WO2022255300A1 - 吸水性樹脂の製造方法、吸水性樹脂、吸収体及び吸収性物品 - Google Patents
吸水性樹脂の製造方法、吸水性樹脂、吸収体及び吸収性物品 Download PDFInfo
- Publication number
- WO2022255300A1 WO2022255300A1 PCT/JP2022/021925 JP2022021925W WO2022255300A1 WO 2022255300 A1 WO2022255300 A1 WO 2022255300A1 JP 2022021925 W JP2022021925 W JP 2022021925W WO 2022255300 A1 WO2022255300 A1 WO 2022255300A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- water
- absorbent resin
- ethylenically unsaturated
- soluble ethylenically
- unsaturated monomer
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F20/00—Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
- C08F20/02—Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
- C08F20/04—Acids, Metal salts or ammonium salts thereof
- C08F20/06—Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F13/00—Bandages or dressings; Absorbent pads
- A61F13/15—Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F13/00—Bandages or dressings; Absorbent pads
- A61F13/15—Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
- A61F13/53—Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L15/00—Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
- A61L15/16—Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
- A61L15/22—Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons containing macromolecular materials
- A61L15/24—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/22—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
- B01J20/26—Synthetic macromolecular compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/22—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
- B01J20/26—Synthetic macromolecular compounds
- B01J20/265—Synthetic macromolecular compounds modified or post-treated polymers
- B01J20/267—Cross-linked polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F120/00—Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
- C08F120/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F120/04—Acids; Metal salts or ammonium salts thereof
- C08F120/06—Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2/00—Processes of polymerisation
- C08F2/12—Polymerisation in non-solvents
- C08F2/16—Aqueous medium
- C08F2/18—Suspension polymerisation
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2/00—Processes of polymerisation
- C08F2/12—Polymerisation in non-solvents
- C08F2/16—Aqueous medium
- C08F2/20—Aqueous medium with the aid of macromolecular dispersing agents
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/24—Crosslinking, e.g. vulcanising, of macromolecules
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2810/00—Chemical modification of a polymer
- C08F2810/20—Chemical modification of a polymer leading to a crosslinking, either explicitly or inherently
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2333/00—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
- C08J2333/02—Homopolymers or copolymers of acids; Metal or ammonium salts thereof
Definitions
- the present invention relates to a method for producing a water-absorbing resin, a water-absorbing resin, an absorbent body, and an absorbent article. More specifically, the present invention constitutes an absorbent body suitable for sanitary materials such as disposable diapers, sanitary napkins, and incontinence pads. The present invention relates to a method for producing a water absorbent resin, a water absorbent resin, an absorbent body using the water absorbent resin, and an absorbent article.
- water absorbent resins have been widely used in the field of sanitary materials such as disposable diapers, sanitary napkins, and incontinence pads.
- a crosslinked product of a polymer of a water-soluble ethylenically unsaturated monomer more specifically a crosslinked product of a partially neutralized polymer of polyacrylic acid
- acrylic acid which is the raw material, is easily available industrially, it can be manufactured at a constant quality and at a low cost, and it has many advantages such as being less prone to putrefaction and deterioration. It is said that it is a flexible resin (see, for example, Patent Document 1).
- Absorbent articles such as disposable diapers, sanitary napkins, and incontinence pads are composed of an absorbent body that absorbs and retains body fluids such as urine and menstrual blood excreted from the body, and a side that comes in contact with the body. It consists of a liquid-permeable surface sheet (top sheet) arranged on the front side and a liquid-impermeable back sheet (back sheet) arranged on the opposite side in contact with the body.
- the absorber is usually composed of hydrophilic fibers such as pulp and water-absorbent resin.
- the absorbent resin contained in the absorbent body is required to have a high water retention capacity.
- the phenomenon that the liquid once absorbed by the absorber returns back that is, the liquid returns from the absorber, and when the absorber is touched by hand, it becomes uncomfortable wetness. feel) can be improved.
- the water-absorbing resin in the absorbent article has a high water-absorbing capacity under load because it has a high water-absorbing capacity even when pressure is applied to the water-absorbing resin inside the absorbent article.
- a water absorbent resin with a high non-pressurized DW is preferable because it can quickly absorb water even when the absorbent article using the water absorbent resin is tilted (that is, it can quickly absorb flowing liquid). .
- the main purpose of the present invention is to provide a method for producing a water-absorbing resin with increased water retention capacity, water absorption capacity under load, and non-pressurized DW.
- a predetermined polymerization step and a post-crosslinking step are provided, and as a polymerization initiator
- the azo compound while increasing the concentration of the water-soluble ethylenically unsaturated monomer in the aqueous solution containing the water-soluble ethylenically unsaturated monomer more than before.
- the present invention is an invention that has been completed through extensive research based on such findings.
- Section 1 A method for producing a water absorbent resin by reverse phase suspension polymerization of a water-soluble ethylenically unsaturated monomer in a hydrocarbon dispersion medium, a polymerization step of mixing an aqueous solution containing the water-soluble ethylenically unsaturated monomer, the hydrocarbon dispersion medium, a polymerization initiator, a dispersion stabilizer, and an internal cross-linking agent; A post-crosslinking step of post-crosslinking the polymer obtained in the polymerization step; and The polymerization initiator contains an azo compound and a peroxide,
- the water-soluble ethylenically unsaturated monomer has a content of acrylic acid and a salt thereof of 70 mol% or more and 100 mol% or less, The concentration of the water-soluble ethylenically unsaturated monomer in the aqueous solution containing the water-soluble ethylenically unsaturated
- Section 2. The method for producing a water absorbent resin according to Item 1, wherein the molar ratio of the peroxide to the azo compound (the peroxide/the azo compound) is 0.1 or more and 1.0 or less.
- Item 3. In the post-crosslinking step, the molar ratio of the post-crosslinking agent to the water-soluble ethylenically unsaturated monomer (the post-crosslinking agent/the water-soluble ethylenically unsaturated monomer) is 0.00001 or more and 0.001 or less. 3.
- Section 4. Item 4.
- the method for producing a water absorbent resin according to any one of Items 1 to 3, wherein the water absorbent resin has the following properties (A) to (C).
- A) The total value of the physiological saline water retention capacity and the water absorption capacity under a load of 4.14 kPa is 60 or more.
- B) The total value of the physiological saline water retention capacity and the 5-minute value of non-pressurized DW is 90 or more.
- C The physiological saline water retention capacity is 44 g/g or more and 70 g/g or less. Item 5.
- the water-soluble ethylenically unsaturated monomer has a content of acrylic acid and a salt thereof of 70 mol% or more and 100 mol% or less
- the water absorbent resin is a water absorbent resin having the following properties (A) and (B).
- (A) The total value of the physiological saline water retention capacity and the water absorption capacity under a load of 4.14 kPa is 60 or more.
- B The total value of the physiological saline water retention capacity and the 5-minute value of non-pressurized DW is 90 or more.
- Item 6. Item 6.
- the water absorbent resin according to item 5 which has a physiological saline water retention capacity of 44 g/g or more and 70 g/g or less.
- Item 7. Item 7.
- An absorbent body comprising the water absorbent resin according to Item 5 or 6.
- An absorbent article comprising the absorbent body according to Item 7.
- the present invention it is possible to provide a method for producing a water absorbent resin with increased water retention capacity, water absorption capacity under load, and non-pressurized DW. Furthermore, according to the present invention, it is also possible to provide a water absorbent resin, an absorbent body and an absorbent article using the water absorbent resin.
- FIG. 2 is a schematic diagram of a measuring device used for measuring the water absorption amount of physiological saline under a load of 4.14 kPa of a water absorbent resin. It is a schematic diagram of a measuring device used for measuring the non-pressure DW of the water absorbent resin. It is a schematic diagram for demonstrating the method of the gradient absorption test of an absorbent article.
- a numerical value connected by "-" means a numerical range including the numerical values before and after "-" as lower and upper limits. If multiple lower limits and multiple upper limits are listed separately, any lower limit and upper limit can be selected and connected with "-".
- the method for producing a water absorbent resin of the present invention is a method for producing a water absorbent resin by subjecting a water-soluble ethylenically unsaturated monomer to reverse-phase suspension polymerization in a hydrocarbon dispersion medium.
- the method for producing a water absorbent resin of the present invention includes a polymerization step of mixing an aqueous solution containing a water-soluble ethylenically unsaturated monomer, a hydrocarbon dispersion medium, a polymerization initiator, a dispersion stabilizer, and an internal cross-linking agent. and a post-crosslinking step of post-crosslinking the polymer obtained in the polymerization step.
- the polymerization initiator includes an azo compound and a peroxide.
- the content of acrylic acid and its salt in the water-soluble ethylenically unsaturated monomer is 70 mol % or more and 100 mol % or less.
- the concentration of the water-soluble ethylenically unsaturated monomer in the aqueous solution containing the water-soluble ethylenically unsaturated monomer is set to 40% by mass or more, and the molar ratio of the internal cross-linking agent to the azo compound (internal cross-linking agent /azo compound) is 0.05 or more and 0.10 or less.
- the method for producing a water absorbent resin of the present invention can suitably produce a water absorbent resin with increased water retention capacity, water absorption capacity under load, and non-pressurized DW.
- the water absorbent resin of the present invention will be described in detail below.
- ⁇ Polymerization process> an aqueous solution containing a water-soluble ethylenically unsaturated monomer, a hydrocarbon dispersion medium, a polymerization initiator, a dispersion stabilizer, and an internal cross-linking agent are mixed.
- the concentration of the water-soluble ethylenically unsaturated monomer in the aqueous solution containing the water-soluble ethylenically unsaturated monomer is 40% by mass or more.
- a high concentration is set, and the molar ratio of the azo compound of the polymerization initiator and the internal cross-linking agent (internal cross-linking agent/azo compound) is set within the range of 0.05 to 0.10.
- a water-soluble ethylenically unsaturated monomer when adopting a polymerization step of performing reversed phase suspension polymerization in two or more stages, at least in the first stage polymerization step, a water-soluble ethylenically unsaturated monomer
- concentration of the water-soluble ethylenically unsaturated monomer in the aqueous solution containing is set to a high concentration of 40% by mass or more, and the molar ratio of the azo compound among the polymerization initiators and the internal cross-linking agent (internal cross-linking agent/azo compound) is preferably set within the range of 0.05 to 0.10, and these settings are more preferable in the reversed-phase suspension polymerization in the second and subsequent stages as well.
- Water-soluble ethylenically unsaturated monomers include, for example, (meth)acrylic acid and its salts; 2-(meth)acrylamido-2-methylpropanesulfonic acid and its salts; (meth)acrylamide, N,N-dimethyl Nonionic monomers such as (meth)acrylamide, 2-hydroxyethyl (meth)acrylate, N-methylol (meth)acrylamide, polyethylene glycol mono (meth)acrylate; N,N-diethylaminoethyl (meth)acrylate, N , N-diethylaminopropyl (meth)acrylate, diethylaminopropyl (meth)acrylamide and other amino group-containing unsaturated monomers and quaternized products thereof.
- water-soluble ethylenically unsaturated monomers (meth)acrylic acid or a salt thereof, (meth)acrylamide, and N,N-dimethylacrylamide are preferable from the viewpoint of industrial availability. , (meth)acrylic acid and salts thereof are more preferred.
- These water-soluble ethylenically unsaturated monomers may be used alone or in combination of two or more.
- acrylic acid and its salts are widely used as raw materials for water-absorbent resins.
- the water-soluble ethylenically unsaturated monomer has a content of acrylic acid and its salt of 70 to 100 mol %. That is, the proportion of acrylic acid and its salts in the total water-soluble ethylenically unsaturated monomers is 70-100 mol %.
- the water-soluble ethylenically unsaturated monomer is dispersed in a hydrocarbon dispersion medium in the form of an aqueous solution and subjected to reversed-phase suspension polymerization.
- One of the characteristics of the present invention is to set the concentration of the water-soluble ethylenically unsaturated monomer in the aqueous solution containing the water-soluble ethylenically unsaturated monomer to such a high concentration.
- the concentration of the water-soluble ethylenically unsaturated monomer in the aqueous solution may be 40% by mass or more, preferably 42% by mass or more, and more preferably 44% by mass or more.
- the upper limit of the concentration of the water-soluble ethylenically unsaturated monomer is preferably not more than the saturation concentration, more preferably not more than 55% by mass, further preferably not more than 50% by mass, and 46% by mass. % or less is even more preferable.
- the water-soluble ethylenically unsaturated monomer may be used after its acid group (acid group of acrylic acid) has been neutralized in advance with an alkaline neutralizing agent.
- alkaline neutralizers include alkali metal salts such as sodium hydroxide, sodium carbonate, sodium hydrogen carbonate, potassium hydroxide and potassium carbonate; ammonia and the like.
- these alkaline neutralizers may be used in the form of an aqueous solution in order to facilitate the neutralization operation.
- the alkaline neutralizing agent mentioned above may be used independently and may be used in combination of 2 or more types.
- the degree of neutralization of the water-soluble ethylenically unsaturated monomer with the alkaline neutralizing agent is 10 to 100 mol% as the degree of neutralization of all acid groups possessed by the water-soluble ethylenically unsaturated monomer. is preferred, 30 to 90 mol % is more preferred, 40 to 85 mol % is even more preferred, and 50 to 80 mol % is even more preferred.
- a polymerization initiator mixed in the polymerization step includes an azo compound and a peroxide. These are radical polymerization initiators.
- Peroxides include, for example, potassium persulfate, ammonium persulfate, persulfates such as sodium persulfate, methyl ethyl ketone peroxide, methyl isobutyl ketone peroxide, di-t-butyl peroxide, t-butyl cumyl peroxide, t -Butyl peroxyacetate, t-butyl peroxy isobutyrate, t-butyl peroxy pivalate, hydrogen peroxide and other peroxides.
- potassium persulfate, ammonium persulfate, and sodium persulfate are preferable from the viewpoint of easy availability and handling.
- azo compounds 2,2'-azobis(2-amidinopropane) dihydrochloride, 2,2'-azobis[2-(N-phenylamidino)propane] dihydrochloride, 2,2'- azobis[2-(N-allylamidino)propane]dihydrochloride, 2,2′-azobis ⁇ 2-[1-(2-hydroxyethyl)-2-imidazolin-2-yl]propane ⁇ dihydrochloride, 2 , 2′-azobis ⁇ 2-methyl-N-[1,1-bis(hydroxymethyl)-2-hydroxyethyl]propionamide ⁇ , 2,2′-azobis[2-methyl-N-(2-hydroxyethyl )-propionamide], 4,4′-azobis(4-cyanovaleric acid) and the like.
- 2,2'-azobis(2-amidinopropane) dihydrochloride is preferable from the viewpoint of easy availability and handling.
- the polymerization initiator can also be used as a redox polymerization initiator in combination with a reducing agent such as sodium sulfite, sodium hydrogen sulfite, ferrous sulfate, and L-ascorbic acid.
- a reducing agent such as sodium sulfite, sodium hydrogen sulfite, ferrous sulfate, and L-ascorbic acid.
- the molar ratio of the peroxide to the azo compound is preferably in the range of 0.1 to 1.0, more preferably It is in the range of 0.2 to 0.8, more preferably in the range of 0.3 to 0.6.
- the total amount of polymerization initiator used is, for example, 0.00005 to 0.01 mol per 1 mol of the water-soluble ethylenically unsaturated monomer. By satisfying such a usage amount, rapid polymerization reaction can be avoided and the polymerization reaction can be completed in an appropriate time.
- Examples of the internal cross-linking agent include those capable of cross-linking the polymer of water-soluble ethylenically unsaturated monomers used, such as (poly)ethylene glycol, (poly)propylene glycol, 1,4-butanediol, tri Unsaturated polyesters obtained by reacting polyols such as diols and triols such as methylolpropane and (poly)glycerin with unsaturated acids such as (meth)acrylic acid, maleic acid and fumaric acid; N,N-methylene Bisacrylamides such as bisacrylamide; Di(meth)acrylic acid esters or tri(meth)acrylic acid esters obtained by reacting polyepoxide and (meth)acrylic acid; Di(meth)acrylic acid carbamyl esters obtained by reacting isocyanate with hydroxyethyl (meth)acrylate; allylated starch, allylated cellulose, diallyl
- unsaturated polyesters or polyglycidyl compounds are preferably used, and diglycidyl ether compounds are more preferably used.
- Ether, (poly)glycerol diglycidyl ether is preferably used.
- These internal cross-linking agents may be used alone or in combination of two or more.
- the molar ratio of the internal cross-linking agent to the azo compound is set within the range of 0.05 to 0.10. From the viewpoint of exhibiting the effects of the present invention more preferably, the molar ratio is preferably in the range of 0.055 to 0.095, more preferably in the range of 0.06 to 0.09, and still more preferably 0.065 ⁇ 0.085.
- the amount of the internal cross-linking agent used is preferably 0.02 mol or less, more preferably 0.000001 to 0.01 mol, per 1 mol of the water-soluble ethylenically unsaturated monomer. It is preferably from 0.00001 to 0.005 mol, and even more preferably from 0.00005 to 0.002 mol.
- hydrocarbon dispersion media examples include those having 6 to 8 carbon atoms such as n-hexane, n-heptane, 2-methylhexane, 3-methylhexane, 2,3-dimethylpentane, 3-ethylpentane and n-octane.
- Aliphatic hydrocarbons such as cyclohexane, methylcyclohexane, cyclopentane, methylcyclopentane, trans-1,2-dimethylcyclopentane, cis-1,3-dimethylcyclopentane, trans-1,3-dimethylcyclopentane aromatic hydrocarbons such as benzene, toluene and xylene;
- hydrocarbon dispersion media n-hexane, n-heptane, and cyclohexane are preferably used because they are industrially readily available, stable in quality, and inexpensive.
- These hydrocarbon dispersion media may be used alone or in combination of two or more.
- a commercially available product such as Exsolheptane (manufactured by Exxon Mobil Co., containing 75 to 85% by mass of heptane and its isomer hydrocarbons) can also be used to obtain suitable results. be able to.
- the amount of the hydrocarbon dispersion medium used is the water-soluble ethylenically unsaturated monomer in the first stage. It is preferably 100 to 1,500 parts by mass, more preferably 200 to 1,400 parts by mass, based on 100 parts by mass.
- the reversed-phase suspension polymerization is carried out in one stage (single stage) or in multiple stages of two or more stages, and the above-described first stage polymerization is the first stage in single stage polymerization or multistage polymerization. means the polymerization reaction of (the same applies below).
- Dispersion stabilizer (Surfactant) In reversed-phase suspension polymerization, a dispersion stabilizer is used to improve the dispersion stability of the water-soluble ethylenically unsaturated monomer in the hydrocarbon dispersion medium.
- a surfactant can be used as the dispersion stabilizer.
- surfactants include sucrose fatty acid esters, polyglycerin fatty acid esters, sorbitan fatty acid esters, polyoxyethylene sorbitan fatty acid esters, polyoxyethylene glycerin fatty acid esters, sorbitol fatty acid esters, polyoxyethylene sorbitol fatty acid esters, and polyoxyethylene.
- Alkyl ethers polyoxyethylene alkylphenyl ethers, polyoxyethylene castor oil, polyoxyethylene hydrogenated castor oil, alkyl allyl formaldehyde condensed polyoxyethylene ethers, polyoxyethylene polyoxypropylene block copolymers, polyoxyethylene polyoxypropyl alkyl ethers, Using polyethylene glycol fatty acid esters, alkyl glucosides, N-alkyl gluconamides, polyoxyethylene fatty acid amides, polyoxyethylene alkylamines, polyoxyethylene alkyl ether phosphates, polyoxyethylene alkyl allyl ether phosphates, etc. can be done.
- sorbitan fatty acid esters sorbitan fatty acid esters, polyglycerin fatty acid esters, and sucrose fatty acid esters are particularly preferred from the standpoint of dispersion stability of the monomer.
- These surfactants may be used alone or in combination of two or more.
- the amount of the surfactant used is preferably 0.1 to 30 parts by mass, preferably 0.3 to 20 parts by mass, per 100 parts by mass of the water-soluble ethylenically unsaturated monomer in the first stage. Parts by mass are more preferred.
- a polymeric dispersant may be used together with the surfactant described above.
- polymeric dispersants include maleic anhydride-modified polyethylene, maleic anhydride-modified polypropylene, maleic anhydride-modified ethylene-propylene copolymer, maleic anhydride-modified EPDM (ethylene-propylene-diene-terpolymer), anhydrous Maleic acid-modified polybutadiene, maleic anhydride/ethylene copolymer, maleic anhydride/propylene copolymer, maleic anhydride/ethylene/propylene copolymer, maleic anhydride/butadiene copolymer, polyethylene, polypropylene, ethylene/propylene Copolymer, oxidized polyethylene, oxidized polypropylene, oxidized ethylene/propylene copolymer, ethylene/acrylic acid copolymer, ethyl cellulose, ethylhydroxyethyl cellulose and the like.
- maleic anhydride-modified polyethylene maleic anhydride-modified polypropylene, maleic anhydride-modified ethylene/propylene copolymer, maleic anhydride/ Ethylene copolymer, maleic anhydride/propylene copolymer, maleic anhydride/ethylene/propylene copolymer, polyethylene, polypropylene, ethylene/propylene copolymer, oxidized polyethylene, oxidized polypropylene, oxidized ethylene/propylene copolymer It is preferred to use polymers. These polymeric dispersants may be used alone or in combination of two or more.
- the amount of the polymeric dispersant used is preferably 0.1 to 30 parts by mass, preferably 0.3 to 20 parts by mass, relative to 100 parts by mass of the water-soluble ethylenically unsaturated monomer in the first stage. Parts by mass are more preferred.
- reverse phase suspension polymerization can be performed by adding a thickener to an aqueous solution containing a water-soluble ethylenically unsaturated monomer.
- a thickener By adjusting the viscosity of the aqueous solution by adding a thickener in this way, it is possible to control the median particle size obtained in the reversed-phase suspension polymerization.
- thickeners examples include hydroxyethyl cellulose, hydroxypropyl cellulose, methyl cellulose, carboxymethyl cellulose, polyacrylic acid, (partially) neutralized polyacrylic acid, polyethylene glycol, polyacrylamide, polyethyleneimine, dextrin, sodium alginate, and polyvinyl alcohol. , polyvinylpyrrolidone, polyethylene oxide and the like can be used. If the stirring speed during polymerization is the same, the higher the viscosity of the aqueous solution of the water-soluble ethylenically unsaturated monomer, the larger the primary particles and/or secondary particles of the obtained particles tend to be.
- reverse phase suspension polymerization for reversed-phase suspension polymerization, for example, an aqueous monomer solution containing a water-soluble ethylenically unsaturated monomer is dispersed in a hydrocarbon dispersion medium in the presence of a dispersion stabilizer.
- the dispersion stabilizer surfactant or polymer dispersant
- the dispersion stabilizer may be added before or after the addition of the aqueous monomer solution as long as it is before the polymerization reaction is started.
- Polymerization is preferably carried out after dispersing the surfactant.
- Such reversed-phase suspension polymerization can be carried out in one stage or in multiple stages of two or more stages. In addition, from the viewpoint of increasing productivity, it is preferable to carry out in 2 to 3 steps.
- water-soluble ethylenically unsaturated monomers are added to the reaction mixture obtained in the first-stage polymerization reaction.
- the monomers are added and mixed, and reversed-phase suspension polymerization in the second and subsequent stages may be carried out in the same manner as in the first stage.
- a polymerization initiator and, if necessary, an internal cross-linking agent are added to each stage after the second stage.
- Reversed-phase suspension polymerization can preferably be carried out using If the amount of the water-soluble ethylenically unsaturated monomer and the ratio of the polymerization initiator, internal cross-linking agent, etc. to the water-soluble ethylenically unsaturated monomer are within the above ranges, Each step after the first step may be the same or different.
- water-soluble ethylene in an aqueous solution containing a water-soluble ethylenically unsaturated monomer is 40% by mass or more, and the molar ratio of the azo compound in the polymerization initiator and the internal cross-linking agent (internal cross-linking agent/azo compound) is 0.05 to 0.10. It is preferable to set it within the range, and it is more preferable to set it within these ranges also in the reversed-phase suspension polymerization in each stage after the second stage. If the concentration of the water-soluble ethylenically unsaturated monomer and the molar ratio of the polymerization initiator (internal cross-linking agent/azo compound) are within the above ranges, may be the same or different.
- the reaction temperature for the polymerization reaction is 20 to 110° C. from the viewpoints of speeding up the polymerization, shortening the polymerization time, thereby improving economic efficiency, and facilitating the removal of the heat of polymerization to allow the reaction to proceed smoothly. and more preferably 40 to 90°C.
- the post-crosslinking step is a step of post-crosslinking the polymer obtained by polymerizing the water-soluble ethylenically unsaturated monomer (water-containing gel-like material having an internal crosslinked structure) in the polymerization step.
- the water absorbent resin of the present invention is obtained by mixing the polymer obtained in the polymerization step and a post-crosslinking agent to crosslink the polymer (post-crosslinking reaction). This post-crosslinking reaction is carried out in the presence of a post-crosslinking agent after the polymerization of the water-soluble ethylenically unsaturated monomer.
- the molar ratio of the post-crosslinking agent to the water-soluble ethylenically unsaturated monomer is preferably in the range of 0.00001 to 0.001, more preferably in the range of 0.00005 to 0.0005, still more preferably in the range of 0.0001 to 0.0003.
- post-crosslinking agents include compounds having two or more reactive functional groups.
- polyols such as ethylene glycol, propylene glycol, 1,4-butanediol, trimethylolpropane, glycerin, polyoxyethylene glycol, polyoxypropylene glycol, polyglycerin; (poly)ethylene glycol diglycidyl ether, (poly) Polyglycidyl compounds such as glycerin diglycidyl ether, (poly)glycerin triglycidyl ether, trimethylolpropane triglycidyl ether, (poly)propylene glycol polyglycidyl ether, (poly)glycerol polyglycidyl ether; epichlorohydrin, epibromohydrin, ⁇ -halo epoxy compounds such as methyl epichlorohydrin; isocyanate compounds such as 2,4-tolylene diisocyanate and hexamethylene diisocyan
- post-crosslinking agents (poly)ethylene glycol diglycidyl ether, (poly)glycerin diglycidyl ether, (poly)glycerin triglycidyl ether, trimethylolpropane triglycidyl ether, (poly)propylene glycol polyglycidyl ether, ( Polyglycidyl compounds such as poly)glycerol polyglycidyl ether are preferred.
- These post-crosslinking agents may be used alone or in combination of two or more.
- the amount of the post-crosslinking agent used is preferably 0.00001 to 0.01 mol, preferably 0.00005 to 0.01 mol, per 1 mol of the total amount of the water-soluble ethylenically unsaturated monomers used in the polymerization. 005 mol, more preferably 0.0001 to 0.002 mol.
- the post-crosslinking agent may be added as it is or as an aqueous solution, but if necessary, it may be added as a solution using a hydrophilic organic solvent as a solvent.
- Hydrophilic organic solvents include, for example, lower alcohols such as methyl alcohol, ethyl alcohol, n-propyl alcohol and isopropyl alcohol; ketones such as acetone and methyl ethyl ketone; ethers such as diethyl ether, dioxane and tetrahydrofuran; - amides such as dimethylformamide; sulfoxides such as dimethylsulfoxide; These hydrophilic organic solvents may be used alone, in combination of two or more, or as a mixed solvent with water.
- the timing of addition of the post-crosslinking agent may be after the polymerization of the water-soluble ethylenically unsaturated monomer, and it is added in the range of 1 to 400 parts by mass with respect to 100 parts by mass of the water-soluble ethylenically unsaturated monomer. It is preferably added in the presence of water, more preferably in the presence of water in the range of 5 to 200 parts by mass, more preferably in the presence of water in the range of 10 to 100 parts by mass. Adding in the presence of water in the range of 60 parts by mass is even more preferable.
- the amount of water means the total amount of water contained in the reaction system and water used as necessary when adding the post-crosslinking agent.
- the reaction temperature in the post-crosslinking reaction is preferably 50 to 250°C, more preferably 60 to 180°C, even more preferably 60 to 140°C, and more preferably 70 to 120°C. More preferred.
- the reaction time for the post-crosslinking reaction is preferably 1 to 300 minutes, more preferably 5 to 200 minutes.
- a drying step may be included in which water, a hydrocarbon dispersion medium, and the like are removed by distillation by applying energy such as heat from the outside.
- dehydrating the water-containing gel after reverse-phase suspension polymerization by heating the system in which the water-containing gel is dispersed in the hydrocarbon dispersion medium, the water and the hydrocarbon dispersion medium are temporarily removed from the system by azeotropic distillation. Distill off. At this time, if only the hydrocarbon dispersion medium that has been distilled off is returned into the system, continuous azeotropic distillation becomes possible.
- the temperature in the system during drying is maintained at or below the azeotropic temperature with the hydrocarbon dispersion medium, which is preferable from the viewpoint of the resin being less likely to deteriorate.
- water and a hydrocarbon dispersion medium are distilled off to obtain a water absorbent resin.
- the drying treatment by distillation may be performed under normal pressure or under reduced pressure. Moreover, from the viewpoint of increasing the drying efficiency, the drying may be carried out under an air stream of nitrogen or the like.
- the drying temperature is preferably 70 to 250° C., more preferably 80 to 180° C., further preferably 80 to 140° C., further preferably 90 to 130° C. is even more preferred.
- the drying temperature is preferably 40 to 160°C, more preferably 50 to 110°C.
- the above-described drying step by distillation is performed after the completion of the subsequent cross-linking step.
- the post-crosslinking step and the drying step may be performed simultaneously.
- the water-absorbent resin of the present invention may contain additives according to purposes.
- additives include inorganic powders, surfactants, oxidizing agents, reducing agents, metal chelating agents, radical chain inhibitors, antioxidants, antibacterial agents, and the like.
- amorphous silica as an inorganic powder to 100 parts by mass of the water absorbent resin, the fluidity of the water absorbent resin can be further improved.
- Water Absorbent Resin By adopting the method for producing a water absorbent resin of the present invention, for example, a water absorbent resin having the following properties (A) to (C) can be suitably produced.
- the total value (X+Y) of the physiological saline water retention capacity X and the water absorption capacity Y under a load of 4.14 kPa is 60 or more.
- the total value (X+Z) of the physiological saline water retention amount X and the 5-minute value Z of the non-pressurized DW (Demand Wetability) is 90 or more.
- the physiological saline water retention capacity X is 44 g/g or more and 70 g/g or less.
- a water-absorbing resin that is a crosslinked product of a polymer of a water-soluble ethylenically unsaturated monomer comprising:
- the content of acrylic acid and its salt is 70 mol % or more and 100 mol % or less, and can also suitably produce a water absorbent resin having the following properties (A) and (B).
- (A) The total value (X+Y) of the physiological saline water retention capacity X and the water absorption capacity Y under a load of 4.14 kPa is 60 or more.
- the total value (X+Z) of the physiological saline water retention amount X and the 5-minute value Z of the non-pressurized DW is 90 or more.
- the total value (X+Y) of (A) of the water absorbent resin of the present invention is preferably 62 or more, more preferably 64 or more, and still more preferably 66 or more, and is preferably 100 or less, more preferably 85 or less, More preferably, it is 75 or less.
- the total value (X+Z) of (B) of the water absorbent resin of the present invention is preferably 95 or more, more preferably 100 or more, still more preferably 105 or more, and preferably 150 or less, more preferably 130 120 or less, more preferably 120 or less.
- physiological saline water retention capacity X of the water-absorbing resin of the present invention is preferably 46 g/g or more, more preferably 49 g/g or more, still more preferably 52 g/g or more, and preferably 70 g/g or less. , more preferably 65 g/g or less, still more preferably 60 g/g or less.
- the water absorption amount Y of the water absorbent resin of the present invention under a load of 4.14 kPa is preferably 12 ml/g or more, more preferably 14 ml/g or more, still more preferably 16 ml/g or more, and preferably It is 33 ml/g or less, more preferably 27 ml/g or less, still more preferably 23 ml/g or less.
- the 5-minute value Z of the non-pressurized DW of the water absorbent resin of the present invention is preferably 42 ml/g or more, more preferably 48 ml/g or more, still more preferably 50 ml/g or more, and preferably 80 ml. /g or less, more preferably 70 ml/g or less, still more preferably 65 ml/g or less.
- the number of liquid injections until the occurrence of leakage measured by a gradient absorption test is preferably 4 or more.
- the number of injections is, for example, 7 times or less.
- the amount of liquid absorbed until leakage occurs is preferably 240 g or more, more preferably 270 g or more.
- the amount of liquid absorbed until leakage occurs is, for example, 550 g or less, 520 g or less, or 490 g or less.
- the method for measuring the physiological saline water retention amount X of the water-absorbent resin, the water absorption amount Y under a load of 4.14 kPa, and the non-pressurized DW 5 min value Z, and the method for the gradient absorption test are as described in Examples. be.
- the water absorbent resin of the present invention is formed by cross-linking a water-soluble ethylenically unsaturated monomer polymer, that is, a cross-linked polymer having a structural unit derived from a water-soluble ethylenically unsaturated monomer. .
- the water absorbent resin may have various shapes. Examples of the shape of the water-absorbent resin include granular, substantially spherical, irregularly crushed, plate-like, fibrous, flake-like, and aggregated shapes of these resins.
- the water-absorbent resin is preferably in the form of granules, substantially spherical, crushed amorphous, fibrous, or aggregated forms of these resins.
- the water absorbent resin may be in a form (secondary particles) in which fine particles (primary particles) are aggregated, in addition to the form in which each is composed of a single particle.
- secondary particles fine particles
- the shape of the primary particles include a substantially spherical shape, an irregular crushed shape, and a plate shape.
- a substantially spherical single particle shape having a smooth surface shape such as a perfect sphere, an ellipsoidal shape, or the like can be mentioned. Because of its smooth surface, it has high fluidity as a powder, and because it is easy for aggregated particles to be densely packed, it is difficult to break even when subjected to impact, and has high particle strength. Become.
- the median particle size of the water absorbent resin is preferably 200 ⁇ m or more, 250 ⁇ m or more, 280 ⁇ m or more, 300 ⁇ m or more, or 320 ⁇ m or more from the viewpoint of more preferably exhibiting the effects of the present invention. From the same viewpoint, the median particle size is preferably 700 ⁇ m or less, 600 ⁇ m or less, 550 ⁇ m or less, 500 ⁇ m or less, 450 ⁇ m or less, or 400 ⁇ m or less. That is, the median particle size is preferably 200 to 700 ⁇ m, preferably 200 to 600 ⁇ m, more preferably 250 to 500 ⁇ m, further preferably 300 to 450 ⁇ m, further preferably 320 to 400 ⁇ m. is even more preferable.
- the median particle size of the water-absorbing resin can be measured using a JIS standard sieve, and is specifically the value measured by the method described in the Examples.
- the water-absorbing resin of the present invention constitutes an absorbent body used in sanitary materials such as sanitary products and paper diapers, and is suitably used in absorbent articles containing the absorbent body. .
- the absorbent body of the present invention contains the water absorbent resin of the present invention.
- the absorber may further contain hydrophilic fibers.
- the structure of the absorbent body includes a sheet-like structure in which a water-absorbent resin is fixed on a nonwoven fabric or between a plurality of nonwoven fabrics, and a structure obtained by mixing a water-absorbent resin and hydrophilic fibers so as to have a uniform composition. a mixed dispersion, a sandwich structure in which a water-absorbing resin is sandwiched between layered hydrophilic fibers, and a structure in which a water-absorbing resin and hydrophilic fibers are wrapped in tissue.
- the absorber may contain other components such as heat-fusible synthetic fibers, hot-melt adhesives, and adhesive binders such as adhesive emulsions for enhancing shape retention of the absorber. .
- the basis weight of the water absorbent resin in the absorbent body of the present invention is 50 g/m 2 or more and 400 g/m 2 or less. From the viewpoint of exhibiting the effects of the present invention more preferably, the basis weight is preferably 100 g/m 2 or more, more preferably 120 g/m 2 or more, still more preferably 140 g/m 2 or more, and preferably 300 g. /m 2 or less, more preferably 250 g/m 2 or less, still more preferably 200 g/m 2 or less.
- the content of the water absorbent resin in the absorbent body is preferably 5 to 100% by mass, more preferably 10 to 95% by mass, even more preferably 20 to 90% by mass, and 30 to 80% by mass. % by mass is even more preferred.
- the hydrophilic fiber includes at least one selected from the group consisting of pulverized wood pulp, cotton, cotton linter, rayon, cellulose acetate, polyamide, polyester and polyolefin.
- Cellulose fibers such as flocculent pulp, mechanical pulp, chemical pulp, and semi-chemical pulp obtained from wood, artificial cellulose fibers such as rayon and acetate, and fibers made of synthetic resin such as hydrophilized polyamide, polyester, and polyolefin. mentioned.
- the average fiber length of the hydrophilic fibers is typically 0.1-10 mm, or may be 0.5-5 mm.
- the absorbent article of the present invention can be obtained by The liquid permeable sheet is arranged on the side in contact with the body, and the liquid impermeable sheet is arranged on the opposite side in contact with the body.
- liquid-permeable sheets examples include air-through type, spunbond type, chemical bond type, needle punch type nonwoven fabrics and porous synthetic resin sheets made of fibers such as polyethylene, polypropylene, and polyester.
- liquid-impermeable sheets include synthetic resin films made of resins such as polyethylene, polypropylene, and polyvinyl chloride.
- the liquid-permeable sheet is preferably at least one selected from the group consisting of thermal bonded nonwoven fabric, air-through nonwoven fabric, spunbond nonwoven fabric, and spunbond/meltblown/spunbond nonwoven fabric.
- the basis weight of the liquid-permeable sheet is preferably 5 g/m 2 or more and 100 g/m 2 or less, more preferably 10 g/m 2 or more and 60 g/m 2 or less.
- the surface of the liquid-permeable sheet may be embossed or perforated in order to improve the diffusibility of the liquid. The embossing and perforation can be carried out by known methods.
- liquid-impermeable sheets examples include sheets made of synthetic resins such as polyethylene, polypropylene, and polyvinyl chloride, and spunbond/meltblown/spunbond (SMS) nonwoven fabrics in which a water-resistant meltblown nonwoven fabric is sandwiched between high-strength spunbond nonwoven fabrics. and sheets made of composite materials of these synthetic resins and nonwoven fabrics (for example, spunbond nonwoven fabrics and spunlaced nonwoven fabrics).
- SMS spunbond/meltblown/spunbond
- sheets made of composite materials of these synthetic resins and nonwoven fabrics for example, spunbond nonwoven fabrics and spunlaced nonwoven fabrics.
- LDPE low-density polyethylene
- the liquid-impermeable sheet may be, for example, a synthetic resin sheet having a weight per unit area of 10 to 50 g/m 2 .
- the absorbent article includes a laminate having an absorbent body containing a water-absorbent resin and a core wrap sandwiching the upper and lower sides of the absorbent body, a liquid-permeable sheet disposed on the upper surface of the laminate, and the liquid-permeable layer of the laminate. It is preferred to have a liquid impermeable sheet located on the side opposite to the liquid impermeable sheet side.
- Example 1 A reflux condenser, a dropping funnel, a nitrogen gas inlet tube, and a 2-liter round-bottomed cylindrical separable flask with an inner diameter of 11 cm equipped with a stirring blade having two stages of four inclined paddle blades with a blade diameter of 5 cm as a stirrer. Got ready.
- 252 g of n-heptane was taken as a hydrocarbon dispersion medium, and 0.736 g of a maleic anhydride-modified ethylene/propylene copolymer (Mitsui Chemicals, Inc., Hi-Wax 1105A) was added as a polymeric dispersant and stirred. After the temperature was raised to 80°C to dissolve the dispersant, the solution was cooled to 50°C.
- the prepared first-stage monomer aqueous solution was added to the reaction solution in the separable flask and stirred for 10 minutes. Then, a surfactant solution prepared by heating and dissolving 0.736 g of sucrose stearate (HLB: 3, Mitsubishi Kagaku Foods Co., Ltd., Ryoto Sugar Ester S-370) as a surfactant in 6.62 g of n-heptane, It was further added to the reaction solution, and the inside of the system was sufficiently replaced with nitrogen while stirring at a rotation speed of 600 rpm. Thereafter, the flask was immersed in a water bath at 70° C. to raise the temperature, and polymerization was carried out for 60 minutes to obtain a first-stage polymerization slurry.
- HLB sucrose stearate
- the inside of the separable flask system was cooled to 25°C while stirring at a stirrer rotation speed of 1000 rpm.
- the entire amount of the second-stage monomer aqueous solution was added to the first-stage polymerization slurry liquid in the separable flask, and the inside of the system was replaced with nitrogen for 30 minutes.
- the flask was again immersed in a water bath at 70° C. to raise the temperature, and the polymerization reaction was carried out for 60 minutes.
- 0.265 g of a 45% by mass pentasodium diethylenetriamine pentaacetate aqueous solution was added to the reaction liquid containing the water-containing gel-like polymer after the second-stage polymerization with stirring. After that, the flask was immersed in an oil bath set at 125° C., and 219.3 g of water was extracted from the system by azeotropic distillation of n-heptane and water. After that, 4.42 g (0.507 mmol) of a 2% by mass ethylene glycol diglycidyl ether aqueous solution was added to the flask, and the mixture was kept at 83° C. for 2 hours.
- n-heptane was evaporated at 125°C and dried to obtain polymer particles (dried product).
- the polymer particles are passed through a sieve with an opening of 850 ⁇ m, and 0.2% by mass of amorphous silica (Oriental Silicas Corporation, Tokusil NP-S, hydrophilic) relative to the mass of the polymer particles is added to the polymer particles. to obtain 225.1 g of a water absorbent resin containing amorphous silica.
- the water absorbent resin had a median particle size of 336 ⁇ m.
- Example 2 220.2 g of a water-absorbing resin was obtained in the same manner as in Example 1, except that the amount of water drawn out of the system by azeotropic distillation was changed to 223.9 g.
- the water absorbent resin had a median particle size of 350 ⁇ m.
- Example 3 225.3 g of a water absorbent resin was obtained in the same manner as in Example 1, except that the amount of water drawn out of the system by azeotropic distillation was changed to 225.8 g.
- the median particle size of the water absorbent resin was 354 ⁇ m.
- Example 4 0.0460 g (0.170 mmol) of the azo compound 2,2'-azobis(2-amidinopropane) dihydrochloride to be dissolved in the first-stage monomer aqueous solution, the internal cross-linking agent ethylene glycol diglycidyl ether
- the amount added was 0.00184 g (0.0106 mmol)
- the ion-exchanged water was 9.47 g
- the amount of water extracted from the system by azeotropic distillation was changed to 219.8 g. 203.7 g of water absorbent resin was obtained.
- the water absorbent resin had a median particle size of 353 ⁇ m.
- Example 5 216.4 g of a water absorbent resin was obtained in the same manner as in Example 4, except that the amount of water drawn out of the system by azeotropic distillation was changed to 221.8 g.
- the water absorbent resin had a median particle size of 334 ⁇ m.
- Comparative example 1 293 g of n-heptane used as a hydrocarbon dispersion medium, 40.93 g of ion-exchanged water to be added to the first-stage monomer aqueous solution, 550 rpm rotation speed during the first-stage polymerization, and azeotropic distillation outside the system. 229.0 g of a water absorbent resin was obtained in the same manner as in Example 1, except that the amount of water drawn out was changed to 236.0 g. The water absorbent resin had a median particle size of 348 ⁇ m.
- Comparative example 2 229.0 g of a water-absorbent resin was obtained in the same manner as in Comparative Example 1, except that the amount of water drawn out of the system by azeotropic distillation was changed to 245.2 g.
- the water absorbent resin had a median particle size of 348 m.
- Comparative Example 4 216.8 g of a water absorbent resin was obtained in the same manner as in Comparative Example 3, except that the amount of water drawn out of the system by azeotropic distillation was changed to 213.7 g.
- the water absorbent resin had a median particle size of 353 ⁇ m.
- a cotton bag (Membrane No. 60, width 100 mm ⁇ length 200 mm) in which 2.0 g of water absorbent resin was weighed was placed in a 500 mL beaker. Pour 500 g of 0.9% by mass sodium chloride aqueous solution (physiological saline) into a cotton bag containing water-absorbent resin at a time to prevent lumps, tie the top of the cotton bag with a rubber band, and let it stand for 30 minutes. The water absorbent resin was swollen.
- the cotton bag is dehydrated for 1 minute using a dehydrator (manufactured by Kokusan Co., Ltd., product number: H-122) set to a centrifugal force of 167 G, and the cotton bag containing the swollen gel after dehydration.
- the mass Wa (g) of was measured.
- the same operation was performed without adding the water absorbent resin, the empty weight Wb (g) of the wet cotton bag was measured, and the physiological saline water retention capacity was calculated from the following formula.
- Physiological saline water retention amount (g / g) [Wa - Wb] / 2.0
- the measuring device Y is composed of a burette section 61 , a conduit 62 , a measuring table 63 , and a measuring section 64 placed on the measuring table 63 .
- the burette portion 61 includes a burette 61a extending in the vertical direction, a rubber stopper 61b arranged at the upper end of the burette 61a, a cock 61c arranged at the lower end of the burette 61a, and one end extending into the burette 61a near the cock 61c. It has an air introduction pipe 61d and a cock 61e arranged on the other end side of the air introduction pipe 61d.
- a conduit 62 is attached between the burette portion 61 and the measuring table 63 .
- the inner diameter of conduit 62 is 6 mm.
- a hole with a diameter of 2 mm is drilled in the central part of the measuring table 63 and the conduit 62 is connected.
- the measuring part 64 has a cylinder 64a (made of acrylic resin (Plexiglas)), a nylon mesh 64b adhered to the bottom of the cylinder 64a, and a weight 64c.
- the inner diameter of the cylinder 64a is 20 mm.
- the opening of the nylon mesh 64b is 75 ⁇ m (200 mesh).
- the water absorbent resin 65 to be measured is evenly spread over the nylon mesh 64b.
- the weight 64c has a diameter of 19 mm and a mass of 120 g. The weight 64 c is placed on the water absorbent resin 65 and can apply a load of 4.14 kPa to the water absorbent resin 65 .
- the weight 64c was put thereon and the measurement was started. Since the same volume of air as the physiological saline absorbed by the water absorbent resin 65 is quickly and smoothly supplied to the inside of the burette 61a through the air introduction pipe, the reduction in the water level of the physiological saline in the burette 61a is minimized. , is the amount of physiological saline absorbed by the water absorbent resin 65 .
- the non-pressurized DW of the particles of the water absorbent resin was measured using the measuring device shown in FIG. The measurement was performed five times for one type of water absorbent resin, and the average value of the three measured values excluding the lowest and highest values was obtained.
- the measuring device has a burette part 1 , a conduit 5 , a measuring table 13 , a nylon mesh sheet 15 , a pedestal 11 and a clamp 3 .
- the burette part 1 includes a burette tube 21 with a scale, a rubber stopper 23 sealing an upper opening of the burette tube 21, a cock 22 connected to the tip of the lower part of the burette tube 21, and a lower part of the burette tube 21.
- a flat plate-shaped measuring stand 13 has a through hole 13a with a diameter of 2 mm formed in its central portion, and is supported by a pedestal 11 whose height is variable.
- Through hole 13 a of measuring table 13 and cock 22 of burette portion 1 are connected by conduit 5 .
- the inner diameter of conduit 5 is 6 mm.
- the measurement was performed in an environment with a temperature of 25°C and a humidity of 60 ⁇ 10%.
- the cocks 22 and 24 of the burette part 1 were closed, and the 0.9 mass % saline solution 50 adjusted to 25° C. was introduced into the burette tube 21 through the upper opening of the burette tube 21 .
- the salt solution concentration of 0.9% by mass is the concentration based on the mass of the salt solution.
- the cocks 22 and 24 were opened.
- the interior of the conduit 5 was filled with a 0.9 mass % saline solution 50 so as not to introduce air bubbles.
- the height of the measuring table 13 was adjusted so that the height of the water surface of the 0.9 mass % saline solution reaching the inside of the through-hole 13 a was the same as the height of the upper surface of the measuring table 13 . After the adjustment, the height of the water surface of the 0.9% by mass saline solution 50 in the burette tube 21 was read from the scale of the burette tube 21, and the position was taken as the zero point (read value at 0 seconds).
- a nylon mesh sheet 15 (100 mm ⁇ 100 mm, 250 mesh, thickness of about 50 ⁇ m) was laid near the through-hole 13a on the measurement table 13, and a cylinder with an inner diameter of 30 mm and a height of 20 mm was placed in the center. 1.00 g of the water absorbent resin 10a was evenly spread on this cylinder. After that, the cylinder was carefully removed to obtain a sample in which the water absorbent resin 10a was circularly dispersed in the center of the nylon mesh sheet 15 . Next, the nylon mesh sheet 15 with the water absorbent resin 10a placed thereon was moved so quickly that the center of the nylon mesh sheet 15 was located at the position of the through hole 13a, so that the water absorbent resin 10a did not dissipate, and the measurement was started. The time when air bubbles were first introduced into the burette tube 21 from the air introduction tube 25 was defined as the start of water absorption (0 second).
- the amount of decrease in the 0.9% by mass saline solution 50 in the burette tube 21 (that is, the amount of 0.9% by mass saline solution absorbed by the water absorbent resin 10a) is sequentially read, and the water absorption of the water absorbent resin 10a is started.
- the weight loss Wc (g) of the 0.9% by mass saline solution 50 after 5 minutes was read. From Wc, the 5-minute value of no-pressure DW was determined by the following formula.
- the non-pressurized DW is the amount of water absorbed per 1.00 g of the water absorbent resin 10a.
- Unpressurized DW value (mL/g) Wc/1.00
- Robot Shifter RPS-205 manufactured by Seishin Enterprise Co., Ltd.
- the mass percentage of particles remaining on each sieve was integrated in descending order of particle size, and the relationship between the sieve opening and the integrated value of the mass percentage of particles remaining on the sieve was plotted on logarithmic probability paper. . By connecting the plots on the probability paper with a straight line, the particle size corresponding to the cumulative mass percentage of 50% by mass was obtained, and this was taken as the median particle size.
- Example 6 9.6 g of the water-absorbing resin obtained in Example 2 and 9.6 g of pulverized pulp were uniformly mixed by air papermaking using an airflow mixing device (Padformer, manufactured by Autec Co., Ltd.), resulting in a 12 cm ⁇ 32 cm A sheet-like absorbent body having a size of .
- the absorbent body was placed on tissue paper (core wrap) having a basis weight of 16 g/m 2 , and the tissue paper (core wrap) was laminated in this order on the absorbent body. A load of 141 kPa was applied to this laminate for 30 seconds.
- a hydrophilic air-through nonwoven fabric (Rengo Non-Woven Products, basis weight 21 g/m 2 ) of 12 cm x 32 cm was laminated to prepare an absorbent article for testing.
- the basis weight of the water absorbent resin was 250 g/m 2 and the basis weight of the pulverized pulp (hydrophilic fiber) was 250 g/m 2 .
- Example 7 to 9 and Comparative Examples 7 and 8 Absorbent articles were produced in the same manner as in Example 6, except that the water absorbent resins obtained in Examples 3 to 5, Comparative Examples 2 and 6 were used.
- Test solution composition Deionized water 5919.6g ⁇ NaCl 60.0 g - CaCl2.H2O 1.8g ⁇ 3.6 g of MgCl2.6H2O ⁇ Edible blue No. 1 (for coloring) ⁇ 1% - Triton X-100 15.0g
- FIG. 3 is a schematic diagram showing a method for evaluating leakiness when an absorbent article is tilted.
- a 45 cm long support plate here, an acrylic resin plate, hereinafter also referred to as an inclined surface S1 having a flat main surface was fixed by a mount 41 in a state inclined at 45 ⁇ 2 degrees with respect to the horizontal surface S0.
- the test absorbent article 100 was attached onto the inclined surface S1 of the fixed support plate with its longitudinal direction along the longitudinal direction of the support plate.
- a test liquid 51 adjusted to 25 ⁇ 1° C.
- test liquid was dropped from a dropping funnel 42 placed vertically above the absorbent article 100 toward a position 8 cm above the center of the absorbent body in the absorbent article 100 .
- 80 mL of the test liquid (density: 1.0 g/mL) was dropped at a rate of 8 mL/sec.
- the distance between the tip of the dropping funnel 42 and the absorbent article was 10 ⁇ 1 mm.
- the test liquid was repeatedly injected under the same conditions, and the test liquid was injected a total of 6 times.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Epidemiology (AREA)
- General Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Vascular Medicine (AREA)
- Analytical Chemistry (AREA)
- Materials Engineering (AREA)
- Hematology (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Polymerisation Methods In General (AREA)
Abstract
Description
項1. 水溶性エチレン性不飽和単量体を炭化水素分散媒中で逆相懸濁重合させて吸水性樹脂を製造する方法であって、
前記水溶性エチレン性不飽和単量体を含む水溶液と、前記炭化水素分散媒と、重合開始剤と、分散安定剤と、内部架橋剤とを混合する重合工程と、
前記重合工程で得られた重合体を後架橋する後架橋工程と、
を備えており、
前記重合開始剤は、アゾ系化合物及び過酸化物を含み、
前記水溶性エチレン性不飽和単量体は、アクリル酸及びその塩の含有率が、70モル%以上100モル%以下であり、
前記水溶性エチレン性不飽和単量体を含む水溶液中の前記水溶性エチレン性不飽和単量体の濃度が、40質量%以上であり、
前記アゾ系化合物に対する前記内部架橋剤のモル比(前記内部架橋剤/前記アゾ系化合物)が、0.05以上0.10以下である、吸水性樹脂の製造方法。
項2. 前記アゾ系化合物に対する前記過酸化物のモル比(前記過酸化物/前記アゾ系化合物)が、0.1以上1.0以下である、項1に記載の吸水性樹脂の製造方法。
項3. 前記後架橋工程において、前記水溶性エチレン性不飽和単量体に対する後架橋剤のモル比(前記後架橋剤/前記水溶性エチレン性不飽和単量体)が、0.00001以上0.001以下である、項1又は2に記載の吸水性樹脂の製造方法。
項4. 前記吸水性樹脂は、以下の(A)~(C)の特性を有する、項1~3のいずれか1項に記載の吸水性樹脂の製造方法。
(A)生理食塩水保水量と4.14kPa荷重下での吸水量の合計値が、60以上である。
(B)生理食塩水保水量と無加圧DWの5分値の合計値が、90以上である。
(C)生理食塩水保水量が、44g/g以上70g/g以下である。
項5. 水溶性エチレン性不飽和単量体の重合体の架橋物である、吸水性樹脂であって、
前記水溶性エチレン性不飽和単量体は、アクリル酸及びその塩の含有率が、70モル%以上100モル%以下であり、
前記吸水性樹脂は、以下の(A)および(B)の特性を有する、吸水性樹脂。
(A)生理食塩水保水量と4.14kPa荷重下での吸水量の合計値が、60以上である。
(B)生理食塩水保水量と無加圧DWの5分値の合計値が、90以上である。
項6. 生理食塩水保水量が、44g/g以上70g/g以下である、項5記載の吸水性樹脂。
項7. 項5又は6に記載の吸水性樹脂を含む、吸収体。
項8. 項7に記載の吸収体を含んでなる、吸収性物品。
本発明の吸水性樹脂の製造方法は、水溶性エチレン性不飽和単量体を炭化水素分散媒中で逆相懸濁重合させて吸水性樹脂を製造する方法である。本発明の吸水性樹脂の製造方法は、水溶性エチレン性不飽和単量体を含む水溶液と、炭化水素分散媒と、重合開始剤と、分散安定剤と、内部架橋剤とを混合する重合工程と、重合工程で得られた重合体を後架橋する後架橋工程とを備えている。また、重合開始剤は、アゾ系化合物及び過酸化物を含む。水溶性エチレン性不飽和単量体は、アクリル酸及びその塩の含有率が、70モル%以上100モル%以下である。さらに、水溶性エチレン性不飽和単量体を含む水溶液中の水溶性エチレン性不飽和単量体の濃度を40質量%以上とし、かつ、アゾ系化合物に対する内部架橋剤のモル比(内部架橋剤/アゾ系化合物)が、0.05以上0.10以下である。
重合工程においては、水溶性エチレン性不飽和単量体を含む水溶液と、炭化水素分散媒と、重合開始剤と、分散安定剤と、内部架橋剤とを混合する。前記の通り、本発明の吸水性樹脂の製造方法では、重合工程において、水溶性エチレン性不飽和単量体を含む水溶液中の水溶性エチレン性不飽和単量体の濃度を40質量%以上という高濃度に設定し、さらに、重合開始剤のうちのアゾ系化合物と、内部架橋剤のモル比(内部架橋剤/アゾ系化合物)を0.05~0.10の範囲内に設定する。
水溶性エチレン性不飽和単量体としては、例えば、(メタ)アクリル酸及びその塩;2-(メタ)アクリルアミド-2-メチルプロパンスルホン酸及びその塩;(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、2-ヒドロキシエチル(メタ)アクリレート、N-メチロール(メタ)アクリルアミド、ポリエチレングリコールモノ(メタ)アクリレート等の非イオン性単量体;N,N-ジエチルアミノエチル(メタ)アクリレート、N,N-ジエチルアミノプロピル(メタ)アクリレート、ジエチルアミノプロピル(メタ)アクリルアミド等のアミノ基含有不飽和単量体及びその4級化物等が挙げられる。これらの水溶性エチレン性不飽和単量体の中でも、工業的に入手が容易であること等の観点から、(メタ)アクリル酸又はその塩、(メタ)アクリルアミド、N,N-ジメチルアクリルアミドが好ましく、(メタ)アクリル酸及びその塩がより好ましい。なお、これらの水溶性エチレン性不飽和単量体は、単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
重合工程で混合される重合開始剤は、アゾ系化合物及び過酸化物を含む。これらは、ラジカル重合開始剤である。
内部架橋剤としては、使用する水溶性エチレン性不飽和単量体の重合体を架橋できるものが挙げられ、例えば、(ポリ)エチレングリコール、(ポリ)プロピレングリコール、1,4-ブタンジオール、トリメチロールプロパン、(ポリ)グリセリン等のジオール、トリオール等のポリオール類と(メタ)アクリル酸、マレイン酸、フマル酸等の不飽和酸とを反応させて得られる不飽和ポリエステル類;N,N-メチレンビスアクリルアミド等のビスアクリルアミド類;ポリエポキシドと(メタ)アクリル酸とを反応させて得られるジ(メタ)アクリル酸エステル類又はトリ(メタ)アクリル酸エステル類;トリレンジイソシアネート、ヘキサメチレンジイソシアネート等のポリイソシアネートと(メタ)アクリル酸ヒドロキシエチルとを反応させて得られるジ(メタ)アクリル酸カルバミルエステル類;アリル化澱粉、アリル化セルロース、ジアリルフタレート、N,N’,N’’-トリアリルイソシアヌレート、ジビニルベンゼン等の重合性不飽和基を2個以上有する化合物;(ポリ)エチレングリコールジグリシジルエーテル、(ポリ)プロピレングリコールジグリシジルエーテル、(ポリ)グリセリンジグリシジルエーテル等のジグリシジル化合物、トリグリシジル化合物等のポリグリシジル化合物;エピクロルヒドリン、エピブロムヒドリン、α-メチルエピクロルヒドリン等のエピハロヒドリン化合物;2,4-トリレンジイソシアネート、ヘキサメチレンジイソシアネート等のイソシアネート化合物等の反応性官能基を2個以上有する化合物;3-メチル-3-オキセタンメタノール、3-エチル-3-オキセタンメタノール、3-ブチル-3-オキセタンメタノール、3-メチル-3-オキセタンエタノール、3-エチル-3-オキセタンエタノール、3-ブチル-3-オキセタンエタノール等のオキセタン化合物等が挙げられる。これらの内部架橋剤の中でも、不飽和ポリエステル類、又はポリグリシジル化合物を用いることが好ましく、ジグリシジルエーテル化合物を用いることがより好ましく、(ポリ)エチレングリコールジグリシジルエーテル、(ポリ)プロピレングリコールジグリシジルエーテル、(ポリ)グリセリンジグリシジルエーテルを用いることが好ましい。これらの内部架橋剤は、単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
炭化水素分散媒としては、例えば、n-ヘキサン、n-ヘプタン、2-メチルヘキサン、3-メチルヘキサン、2,3-ジメチルペンタン、3-エチルペンタン、n-オクタン等の炭素数6~8の脂肪族炭化水素;シクロヘキサン、メチルシクロヘキサン、シクロペンタン、メチルシクロペンタン、trans-1,2-ジメチルシクロペンタン、cis-1,3-ジメチルシクロペンタン、trans-1,3-ジメチルシクロペンタン等の脂環族炭化水素;ベンゼン、トルエン、キシレン等の芳香族炭化水素等が挙げられる。これらの炭化水素分散媒の中でも、特に、工業的に入手が容易であり、品質が安定しており且つ安価である点で、n-ヘキサン、n-ヘプタン、シクロヘキサンが好適に用いられる。これらの炭化水素分散媒は、単独で用いてもよく、2種類以上を組み合わせて用いてもよい。なお、炭化水素分散媒の混合物の例としては、エクソールヘプタン(エクソンモービル社製:ヘプタン及びその異性体の炭化水素75~85質量%含有)等の市販品を用いても好適な結果を得ることができる。
(界面活性剤)
逆相懸濁重合では、水溶性エチレン性不飽和単量体の炭化水素分散媒中での分散安定性を向上させるために、分散安定剤を用いる。その分散安定剤としては、界面活性剤を用いることができる。
また、逆相懸濁重合で用いられる分散安定剤としては、上述した界面活性剤と共に、高分子系分散剤を併せて用いてもよい。
吸水性樹脂の製造方法において、所望によりその他の成分を、水溶性エチレン性不飽和単量体を含む水溶液に添加して逆相懸濁重合を行うようにしてもよい。その他の成分としては、増粘剤、連鎖移動剤等の各種の添加剤を添加することができる。
逆相懸濁重合を行うにあたっては、例えば、分散安定剤の存在下に、水溶性エチレン性不飽和単量体を含む単量体水溶液を、炭化水素分散媒に分散させる。このとき、重合反応を開始する前であれば、分散安定剤(界面活性剤や高分子系分散剤)の添加時期は、単量体水溶液添加の前後どちらであってもよい。
後架橋工程は、重合工程において、水溶性エチレン性不飽和単量体を重合して得られた重合体(内部架橋構造を有する含水ゲル状物)を後架橋する工程である。本発明の吸水性樹脂は、重合工程で得られた重合体と後架橋剤とを混合して、重合体を架橋すること(後架橋反応)で得られる。この後架橋反応は、水溶性エチレン性不飽和単量体の重合後以降に後架橋剤の存在下に行う。このような後架橋反応を施すことによって、保水量、荷重下での吸水量、無加圧DW等の諸性能を高めた吸水性樹脂を得ることができる。
上述した逆相懸濁重合を行った後、熱等のエネルギーを外部から加えることで、水、炭化水素分散媒等を蒸留により除去する乾燥工程を含んでいてもよい。逆相懸濁重合後の含水ゲルから脱水を行う場合、炭化水素分散媒中に含水ゲルが分散している系を加熱することで、水と炭化水素分散媒を共沸蒸留により系外に一旦留去する。このとき、留去した炭化水素分散媒のみを系内へ返送すると、連続的な共沸蒸留が可能となる。その場合、乾燥中の系内の温度が、炭化水素分散媒との共沸温度以下に維持されるため、樹脂が劣化しにくい等の観点から好ましい。引き続き、水及び炭化水素分散媒を留去することにより、吸水性樹脂が得られる。この重合後における乾燥工程の処理条件を制御して脱水量を調整することにより、得られる吸水性樹脂の諸性能を制御することが可能である。
本発明の吸水性樹脂の製造方法を採用することにより、例えば、以下の(A)~(C)の特性を有する吸水性樹脂を好適に製造することができる。
(B)生理食塩水保水量Xと無加圧DW(DemandWettability)の5分値Zの合計値(X+Z)が、90以上である。
(C)生理食塩水保水量Xが、44g/g以上70g/g以下である。
(A)生理食塩水保水量Xと4.14kPa荷重下での吸水量Yの合計値(X+Y)が、60以上である。
(B)生理食塩水保水量Xと無加圧DWの5分値Zの合計値(X+Z)が、90以上である。
本発明の吸水性樹脂は、例えば、生理用品、紙オムツ等の衛生材料に用いられる吸収体を構成するものであり、前記吸収体を含む吸収性物品に好適に用いられる。
(実施例1)
還流冷却器、滴下ロート、窒素ガス導入管、並びに、攪拌機として、翼径5cmの4枚傾斜パドル翼を2段で有する攪拌翼を備えた内径11cm、2L容の丸底円筒型セパラブルフラスコを準備した。このフラスコに、炭化水素分散媒としてn-ヘプタン252gをとり、高分子系分散剤として無水マレイン酸変性エチレン・プロピレン共重合体(三井化学株式会社、ハイワックス1105A)0.736gを添加し、攪拌しつつ80℃まで昇温して分散剤を溶解した後、50℃まで冷却した。
共沸蒸留により系外へ抜き出す水の量を223.9gに変更したこと以外は、実施例1と同様にして、吸水性樹脂を220.2g得た。該吸水性樹脂の中位粒子径は350μmであった。
共沸蒸留により系外へ抜き出す水の量を225.8gに変更したこと以外は、実施例1と同様にして、吸水性樹脂を225.3g得た。該吸水性樹脂の中位粒子径は354μmであった。
1段目単量体水溶液に溶解させるアゾ系化合物2,2'-アゾビス(2-アミジノプロパン)二塩酸塩の添加量を0.0460g(0.170ミリモル)、内部架橋剤エチレングリコールジグリシジルエーテルの添加量を0.00184g(0.0106ミリモル)、イオン交換水を9.47gとし、共沸蒸留により系外へ抜き出す水の量を219.8gに変更したこと以外は、実施例1と同様にして、吸水性樹脂を203.7g得た。該吸水性樹脂の中位粒子径は353μmであった。
共沸蒸留により系外へ抜き出す水の量を221.8gに変更したこと以外は、実施例4と同様にして、吸水性樹脂を216.4g得た。該吸水性樹脂の中位粒子径は334μmであった。
炭化水素分散媒として用いるn-ヘプタンを293gとし、1段目単量体水溶液に添加するイオン交換水を40.93gとし、1段目重合時の回転数を550rpmとし、共沸蒸留により系外へ抜き出す水の量を236.0gに変更したこと以外は、実施例1と同様にして、吸水性樹脂を229.0g得た。該吸水性樹脂の中位粒子径は348μmであった。
共沸蒸留により系外へ抜き出す水の量を245.2gに変更したこと以外は、比較例1と同様にして、吸水性樹脂を229.0g得た。該吸水性樹脂の中位粒子径は348mであった。
1段目単量体水溶液に溶解させる内部架橋剤エチレングリコールジグリシジルエーテルの添加量を0.00184g(0.0106ミリモル)、イオン交換水を8.55gとし、共沸蒸留により系外へ抜き出す水の量を210.1gに変更したこと以外は、実施例1と同様にして、吸水性樹脂を201.0g得た。該吸水性樹脂の中位粒子径は403μmであった。
共沸蒸留により系外へ抜き出す水の量を213.7gに変更したこと以外は、比較例3と同様にして、吸水性樹脂を216.8g得た。該吸水性樹脂の中位粒子径は353μmであった。
1段目単量体水溶液に溶解させるアゾ系化合物2,2'-アゾビス(2-アミジノプロパン)二塩酸塩の添加量を0.0460g(0.170ミリモル)、イオン交換水を9.20gとし、共沸蒸留により系外へ抜き出す水の量を227.2gに変更したこと以外は、実施例1と同様にして、吸水性樹脂を217g得た。該吸水性樹脂の中位粒子径は403μmであった。
炭化水素分散媒として用いるn-ヘプタンを293gとし、1段目単量体水溶液に溶解させる1段目単量体水溶液に溶解させるアゾ系化合物2,2'-アゾビス(2-アミジノプロパン)二塩酸塩は添加せず、過酸化物の過硫酸カリウムを0.0736g(0.272ミリモル)、内部架橋剤エチレングリコールジグリシジルエーテルの添加量を0.00276g(0.0158ミリモル)、イオン交換水を40.7gとし、1段目重合時の回転数を550rpmとし、2段目単量体水溶液に溶解させるアゾ系化合物2,2'-アゾビス(2-アミジノプロパン)二塩酸塩は添加せず、過酸化物の過硫酸カリウムを0.103g(0.381ミリモル)とし、イオン交換水を10.6gとし、共沸蒸留により系外へ抜き出す水の量を266.4gに変更したこと以外は、実施例1と同様にして、吸水性樹脂を229.0g得た。該吸水性樹脂の中位粒子径は348μmであった。
吸水性樹脂2.0gを量り取った綿袋(メンブロード60番、横100mm×縦200mm)を500mL容のビーカー内に設置した。吸水性樹脂の入った綿袋中に0.9質量%塩化ナトリウム水溶液(生理食塩水)500gをママコができないように一度に注ぎ込み、綿袋の上部を輪ゴムで縛り、30分静置させることで吸水性樹脂を膨潤させた。30分経過後の綿袋を、遠心力が167Gとなるよう設定した脱水機(株式会社コクサン製、品番:H-122)を用いて1分間脱水し、脱水後の膨潤ゲルを含んだ綿袋の質量Wa(g)を測定した。吸水性樹脂を添加せずに同様の操作を行い、綿袋の湿潤時の空質量Wb(g)を測定し、以下の式から生理食塩水保水量を算出した。
生理食塩水保水量(g/g)=[Wa-Wb]/2.0
吸水性樹脂の荷重下(加圧下)での生理食塩水の吸水量(室温、25℃±2℃)を、図1に示す測定装置Yを用いて測定した。測定装置Yは、ビュレット部61、導管62、測定台63、及び、測定台63上に置かれた測定部64から構成される。ビュレット部61は、鉛直方向に伸びるビュレット61aと、ビュレット61aの上端に配置されたゴム栓61bと、ビュレット61aの下端に配置されたコック61cと、コック61cの近傍において一端がビュレット61a内に伸びる空気導入管61dと、空気導入管61dの他端側に配置されたコック61eとを有している。導管62は、ビュレット部61と測定台63との間に取り付けられている。導管62の内径は6mmである。測定台63の中央部には、直径2mmの穴があいており、導管62が連結されている。測定部64は、円筒64a(アクリル樹脂(プレキシグラス)製)と、円筒64aの底部に接着されたナイロンメッシュ64bと、重り64cとを有している。円筒64aの内径は20mmである。ナイロンメッシュ64bの目開きは75μm(200メッシュ)である。そして、測定時にはナイロンメッシュ64b上に測定対象の吸水性樹脂65が均一に撒布される。重り64cの直径は19mmであり、重り64cの質量は120gである。重り64cは、吸水性樹脂65上に置かれ、吸水性樹脂65に対して4.14kPaの荷重を加えることができる。
4.14kPa荷重下での生理食塩水吸水量[mL/g]=(Vb-Va)/0.100
吸水性樹脂の粒子の無加圧DWは、図2に示す測定装置を用いて測定した。測定は1種類の吸水性樹脂に関して5回実施し、最低値と最高値とを除いた3点の測定値の平均値を求めた。当該測定装置は、ビュレット部1、導管5、測定台13、ナイロンメッシュシート15、架台11、及びクランプ3を有する。ビュレット部1は、目盛が記載されたビュレット管21と、ビュレット管21の上部の開口を密栓するゴム栓23と、ビュレット管21の下部の先端に連結されたコック22と、ビュレット管21の下部に連結された空気導入管25及びコック24とを有する。ビュレット部1はクランプ3で固定されている。平板状の測定台13は、その中央部に形成された直径2mmの貫通孔13aを有しており、高さが可変の架台11によって支持されている。測定台13の貫通孔13aとビュレット部1のコック22とが導管5によって連結されている。導管5の内径は6mmである。
無加圧DW値(mL/g)=Wc/1.00
粒子状の吸水性樹脂10gを、連続全自動音波振動式ふるい分け測定器(ロボットシフター RPS-205、株式会社セイシン企業製)と、JIS規格の目開き850μm、710μm、600μm、500μm、425μm、300μm、250μm及び150μmの篩と、受け皿とを用いて篩分けした。各篩上に残った粒子の質量を全量に対する質量百分率として算出した。各篩上に残存した粒子の質量百分率を、粒子径の大きいものから順に積算し、篩の目開きと、篩上に残った粒子の質量百分率の積算値との関係を対数確率紙にプロットした。確率紙上のプロットを直線で結ぶことにより、積算質量百分率50質量%に相当する粒子径を求め、これを中位粒子径とした。
実施例2~5及び比較例2および比較例6で得られた吸水性樹脂を用いて、以下の手順により吸収体及び吸収性物品を作製した。
気流型混合装置(有限会社オーテック製、パッドフォーマー)を用いて、実施例2で得られた吸水性樹脂9.6g及び粉砕パルプ9.6gを空気抄造によって均一混合することにより、12cm×32cmの大きさのシート状の吸収体を作製した。吸収体を坪量16g/m2のティッシュペーパー(コアラップ)上に配置し、吸収体上に、ティッシュペーパー(コアラップ)、をこの順で積層した。この積層体に対して、141kPaの荷重を30秒間加えた。更に、12cm×32cmの大きさの親水性エアスルー不織布(レンゴー・ノンウーブン・プロダクツ、秤量21g/m2)を積層して、試験用の吸収性物品を作製した。吸収性物品において、吸水性樹脂の坪量は、250g/m2、粉砕パルプ(親水性繊維)の坪量は250g/m2であった。
吸水性樹脂を実施例3~5、比較例2および比較例6にて得られた吸水性樹脂に変更したこと以外は実施例6と同様にして、吸収性物品を作製した。
各吸水性物品の勾配吸収試験は、以下の手順で行った。
(試験液の調製)
イオン交換水に、下記の通りに無機塩が存在するように配合して溶解させたものに、さらに少量の青色1号を配合して試験液を調製した。
試験液組成
・脱イオン水 5919.6g
・NaCl 60.0g
・CaCl2・H2O 1.8g
・MgCl2・6H2O 3.6g
・食用青色1号(着色用)
・1%-トリトンX-100 15.0g
図3は、吸収性物品の傾斜時の漏れ性を評価する方法を示す模式図である。平坦な主面を有する長さ45cmの支持板(ここではアクリル樹脂板、以下傾斜面S1ともいう)を、水平面S0に対して45±2度に傾斜した状態で架台41によって固定した。温度25±2℃の室内において、固定された支持板の傾斜面S1上に、試験用の吸収性物品100を、その長手方向が支持板の長手方向に沿う向きで貼り付けた。次いで、吸収性物品100中の吸収体の中央から8cm上方の位置に向けて、吸収性物品の鉛直上方に配置された滴下ロート42から、25±1℃に調整した試験液51を滴下した。1回あたり80mLの試験液(密度は1.0g/mL)を、8mL/秒の速度で滴下した。滴下ロート42の先端と吸収性物品との距離は10±1mmであった。1回目の試験液投入開始から10分間隔で、同様の条件で試験液を繰り返し投入し、合計6回投入した。
傾斜時の吸収率(%)=吸収量(g)/試験液の全投入量(g)×100
この数値が大きいほど、着用時における液体の漏れが発生し難いと判断される。
3 クランプ
5 導管
10a 吸水性樹脂
11 架台
13 測定台
13a 貫通孔
15 ナイロンメッシュシート
21 ビュレット管
22 コック
23 ゴム栓24 コック
25 空気導入管
40 支持板
41 架台
42 滴下ロート
43 天秤
44 金属製トレイ
50 食塩水
51 試験液
61 ビュレット部
61a ビュレット
61b ゴム栓
61c コック
61d 空気導入管
61e コック
62 導管
63 測定台
64 測定部
64a 円筒
64b ナイロンメッシュ
64c 重り
100 吸収性物品
S0 水平面
S1 傾斜面
Claims (8)
- 水溶性エチレン性不飽和単量体を炭化水素分散媒中で逆相懸濁重合させて吸水性樹脂を製造する方法であって、
前記水溶性エチレン性不飽和単量体を含む水溶液と、前記炭化水素分散媒と、重合開始剤と、分散安定剤と、内部架橋剤とを混合する重合工程と、
前記重合工程で得られた重合体を後架橋する後架橋工程と、
を備えており、
前記重合開始剤は、アゾ系化合物及び過酸化物を含み、
前記水溶性エチレン性不飽和単量体は、アクリル酸及びその塩の含有率が、70モル%以上100モル%以下であり、
前記水溶性エチレン性不飽和単量体を含む水溶液中の前記水溶性エチレン性不飽和単量体の濃度が、40質量%以上であり、
前記アゾ系化合物に対する前記内部架橋剤のモル比(前記内部架橋剤/前記アゾ系化合物)が、0.05以上0.10以下である、吸水性樹脂の製造方法。 - 前記アゾ系化合物に対する前記過酸化物のモル比(前記過酸化物/前記アゾ系化合物)が、0.1以上1.0以下である、請求項1に記載の吸水性樹脂の製造方法。
- 前記後架橋工程において、前記水溶性エチレン性不飽和単量体に対する後架橋剤のモル比(前記後架橋剤/前記水溶性エチレン性不飽和単量体)が、0.00001以上0.001以下である、請求項1又は2に記載の吸水性樹脂の製造方法。
- 前記吸水性樹脂は、以下の(A)~(C)の特性を有する、請求項1又は2に記載の吸水性樹脂の製造方法。
(A)生理食塩水保水量と4.14kPa荷重下での吸水量の合計値が、60以上である。
(B)生理食塩水保水量と無加圧DWの5分値の合計値が、90以上である。
(C)生理食塩水保水量が、44g/g以上70g/g以下である。 - 水溶性エチレン性不飽和単量体の重合体の架橋物である、吸水性樹脂であって、
前記水溶性エチレン性不飽和単量体は、アクリル酸及びその塩の含有率が、70モル%以上100モル%以下であり、
前記吸水性樹脂は、以下の(A)および(B)の特性を有する、吸水性樹脂。
(A)生理食塩水保水量と4.14kPa荷重下での吸水量の合計値が、60以上である。
(B)生理食塩水保水量と無加圧DWの5分値の合計値が、90以上である。 - 生理食塩水保水量が、44g/g以上70g/g以下である、請求項5記載の吸水性樹脂。
- 請求項5又は6に記載の吸水性樹脂を含む、吸収体。
- 請求項7に記載の吸収体を含んでなる、吸収性物品。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023525817A JPWO2022255300A1 (ja) | 2021-05-31 | 2022-05-30 | |
US18/565,356 US20240262945A1 (en) | 2021-05-31 | 2022-05-30 | Method for producing water-absorbing resin, water-absorbing resin, absorber, and absorbent article |
KR1020237038807A KR20240015069A (ko) | 2021-05-31 | 2022-05-30 | 흡수성 수지의 제조 방법, 흡수성 수지, 흡수체 및 흡수성 물품 |
CN202280037133.9A CN117355543A (zh) | 2021-05-31 | 2022-05-30 | 吸水性树脂的制造方法、吸水性树脂、吸收体及吸收性物品 |
EP22816047.9A EP4349875A4 (en) | 2021-05-31 | 2022-05-30 | METHOD FOR PRODUCING A WATER-ABSORBENT RESIN, WATER-ABSORBENT RESIN, ABSORBER, AND ABSORBENT ARTICLE |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021091473 | 2021-05-31 | ||
JP2021-091473 | 2021-05-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022255300A1 true WO2022255300A1 (ja) | 2022-12-08 |
Family
ID=84323286
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/021925 WO2022255300A1 (ja) | 2021-05-31 | 2022-05-30 | 吸水性樹脂の製造方法、吸水性樹脂、吸収体及び吸収性物品 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20240262945A1 (ja) |
EP (1) | EP4349875A4 (ja) |
JP (1) | JPWO2022255300A1 (ja) |
KR (1) | KR20240015069A (ja) |
CN (1) | CN117355543A (ja) |
WO (1) | WO2022255300A1 (ja) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03227301A (ja) | 1990-01-31 | 1991-10-08 | Sumitomo Seika Chem Co Ltd | 吸水性樹脂の製造方法 |
JP2007099845A (ja) * | 2005-09-30 | 2007-04-19 | Procter & Gamble Co | 水性液吸収剤およびその製法 |
WO2008126793A1 (ja) * | 2007-04-05 | 2008-10-23 | Nippon Shokubai Co., Ltd. | 吸水性樹脂を主成分とする粒子状吸水剤 |
WO2019074099A1 (ja) * | 2017-10-12 | 2019-04-18 | 住友精化株式会社 | 吸水性樹脂及び吸収性物品 |
WO2020122219A1 (ja) * | 2018-12-12 | 2020-06-18 | 住友精化株式会社 | 吸水性樹脂粒子、吸収体、吸収性物品、及び液吸引力測定方法 |
JP2020121093A (ja) * | 2019-01-30 | 2020-08-13 | 住友精化株式会社 | 吸収性物品及びその製造方法 |
-
2022
- 2022-05-30 EP EP22816047.9A patent/EP4349875A4/en active Pending
- 2022-05-30 JP JP2023525817A patent/JPWO2022255300A1/ja active Pending
- 2022-05-30 WO PCT/JP2022/021925 patent/WO2022255300A1/ja active Application Filing
- 2022-05-30 CN CN202280037133.9A patent/CN117355543A/zh active Pending
- 2022-05-30 US US18/565,356 patent/US20240262945A1/en active Pending
- 2022-05-30 KR KR1020237038807A patent/KR20240015069A/ko active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03227301A (ja) | 1990-01-31 | 1991-10-08 | Sumitomo Seika Chem Co Ltd | 吸水性樹脂の製造方法 |
JP2007099845A (ja) * | 2005-09-30 | 2007-04-19 | Procter & Gamble Co | 水性液吸収剤およびその製法 |
WO2008126793A1 (ja) * | 2007-04-05 | 2008-10-23 | Nippon Shokubai Co., Ltd. | 吸水性樹脂を主成分とする粒子状吸水剤 |
WO2019074099A1 (ja) * | 2017-10-12 | 2019-04-18 | 住友精化株式会社 | 吸水性樹脂及び吸収性物品 |
WO2020122219A1 (ja) * | 2018-12-12 | 2020-06-18 | 住友精化株式会社 | 吸水性樹脂粒子、吸収体、吸収性物品、及び液吸引力測定方法 |
JP2020121093A (ja) * | 2019-01-30 | 2020-08-13 | 住友精化株式会社 | 吸収性物品及びその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
KR20240015069A (ko) | 2024-02-02 |
US20240262945A1 (en) | 2024-08-08 |
EP4349875A1 (en) | 2024-04-10 |
CN117355543A (zh) | 2024-01-05 |
EP4349875A4 (en) | 2025-04-16 |
JPWO2022255300A1 (ja) | 2022-12-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5893117B2 (ja) | 吸水性樹脂及び吸収性物品 | |
CA2954036C (en) | Water-absorbent resin and absorbent article | |
WO2018159800A1 (ja) | 吸水性樹脂及び吸収性物品 | |
WO2018159802A1 (ja) | 吸水性樹脂及び吸収性物品 | |
JP6828222B1 (ja) | 吸水性樹脂粒子、吸収性物品、吸水性樹脂粒子を製造する方法、及び吸収体の加圧下での吸収量を高める方法 | |
WO2023074860A1 (ja) | 吸水性樹脂組成物、吸収体、及び吸収性物品 | |
WO2023074861A1 (ja) | 吸水性樹脂組成物、吸収体、吸収性物品、及び吸収性物品からの吸水性樹脂粒子の分離処理方法 | |
JP7194197B2 (ja) | 吸収体及び吸収性物品 | |
WO2022255300A1 (ja) | 吸水性樹脂の製造方法、吸水性樹脂、吸収体及び吸収性物品 | |
WO2022255302A1 (ja) | 吸水シート及び吸収性物品 | |
WO2022210678A1 (ja) | 吸水性樹脂、吸収体及び吸収性物品 | |
WO2020122208A1 (ja) | 吸水性樹脂粒子、吸収性物品及びその製造方法 | |
JP7143513B2 (ja) | 吸水性樹脂粒子及びその製造方法、吸収体、並びに、吸収性物品 | |
JP7117456B2 (ja) | 吸水性樹脂粒子及びその製造方法、吸収体、並びに、吸収性物品 | |
JP2020093244A (ja) | 吸水性樹脂粒子 | |
EP4186930A1 (en) | Water-absorbing resin composition, absorbent, and absorptive article | |
JP6752320B2 (ja) | 吸収性物品及びその製造方法 | |
WO2022210115A1 (ja) | 吸収体及び吸収性物品 | |
WO2024214752A1 (ja) | 吸水性樹脂粒子の製造方法、吸水性樹脂粒子、吸収体及び吸収性物品 | |
KR20240089203A (ko) | 흡수성 수지 조성물, 흡수체 및 흡수성 물품 | |
WO2023189672A1 (ja) | 吸水性樹脂粒子及び吸収性物品 | |
WO2023176644A1 (ja) | 吸水性樹脂粒子及び吸収性物品 | |
WO2020095811A1 (ja) | 吸水性樹脂 | |
WO2023190492A1 (ja) | 吸水性樹脂組成物の製造方法 | |
WO2025004971A1 (ja) | 吸水性樹脂粒子の製造方法、吸水性樹脂粒子、吸収体及び吸収性物品 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22816047 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280037133.9 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023525817 Country of ref document: JP Ref document number: 2301007735 Country of ref document: TH |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202317080979 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2022816047 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2022816047 Country of ref document: EP Effective date: 20240102 |