、滑剤として、0.25gの非晶質シリカ(デグサジャパン(株)、Sipernat200)を混合した。
<A>JIS標準篩を上から、目開き425μmの篩、目開き250μmの篩、目開き180μmの篩、目開き150μmの篩、目開き106μmの篩、目開き75μmの篩、目開き45μmの篩及び受け皿の順に組み合わせた。
<B>JIS標準篩を上から、目開き850μmの篩、目開き600μmの篩、目開き500μmの篩、目開き425μmの篩、目開き300μmの篩、目開き250μmの篩、目開き150μmの篩及び受け皿の順に組み合わせた。
還流冷却器、滴下ロート、窒素ガス導入管、攪拌機として、翼径50mmの4枚傾斜パドル翼を2段で有する攪拌翼を備えた内径100mmの丸底円筒型セパラブルフラスコを準備した。このフラスコにn-ヘプタン500mlをとり、HLB3のショ糖ステアリン酸エステル(三菱化学フーズ(株)製、リョートーシュガーエステルS-370)0.80g、無水マレイン酸変性エチレン・プロピレン共重合体(三井化学(株)製、ハイワックス1105A)0.80gを添加し、80℃まで昇温して界面活性剤を溶解した後、50℃まで冷却した。
実施例1において、共沸蒸留の際に抜き出す水の量を271.6gに変更し、後架橋剤である2%質量のエチレングリコールジグリシジルエーテル水溶液を11.04g(0.00126モル)に変更した以外は、実施例1と同様の操作を行い、吸水性樹脂228.7gを得た。各性能の測定結果を表1に示す。
実施例1において、共沸蒸留の際に抜き出す水の量を273.8gに変更し、後架橋剤である2%質量のエチレングリコールジグリシジルエーテル水溶液を13.25g(0.00152モル)に変更した以外は、実施例1と同様の操作を行い、吸水性樹脂227.4gを得た。各性能の測定結果を表1に示す。
実施例1において、第2段目の単量体水溶液を添加する前の冷却温度を23℃に変更し、共沸蒸留の際に抜き出す水の量を274.4gに変更し、後架橋剤である2%質量のエチレングリコールジグリシジルエーテル水溶液を13.25g(0.00152モル)に変更した以外は、実施例1と同様の操作を行い、吸水性樹脂228.2gを得た。各性能の測定結果を表1に示す。
還流冷却器、滴下ロート、窒素ガス導入管、攪拌機として、翼径50mmの4枚傾斜パドル翼を2段で有する攪拌翼を備えた内径100mmの丸底円筒型セパラブルフラスコを準備した。このフラスコにn-ヘプタン500mlをとり、HLB3のショ糖ステアリン酸エステル(三菱化学フーズ(株)製、リョートーシュガーエステルS-370)0.80gを添加し、80℃まで昇温して界面活性剤を溶解した後、50℃まで冷却した。
実施例1において、共沸蒸留の際に抜き出す水の量を260.2gに変更し、後架橋剤である2%質量のエチレングリコールジグリシジルエーテル水溶液を4.48g(0.000514モル)に変更した以外は、実施例1と同様の操作を行い、吸水性樹脂231.2gを得た。各性能の測定結果を表1に示す。
実施例1において、第1段目と第2段目の単量体水溶液に添加するエチレングリコールジグリシジルエーテルをそれぞれ0.038g(0.000218モル)、0.053g(0.000304モル)に変更し、共沸の際に抜き出す水の量を284.8gに変更した以外は実施例1と同様の操作を行い、吸水性樹脂228.4gを得た。各性能の測定結果を表1に示す。
実施例1において、第1段目と第2段目の単量体水溶液に添加するエチレングリコールジグリシジルエーテルをそれぞれ0.008g(0.0000459モル)、0.011g(0.0000631モル)に、後架橋剤である2%質量のエチレングリコールジグリシジルエーテル水溶液を4.91g(0.000563モル)に変更し、共沸の際に抜き出す水の量を272.3gに変更した以外は実施例1と同様の操作を行い、吸水性樹脂229.6gを得た。各性能の測定結果を表1に示す。
実施例1において、第1段目と第2段目の単量体水溶液に添加するエチレングリコールジグリシジルエーテルをそれぞれ0.002g(0.0000114モル)、0.003g(0.0000172モル)に変更した以外は、実施例1と同様の操作を行い、吸水性樹脂228.7gを得た。各性能の測定結果を表1に示す。
実施例1において、第2段目の単量体水溶液を添加する前の冷却温度を26℃に変更し、共沸蒸留の際に抜き出す水の量を286.3gに変更し、後架橋剤として4%質量のエチレングリコールジグリシジルエーテル水溶液を11.76g(0.00270モル)に変更した以外は、実施例1と同様の操作を行い、吸水性樹脂229.8gを得た。各性能の測定結果を表1に示す。
(a)試験液の調製
10L容の容器に適量の蒸留水を入れ、塩化ナトリウム100g、塩化カルシウム・二水和物3.0gおよび塩化マグネシウム・六水和物6.0gを添加し、溶解した。次いで、ポリオキシエチレンノニルフェニルエーテル0.25gを添加し、さらに蒸留水を追加して、全体の質量を10kgとした。更に、少量の青色1号で着色して、試験液を調製した。
吸水性樹脂10gと解砕パルプ(レオニア社製レイフロック)10gを用い、空気抄造によって均一混合することにより、42cm×12cmの大きさのシート状の吸収体コアを作製した。次に、吸収体コアの上下を坪量16g/m2のティッシュッペーパーで挟んだ状態で、ロールプレスを用いて全体に196kPaの荷重を30秒間加えて圧縮することにより吸収体を作製した。さらに吸収体の上面に坪量22g/m2のポリエチレン製エアスルー型多孔質液体透過性シートを配置し、同じ大きさ、同じ坪量のポリエチレン製液体不透過性シートを吸収体の下面に配置して、吸収体を挟みつけることにより、吸収性物品Aとした。また吸収性物品Aを、30cm×12cmの大きさにカットしたものを吸収性物品Bとした。
水平の台上に吸収性物品Aを置いた。吸収性物品Aの中心部に、10cm×10cm、2kgの重りの中心に内径3cmの液投入用シリンダーを具備した測定器具を置き、50mLの試験液をそのシリンダー内に一度に投入するとともに、ストップウォッチを用いて、試験液がシリンダー内から完全に消失するまでの時間を測定し、1回目の浸透時間(秒)とした。次に、前記シリンダーをはずし、吸収性物品をそのままの状態で保存し、1回目の試験液投入開始から30分後及び60分後にも、1回目と同じ位置に測定器具を用いて同様の操作を行い、2回目及び3回目の浸透時間(秒)を測定した。1回目~3回目の合計時間を液体浸透速度とした。液体浸透速度が小さいほど、吸収性物品として好ましいと言え、例えば、液体浸透速度としては400秒以下が好ましく、350秒以下がより好ましい。
前記液体浸透速度の測定終了から60分経過後、吸収性物品A上の試験液投入位置付近に、あらかじめ質量(Wd(g)、約50g)を測定しておいた10cm四方の濾紙を置き、その上に底面が10cm×10cmの5kgの重りを載せた。5分間の荷重後、濾紙の質量(We(g))を測定し、増加した質量を液体逆戻り量(g)とした。液体逆戻り量が小さいほど、吸収性物品として好ましいと言え、例えば、液体逆戻り量としては12g以下が好ましく、10g以下がより好ましい。
液体逆戻り量(g)=We-Wd
吸収性物品Bの中心付近に、内径3cmの円筒型シリンダーを置き、150mLの試験液をそのシリンダー内に一度に投入し、吸収させた。次に試験液投入から5分後、吸収性物品Bと同じ大きさ(坪量3500g/m2)の厚紙上に吸収性物品Bを乗せ、ガムテープで厚紙と吸収性物品Bを固定し、ユニパック(株式会社生産日本社製 品番:K-4)に入れた。次に、ユニパックに入れた吸収性物品7を、遠心力が30G(425回転/分)になるように設定した直径30cmのターンテーブル6に図2のようにセットし、1分ごとに吸収性物品B中の吸収体における吸収性樹脂や解砕パルプの偏り等による変形を目視で確認し、変形が認められた時間を、変形時間とした。測定は、40分まで行い、吸収体の変形が認められない場合は、40分超と規定した。変形時間は、吸収体の湿潤時における保形性を示す評価値であり、35分以上が好ましく、40分以上がより好ましい。
表1から明らかなように、実施例1~5で得られた吸水性樹脂は生理食塩水保水能、4.14kPa荷重下での生理食塩水吸水能、及び50倍膨潤ゲルのtanδがいずれも優れた値を示しており、各実施例で得られた吸収性物品は、液体浸透速度、液体逆戻り量、及び保形性(変形時間)の点で格段に優れていることが確認された。
1 ビュレット部
10 ビュレット
11 空気導入管
12 コック
13 コック
14 ゴム栓
2 導管
3 測定台
4 測定部
40 円筒
41 ナイロンメッシュ
42 重り
5 吸水性樹脂
6 ターンテーブル
7 吸収性物品
Claims (11)
- 水溶性エチレン性不飽和単量体を、炭化水素分散媒中で、ラジカル重合開始剤を用いて逆相懸濁重合を行って得られる吸水性樹脂であって、下記(1)~(3)の特性を備えていることを特徴とする吸水性樹脂:
(1)生理食塩水保水能が38g/g以上であること、
(2)4.14kPa荷重下での生理食塩水吸水能が15mL/g以上であること、
(3)50倍膨潤時ゲルのtanδが2.10×10-2以上であること。 - 前記水溶性エチレン性不飽和単量体が、(メタ)アクリル酸及びその塩、(メタ)アクリルアミド、並びにN,N-ジメチルアクリルアミドよりなる群から選択される少なくとも1種である、請求項1に記載の吸水性樹脂。
- 吸水性樹脂が内部架橋剤及び後架橋剤により架橋されてなる、請求項1又は2に記載の吸水性樹脂。
- 内部架橋剤の使用量が、重合に付された水溶性エチレン性不飽和単量体1モル当たり、0.000015~0.00020モルであり、後架橋剤の使用量が、重合に付された水溶性エチレン性不飽和単量体1モル当たり、0.00025~0.0010モルである、請求項3に記載の吸水性樹脂。
- 内部架橋剤及び後架橋剤が、ポリグリシジル化合物である、請求項3又は4に記載の吸水性樹脂。
- 請求項1~5のいずれかに記載の吸水性樹脂と親水性繊維を含む吸収体。
- 請求項6に記載の吸収体を、液体透過性シートと液体不透過性シートとの間に保持してなる吸収性物品。
- 吸水性樹脂の製造方法であって、
吸水性樹脂が、下記(1)~(3)の特性を備えるものであり、
(1)生理食塩水保水能が38g/g以上であること、
(2)4.14kPa荷重下での生理食塩水吸水能が15mL/g以上であること、
(3)50倍膨潤時ゲルのtanδが2.10×10-2以上であること、
且つ、下記第1工程及び第2工程を含む、
炭化水素分散媒中で、ラジカル重合開始剤及び内部架橋剤存在下で水溶性エチレン性不飽和単量体の逆相懸濁重合を行う第1工程、
前記第1工程で得られた懸濁重合粒子を後架橋剤によって架橋させる第2工程、
ことを特徴とする、吸水性樹脂の製造方法。 - 前記水溶性エチレン性不飽和単量体が、(メタ)アクリル酸及びその塩、(メタ)アクリルアミド、並びにN,N-ジメチルアクリルアミドよりなる群から選択される少なくとも1種である、請求項8に記載の吸水性樹脂の製造方法。
- 第1工程における内部架橋剤の使用量が、重合に付された水溶性エチレン性不飽和単量体1モル当たり、0.000015~0.00020モルであり、
第2工程における後架橋剤の使用量が、重合に付された水溶性エチレン性不飽和単量体1モル当たり、0.00025~0.0010モルである、請求項8又は9に記載の吸水性樹脂の製造方法。 - 内部架橋剤及び後架橋剤が、ポリグリシジル化合物である、請求項8~10のいずれかに記載の吸水性樹脂の製造方法。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020157005905A KR102073446B1 (ko) | 2012-09-10 | 2013-08-01 | 흡수성 수지, 흡수체 및 흡수성 물품 |
SG11201501793SA SG11201501793SA (en) | 2012-09-10 | 2013-08-01 | Water-absorbent resin, water-absorbent material, and water-absorent article |
JP2014534248A JP6351505B2 (ja) | 2012-09-10 | 2013-08-01 | 吸水性樹脂、吸収体及び吸収性物品 |
CN201380037722.8A CN104507565B (zh) | 2012-09-10 | 2013-08-01 | 吸水性树脂、吸收体及吸收性物品 |
EP13834858.6A EP2893974B1 (en) | 2012-09-10 | 2013-08-01 | Water-absorbing resin, water-absorbing body, and water-absorbing product |
US14/426,940 US10265226B2 (en) | 2012-09-10 | 2013-08-01 | Water-absorbent resin, water-absorbent material, and water-absorbent article |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012-198832 | 2012-09-10 | ||
JP2012198832 | 2012-09-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014038324A1 true WO2014038324A1 (ja) | 2014-03-13 |
Family
ID=50236942
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/070919 WO2014038324A1 (ja) | 2012-09-10 | 2013-08-01 | 吸水性樹脂、吸収体及び吸収性物品 |
Country Status (7)
Country | Link |
---|---|
US (1) | US10265226B2 (ja) |
EP (1) | EP2893974B1 (ja) |
JP (1) | JP6351505B2 (ja) |
KR (1) | KR102073446B1 (ja) |
SG (1) | SG11201501793SA (ja) |
TW (1) | TWI579006B (ja) |
WO (1) | WO2014038324A1 (ja) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5689204B1 (ja) * | 2014-07-11 | 2015-03-25 | 住友精化株式会社 | 吸水性樹脂の製造方法、吸水性樹脂、吸水剤、吸収性物品 |
WO2016006134A1 (ja) * | 2014-07-11 | 2016-01-14 | 住友精化株式会社 | 吸水性樹脂及び吸収性物品 |
JP2016027846A (ja) * | 2014-07-11 | 2016-02-25 | 住友精化株式会社 | 吸水性樹脂及び吸収性物品 |
WO2016052537A1 (ja) * | 2014-09-29 | 2016-04-07 | 株式会社日本触媒 | 吸水性樹脂粉末及び吸水性樹脂粉末の弾性率の測定方法 |
CN106471012A (zh) * | 2014-07-11 | 2017-03-01 | 住友精化株式会社 | 吸水性树脂及吸收性物品 |
EP3153528A1 (en) * | 2014-07-11 | 2017-04-12 | Sumitomo Seika Chemicals Co., Ltd. | Water-absorbent resin and water-absorbent resin production method |
EP3153529A4 (en) * | 2014-07-11 | 2017-04-19 | Sumitomo Seika Chemicals CO. LTD. | Water-absorbing resin and absorbent article |
JPWO2018180864A1 (ja) * | 2017-03-29 | 2020-02-06 | 住友精化株式会社 | 吸水性樹脂 |
WO2020184389A1 (ja) * | 2019-03-08 | 2020-09-17 | 住友精化株式会社 | 吸水性樹脂粒子 |
JPWO2020184398A1 (ja) * | 2019-03-08 | 2020-09-17 | ||
WO2020184393A1 (ja) * | 2019-03-08 | 2020-09-17 | 住友精化株式会社 | 吸水性樹脂粒子、吸収体及び吸収性物品 |
JPWO2020218164A1 (ja) * | 2019-04-23 | 2020-10-29 | ||
WO2021049450A1 (ja) * | 2019-09-09 | 2021-03-18 | 住友精化株式会社 | 吸水性樹脂粒子 |
JPWO2020122219A1 (ja) * | 2018-12-12 | 2021-10-21 | 住友精化株式会社 | 吸水性樹脂粒子、吸収体、吸収性物品、及び液吸引力測定方法 |
JP6990888B1 (ja) | 2021-05-12 | 2022-02-03 | 株式会社日本触媒 | ポリ(メタ)アクリル酸(塩)系吸水性樹脂、及び吸収体 |
WO2022163849A1 (ja) | 2021-01-29 | 2022-08-04 | 株式会社日本触媒 | 吸水性樹脂の製造方法 |
WO2022239628A1 (ja) * | 2021-05-12 | 2022-11-17 | 株式会社日本触媒 | ポリ(メタ)アクリル酸(塩)系吸水性樹脂、及び吸収体 |
US12274999B2 (en) | 2018-12-12 | 2025-04-15 | Sumitomo Seika Chemicals Co., Ltd. | Water absorbent resin particles, absorbent, absorbent article and liquid suction power measurement method |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5719078B1 (ja) * | 2014-07-11 | 2015-05-13 | 住友精化株式会社 | 吸水性樹脂の製造方法 |
KR20190120219A (ko) * | 2017-03-02 | 2019-10-23 | 스미토모 세이카 가부시키가이샤 | 흡수성 수지, 토양 보수재, 및 농원예 재료 |
CN111225928A (zh) | 2017-10-12 | 2020-06-02 | 住友精化株式会社 | 吸水性树脂和吸收性物品 |
US12246303B2 (en) | 2018-12-12 | 2025-03-11 | Sumitomo Seika Chemicals Co., Ltd. | Water-absorbing resin particles and absorbent article |
CN113195598A (zh) * | 2018-12-12 | 2021-07-30 | 住友精化株式会社 | 吸水性树脂颗粒、吸收体及吸收性物品 |
KR20210101249A (ko) | 2018-12-12 | 2021-08-18 | 스미토모 세이카 가부시키가이샤 | 흡수성 수지 입자 |
EP3896116A4 (en) * | 2018-12-12 | 2022-10-05 | Sumitomo Seika Chemicals Co., Ltd. | ABSORBENT RESIN PARTICLES |
CN113166438A (zh) * | 2018-12-12 | 2021-07-23 | 住友精化株式会社 | 吸水性树脂颗粒、其漏液性的评价方法及其制造方法、以及吸收性物品 |
KR20210137071A (ko) * | 2019-03-08 | 2021-11-17 | 스미토모 세이카 가부시키가이샤 | 흡수성 수지 입자 및 그 제조 방법, 흡수체, 흡수성 물품, 및 침투 속도의 조정 방법 |
KR102625756B1 (ko) | 2019-09-18 | 2024-01-16 | 주식회사 엘지화학 | 고흡수성 수지 및 이의 제조 방법 |
KR102634904B1 (ko) | 2019-09-18 | 2024-02-07 | 주식회사 엘지화학 | 고흡수성 수지 및 이의 제조 방법 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6392701A (ja) | 1986-10-03 | 1988-04-23 | 新王子製紙株式会社 | 使いすておむつ |
JP2003088552A (ja) * | 2001-09-19 | 2003-03-25 | Sumitomo Seika Chem Co Ltd | 吸収体およびそれを用いた吸収性物品 |
JP2006089525A (ja) * | 2004-09-21 | 2006-04-06 | Sumitomo Seika Chem Co Ltd | 吸水性樹脂粒子の製造方法 |
WO2006123561A1 (ja) * | 2005-05-16 | 2006-11-23 | Sumitomo Seika Chemicals Co., Ltd. | 吸水性樹脂粒子の製造方法、それにより得られる吸水性樹脂粒子、およびそれを用いた吸収体および吸収性物品 |
WO2012132902A1 (ja) * | 2011-03-31 | 2012-10-04 | 住友精化株式会社 | 吸水性樹脂の製造方法 |
WO2012176342A1 (ja) * | 2011-06-24 | 2012-12-27 | 住友精化株式会社 | 吸水性樹脂の製造方法 |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6395701U (ja) | 1986-12-12 | 1988-06-21 | ||
JPH01207327A (ja) | 1987-10-29 | 1989-08-21 | Nippon Shokubai Kagaku Kogyo Co Ltd | 吸水性樹脂の表面処理方法 |
KR930007272B1 (ko) | 1988-06-28 | 1993-08-04 | 닙본 쇼쿠바이 가브시기 가이샤 | 흡수성 수지 및 그 제법 |
TW201758B (ja) | 1988-06-28 | 1993-03-11 | Catalyst co ltd | |
TW522024B (en) | 1995-09-01 | 2003-03-01 | Nippon Catalytic Chem Ind | Absorbing agent composite, absorbent material, and absorbent product containing absorbent material |
JP2003206381A (ja) | 2002-01-15 | 2003-07-22 | Sumitomo Seika Chem Co Ltd | 吸水性樹脂の着色防止方法 |
US7713623B2 (en) * | 2003-03-17 | 2010-05-11 | Sumitomo Seika Chemicals Co., Ltd. | Process for production of water-absorbing resin particles |
BRPI0418154A (pt) | 2003-12-25 | 2007-04-17 | Sumitomo Seika Chemicals | método para a produção de resina absorvente de água |
US8084544B2 (en) | 2005-07-04 | 2011-12-27 | Sumitomo Seika Chemicals Co., Ltd. | Process for production of water-absorbing resin |
US8378033B2 (en) | 2006-04-24 | 2013-02-19 | Sumitomo Seika Chemicals Co., Ltd. | Process for production of water-absorbable resin particle, and water-absorbable resin particle produced by the process |
MX2010002149A (es) | 2007-08-23 | 2010-08-02 | Sumitomo Seika Chemicals | Resina absorbente de agua adecuada para usarse en productos sanitarios. |
WO2011118409A1 (ja) | 2010-03-25 | 2011-09-29 | 住友精化株式会社 | 吸水シート構成体 |
AU2010362811B2 (en) | 2010-10-18 | 2015-05-07 | Sumitomo Seika Chemicals Co., Ltd. | Method for producing water-absorbent resin particles and water-absorbent resin particles |
TWI513713B (zh) | 2011-04-21 | 2015-12-21 | Sumitomo Seika Chemicals | 吸水性樹脂之製造方法 |
JP2012001735A (ja) | 2011-09-22 | 2012-01-05 | Sumitomo Seika Chem Co Ltd | 吸水性樹脂粒子の製造方法及びそれを用いた衛生材料 |
JP2016028116A (ja) | 2014-07-11 | 2016-02-25 | 住友精化株式会社 | 吸水性樹脂及び吸収性物品 |
-
2013
- 2013-08-01 EP EP13834858.6A patent/EP2893974B1/en not_active Revoked
- 2013-08-01 SG SG11201501793SA patent/SG11201501793SA/en unknown
- 2013-08-01 KR KR1020157005905A patent/KR102073446B1/ko not_active Expired - Fee Related
- 2013-08-01 US US14/426,940 patent/US10265226B2/en not_active Expired - Fee Related
- 2013-08-01 WO PCT/JP2013/070919 patent/WO2014038324A1/ja active Application Filing
- 2013-08-01 JP JP2014534248A patent/JP6351505B2/ja not_active Ceased
- 2013-08-07 TW TW102128268A patent/TWI579006B/zh not_active IP Right Cessation
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6392701A (ja) | 1986-10-03 | 1988-04-23 | 新王子製紙株式会社 | 使いすておむつ |
JP2003088552A (ja) * | 2001-09-19 | 2003-03-25 | Sumitomo Seika Chem Co Ltd | 吸収体およびそれを用いた吸収性物品 |
JP2006089525A (ja) * | 2004-09-21 | 2006-04-06 | Sumitomo Seika Chem Co Ltd | 吸水性樹脂粒子の製造方法 |
WO2006123561A1 (ja) * | 2005-05-16 | 2006-11-23 | Sumitomo Seika Chemicals Co., Ltd. | 吸水性樹脂粒子の製造方法、それにより得られる吸水性樹脂粒子、およびそれを用いた吸収体および吸収性物品 |
WO2012132902A1 (ja) * | 2011-03-31 | 2012-10-04 | 住友精化株式会社 | 吸水性樹脂の製造方法 |
WO2012176342A1 (ja) * | 2011-06-24 | 2012-12-27 | 住友精化株式会社 | 吸水性樹脂の製造方法 |
Non-Patent Citations (2)
Title |
---|
JOHN D. FERRY: "Viscoelasticity of Polymers", October 1964, TOKYO KAGAKU DOJIN, pages: 28 - 34 |
See also references of EP2893974A4 * |
Cited By (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10525443B2 (en) | 2014-07-11 | 2020-01-07 | Sumitomo Seika Chemicals Co. Ltd. | Water-absorbent resin and absorbent article |
CN106661137A (zh) * | 2014-07-11 | 2017-05-10 | 住友精化株式会社 | 吸水性树脂及吸收性物品 |
WO2016006133A1 (ja) * | 2014-07-11 | 2016-01-14 | 住友精化株式会社 | 吸水性樹脂の製造方法、吸水性樹脂、吸水剤、吸収性物品 |
JP2016028118A (ja) * | 2014-07-11 | 2016-02-25 | 住友精化株式会社 | 吸水性樹脂及び吸収性物品 |
JP2016027846A (ja) * | 2014-07-11 | 2016-02-25 | 住友精化株式会社 | 吸水性樹脂及び吸収性物品 |
JP2016028117A (ja) * | 2014-07-11 | 2016-02-25 | 住友精化株式会社 | 吸水性樹脂の製造方法、吸水性樹脂、吸水剤、吸収性物品 |
JP2020168541A (ja) * | 2014-07-11 | 2020-10-15 | 住友精化株式会社 | 吸収体及び吸収性物品 |
CN105517660A (zh) * | 2014-07-11 | 2016-04-20 | 住友精化株式会社 | 吸水性树脂的制造方法、吸水性树脂、吸水剂及吸收性物品 |
CN106471012A (zh) * | 2014-07-11 | 2017-03-01 | 住友精化株式会社 | 吸水性树脂及吸收性物品 |
KR20170028890A (ko) * | 2014-07-11 | 2017-03-14 | 스미토모 세이카 가부시키가이샤 | 흡수성수지 및 흡수성물품 |
EP3153528A1 (en) * | 2014-07-11 | 2017-04-12 | Sumitomo Seika Chemicals Co., Ltd. | Water-absorbent resin and water-absorbent resin production method |
EP3153529A4 (en) * | 2014-07-11 | 2017-04-19 | Sumitomo Seika Chemicals CO. LTD. | Water-absorbing resin and absorbent article |
EP3153528A4 (en) * | 2014-07-11 | 2017-05-03 | Sumitomo Seika Chemicals CO. LTD. | Water-absorbent resin and water-absorbent resin production method |
KR102256616B1 (ko) | 2014-07-11 | 2021-05-26 | 스미토모 세이카 가부시키가이샤 | 흡수성수지 및 흡수성물품 |
CN105517660B (zh) * | 2014-07-11 | 2017-05-31 | 住友精化株式会社 | 吸水性树脂的制造方法、吸水性树脂、吸水剂及吸收性物品 |
EP3168241A4 (en) * | 2014-07-11 | 2017-12-27 | Sumitomo Seika Chemicals Co. Ltd. | Water-absorbing resin and absorbent article |
US9873755B2 (en) | 2014-07-11 | 2018-01-23 | Sumitomo Seika Chemicals Co. Ltd. | Method of manufacturing water-absorbent resin, water-absorbent resin, water-absorbing agent and absorbent article |
US11136420B2 (en) | 2014-07-11 | 2021-10-05 | Sumitomo Seika Chemicals Co. Ltd. | Water-absorbent resin and method of producing water-absorbent resin |
JP5689204B1 (ja) * | 2014-07-11 | 2015-03-25 | 住友精化株式会社 | 吸水性樹脂の製造方法、吸水性樹脂、吸水剤、吸収性物品 |
US10323105B2 (en) | 2014-07-11 | 2019-06-18 | Sumitomo Seika Chemicals Co. Ltd. | Water-absorbent resin and absorbent article |
WO2016006134A1 (ja) * | 2014-07-11 | 2016-01-14 | 住友精化株式会社 | 吸水性樹脂及び吸収性物品 |
JP7021300B2 (ja) | 2014-07-11 | 2022-02-16 | 住友精化株式会社 | 吸収体及び吸収性物品 |
US9925294B2 (en) | 2014-07-11 | 2018-03-27 | Sumitomo Seika Chemicals Co. Ltd. | Water-absorbent resin and absorbent article |
US10300458B2 (en) | 2014-09-29 | 2019-05-28 | Nippon Shokubai Co., Ltd. | Water-absorbable resin powder, and method for determining elastic modulus of water-absorbable resin powder |
WO2016052537A1 (ja) * | 2014-09-29 | 2016-04-07 | 株式会社日本触媒 | 吸水性樹脂粉末及び吸水性樹脂粉末の弾性率の測定方法 |
JP7194101B2 (ja) | 2017-03-29 | 2022-12-21 | 住友精化株式会社 | 吸水性樹脂 |
JPWO2018180864A1 (ja) * | 2017-03-29 | 2020-02-06 | 住友精化株式会社 | 吸水性樹脂 |
JPWO2020122219A1 (ja) * | 2018-12-12 | 2021-10-21 | 住友精化株式会社 | 吸水性樹脂粒子、吸収体、吸収性物品、及び液吸引力測定方法 |
JP7129490B2 (ja) | 2018-12-12 | 2022-09-01 | 住友精化株式会社 | 吸水性樹脂粒子、吸収体、吸収性物品、及び液吸引力測定方法 |
US12274999B2 (en) | 2018-12-12 | 2025-04-15 | Sumitomo Seika Chemicals Co., Ltd. | Water absorbent resin particles, absorbent, absorbent article and liquid suction power measurement method |
EP3936533A4 (en) * | 2019-03-08 | 2022-11-16 | Sumitomo Seika Chemicals Co., Ltd. | WATER-ABSORBING RESIN PARTICLES |
WO2020184393A1 (ja) * | 2019-03-08 | 2020-09-17 | 住友精化株式会社 | 吸水性樹脂粒子、吸収体及び吸収性物品 |
JPWO2020184398A1 (ja) * | 2019-03-08 | 2020-09-17 | ||
JPWO2020184393A1 (ja) * | 2019-03-08 | 2020-09-17 | ||
WO2020184389A1 (ja) * | 2019-03-08 | 2020-09-17 | 住友精化株式会社 | 吸水性樹脂粒子 |
JP7561117B2 (ja) | 2019-03-08 | 2024-10-03 | 住友精化株式会社 | 吸水性樹脂粒子 |
JP7091556B2 (ja) | 2019-04-23 | 2022-06-27 | 住友精化株式会社 | 吸水性樹脂粒子、及び吸水シート |
JPWO2020218164A1 (ja) * | 2019-04-23 | 2020-10-29 | ||
WO2021049450A1 (ja) * | 2019-09-09 | 2021-03-18 | 住友精化株式会社 | 吸水性樹脂粒子 |
WO2022163849A1 (ja) | 2021-01-29 | 2022-08-04 | 株式会社日本触媒 | 吸水性樹脂の製造方法 |
JP6990888B1 (ja) | 2021-05-12 | 2022-02-03 | 株式会社日本触媒 | ポリ(メタ)アクリル酸(塩)系吸水性樹脂、及び吸収体 |
WO2022239628A1 (ja) * | 2021-05-12 | 2022-11-17 | 株式会社日本触媒 | ポリ(メタ)アクリル酸(塩)系吸水性樹脂、及び吸収体 |
JP2022175089A (ja) * | 2021-05-12 | 2022-11-25 | 株式会社日本触媒 | ポリ(メタ)アクリル酸(塩)系吸水性樹脂、及び吸収体 |
Also Published As
Publication number | Publication date |
---|---|
SG11201501793SA (en) | 2015-05-28 |
KR20150054796A (ko) | 2015-05-20 |
TWI579006B (zh) | 2017-04-21 |
US10265226B2 (en) | 2019-04-23 |
TW201412349A (zh) | 2014-04-01 |
EP2893974A4 (en) | 2016-04-20 |
JP6351505B2 (ja) | 2018-07-04 |
KR102073446B1 (ko) | 2020-02-05 |
US20150216740A1 (en) | 2015-08-06 |
CN104507565A (zh) | 2015-04-08 |
EP2893974A1 (en) | 2015-07-15 |
EP2893974B1 (en) | 2017-11-08 |
JPWO2014038324A1 (ja) | 2016-08-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6351505B2 (ja) | 吸水性樹脂、吸収体及び吸収性物品 | |
KR102567287B1 (ko) | 흡수성 수지 입자 | |
JP5893117B2 (ja) | 吸水性樹脂及び吸収性物品 | |
WO2016006132A1 (ja) | 吸水性樹脂及び吸収性物品 | |
WO2016104374A1 (ja) | 吸水性樹脂組成物 | |
WO2012144564A1 (ja) | 吸水性樹脂、吸収体及び吸収性物品 | |
WO2018180864A1 (ja) | 吸水性樹脂 | |
WO2018159800A1 (ja) | 吸水性樹脂及び吸収性物品 | |
JP7021300B2 (ja) | 吸収体及び吸収性物品 | |
JP6828222B1 (ja) | 吸水性樹脂粒子、吸収性物品、吸水性樹脂粒子を製造する方法、及び吸収体の加圧下での吸収量を高める方法 | |
JP7129490B2 (ja) | 吸水性樹脂粒子、吸収体、吸収性物品、及び液吸引力測定方法 | |
WO2020184386A1 (ja) | 吸水性樹脂粒子、吸収性物品、吸水性樹脂粒子を製造する方法、及び吸収体への生理食塩水の浸透速度を速める方法 | |
WO2020184387A1 (ja) | 吸水性樹脂粒子及びその製造方法、吸収体、並びに吸収性物品 | |
WO2020184398A1 (ja) | 吸水性樹脂粒子及びその製造方法、吸収体、並びに、吸収性物品 | |
JP7194197B2 (ja) | 吸収体及び吸収性物品 | |
JP6991389B2 (ja) | 吸水性樹脂粒子及びその製造方法 | |
JPWO2020218168A1 (ja) | 吸水性樹脂粒子、吸収体及び吸収性物品 | |
JP7143513B2 (ja) | 吸水性樹脂粒子及びその製造方法、吸収体、並びに、吸収性物品 | |
JP7117456B2 (ja) | 吸水性樹脂粒子及びその製造方法、吸収体、並びに、吸収性物品 | |
WO2022210678A1 (ja) | 吸水性樹脂、吸収体及び吸収性物品 | |
JP2024059766A (ja) | 吸水性樹脂 | |
WO2022255300A1 (ja) | 吸水性樹脂の製造方法、吸水性樹脂、吸収体及び吸収性物品 | |
JP2016027845A (ja) | 吸水性樹脂及び吸収性物品 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13834858 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20157005905 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2014534248 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14426940 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2013834858 Country of ref document: EP |