[go: up one dir, main page]

WO2013190828A1 - トナー - Google Patents

トナー Download PDF

Info

Publication number
WO2013190828A1
WO2013190828A1 PCT/JP2013/003787 JP2013003787W WO2013190828A1 WO 2013190828 A1 WO2013190828 A1 WO 2013190828A1 JP 2013003787 W JP2013003787 W JP 2013003787W WO 2013190828 A1 WO2013190828 A1 WO 2013190828A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyester resin
toner
polyester
less
resin
Prior art date
Application number
PCT/JP2013/003787
Other languages
English (en)
French (fr)
Inventor
洋二朗 堀田
森部 修平
航助 福留
聡司 三田
和男 寺内
井田 哲也
Original Assignee
キヤノン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤノン株式会社 filed Critical キヤノン株式会社
Priority to KR1020157000915A priority Critical patent/KR20150023749A/ko
Priority to CN201380033073.4A priority patent/CN104428718B/zh
Priority to DE112013003097.7T priority patent/DE112013003097B4/de
Priority to US14/103,836 priority patent/US9134637B2/en
Publication of WO2013190828A1 publication Critical patent/WO2013190828A1/ja

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/087Binders for toner particles
    • G03G9/08742Binders for toner particles comprising macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • G03G9/08755Polyesters
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/087Binders for toner particles
    • G03G9/08784Macromolecular material not specially provided for in a single one of groups G03G9/08702 - G03G9/08775
    • G03G9/08795Macromolecular material not specially provided for in a single one of groups G03G9/08702 - G03G9/08775 characterised by their chemical properties, e.g. acidity, molecular weight, sensitivity to reactants
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/087Binders for toner particles
    • G03G9/08784Macromolecular material not specially provided for in a single one of groups G03G9/08702 - G03G9/08775
    • G03G9/08797Macromolecular material not specially provided for in a single one of groups G03G9/08702 - G03G9/08775 characterised by their physical properties, e.g. viscosity, solubility, melting temperature, softening temperature, glass transition temperature

Definitions

  • the present invention relates to an electrophotographic method, an image forming method for developing an electrostatic image, and a toner used in a toner jet.
  • a latent image is formed on an image carrier (photoreceptor), toner is supplied to the latent image to make a visible image, and the toner image is transferred to a transfer material such as paper.
  • a method is known in which a toner image is fixed on a transfer material by heat / pressure to obtain a copy.
  • an on-demand fixing apparatus combining a ceramic heater with a small heat capacity and a film has been put into practical use as a fixing apparatus.
  • attempts have been made to reduce the pressure in the fixing nip of the fixing device from the viewpoint of extending the life and supporting various media.
  • Patent Document 1 It is known that the crystalline resin can be melted rapidly in the vicinity of the glass transition temperature and the low-temperature fixability can be improved by increasing the compatibility with the amorphous resin. However, if the compatibility between the two is too high, the heat storage stability and crystallinity of the toner may be lowered.
  • Patent Document 2 Japanese Patent Document 2
  • the fixability is insufficient when the fixing pressure is low by simply giving the resin a sharp melt property.
  • Patent Document 3 In order to solve the problem, it is known that low-temperature fixability and glossiness can be improved by adding an amorphous polyester and a crystalline polyester with a low low molecular weight component (Patent Document 3).
  • Patent Document 3 if only the amorphous polyester and the crystalline polyester are contained, the amorphous polyester and the crystalline polyester are compatible when the toner is melted in the fixing step. As a result, the toner of the fixed image is plasticized more than necessary, and the fixed toner image may be blocked in a severe environment such as high temperature and high humidity.
  • An object of the present invention is to provide a toner which has solved the above problems.
  • an object of the present invention is to have a good cardboard fixing property even in a system for high-speed development with a fixing device configuration having a low fixing nip pressure, and to have a stable image even after long-term storage, and It is an object of the present invention to provide a toner having the characteristic that gloss unevenness of fixing is small.
  • the present invention is a toner having toner particles containing polyester resin A, polyester resin B, and a colorant
  • the polyester resin A has a polyester part having a portion capable of taking a crystal structure, and a crystal nucleating agent part, and the crystal nucleating agent part is bonded to the terminal of the polyester part
  • the polyester resin B is a resin that does not have a portion that can take a crystal structure
  • the proportion of components having a molecular weight of 1500 or less is 5.0 area% or more, 15.0 area% or less
  • the SP value Sa ((cal / cm 3 ) 1/2 ) of the polyester part in the polyester resin A and the SP value of the polyester resin B are Sb ((cal / cm 3 ) 1/2 )
  • the Sa And a toner satisfying the following formula: 9.50 ⁇ Sa ⁇ 11.00 ⁇ 0.65 ⁇
  • the presence state of the polyester resin A and the polyester resin B changes rapidly as the temperature rises due to heating during fixing. And the effect of invention is acquired by such a sudden change of an existing state. Details will be described below.
  • the polyester resin A is a resin having a polyester portion having a portion capable of taking a crystal structure, and melts by being heated to a temperature equal to or higher than the melting point of the crystal structure portion, and exhibits a plastic effect on the polyester resin B.
  • the low-temperature fixability of the toner is improved.
  • the polyester resin A and the polyester resin B are in a compatible state when heated beyond the melting point of the polyester resin A, the glass transition temperature (Tg) of the toner as a whole is greatly reduced and the melt viscosity is low. It becomes. Therefore, at the time of fixing, it is necessary to have a state where both can be completely compatible.
  • a toner containing the polyester resin A having a part capable of taking a crystal structure and the polyester resin B not having a part capable of taking a crystal structure is required to satisfy the following characteristics. i) In the toner before being subjected to image formation, the polyester resin A and the polyester resin B are in a phase-separated state. ii) At the time of fixing, the polyester resin A and the polyester resin B are in a compatible state. iii) After fixing, the polyester resin A and the polyester resin B quickly return to the phase separation structure.
  • the toner of the present invention is a toner that satisfies the above-described characteristics and can reversibly and rapidly change the phase separation state at room temperature and the compatibility state at high temperature.
  • the polyester part in the polyester resin A is a crystalline resin having a high degree of crystallinity, and that the SP values of the polyester part and the polyester resin B in the polyester resin A are within a certain range. .
  • Polyester resins have a distribution in molecular weight. Among them, low molecular weight components are easily melted by heat and exhibit a plasticizing effect at the time of fixing, but it is difficult to adopt a phase separation structure at room temperature. That is, the reversible phase transition is affected. Therefore, it is also important to keep the amount of the low molecular weight component of the polyester resin B within a certain range.
  • the polyester part in the polyester resin A used in the present invention is a resin having an SP value Sa ((cal / cm 3 ) 1/2 ) of 9.50 or more and 11.00 or less and high crystallinity. Sa is preferably 9.50 or more and 10.70 or less, and more preferably 9.80 or more and 10.40 or less.
  • a low SP value indicates that the aliphatic carboxylic acid and / or the aliphatic alcohol which is a copolymerization component of the polyester resin A has a large number of carbon atoms.
  • the SP value of the polyester part in the polyester resin A is too low, the phase with the polyester resin B in the fixing temperature region is preferable. Solubility will decrease. Therefore, when Sa is less than 9.50, phase separation from the polyester resin B occurs at the time of fixing, and low-temperature fixability (high-speed fixability) decreases in a high-speed development system. On the other hand, when Sa is larger than 11.00, the compatibility with the polyester resin B becomes excessive, and the storability of a fixed image at a high temperature is lowered. Also, image peeling tends to occur when the image is bent.
  • the Tg of the toner on the image is lowered, and the melt viscosity of the toner on the image is slightly lowered in a high temperature environment. As a result, it is considered that when the image is bent, the adhesion between the paper and the toner is reduced and the image is easily peeled off.
  • SP value used in this case is the Fedors method [Poly. Eng. Sci. , 14 (2) 147 (1974)], and calculated from the types and ratios of the monomers constituting the resin.
  • portion a the portion of the polyester resin A that can take the crystal structure
  • the crystal nucleating agent When the crystal nucleating agent is not bound, the rate of crystal growth at the site a is slow and a reversible phase transition structure cannot be obtained.
  • the crystal nucleating agent when the crystal nucleating agent is present in the polymer without being bonded to the polymer, the crystal nucleating agent generally has a low molecular weight, so that it easily deposits on the toner surface, and the heat resistant storage stability of the toner. Will be reduced.
  • the crystal nucleating agent forming the crystal nucleating agent part is not particularly limited as long as it is a compound having a crystallization rate faster than that of the site a.
  • the main chain is preferably a compound having a hydrocarbon-based moiety and having one or more functional groups capable of reacting with the terminal of the polyester resin portion.
  • a compound in which the hydrocarbon moiety is linear and the number of functional groups that react with the polyester resin portion is one is preferable.
  • the molecular weight of the crystal nucleating agent is preferably from 100 to 10,000, more preferably from 150 to 5,000, from the viewpoint of increasing the reactivity between the crystal nucleating agent and the terminal of the polyester resin part.
  • the crystal nucleating agent is not particularly limited as long as it can be bonded to the terminal of the polyester resin portion, but an aliphatic carboxylic acid having 10 to 30 carbon atoms and / or an aliphatic alcohol having 10 to 30 carbon atoms. preferable. This is preferable because the crystal nucleating agent has a higher crystallinity by having a certain number of carbons. Moreover, it is preferable also from a viewpoint that molecular mobility becomes higher than the site
  • the amount of the crystal nucleating agent is 0.1 mol part or more and 7.0 mol part or less, preferably 0.2 mol part or more and 5 mol part or more with respect to 100 mol parts of the raw material monomer in the polyester resin A. 0.0 mol part or less is preferably contained. If it is in said range, the compatibility of the polyester resin A and the polyester resin B can be adjusted moderately, and it can fully improve also about the image storage stability of a fixed image.
  • polyester resin A A sample solution of polyester resin A was precisely weighed and 2 ml of chloroform was added and dissolved to prepare a sample solution.
  • the polyester resin A which is a raw material of the toner is used.
  • a toner containing the polyester resin A can be used as a sample.
  • DHBA 2,5-dihydroxybenzoic acid
  • MALDI-TOFMS Reflex III manufactured by Bruker Daltonics
  • the SP value of the polyester portion and the polyester resin B in the polyester resin A is within a certain range. It is necessary to be. Specifically, when the SP value of the polyester part in the polyester resin A is Sa and the SP value of the polyester resin B is Sb, it is important that Sa and Sb satisfy the following formula. ⁇ 0.65 ⁇ Sb ⁇ Sa ⁇ 0.70 Formula 1
  • the SP value Sa of the polyester part in the polyester resin A and the SP value Sb of the polyester resin B are: -0.55 ⁇ Sb-Sa ⁇ 0.70 It is preferable to satisfy -0.50 ⁇ Sb-Sa ⁇ 0.50 Is more preferable.
  • the difference in SP value (Sb ⁇ Sa) is an index indicating the ease of compatibility between the polyester resin A and the polyester resin B during heat melting and the ease of phase separation at room temperature.
  • the SP value (solubility parameter) is conventionally used as an index indicating the ease of mixing between resins and between resin and wax.
  • the SP value difference between the polyester resin A and the polyester resin B it is necessary to set the SP value difference between the polyester resin A and the polyester resin B to a specific value. is there.
  • the ratio of the molecular weight of 1500 or less is 5.0 area% or more, It is important that it is 15.0 area% or less. Preferably they are 9.0 area% or more and 13.0 area% or less.
  • This low molecular weight component (component having a molecular weight of 1500 or less) is a component that easily occurs when the reactivity of the acid and the alcohol component is different when the polyester resin is polymerized.
  • the amount of the low molecular weight component can be adjusted by the monomer composition and polymerization conditions.
  • the method is not particularly limited as long as it can be adjusted to a predetermined low molecular weight, but there are the following methods as a method. For example, to change the polymerization conditions at the start, to control the water in the reaction system to suppress the polycondensation reaction, or to change the monomer type in order to promote the esterification reaction in which the acid and alcohol monomer react That is.
  • Such low molecular weight components have a low glass transition temperature. For this reason, a plasticizing effect on the toner is expressed at the time of fixing. Therefore, if the ratio of the molecular weight of 1500 or less exceeds 15.0 area%, uneven glossiness of the fixed image is likely to occur.
  • This low molecular weight component is a component that is easily melted by heat, and the component is likely to be unevenly distributed at the time of fixing, and it is considered that uneven glossiness is likely to occur in a low pressure fixing device with a small amount of heat.
  • the low molecular weight component having a specific composition is preferable because compatibility with a portion having a crystal structure is enhanced and an effect on fixability is exhibited.
  • the difference between the SP value Sc of the low molecular weight component and the SP value Sa of the polyester part in the polyester resin A having crystallinity preferably satisfies the following formula. ⁇ 0.50 ⁇ Sa ⁇ Sc ⁇ 0.50
  • the polyester resin A is not particularly limited as long as the crystal nucleating agent portion is bonded to the end of the polyester portion and the polyester portion has a portion capable of taking a crystal structure.
  • the resin having a portion capable of forming a crystal structure in the present case is a resin having an endothermic peak at the time of temperature rise and an exothermic peak at the time of temperature drop in the differential scanning calorimeter (DSC) measurement when the crystal structure is taken. That is.
  • the endothermic peak is measured according to the “ASTM D3418-82” measurement method.
  • Examples of the alcohol component that can be used when synthesizing the polyester part contained in the polyester resin A include the following compounds.
  • the alcohol component as a raw material monomer contains an aliphatic diol having 6 to 18 carbon atoms from the viewpoint of enhancing the crystallinity of the polyester molecular chain.
  • Examples of the aliphatic diol having 6 to 18 carbon atoms include 1,6-hexanediol, 1,7-heptanediol, 1,8-octanediol, 1,9-nonanediol, 1,10-decanediol, 1,11 -Undecanediol, 1,12-dodecanediol and the like.
  • aliphatic diols having 6 to 12 carbon atoms are preferable from the viewpoints of fixability and heat stability.
  • the content of the aliphatic diol having 6 to 18 carbon atoms is preferably 80 to 100 mol% in the alcohol component from the viewpoint of further improving crystallinity.
  • polyhydric alcohol components other than aliphatic diols having 6 to 18 carbon atoms that can be used as the alcohol component include polyoxypropylene adducts of 2,2-bis (4-hydroxyphenyl) propane, 2,2- Aromatic diols such as alkylene oxide adducts of bisphenol A represented by the following structural formula (I) including polyoxyethylene adducts of bis (4-hydroxyphenyl) propane, etc .; glycerol, pentaerythritol, trimethylolpropane, etc. Examples include trivalent or higher alcohols.
  • R represents an alkylene group having 2 or 3 carbon atoms.
  • X and y represent a positive number, and the sum of x and y is 1 to 16, preferably 1.5 to 5.
  • Examples of the acid component that can be used when synthesizing the polyester portion contained in the polyester resin A include the following compounds.
  • an aliphatic dicarboxylic acid compound having 6 to 18 carbon atoms is preferable from the viewpoint of enhancing the crystallinity of the polyester.
  • Examples of the aliphatic dicarboxylic acid compound having 6 to 18 carbon atoms include 1,8-octanedioic acid, 1,9-nonanedioic acid, 1,10-decanedioic acid, 1,11-undecanedioic acid, 1,12- And dodecanedioic acid.
  • aliphatic dicarboxylic acid compounds having 6 to 12 carbon atoms are preferable from the viewpoint of toner fixing properties and heat stability.
  • the content of the aliphatic dicarboxylic acid compound having 6 to 18 carbon atoms is preferably 80 to 100 mol% in the carboxylic acid component.
  • a carboxylic acid component other than the aliphatic dicarboxylic acid compound having 6 to 18 carbon atoms can be used in combination.
  • an aromatic dicarboxylic acid compound, a trivalent or higher valent aromatic polycarboxylic acid compound, and the like can be mentioned, but the invention is not particularly limited thereto.
  • the aromatic dicarboxylic acid compound also includes an aromatic dicarboxylic acid derivative that can become the same structural unit as the structural unit derived from the aromatic dicarboxylic acid by a condensation reaction.
  • the aromatic dicarboxylic acid compound include aromatic dicarboxylic acids such as phthalic acid, isophthalic acid and terephthalic acid, anhydrides of these acids, and alkyl (C1-3) esters thereof.
  • the alkyl group in the alkyl ester include a methyl group, an ethyl group, a propyl group, and an isopropyl group.
  • trivalent or higher polyvalent carboxylic acid compounds examples include 1,2,4-benzenetricarboxylic acid (trimellitic acid), 2,5,7-naphthalenetricarboxylic acid, and aromatic carboxylic acids such as pyromellitic acid, and these Derivatives such as acid anhydrides and alkyl (carbon number 1 to 3) esters may be mentioned.
  • the molar ratio (carboxylic acid component / alcohol component) between the alcohol component and the carboxylic acid component, which are raw material monomers for the condensation polymerization reaction, is preferably 0.80 or more and 1.20 or less.
  • the polyester resin A of the present invention has a heat of fusion ( ⁇ H) obtained from the area of the endothermic peak observed at the time of temperature rise in differential scanning calorimeter (DSC) measurement being 100 J / g or more and 140 J / g. preferable.
  • ⁇ H heat of fusion
  • TmA and TmB satisfy the following relationship. ⁇ 10 ⁇ TmB ⁇ TmA ⁇ 40 60 ⁇ TmA ⁇ 90 A more preferable range of TmA is 70 ° C. or higher and 85 ° C. or lower. It is preferable to have this relationship from the viewpoint of further improving fixing unevenness and cardboard fixing property at low pressure.
  • the acid value of the polyester resin A is preferably 2 mgKOH / g or more and 40 mgKOH / g or less from the viewpoint of good charging characteristics of the toner.
  • the hydroxyl value of the polyester resin A is 2 mgKOH / g or more and 40 mgKOH / g or less from a viewpoint of fixability and storage stability.
  • polyester resin B used in the toner of the present invention a polyester obtained by an ordinary production method can be used as long as the SP value and the ratio of the molecular weight of 1500 or less can be set to desired values.
  • divalent alcohol component examples include polyoxypropylene adducts of 2,2-bis (4-hydroxyphenyl) propane, polyoxyethylene adducts of 2,2-bis (4-hydroxyphenyl) propane, and the like.
  • An alkylene oxide adduct of bisphenol A represented by (I), ethylene glycol, 1,3-propylene glycol, neopentyl glycol, or the like can be used.
  • trivalent or higher alcohol component for example, sorbitol, pentaerythritol, dipentaerythritol and the like can be used.
  • Polyester B applied to the present invention can be used alone or from these dihydric alcohol components and trihydric or higher polyhydric alcohol components.
  • divalent carboxylic acid component examples include maleic acid, fumaric acid, phthalic acid, isophthalic acid, terephthalic acid, succinic acid, adipic acid, n-dodecenyl succinic acid, anhydrides of these acids, or lower Examples include alkyl esters.
  • trivalent or higher polyvalent carboxylic acid component examples include 1,2,4-benzenetricarboxylic acid, 2,5,7-naphthalenetricarboxylic acid, pyromellitic acid, emporic trimer acid and acid anhydrides thereof, lower Examples include alkyl esters.
  • the manufacturing method of polyester is not specifically limited, It can manufacture by esterification reaction or transesterification reaction using said each monomer.
  • a commonly used esterification catalyst such as dibutyltin oxide may be appropriately used in order to accelerate the reaction.
  • the glass transition temperature (Tg) of the polyester resin B is preferably 45 ° C. or higher and 70 ° C. or lower from the viewpoints of fixability and storage stability.
  • the softening point TmB of the polyester resin B is preferably 80 ° C. or higher and 130 ° C. or lower, preferably 90 ° C. or higher and 120 ° C. or lower, from the viewpoint of low-temperature fixability of the toner.
  • the acid value of the polyester resin B is preferably 2 mgKOH / g or more and 40 mgKOH / g or less from the viewpoint of good charging characteristics of the toner.
  • the hydroxyl value is preferably 2 mgKOH / g or more and 70 mgKOH / g or less from the viewpoints of fixability and storage stability.
  • the mass ratio of the polyester resin A and the polyester resin B is preferably 5:95 to 40:60 from the viewpoints of low-temperature fixability and long-term storage stability of images in a high-temperature environment. More preferably, it is 10:90 to 30:70.
  • the weight average molecular weight Mwb in the gel permeation chromatography (GPC) of the tetrahydrofuran (THF) soluble part of the polyester resin B is 3000 or more and 100,000 or less.
  • the toner of the present invention composed of the polyester resin A and the polyester resin B has a phase separation structure at room temperature. Therefore, it is preferable that various physical properties obtained from the toner are apparently the same values as the physical properties of the toner when the phase separation structure is adopted.
  • the softening point (Tm) of the toner is preferably 80 ° C. or higher and 120 ° C. or lower from the viewpoint of low temperature fixability of the toner. More preferably, it is 90 degreeC or more and 100 degrees C or less.
  • the polyester resin A and the polyester resin B are binder resins, but other known resins may be added as binder resins for toner as long as the effects of the present invention are not impaired.
  • a wax can be used as necessary to give the toner releasability.
  • hydrocarbon waxes such as low molecular weight polyethylene, low molecular weight polypropylene, microcrystalline wax, and paraffin wax are preferable because of easy dispersion in the toner and high releasability. If necessary, a small amount of one or two or more kinds of waxes may be used in combination.
  • Biscol registered trademark
  • 330-P, 550-P, 660-P, TS-200 Sanyo Chemical Industries
  • high wax 400P, 200P, 100P, 410P, 420P, 320P, 220P, 210P, 110P Mitsubishi Chemicals
  • Sasol H1, H2, C80, C105, C77 Schottyl-Sasol
  • HNP-1, HNP-3, HNP-9, HNP-10, HNP-11, HNP-12 Nippon Seiki Co., Ltd.
  • Unilin registered trademark
  • 3 Unicid
  • Unicid registered trademark
  • Unicid registered trademark
  • the timing of adding the wax may be added at the time of melt kneading during the production of the toner, or may be at the time of producing the polyester resin B, and is appropriately selected from existing methods. These waxes may be used alone or in combination.
  • the wax is preferably added in an amount of 1 to 20 parts by mass with respect to 100 parts by mass of the binder resin.
  • the toner of the present invention may be a magnetic toner or a non-magnetic toner.
  • magnetic iron oxide iron oxides such as magnetite, maghemite, and ferrite are used.
  • the magnetic iron oxide is subjected to a treatment of shearing the slurry during production to loosen the magnetic iron oxide.
  • the amount of magnetic iron oxide contained in the toner is preferably 25% by mass or more and 45% by mass or less in the toner, more preferably 30% by mass or more and 45% by mass or less.
  • carbon black and other conventionally known pigments and dyes, or one or more of them can be used as the colorant.
  • the colorant is preferably 0.1 parts by mass or more and 60.0 parts by mass or less, more preferably 0.5 parts by mass or more and 50.0 parts by mass or less with respect to 100.0 parts by mass of the resin component.
  • a fluidity improver having high fluidity-imparting ability to the toner particle surface can be used as the inorganic fine powder.
  • any fluidity improver can be used as long as the fluidity can be increased by adding the toner particles externally before and after the addition.
  • Fluorine resin powders such as vinylidene fluoride fine powder and polytetrafluoroethylene fine powder; wet-process silica, fine-powder silica such as dry-process silica, these silicas by silane coupling agent, titanium coupling agent, or silicone oil Treated silica with surface treatment.
  • a preferred fluidity improver is a fine powder produced by vapor phase oxidation of a silicon halogen compound, and is referred to as dry process silica or fumed silica.
  • dry process silica or fumed silica For example, the thermal decomposition oxidation reaction of silicon tetrachloride gas in oxygen and hydrogen is utilized, and the reaction formula is as follows. SiCl 4 + 2H 2 + O 2 ⁇ SiO 2 + 4HCl
  • a composite fine powder of silica and another metal oxide obtained by using another metal halogen compound such as aluminum chloride or titanium chloride together with a silicon halogen compound may be used.
  • a treated silica fine powder obtained by hydrophobizing a silica fine powder produced by vapor phase oxidation of the silicon halogen compound is preferable.
  • the treated silica fine powders those obtained by treating the silica fine powder so that the degree of hydrophobicity titrated by the methanol titration test is in the range of 30 to 98 are particularly preferable.
  • hydrophobizing method it is applied by chemically treating with an organosilicon compound that reacts or physically adsorbs with silica fine powder.
  • an organosilicon compound that reacts or physically adsorbs with silica fine powder.
  • silica fine powder produced by vapor phase oxidation of a silicon halogen compound is treated with an organosilicon compound.
  • organosilicon compounds include the following.
  • the silica fine powder may be treated with silicone oil, or may be treated in combination with the hydrophobic treatment.
  • silicone oil one having a viscosity at 25 ° C. of 30 mm 2 / s or more and 1000 mm 2 / s or less is used.
  • dimethyl silicone oil, methylphenyl silicone oil, ⁇ -methylstyrene modified silicone oil, chlorophenyl silicone oil, and fluorine modified silicone oil are particularly preferred.
  • Examples of the method for treating silicone oil include the following methods. A method in which silica fine powder treated with a silane coupling agent and silicone oil are directly mixed using a mixer such as a Henschel mixer. A method of spraying silicone oil onto silica fine powder as a base. Alternatively, after dissolving or dispersing silicone oil in a suitable solvent, silica fine powder is added and mixed to remove the solvent. More preferably, the silicone oil-treated silica is heated to 200 ° C. or higher (more preferably 250 ° C. or higher) in an inert gas to stabilize the surface coating after the silicone oil treatment.
  • a preferred silane coupling agent is hexamethyldisilazane (HMDS).
  • the silica is preferably treated by a method in which silica is treated with a coupling agent and then treated with silicone oil, or a method in which silica is treated with a coupling agent and silicone oil at the same time.
  • the inorganic fine powder is used in an amount of 0.01 to 8.00 parts by weight, preferably 0.10 to 4.00 parts by weight, based on 100.00 parts by weight of the toner particles.
  • toner of the present invention there are resin fine particles and inorganic fine particles that function as a charge auxiliary agent, conductivity imparting agent, fluidity imparting agent, anti-caking agent, release agent at the time of fixing with a heat roller, lubricant, and abrasive.
  • the lubricant examples include polyfluorinated ethylene powder, zinc stearate powder, and polyvinylidene fluoride powder. Of these, polyvinylidene fluoride powder is preferred.
  • the abrasive examples include cerium oxide powder, silicon carbide powder, and strontium titanate powder. These external additives can be sufficiently mixed using a mixer such as a Henschel mixer to obtain the toner of the present invention.
  • the toner of the present invention can be used as a one-component developer, but can also be mixed with a magnetic carrier and used as a two-component developer.
  • the magnetic carrier examples include iron powder with oxidized surface or non-oxidized iron powder; metal particles such as iron, lithium, calcium, magnesium, nickel, copper, zinc, cobalt, manganese, rare earth, and alloy particles thereof.
  • metal particles such as iron, lithium, calcium, magnesium, nickel, copper, zinc, cobalt, manganese, rare earth, and alloy particles thereof.
  • Commonly known materials such as magnetic particles such as oxide particles; ferrite; and a magnetic material-dispersed resin carrier (so-called resin carrier) containing a magnetic material and a binder resin that holds the magnetic material in a dispersed state are used. it can.
  • the mixing ratio of the magnetic carrier is preferably 2% by mass or more and 15% by mass or less as the toner concentration in the developer.
  • the method for producing the toner of the present invention is not particularly limited, but a production process in which the polyester resin A and the polyester resin B are melt-kneaded and cooled and solidified in that the toner has excellent low-temperature fixability. It is preferable that it is a manufacturing method using the crushing method to include.
  • the toner of the present invention causes a reversible phase transition by controlling the crystal nucleating agent bonded to the molecular terminal of polyester resin A, the difference in SP value between polyester resin A and polyester resin B, and the molecular weight of polyester resin B.
  • a desired toner can be obtained.
  • a predetermined amount of polyester resin A, polyester resin B, colorant, other additives, and the like are mixed and mixed as materials constituting the toner particles.
  • the mixing apparatus include a double-con mixer, a V-type mixer, a drum-type mixer, a super mixer, a Henschel mixer, a nauter mixer, and a mechano hybrid (manufactured by Nippon Coke Industries, Ltd.).
  • the mixed material is melt-kneaded to disperse the colorant and the like in the polyester resin.
  • a batch kneader such as a pressure kneader or a Banbury mixer, or a continuous kneader can be used. Due to the advantage of continuous production, single-screw or twin-screw extruders are the mainstream.
  • KTK type twin screw extruder manufactured by Kobe Steel Co., Ltd.
  • TEM type twin screw extruder manufactured by Toshiba Machine Co., Ltd.
  • PCM kneader manufactured by Ikekai Tekko
  • twin screw extruder manufactured by Kay Sea Kay Co., Ltd.
  • Co-kneader manufactured by Buss
  • kneedex manufactured by Nippon Coke Industries Co., Ltd.
  • the resin composition obtained by melt-kneading may be rolled with two rolls or the like and cooled with water or the like in the cooling step.
  • the cooled product of the resin composition is pulverized to a desired particle size in the pulverization step.
  • a pulverizer such as a crusher, a hammer mill, or a feather mill
  • a kryptron system manufactured by Kawasaki Heavy Industries
  • a super rotor manufactured by Nisshin Engineering
  • a turbo mill Finely pulverize with a turbomill made by Turbo Industries
  • air jet type fine pulverizer for example, after coarse pulverization with a pulverizer such as a crusher, a hammer mill, or a feather mill.
  • classification such as inertial class elbow jet (manufactured by Nippon Steel & Mining Co., Ltd.), centrifugal classifier turboplex (manufactured by Hosokawa Micron), TSP separator (manufactured by Hosokawa Micron), Faculty (manufactured by Hosokawa Micron)
  • the toner particles are obtained by classification using a machine or a sieving machine.
  • the toner particles can be subjected to a surface treatment such as a spheroidizing treatment.
  • the toner of the present invention can be obtained by sufficiently mixing the desired additives with a mixer such as a Henschel mixer, if necessary.
  • a method for measuring physical properties of the resin and toner of the present invention is as follows. Examples described later are also based on this method.
  • a standard polystyrene sample for preparing a calibration curve for example, one having a molecular weight of about 10 2 to 10 7 manufactured by Tosoh Corporation or Showa Denko KK is used, and at least about 10 standard polystyrene samples are suitably used.
  • the detector uses an RI (refractive index) detector.
  • the column it is preferable to combine a plurality of commercially available polystyrene gel columns.
  • a sample is produced as follows. Place the sample in THF and leave it at 25 ° C. for several hours, then shake it well, mix well with THF (until the sample is no longer integrated), and let stand for more than 12 hours. At that time, the standing time in THF is set to 24 hours. Thereafter, a sample processing filter (pore size 0.2 ⁇ m or more and 0.5 ⁇ m or less, for example, Myssho Disc H-25-2 (manufactured by Tosoh Corporation)) can be used as a GPC sample. The sample concentration is adjusted so that the resin component is 0.5 mg / ml or more and 5.0 mg / ml or less.
  • the weight average molecular weight, number average molecular weight, and molecular weight ratio of molecular weight of 1500 or less were measured by the above methods.
  • the ratio of components having a molecular weight of 1500 or less is the area ratio of the region having a molecular weight of 1500 or less in a graph created with the horizontal axis representing the molecular weight, the vertical axis representing the signal intensity (mV) from the RI detector, and the horizontal axis representing the logarithm. is there.
  • the portion after the retention time at which the molecular weight was 1500 was collected with a monodisperse polystyrene standard sample.
  • the sampled solution was distilled under reduced pressure and the solvent was removed from the solution, which was vacuum-dried for 8 hours.
  • Deuterated chloroform is added to the obtained sample, which is transferred to an NMR sample tube and used as an NMR measurement sample. Measured proton spectrum using NMR (Bruker AVANCEIII 500MHz as the instrument).
  • the monomer-derived peak was assigned, and the component molar ratio in the resin having a molecular weight of 1500 or less was calculated from the integrated value of the peak derived from each monomer.
  • the melting point of the polyester resin and the wax is the peak area of the maximum endothermic peak in the DSC curve measured according to ASTM D3418-82 using a differential scanning calorimeter “Q2000” (manufactured by TA Instruments).
  • the amount of heat obtained from the above is defined as the amount of heat of fusion.
  • the temperature correction of the device detection unit uses the melting points of indium and zinc, and the correction of heat uses the heat of fusion of indium. Specifically, about 2 mg of a sample is precisely weighed, placed in an aluminum pan, and an empty aluminum pan is used as a reference. Measurement is performed at ° C / min. In the measurement, the temperature is once raised to 200 ° C., subsequently lowered to 30 ° C., and then the temperature is raised again.
  • the maximum endothermic peak temperature of the DSC curve in the temperature range of 30 to 200 ° C. in the second temperature raising process is the melting point, and the calorie obtained from the peak area is the calorific value.
  • Tg of the polyester resin and toner is measured according to ASTM D3418-82 using a differential scanning calorimeter “Q2000” (manufactured by TA Instruments).
  • the temperature correction of the device detection unit uses the melting points of indium and zinc, and the correction of heat uses the heat of fusion of indium. Specifically, about 2 mg of a sample is precisely weighed, placed in an aluminum pan, and an empty aluminum pan is used as a reference. Measurement is performed at ° C / min. In the measurement, the temperature is once raised to 200 ° C., subsequently lowered to 30 ° C., and then the temperature is raised again. The specific heat change can be obtained in the temperature range of 40 ° C. to 100 ° C. in the second temperature raising process. At this time, the intersection of the intermediate point line of the baseline before and after the change in specific heat and the differential heat curve is defined as the glass transition temperature Tg of the polyester resin or toner.
  • the softening point of the polyester resin and toner is measured using a constant-load extrusion type capillary rheometer “Flow Characteristic Evaluation Device Flow Tester CFT-500D” (manufactured by Shimadzu Corporation) according to the manual attached to the device.
  • Flow Characteristic Evaluation Device Flow Tester CFT-500D manufactured by Shimadzu Corporation
  • the “melting temperature in the 1/2 method” described in the manual attached to the “flow characteristic evaluation apparatus, flow tester CFT-500D” is the softening point.
  • a measurement sample about 1.0 g of a sample is compression-molded at about 10 MPa using a tablet-molding compressor (for example, NT-100H, manufactured by NPA System) in an environment of 25 ° C. for about 60 seconds.
  • a tablet-molding compressor for example, NT-100H, manufactured by NPA System
  • a cylindrical shape having a diameter of about 8 mm is used.
  • Test mode Temperature rising method temperature rising rate: 4 ° C./min Starting temperature: 50 ° C Achieving temperature: 200 ° C
  • the acid value is the number of mg of potassium hydroxide necessary for neutralizing the acid contained in 1 g of the sample.
  • the acid value of the polyester resin is measured according to JIS K 0070-1992. Specifically, it is measured according to the following procedure.
  • the factor of the potassium hydroxide solution was as follows: 25 ml of 0.1 mol / l hydrochloric acid was placed in an Erlenmeyer flask, a few drops of the phenolphthalein solution were added, titrated with the potassium hydroxide solution, and the hydroxide required for neutralization. Determined from the amount of potassium solution.
  • the 0.1 mol / l hydrochloric acid one prepared according to JIS K 8001-1998 is used.
  • A [(CB) ⁇ f ⁇ 5.61] / S
  • A acid value (mgKOH / g)
  • B addition amount (ml) of a potassium hydroxide solution in a blank test
  • C addition amount (ml) of a potassium hydroxide solution in this test
  • f potassium hydroxide Solution factor
  • S sample (g).
  • the hydroxyl value is the number of mg of potassium hydroxide required to neutralize acetic acid bonded to a hydroxyl group when 1 g of a sample is acetylated.
  • the hydroxyl value of the polyester resin is measured according to JIS K 0070-1992. Specifically, it is measured according to the following procedure.
  • acetylating reagent 25 g of special grade acetic anhydride is placed in a 100 ml volumetric flask, pyridine is added to make a total volume of 100 ml, and shaken sufficiently to obtain an acetylating reagent.
  • the obtained acetylating reagent is stored in a brown bottle so as not to come into contact with moisture, carbon dioxide gas and the like.
  • the flask is removed from the glycerin bath and allowed to cool. After standing to cool, 1 ml of water is added from the funnel and shaken to hydrolyze acetic anhydride. The flask is again heated in the glycerin bath for 10 minutes for further complete hydrolysis. After cooling, wash the funnel and flask walls with 5 ml of ethyl alcohol. Add several drops of the phenolphthalein solution as an indicator and titrate with the potassium hydroxide solution. The end point of titration is when the light red color of the indicator lasts for about 30 seconds. (B) A titration similar to the above operation is performed except that a sample of blank test polyester resin is not used.
  • the weight average particle diameter (D4) of the toner is a precision particle size distribution measuring device “Coulter Counter Multisizer 3” (registered trademark, manufactured by Beckman Coulter, Inc.) equipped with an aperture tube of 100 ⁇ m and a measurement condition setting.
  • the measurement data is analyzed with 25,000 effective measurement channels. And calculated.
  • electrolytic aqueous solution used for the measurement special grade sodium chloride is dissolved in ion-exchanged water so as to have a concentration of about 1% by mass, for example, “ISOTON II” (manufactured by Beckman Coulter, Inc.) can be used.
  • the dedicated software Prior to measurement and analysis, the dedicated software was set as follows.
  • SOM Standard Measurement Method
  • the dedicated software set the total count in the control mode to 50000 particles, set the number of measurements once, and set the Kd value to “standard particles 10.0 ⁇ m” (Beckman Coulter, Inc.) Set the value obtained using The threshold and noise level are automatically set by pressing the threshold / noise level measurement button.
  • the current is set to 1600 ⁇ A
  • the gain is set to 2
  • the electrolyte is set to ISOTON II
  • the aperture tube flash after measurement is checked.
  • the bin interval is set to logarithmic particle size
  • the particle size bin is set to 256 particle size bin
  • the particle size range is set to 2 ⁇ m to 60 ⁇ m.
  • the specific measurement method is as follows. (1) About 200 ml of the electrolytic solution is placed in a glass 250 ml round bottom beaker exclusively for Multisizer 3, set on a sample stand, and the stirrer rod is stirred counterclockwise at 24 rpm. Then, dirt and bubbles in the aperture tube are removed by the “aperture flush” function of the analysis software. (2) About 30 ml of the electrolytic aqueous solution is put in a glass 100 ml flat bottom beaker, and "Contaminone N" (nonionic surfactant, anionic surfactant, organic builder pH 7 precision measurement is used as a dispersant therein.
  • a fixed amount of ion-exchanged water is added, and about 2 ml of the above-mentioned Contaminone N is added to this water tank.
  • the beaker of (2) is set in the beaker fixing hole of the ultrasonic disperser, and the ultrasonic disperser is operated. And the height position of a beaker is adjusted so that the resonance state of the liquid level of the electrolyte solution in a beaker may become the maximum.
  • the ultrasonic dispersion process is continued for another 60 seconds.
  • the temperature of the water tank is appropriately adjusted so as to be 10 ° C. or higher and 40 ° C. or lower.
  • the electrolyte solution of (5) in which the toner is dispersed is dropped using a pipette, and the measurement concentration is adjusted to about 5%. . Measurement is performed until the number of measured particles reaches 50,000.
  • the fixed data is analyzed with the dedicated software attached to the apparatus, and the weight average particle diameter (D4) is calculated.
  • the “average diameter” on the analysis / volume statistics (arithmetic average) screen when the graph / volume% is set with the dedicated software is the weight average particle diameter (D4).
  • the reaction was carried out for 2 hours, and then the reaction vessel was depressurized to 5 kPa or less and reacted at 200 ° C. for 3.5 hours. . Thereafter, the pressure in the reaction vessel was gradually released and returned to normal pressure, and then the crystal nucleating agent (n-octadecanoic acid) shown in Table 1 was added, and the mixture was added at 210 ° C. for 2 hours under normal pressure. Reacted. Thereafter, the pressure in the reaction vessel was reduced again to 5 kPa or less and the reaction was carried out at 190 ° C. for 3 hours to obtain Resin A1-1.
  • the crystal nucleating agent n-octadecanoic acid
  • polyester resins A1-2 to A12 were obtained in the same manner as polyester resin A1-1 except that the monomer types and blending amounts shown in Table 1 were used, and the crystal nucleating agent was used.
  • the mass spectrum of MALDI-TOFMS was measured, and the peak of the composition in which the crystal nucleating agent was bonded to the end of the polyester resin portion was measured. It was confirmed that the molecular ends and the crystal nucleating agent were bound.
  • Table 2 shows properties of the obtained resins A1-2 and A1-3 and polyester resins A2 to A12.
  • polyester resin B2 was obtained in the same manner as the polyester resin B1 except that the monomer types and blending amounts shown in Table 3 were used. Table 4 shows various physical properties of the obtained resin B2. Further, when the monomer ratio of the low molecular weight component of the resin was analyzed, 63.6 mol parts of TPA, 2.2 mol parts of TMA, 1.1 mol parts of FA, 53.3 mol parts of BPA-PO adduct, 24.9 mol parts of BPA-EO adduct, EG2 Contained 3 mol parts. The SP value of the low molecular weight component calculated from this composition ratio was 10.01 (cal / cm 3 ) 1/2 .
  • polyester resin B3 was obtained in the same manner as the polyester resin B1 except that the monomer types and blending amounts shown in Table 3 were used.
  • Table 4 shows properties of the obtained resin B3.
  • the SP value of the low molecular weight component calculated from this composition ratio was 10.24 (cal / cm 3 ) 1/2 .
  • polyester resin B4 was obtained in the same manner as the polyester resin B1 except that the monomer types and blending amounts shown in Table 3 were used. Table 4 shows properties of the obtained resin B4.
  • the monomer ratio of the low molecular weight component of the resin was analyzed, it contained 58.3 mol parts of TPA, 3.4 mol parts of TMA, 76.2 mol parts of BPA-PO adduct, 28.4 mol parts of BPA-EO adduct, 0.7 mol part of EG.
  • the SP value of the low molecular weight component calculated from this composition ratio was 9.87 (cal / cm 3 ) 1/2 .
  • polyester resin B5 was obtained in the same manner as the polyester resin B2, except that the condensation time was increased in order to increase the softening point.
  • Table 4 shows properties of the obtained resin B5. Further, when the monomer ratio of the low molecular weight component of the resin was analyzed, 63.6 mol parts of TPA, 4.5 mol parts of TMA, 1.7 mol parts of FA, 55.9 mol parts of BPA-PO adduct, 25.6 mol parts of BPA-EO adduct, EG2 Contained 5 mol parts.
  • the SP value of the low molecular weight component calculated from this composition ratio was 10.03 (cal / cm 3 ) 1/2 .
  • polyester resin B6 was obtained in the same manner as the polyester resin B1 except that the condensation time was shortened in order to lower the softening point. Table 4 shows properties of the obtained resin B6. Further, when the monomer ratio of the low molecular weight component of the resin was analyzed, it contained 63.6 mol parts of TPA, 3.4 mol parts of TMA, 88.9 mol parts of BPA-PO adduct, 21.3 mol parts of BPA-EO adduct, and 0.6 mol part of EG. Was. The SP value of the low molecular weight component calculated from this composition ratio was 9.86 (cal / cm 3 ) 1/2 .
  • polyester resin B7 Into a reaction vessel equipped with a nitrogen introduction tube, a dehydration tube, a stirrer, and a thermocouple, each monomer having a blending amount shown in Table 3 was added, and then dibutyltin was added as a catalyst to 1.5 parts by mass with respect to 100 parts by mass of the total amount of monomers. Part by mass was added. Next, the temperature was raised at 10 ° C./hour under normal pressure in a nitrogen atmosphere, and the temperature was raised to 220 ° C. to conduct an esterification reaction, which was terminated when water no longer distilled.
  • Resin B7 shows properties of the obtained resin B7.
  • resin B7 having a low area percentage of a molecular weight of 1500 or less was obtained by drastically changing the type of monomer used.
  • the monomer ratio of the low molecular weight component of the resin when the monomer ratio of the low molecular weight component of the resin was analyzed, it contained 48.0 mol parts of TPA, 3.3 mol parts of EG, 4.2 mol parts of PG, and 5.3 mol parts of NPG.
  • the SP value of the low molecular weight component calculated from this composition ratio was 10.49 (cal / cm 3 ) 1/2 .
  • the above materials were mixed with a Henschel mixer (FM-75 type, manufactured by Mitsui Miike Chemical Co., Ltd.), and then a twin-screw kneader (PCM-30 type, manufactured by Ikekai Tekko Co., Ltd.) )) And kneaded under the conditions of a rotation speed of 3.3 s ⁇ 1 and a kneading resin temperature of 110 ° C.
  • the obtained kneaded material was cooled and coarsely pulverized to 1 mm or less with a hammer mill to obtain a coarsely pulverized material.
  • the resulting coarsely pulverized product was finely pulverized with a mechanical pulverizer (T-250 manufactured by Turbo Industry Co., Ltd.). Further, the finely pulverized powder thus obtained was classified using a multi-division classifier utilizing the Coanda effect to obtain negative triboelectrically chargeable toner particles having a weight average particle diameter of 7.0 ⁇ m.
  • Toner 1 100 parts by mass of the obtained toner particles were subjected to a surface treatment with 1.0 part by mass of titanium oxide fine particles having an average diameter of 50 nm of primary particles surface-treated with 15% by mass of isobutyltrimethoxysilane and 20% by mass of hexamethyldisilazane.
  • Toner 1 was obtained by adding 0.8 part by mass of hydrophobic silica fine particles having an average particle diameter of 16 nm and mixing with a Henschel mixer (FM-75 type, manufactured by Mitsui Miike Chemical Co., Ltd.). Table 5 shows the softening points of the obtained toner 1.
  • Color laser copier paper manufactured by Canon, 80 g / m 2
  • a black cartridge was used as a cartridge for evaluation. That is, the product toner was extracted from a commercially available black cartridge, the interior was cleaned by air blow, and 150 g of the toner 1 of the present invention was filled for evaluation.
  • the product toner was extracted from each of the magenta, yellow, and cyan stations, and evaluation was performed by inserting magenta, yellow, and cyan cartridges with the toner remaining amount detection mechanism disabled. Thereafter, a solid black unfixed image was output so that the applied toner amount was 0.6 mg / cm 2 .
  • the fixing temperature of the fixing device was 150 ° C., and the process speed was increased every 20 mm / sec in the range from 300 mm / sec to 500 mm / sec, and the solid black unfixed image was fixed.
  • the obtained solid black image was rubbed and reciprocated 5 times with sylbon paper to which a load of about 100 g was applied, and the point at which the density reduction rate of the image density before and after the rub was 10% or less was determined as the fixing process speed. The faster this speed, the better the toner is at low temperature fixability (high speed fixability).
  • the evaluation results are shown in Table 6.
  • C The fixing speed is 300 mm / sec or more and less than 350 mm / sec.
  • D The fixing speed is less than 300 mm / sec.
  • the fixing temperature of the fixing device is set to 150 ° C., and the fixing nip surface pressure is increased every 0.02 MPa in a range from 0.08 MPa to 0.24 MPa to fix the solid black unfixed image. It was.
  • the solid black image thus obtained was rubbed and reciprocated 5 times with sylbon paper applied with a load of about 100 g, and the fixing nip surface pressure at which the density reduction rate of the image density before and after rubbing was 10% or less was fixed.
  • the lower the fixing nip surface pressure the more excellent the low-temperature fixing property (low-pressure fixing property).
  • the evaluation results are shown in Table 6.
  • B The fixing nip pressure is 0.10 MPa or more and less than 0.14 MPa.
  • C The fixing nip pressure is 0.14 MPa or more and less than 0.20 MPa.
  • D The fixing nip pressure is 0.20 MPa or more.
  • the product toner was extracted from each of the magenta, yellow, and cyan stations, and evaluation was performed by inserting magenta, yellow, and cyan cartridges with the toner remaining amount detection mechanism disabled. Thereafter, a solid black unfixed image was output so that the applied toner amount was 0.6 mg / cm 2 . Unfixed images were fixed by shaking the process speed at 200 mm / sec, fixing nip pressure at 0.25 MPa, and fixing temperature of the fixing device from 100 ° C. to 200 ° C. in increments of 10 ° C.
  • the obtained solid black image was rubbed 5 times with Sylbon paper applied with a load of about 100 g, and the temperature at which the density reduction rate of the image density before and after the rub was 10% or less was defined as the fixing temperature.
  • Fixability evaluation criteria were as follows. The evaluation results are shown in Table 6. A: The fixing temperature is less than 120 ° C. B: The fixing temperature is 120 ° C. or higher and lower than 130 ° C. C: The fixing temperature is 130 ° C. or higher and lower than 140 ° C. D: The fixing temperature is 140 ° C. or higher and lower than 150 ° C. E: The fixing temperature is 150 ° C. or higher.
  • the glossiness (gloss) at 10 points on the output image was measured, and gloss unevenness was evaluated by the difference between the highest and lowest glossiness.
  • the evaluation criteria were as follows. The evaluation results are shown in Table 6. A: The gross difference is less than 2%. B: The gloss difference is 2% or more and less than 5%. C: The gloss difference is 5% or more and less than 7%. D: The gloss difference is 7% or more and less than 10%. E: The gloss difference is 10% or more. As described above, with respect to Example 1, good results were obtained in any evaluation.
  • Toners 2 to 15 were obtained in the same manner as in Example 1 except that the formulations shown in Table 5 were used.
  • Table 5 shows the softening points of the toners 2 to 15. Moreover, the same evaluation as Example 1 was performed. The results obtained are shown in Table 6.
  • Toners 16 to 20 were obtained in the same manner as in Example 1 except that the formulations shown in Table 5 were used.
  • Table 5 shows the softening points of the obtained toners 16 to 20.
  • the same evaluation as Example 1 was performed. The results obtained are shown in Table 6.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Developing Agents For Electrophotography (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

定着ニップ内圧力が低い定着器構成で且つ高速現像するシステムにおいても、良好な厚紙定着性を有し、且つ長期間保存しても安定した画像を有し、かつ定着の光沢ムラが少ない特徴を有するトナーを提供する。本発明のトナーは、ポリエステル樹脂A、ポリエステル樹脂B、及び着色剤を含有するトナー粒子を有するトナーにおいて、該ポリエステル樹脂Aは、結晶構造をとりうる部位を有するポリエステル部と、結晶核剤部とを有し、該ポリエステル部の末端に結晶核剤部が結合しており、該ポリエステル樹脂Bは、結晶構造をとりうる部位を有さず、該ポリエステル樹脂BのTHF可溶分のGPCのチャートにおける該樹脂Bの分子量1500以下の成分の割合が5.0~15.0面積%以下であり、該ポリエステル樹脂Aにおける該ポリエステル部のSP値をSa((cal/cm3)1/2)、該ポリエステル樹脂BのSP値をSb((cal/cm3)1/2)としたとき、該Saと該Sbとが下記式を満たす。 9.50≦Sa≦11.00 -0.65≦Sb-Sa≦0.70

Description

トナー
本発明は、電子写真法、静電荷像を顕像化するための画像形成方法及びトナージェットに使用されるトナーに関する。
一般的な電子写真法は、像担持体(感光体)上に潜像を形成し、該潜像にトナーを供給して可視像化し、紙などの転写材にトナー画像を転写した後に、熱/圧力により転写材上にトナー画像を定着して複写物を得る方法が知られている。
電子写真装置の省電力化、ウェイトタイムの短縮化のために、定着装置として、熱容量の小さいセラミックヒーターとフィルムを組み合わせたオンデマンド方式の定着装置が実用化されてきている。
このような定着装置では、長寿命化及び多様なメディア対応の観点から、定着装置の定着ニップ内圧力を低減させる試みがなされている。
また近年のプリントスピード高速化に伴い、トナーと紙などのメディアが定着装置のニップ内を通過する時間は年々短くなってきている。
さらに、近年、デジタルカメラ、携帯端末等によって取り込まれた画像データやポスター等、印字比率の高いグラフィック画像をユーザーがレーザープリンター(LBP)などの画像形成装置を用いて出力する機会が増加している。
このような背景から、印字比率の高い画像を、短時間で、しかもニップ内の定着圧力が低いという、より厳しい定着条件下においても、優れた低温定着性を示すトナーが求められてきている。
このような定着装置で低温定着化を達成するには、従来以上のトナーの低温定着化が必要であり、これに対して、結着樹脂として非晶性樹脂だけでなく、結晶性樹脂を使用するという報告が数多くされている。
結晶性樹脂は、ガラス転移温度付近で急激に溶融し、非晶性樹脂との相溶性を高める事で、低温定着性が改良できることが知られている(特許文献1)。
しかしながら、両者の相溶性が高すぎると、かえってトナーの耐熱保存性や結晶性が低下するという課題が挙げられる。
逆に非晶性樹脂と結晶性樹脂の相溶性を低くすると結晶性樹脂の結晶は形成され易くなる傾向にあるが、融点以上においても両者は相溶し難いため、特に定着時間が短い場合や、ニップ内圧力が低い場合、低温定着性を良化することは困難であった。
一方で、樹脂の低分子量成分の量を少なくすることで定着性とトナーの耐劣化性を向上できることが知られている(特許文献2)。
しかしながら、樹脂にシャープメルト性をもたせるだけでは定着圧力が低い場合は定着性が不十分である。
その課題を解決するために、低分子量成分が少ない非晶性ポリエステルと結晶性ポリエステルとを含有させることで、低温定着性と光沢性を改善できることが知られている(特許文献3)。
しかしながら、非晶性ポリエステルと結晶性ポリエステルだけを含有させるだけだと、定着工程においてトナーを溶融させると、非晶性ポリエステルと結晶性ポリエステルが相溶してしまう。その結果、定着画像のトナーが必要以上に可塑化してしまい、高温高湿といった過酷な環境において定着後のトナー画像がブロッキングしてしまうことがあった。 
このように、優れた低温定着性能と定着画像の高温環境での長期保存安定性との両立のための技術的課題は非常に多く、改良の余地を有する。 
特開2010-102058号公報 特開2005-84226号公報 特開2007-21595号公報
本発明の目的は上記問題点を解消したトナーを提供することである。
さらに、本発明の目的は、定着ニップ内圧力が低い定着器構成で且つ高速現像するシステムにおいても、良好な厚紙定着性を有し、且つ長期間保存しても安定した画像を有し、かつ定着の光沢ムラが少ない特徴を有するトナーを提供することである。
本発明は、ポリエステル樹脂A、ポリエステル樹脂B、及び着色剤を含有するトナー粒子を有するトナーであって、
 該ポリエステル樹脂Aは、結晶構造をとりうる部位を有するポリエステル部と、結晶核剤部とを有し、該ポリエステル部の末端に結晶核剤部が結合しており、
 該ポリエステル樹脂Bは、結晶構造をとりうる部位を有さない樹脂であり、
 該ポリエステル樹脂Bのテトラヒドロフラン(THF)可溶分の分子量分布を、ゲルパーミエーションクロマトグラフィー(GPC)によって測定した際に得られるチャートにおいて、分子量1500以下の成分の割合が5.0面積%以上、15.0面積%以下であり、
 該ポリエステル樹脂Aにおける該ポリエステル部のSP値Sa((cal/cm1/2)、該ポリエステル樹脂BのSP値をSb((cal/cm1/2)としたとき、該Saと該Sbとが下記式を満たすことを特徴とするトナー。
9.50≦Sa≦11.00
-0.65≦Sb-Sa≦0.70
本発明のトナーにおいては、定着時の加熱による温度上昇に伴い、ポリエステル樹脂Aとポリエステル樹脂Bとの存在状態が急速に変化する。そして、このような急激な存在状態の変化によって、発明の効果が得られるものである。以下詳細を説明する。
ポリエステル樹脂Aは、結晶構造をとりうる部位を有するポリエステル部を有する樹脂であって、結晶構造部の融点以上の温度に加熱されることによって融解し、ポリエステル樹脂Bに対する可塑効果を発揮する。その結果、トナーの低温定着性を向上させる。ポリエステル樹脂Aの融点を超えて加熱された際に、ポリエステル樹脂Aとポリエステル樹脂Bとが相溶状態となると、トナー全体としてもガラス転移温度(Tg)が大幅に低下し、溶融粘度も低い状態となる。そのため、定着時には両者が完全に相溶できる状態にすることが必要である。
一方、室温において、ポリエステル樹脂Aとポリエステル樹脂Bとが相溶状態となる場合には、トナー或いは定着後の画像の高温環境下での保存性が低下してしまう。そのため、室温においては、両者は相分離構造をとることが重要となる。
従って、結晶構造をとりうる部位を有するポリエステル樹脂Aと結晶構造をとりうる部位を有さないポリエステル樹脂Bとを含有するトナーには、以下の特性を満たすことが求められる。
 i)画像形成に供される前のトナーには、ポリエステル樹脂Aとポリエステル樹脂Bとが相分離した状態にある。
 ii)定着時には、ポリエステル樹脂Aとポリエステル樹脂Bとが相溶状態になる。
 iii)定着後、ポリエステル樹脂Aとポリエステル樹脂Bとは、速やかに相分離構造へ戻る。
本発明のトナーは、上記の特性を満たすトナーであって、室温での相分離状態と高温での相溶状態とを、可逆的に、速やかに変化することができるトナーである。
そのためには、ポリエステル樹脂Aにおける該ポリエステル部が高い結晶化度を有する結晶性樹脂であること、ポリエステル樹脂Aにおける該ポリエステル部とポリエステル樹脂BとのSP値が一定範囲であることが重要となる。
また、ポリエステル樹脂は分子量に分布をもち、その中でも低分子量成分は熱溶融しやすく、定着時に可塑化効果を発現するが、室温での相分離構造をとりづらい。つまり、可逆的相転移に影響を及ぼしてしまう。従って、ポリエステル樹脂Bの低分子量成分の量を一定範囲にすることも重要である。
本発明で用いられるポリエステル樹脂Aにおける該ポリエステル部は、SP値Sa((cal/cm31/2)が9.50以上11.00以下であり、高い結晶化度を有する樹脂である。Saは、9.50以上10.70以下であることが好ましく、9.80以上10.40以下であることがより好ましい。ポリエステル樹脂Aにおいて、SP値が低いという事は、ポリエステル樹脂Aの共重合成分である脂肪族カルボン酸及び/又は脂肪族アルコールの炭素数が多いことを示す。
高結晶化のためには、炭素数が多い程、つまり、SP値が低い程好ましいが、ポリエステル樹脂Aにおける該ポリエステル部のSP値が低過ぎると、定着温度域でのポリエステル樹脂Bとの相溶性が低下してしまう。よってSaが9.50未満の場合は、定着時においてもポリエステル樹脂Bと相分離し、高速現像システムにおいて、低温定着性(高速定着性)が低下する。一方、Saが11.00よりも大きい場合には、ポリエステル樹脂Bと相溶性が過大となり、高温での定着画像の保存性が低下する。また画像を折り曲げた際の、画像剥がれが発生しやすくなる。
定着画像上トナーが相溶状態で存在すると、画像上トナーのTgが低くなり、高温環境においては、やや画像上トナーの溶融粘度が低下する。その結果、画像を折り曲げた際に、紙及びトナー間の付着力が低下し、剥がれやすくなったためと考えられる。
なお、本件で用いているSP値は一般的に用いられているFedorsの方法[Poly.Eng.Sci.,14(2)147 (1974)]を用い、樹脂を構成するモノマーの種類と比率から算出した。
さらに、ポリエステル樹脂Aにおける該ポリエステル部の結晶化度を高めるためには、ポリエステル部の末端に結晶核剤を結合させて、結晶核剤部位を設けることが必要である。
一般的に結晶は、結晶核ができた後、結晶成長し、結晶部位が完成することが知られている。この結晶核剤をポリエステル分子鎖の末端に結合させることで、ポリエステル樹脂Aの結晶構造をとりうる部位(以下“部位a”と記す)の結晶成長を促すことができ、結晶化の速度を向上させることができる。
結晶核剤が結合していない場合は、部位aの結晶成長の速度が遅く、可逆的相転移構造を取れなくなる。また、結晶核剤が、重合体と結合することなく、重合体中に存在する場合には、結晶核剤が一般的に低分子量であるため、トナー表面に析出しやすく、トナーの耐熱保存性を低下させてしまう。
結晶核剤部を形成する結晶核剤としては、部位aよりも結晶化速度が速い化合物であれば特に制限されるものではない。但し、結晶化速度が速いという観点から、主鎖が炭化水素系部位を含み、ポリエステル樹脂部の末端と反応しうる官能基を1つ以上有する化合物であることが好ましい。更に、炭化水素系部位が直鎖状であり、ポリエステル樹脂部と反応する官能基数が1つである化合物が好ましい。また結晶核剤とポリエステル樹脂部の末端との反応性が高まる点で、結晶核剤の分子量は100~10,000であることが好ましく、150~5,000であることがより好ましい。
結晶核剤としては、ポリエステル樹脂部の末端に結合しうるものであれば、特に制限されないが、炭素数10以上30以下の脂肪族カルボン酸及び/または炭素数10以上30以下の脂肪族アルコールが好ましい。これは一定数以上の炭素数を有する事で、結晶核剤の結晶化度が高くなるため好ましい。また、ポリエステル樹脂Aの部位aよりも分子運動性が高くなり、結晶核としての結晶化速度を上げることができるという観点からも好ましい。
結晶核剤の添加量は、結晶化速度を上げるという観点から、ポリエステル樹脂A中に原料モノマー100mol部に対し、0.1mol部以上、7.0mol部以下、好ましくは0.2mol部以上、5.0mol部以下含有されていることが好ましい。上記の範囲内であれば、ポリエステル樹脂Aとポリエステル樹脂Bとの相溶性を適度に調整でき、また、定着画像の画像保存性に関しても十分に改善できる。
結晶核剤がポリエステル部と結合しているか否かは、以下の分析によって判別した。
ポリエステル樹脂Aのサンプルを2mg精秤しクロロホルム2mlを加えて溶解させてサンプル溶液を作成した。樹脂サンプルとしてはトナーの原料であるポリエステル樹脂Aを用いるが、ポリエステル樹脂Aが入手困難な場合には、ポリエステル樹脂Aを含有するトナーをサンプルとして代用することも可能である。
次に2,5-ジヒドロキシ安息香酸(DHBA)20mg精秤し、クロロホルム1mlを添加して溶解させてマトリックス溶液を調製した。
そしてトリフルオロ酢酸Na(NaTFA)3mgを精秤した後、アセトンを1ml添加して溶解させてイオン化助剤溶液を調製した。
このようにして調製したサンプル溶液25μl、マトリックス溶液50μl、イオン化助剤溶液5μlを混合してMALDI分析用のサンプルプレートに滴下させ、乾燥させることで測定サンプルとした。
分析機器として、MALDI-TOFMS(Bruker Daltonics製 ReflexIII)を用い、マススペクトルを得た。
得られたマススペクトルにおいて、オリゴマー領域(m/Zが2000以下)の各ピークの帰属を行い、分子末端に結晶核剤が結合した組成に対応するピークが存在するか否かを確認することで、判別した。
さらに、ポリエステル樹脂Aとポリエステル樹脂Bとが可逆的に相転移できる構造をとるためには、上記結晶核剤に加え、ポリエステル樹脂Aにおける該ポリエステル部とポリエステル樹脂BとのSP値が一定範囲であることが必要である。具体的には、該ポリエステル樹脂Aにおける該ポリエステル部のSP値をSa、該ポリエステル樹脂BのSP値をSbとしたとき、Sa及びSbが下記式を満足することが重要である。
-0.65≦Sb-Sa≦0.70  式1
さらに、該ポリエステル樹脂Aにおける該ポリエステル部のSP値Saと該ポリエステル樹脂BのSP値Sbとが、
-0.55≦Sb-Sa≦0.70
を満足することが好ましく、
-0.50≦Sb-Sa≦0.50
を満足することがより好ましい。
SP値の差(Sb-Sa)は、ポリエステル樹脂Aとポリエステル樹脂Bとの熱溶融時の相溶しやすさ、及び室温時の相分離しやすさを示した指標である。
結晶核剤がポリエステル樹脂A中、ポリエステル分子鎖の末端に結合していたとしても、この式1の関係を満足しない場合は、可逆的相転移構造をとれない。
SP値(溶解度パラメーター)は、従来より、樹脂間及び樹脂とワックスとの混ざりやすさなどを示す指標として用いられている。本発明のトナーのように可逆的相転移構造をとるには、上記結晶核剤を結合させるのに加え、ポリエステル樹脂Aとポリエステル樹脂BとのSP値差を特定の値とすることが必要である。
SP値の差が上記の範囲内である場合には、相溶と相分離とのバランスが適正となり、定着時には、低温定着を良好に達成することができ、また、定着画像形成後には、高温環境下に、長期にわたり放置した場合であっても、良好な保存が可能となる。
また、該ポリエステル樹脂Bのテトラヒドロフラン(THF)可溶分の分子量分布を、ゲルパーミエーションクロマトグラフィー(GPC)によって測定した際に得られるチャートにおいて、分子量1500以下の割合が5.0面積%以上、15.0面積%以下であることが重要である。好ましくは9.0面積%以上、13.0面積%以下である。
この低分子量成分(分子量1500以下の成分)は、ポリエステル樹脂を重合する際に、酸とアルコール成分との反応性が異なる場合に発生し易い成分である。
低分子量成分の量は、モノマー組成や重合条件によって調整することができる。所定の低分子量に調整できれば特に手法の制限はないが、手法としては以下の様なやり方がある。例えば、酸とアルコールモノマーが反応するエステル化反応を促進するために開始時の重合条件を変更することや、重縮合反応を抑制する反応系内の水分をコントロールすることや、モノマー種を変更することである。
この様な低分子量成分は低いガラス転移温度を有する。そのため、定着時にはトナーに対する可塑効果を発現するため、分子量1500以下の割合が15.0面積%を超えると、定着画像の光沢ムラが発生し易くなる。この低分子量成分は熱溶融し易い成分であり、定着時にその成分が偏在し易く、熱量が少ない厚紙で低圧の定着器においては光沢ムラが発生し易いのではないかと考えている。
その一方で、分子量1500以下の割合が5.0面積%未満であると、可塑効果が得られにくいため厚紙での定着性が低下しやすくなる。厚紙では定着時にトナー層を溶融させる熱量が少なくなり、ポリエステル樹脂同士の相溶作用だけでは定着性が厳しくなる。
また発明者らの検討により、低分子量成分が特定の組成であることによって結晶構造をもつ部位との相溶性が高まり、定着性に効果を発揮するため好ましい。具体的には低分子量成分のSP値Scと、結晶性を有するポリエステル樹脂Aにおける該ポリエステル部のSP値Saとの差が下記式を満足することが好ましい。
-0.50≦Sa-Sc≦0.50
ポリエステル樹脂Aは、ポリエステル部の末端に結晶核剤部が結合しており、且つポリエステル部は結晶構造をとりうる部位を有するものであれば、特に限定されるものではない。
なお本件でいう結晶構造をとりうる部位を有する樹脂とは、結晶構造をとったときに、示差走査熱量計(DSC)測定において昇温時に吸熱ピークが見られ、降温時に発熱ピークが見られる樹脂のことである。吸熱ピークの測定は「ASTM D3418-82」測定法に準じて行う。
ポリエスエル樹脂Aの含有するポリエステル部を合成する際に用いることのできるアルコール成分としては、以下の化合物を上げることができる。
原料モノマーであるアルコール成分は、ポリエステル分子鎖の結晶性を高める観点から、炭素数6~18の脂肪族ジオールを含有する。 
炭素数6~18の脂肪族ジオールとしては、1,6-ヘキサンジオール、1,7-ヘプタンジオール、1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール、1,11-ウンデカンジオール、1,12-ドデカンジオール等が挙げられる。これらの中でも、定着性及び耐熱安定性の観点から、炭素数6~12の脂肪族ジオールが好ましい。 
上記炭素数6~18の脂肪族ジオールの含有量は、結晶性をより高める観点から、アルコール成分中、80~100モル%であることが好ましい。 
アルコール成分として使用し得る、炭素数6~18の脂肪族ジオール以外の多価アルコール成分としては、例えば、2,2-ビス(4-ヒドロキシフェニル)プロパンのポリオキシプロピレン付加物、2,2-ビス(4-ヒドロキシフェニル)プロパンのポリオキシエチレン付加物等を含む下記構造式(I)で表されるビスフェノールAのアルキレンオキサイド付加物等の芳香族ジオール;グリセリン、ペンタエリスリトール、トリメチロールプロパン等の3価以上のアルコールが挙げられる。 
Figure JPOXMLDOC01-appb-C000001
(式中、Rは、炭素数2又は3のアルキレン基を示す。x及びyは、正の数を示し、xとyの和は、1~16、好ましくは1.5~5である。) 
ポリエスエル樹脂Aの含有するポリエステル部を合成する際に用いることのできる酸成分としては、以下の化合物を上げることができる。
原料モノマーであるカルボン酸成分としては、ポリエステルの結晶性を高める観点から、炭素数6~18の脂肪族ジカルボン酸化合物が好ましい。 
炭素数6~18の脂肪族ジカルボン酸化合物としては、1,8-オクタン二酸、1,9-ノナン二酸、1,10-デカン二酸、1,11-ウンデカン二酸、1,12-ドデカン二酸等が挙げられる。これらの中でも、トナーの定着性及び耐熱安定性の観点から、炭素数6~12の脂肪族ジカルボン酸化合物が好ましい。 
炭素数6~18の脂肪族ジカルボン酸化合物の含有量は、カルボン酸成分中、80~100モル%であることが好ましい。
本発明では、炭素数6~18の脂肪族ジカルボン酸化合物以外のカルボン酸成分を併用することができる。例えば、芳香族ジカルボン酸化合物、3価以上の芳香族多価カルボン酸化合物等が挙げられるが、特にこれらに限定されるものではない。 
芳香族ジカルボン酸化合物には、縮合反応により芳香族ジカルボン酸由来の構成単位と同じ構成単位となり得る芳香族ジカルボン酸誘導体も含まれる。芳香族ジカルボン酸化合物の具体例としては、フタル酸、イソフタル酸、テレフタル酸等の芳香族ジカルボン酸及びこれらの酸の無水物、並びにそれらのアルキル(炭素数1~3)エステルが好ましく挙げられる。該アルキルエステル中のアルキル基としては、メチル基、エチル基、プロピル基及びイソプロピル基が挙げられる。 
3価以上の多価カルボン酸化合物としては、1,2,4-ベンゼントリカルボン酸(トリメリット酸)、2,5,7-ナフタレントリカルボン酸、ピロメリット酸等の芳香族カルボン酸、及びこれらの酸無水物、アルキル(炭素数1~3)エステル等の誘導体が挙げられる。 
縮重合反応の原料モノマーであるアルコール成分とカルボン酸成分とのモル比(カルボン酸成分/アルコール成分)は、0.80以上1.20以下が好ましい。
また、本発明のポリエステル樹脂Aは、示差走査熱量計(DSC)測定において昇温時に観測される吸熱ピークの面積から求められる融解熱量(ΔH)が100J/g以上、140J/gであることが好ましい。
さらに、ポリエステル樹脂Aの軟化点をTmA(℃)、該ポリエステル樹脂Bの軟化点をTmB(℃)としたときに、TmAおよびTmBが下記関係を満足することが好ましい。
-10≦TmB-TmA≦40
60≦TmA≦90
さらに好ましいTmAの範囲は70℃以上、85℃以下である。この関係を有することが、低圧での定着ムラや厚紙定着性をさらに向上させる観点から好ましい。
さらに、ポリエステル樹脂Aの酸価は、2mgKOH/g以上、40mgKOH/g以下である事が、トナーの良好な帯電特性の観点から好ましい。 
また、ポリエステル樹脂Aの水酸基価は、定着性及び保存安定性の観点から2mgKOH/g以上、40mgKOH/g以下であることが好ましい。
本発明のトナーに使用されるポリエステル樹脂Bは、SP値及び分子量1500以下の割合を所望の値にできるものであれば、通常の製造方法によって得られるポリエステルを使用することができる。
2価のアルコール成分としては、2,2-ビス(4-ヒドロキシフェニル)プロパンのポリオキシプロピレン付加物、2,2-ビス(4-ヒドロキシフェニル)プロパンのポリオキシエチレン付加物等を含む上記式(I)で表されるビスフェノールAのアルキレンオキサイド付加物、エチレングリコール、1,3-プロピレングリコール、ネオペンチルグリコール等を用いることができる。 
また、3価以上のアルコール成分としては、例えばソルビトール、ペンタエリスリトール、ジペンタエリスリトール等を用いることができる。
本発明に適用されるポリエステルBは、これらの2価のアルコール成分及び3価以上の多価アルコール成分から単独で、又は複数の単量体を用いることができる。
また酸成分としての2価のカルボン酸成分としては、マレイン酸、フマル酸、フタル酸、イソフタル酸、テレフタル酸、コハク酸、アジピン酸、n-ドデセニルコハク酸、及びこれらの酸の無水物、もしくは低級アルキルエステル等が挙げられる。 
3価以上の多価カルボン酸成分としては、例えば1,2,4-ベンゼントリカルボン酸、2,5,7-ナフタレントリカルボン酸、ピロメリット酸、エンポール三量体酸及びこれらの酸無水物、低級アルキルエステル等が挙げられる。
ポリエステルの製造方法は、特に限定されることなく、上記の各単量体等を用いて、エステル化反応、又はエステル交換反応によって製造することができる。原料モノマーを重合させる際には、反応を促進させるため、酸化ジブチル錫等の通常使用されているエステル化触媒等を適宜使用してもよい。 
ポリエステル樹脂Bのガラス転移温度(Tg)は、定着性及び保存性の観点から45℃以上、70℃以下である事が好ましい。
また、ポリエステル樹脂Bの軟化点TmBは、トナーの低温定着性の観点から、80℃以上、130℃以下、好ましくは90℃以上、120℃以下である事が好ましい。 
さらに、ポリエステル樹脂Bの酸価は、2mgKOH/g以上、40mgKOH/g以下であることが、トナーの良好な帯電特性の観点から好ましい。また水酸基価は、定着性及び、保存安定性の観点から2mgKOH/g以上、70mgKOH/g以下であることが好ましい。 
また、ポリエステル樹脂Aとポリエステル樹脂Bとの質量比は、低温定着性及び画像の高温環境での長期保存安定性の観点から、5:95~40:60であることが好ましい。より好ましくは10:90~30:70である。
また、該ポリエステル樹脂Bのテトラヒドロフラン(THF)可溶分のゲルパーミエーションクロマトグラフィー(GPC)における重量平均分子量Mwbが3000以上100,000以下であることが好ましい。
上記、ポリエステル樹脂Aとポリエステル樹脂Bから構成される本発明のトナーは、室温状態では相分離構造を有している。従って、トナーから得られる諸物性は、相分離構造をとる場合のトナー物性と、見掛け上、同じ様な数値となることが好ましい。
トナーの軟化点(Tm)は、トナーの低温定着性の観点から、80℃以上、120℃以下であることが好ましい。より好ましくは90℃以上、100℃以下である。
本発明においては、ポリエステル樹脂A及びポリエステル樹脂Bが結着樹脂となるが、本発明の効果を阻害しない範囲であれば、その他のトナー用結着樹脂として公知の樹脂を加えても良い。
本発明においては、トナーに離型性を与えるために必要に応じてワックスを用いることができる。
該ワックスとしては、トナー中での分散のしやすさ、離型性の高さから、低分子量ポリエチレン、低分子量ポリプロピレン、マイクロクリスタリンワックス、パラフィンワックスの如き炭化水素系ワックスが好ましい。必要に応じて一種または二種以上のワックスを、少量併用してもかまわない。
具体的には、例えば、以下のものが挙げられる。ビスコール(登録商標)330-P、550-P、660-P、TS-200(三洋化成工業社)、ハイワックス400P、200P、100P、410P、420P、320P、220P、210P、110P(三井化学社)、サゾールH1、H2、C80、C105、C77(シューマン・サゾール社)、HNP-1、HNP-3、HNP-9、HNP-10、HNP-11、HNP-12(日本精鑞株式会社)、ユニリン(登録商標)350、425、550、700、ユニシッド(登録商標)、ユニシッド(登録商標)350、425、550、700(東洋ペトロライト社)、木ろう、蜜ろう、ライスワックス、キャンデリラワックス、カルナバワックス(株式会社セラリカNODAにて入手可能)。
該ワックスを添加するタイミングは、トナー製造中の溶融混練時において添加しても良いがポリエステル樹脂Bの製造時であっても良く、既存の方法から適宜選ばれる。又、これらのワックスは単独で使用しても併用しても良い。
該ワックスは結着樹脂100質量部に対して、1質量部以上、20質量部以下添加することが好ましい。
本発明のトナーは磁性トナーであっても非磁性トナーであっても良い。磁性トナーとして用いる場合は、磁性酸化鉄を用いることが好ましい。磁性酸化鉄としては、マグネタイト、マグヘマイト、フェライト等の酸化鉄が用いられる。また、磁性酸化鉄はトナー粒子中への微分散性を向上させる目的で、製造時のスラリーにせん断をかけ、磁性酸化鉄を一旦ほぐす処理を施すことが好ましい。
本発明においてトナーに含有させる磁性酸化鉄の量は、トナー中に25質量%以上、45質量%以下であることが好ましく、より好ましくは30質量%以上、45質量%以下が良い。
非磁性トナーとして用いる場合には、着色剤としてカーボンブラックやその他、従来より知られているあらゆる顔料や染料の一種又は二種以上を用いることができる。
着色剤は樹脂成分100.0質量部に対して、0.1質量部以上、60.0質量部以下が好ましく、より好ましくは0.5質量部以上、50.0質量部以下である。
また本発明のトナーにおいては、無機微粉末としてトナー粒子表面への流動性付与能が高い、流動性向上剤を使用することができる。該流動性向上剤としては、トナー粒子に外添することにより、流動性が添加前後を比較すると増加し得るものならば使用可能である。例えば、以下のものが挙げられる。フッ化ビニリデン微粉末、ポリテトラフルオロエチレン微粉末の如きフッ素系樹脂粉末;湿式製法シリカ、乾式製法シリカの如き微粉末シリカ、それらシリカをシランカップリング剤、チタンカップリング剤、又はシリコーンオイル等により表面処理を施した処理シリカ。好ましい流動性向上剤としては、ケイ素ハロゲン化合物の蒸気相酸化により生成された微粉体であり、乾式法シリカ又はヒュームドシリカと称されるものである。例えば、四塩化ケイ素ガスの酸素、水素中における熱分解酸化反応を利用するもので、反応式は次の様なものである。
SiCl4+2H2+O2→SiO2+4HCl 
また、この製造工程において、塩化アルミニウム又は塩化チタンの如き他の金属ハロゲン化合物をケイ素ハロゲン化合物と共に用いることによって得られたシリカと他の金属酸化物の複合微粉体でも良い。
さらには、該ケイ素ハロゲン化合物の気相酸化により生成されたシリカ微粉体に疎水化処理した処理シリカ微粉体を用いることが好ましい。該処理シリカ微粉体において、メタノール滴定試験によって滴定された疎水化度が30以上、98以下の範囲の値を示すようにシリカ微粉体を処理したものが特に好ましい。
疎水化方法としては、シリカ微粉体と反応あるいは物理吸着する有機ケイ素化合物で化学的に処理することによって付与される。好ましい方法としては、ケイ素ハロゲン化合物の蒸気相酸化により生成されたシリカ微粉体を有機ケイ素化合物で処理する。そのような有機ケイ素化合物としては、以下のものが挙げられる。ヘキサメチルジシラザン、トリメチルシラン、トリメチルクロルシラン、トリメチルエトキシシラン、ジメチルジクロルシラン、メチルトリクロルシラン、アリルジメチルクロルシラン、アリルフエニルジクロルシラン、ベンジルジメチルクロルシラン、ブロムメチルジメチルクロルシラン、α-クロルエチルトリクロルシラン、β-クロルエチルトリクロルシラン、クロルメチルジメチルクロルシラン、トリオルガノシリルメルカプタン、トリメチルシリルメルカプタン、トリオルガノシリルアクリレート、ビニルジメチルアセトキシシラン、ジメチルエトキシシラン、ジメチルジメトキシシラン、ジフェニルジエトキシシラン、1-ヘキサメチルジシロキサン、1,3-ジビニルテトラメチルジシロキサン、1,3-ジフェニルテトラメチルジシロキサンおよび1分子当り2から12個のシロキサン単位を有し末端に位置する単位にそれぞれ1個宛のSiに結合した水酸基を含有するジメチルポリシロキサン。これらは1種あるいは2種以上の混合物で用いられる。
該シリカ微粉体は、シリコーンオイル処理されても良く、また、上記疎水化処理と併せて処理されても良い。
好ましいシリコーンオイルとしては、25℃における粘度が30mm2/s以上、1000mm2/s以下のものが用いられる。例えば、ジメチルシリコーンオイル、メチルフェニルシリコーンオイル、α-メチルスチレン変性シリコーンオイル、クロルフェニルシリコーンオイル、フッ素変性シリコーンオイルが特に好ましい。
シリコーンオイル処理の方法としては、以下の方法が挙げられる。シランカップリング剤で処理されたシリカ微粉体とシリコーンオイルとをヘンシェルミキサーの如き混合機を用いて直接混合する方法。ベースとなるシリカ微粉体にシリコーンオイルを噴霧する方法。あるいは適当な溶剤にシリコーンオイルを溶解あるいは分散せしめた後、シリカ微粉体を加え混合し溶剤を除去する方法。シリコーンオイル処理シリカは、シリコーンオイルの処理後にシリカを不活性ガス中で温度200℃以上(より好ましくは250℃以上)に加熱し表面のコートを安定化させることがより好ましい。
好ましいシランカップリング剤としては、ヘキサメチルジシラザン(HMDS)が挙げられる。
本発明においては、シリカをあらかじめ、カップリング剤で処理した後にシリコーンオイルで処理する方法、または、シリカをカップリング剤とシリコーンオイルで同時に処理する方法によって処理されたものが好ましい。
無機微粉末は、トナー粒子100.00質量部に対して0.01質量部以上、8.00質量部以下、好ましくは0.10質量部以上、4.00質量部以下使用するのが良い。
本発明のトナーには、必要に応じて他の外部添加剤を添加しても良い。例えば、帯電補助剤、導電性付与剤、流動性付与剤、ケーキング防止剤、熱ローラー定着時の離型剤、滑剤、研磨剤の働きをする樹脂微粒子や無機微粒子である。
滑剤としては、ポリフッ化エチレン粉末、ステアリン酸亜鉛粉末、ポリフッ化ビニリデン粉末が挙げられる。中でもポリフッ化ビニリデン粉末が好ましい。研磨剤としては、酸化セリウム粉末、炭化ケイ素粉末、チタン酸ストロンチウム粉末が挙げられる。これらの外添剤はヘンシェルミキサー等の混合機を用いて十分混合し本発明のトナーを得ることができる。
本発明のトナーは、一成分系現像剤としても使用できるが、磁性キャリアと混合して二成分系現像剤として用いることも可能である。
磁性キャリアとしては、例えば、表面を酸化した鉄粉若しくは未酸化の鉄粉;鉄、リチウム、カルシウム、マグネシウム、ニッケル、銅、亜鉛、コバルト、マンガン、希土類の如き金属粒子、並びにそれらの合金粒子及び酸化物粒子;フェライト;等の磁性体や、磁性体と、この磁性体を分散した状態で保持するバインダー樹脂とを含有する磁性体分散樹脂キャリア(いわゆる樹脂キャリア)等、一般に公知のものを使用できる。
本発明のトナーを磁性キャリアと混合して二成分系現像剤として使用する場合、磁性キャリアの混合比率は、現像剤中のトナー濃度として、2質量%以上、15質量%以下とすることが好ましい。
本発明のトナーの製造方法は、特に限定されるものではないが、より低温定着性に優れたトナーとなる点で、ポリエステル樹脂Aとポリエステル樹脂Bを溶融混練して冷却固化される製造工程を含む粉砕法を用いた製造方法であることが好ましい。
溶融混練時のせん断を加えて混合することでポリエステル樹脂Aの分子鎖がポリエステル樹脂Bへ入り込み易くなるため溶融時に均一に相溶化させることができ、低温定着性を良化できるため好ましい。
従来は、粉砕法を用いた場合、ポリエステル樹脂Aの結晶性やポリエステル樹脂Aとポリエステル樹脂Bの相溶性の制御が不十分であったために、一端相溶化させるとトナー中に結晶部を形成することは難しかった。
しかし本発明のトナーはポリエステル樹脂Aの分子末端に結合させた結晶核剤や、ポリエステル樹脂Aとポリエステル樹脂BのSP値の差、及びポリエステル樹脂Bの分子量の制御により、可逆的相転移を起こさせ、所望のトナーを得ることができる。
原料混合工程では、トナー粒子を構成する材料として、ポリエステル樹脂A、ポリエステル樹脂B、着色剤、その他の添加剤等を、所定量秤量して配合し、混合する。混合装置の一例としては、ダブルコン・ミキサー、V型ミキサー、ドラム型ミキサー、スーパーミキサー、ヘンシェルミキサー、ナウターミキサー、メカノハイブリッド(日本コークス工業株式会社製)などが挙げられる。
次に、混合した材料を溶融混練して、ポリエステル樹脂中に着色剤等を分散させる。溶融混練工程では、加圧ニーダー、バンバリィミキサーの如きバッチ式練り機や、連続式の練り機を用いることができる。連続生産できる優位性から、1軸又は2軸押出機が主流となっている。例えば、KTK型2軸押出機(神戸製鋼所社製)、TEM型2軸押出機(東芝機械社製)、PCM混練機(池貝鉄工製)、2軸押出機(ケイ・シー・ケイ社製)、コ・ニーダー(ブス社製)、ニーデックス(日本コークス工業株式会社製)などが挙げられる。更に、溶融混練することによって得られる樹脂組成物は、2本ロール等で圧延され、冷却工程で水などによって冷却してもよい。
ついで、樹脂組成物の冷却物は、粉砕工程で所望の粒径にまで粉砕される。粉砕工程では、例えば、クラッシャー、ハンマーミル、フェザーミルの如き粉砕機で粗粉砕した後、更に、例えば、クリプトロンシステム(川崎重工業社製)、スーパーローター(日清エンジニアリング社製)、ターボ・ミル(ターボ工業製)やエアージェット方式による微粉砕機で微粉砕する。
その後、必要に応じて慣性分級方式のエルボージェット(日鉄鉱業社製)、遠心力分級方式のターボプレックス(ホソカワミクロン社製)、TSPセパレータ(ホソカワミクロン社製)、ファカルティ(ホソカワミクロン社製)の如き分級機や篩分機を用いて分級し、トナー粒子を得る。
また、必要に応じて、粉砕後に、ハイブリタイゼーションシステム(奈良機械製作所製)、メカノフージョンシステム(ホソカワミクロン社製)、ファカルティ(ホソカワミクロン社製)、メテオレインボー MR Type(日本ニューマチック社製)を用いて、球形化処理の如きトナー粒子の表面処理を行うこともできる。
更に必要に応じて所望の添加剤をヘンシェルミキサー等の混合機により十分混合し、本発明のトナーを得ることが出来る。
本発明の樹脂及びトナーに係る物性の測定方法は以下に示す通りである。後述の実施例もこの方法に基づいている。
<GPCによる分子量の測定>
40℃のヒートチャンバー中でカラムを安定化させ、この温度におけるカラムに溶媒としてTHFを毎分1mlの流速で流し、THF試料溶液を約100μl注入して測定する。試料の分子量測定にあたっては試料の有する分子量分布を数種の単分散ポリスチレン標準試料により作成された検量線の対数値とカウント値との関係から算出した。検量線作成用の標準ポリスチレン試料としては例えば、東ソー社製あるいは昭和電工社製の分子量が102~107程度のものを用い、少なくとも10点程度の標準ポリスチレン試料を用いるのが適当である。又、検出器はRI(屈折率)検出器を用いる。尚、カラムとしては市販のポリスチレンジェルカラムを複数本組み合わせるのが良く、例えば昭和電工社製のshodex GPC KF-801,802,803,804,805,806,807,800Pの組み合せや、東ソー社製のTSKgel G1000H(HXL)、G2000H(HXL)、G3000H(HXL)、G4000H(HXL)、G5000H(HXL)、G6000H(HXL)、G7000H(HXL)、TSK guard columnの組み合せを挙げることができる。
また、試料は以下のようにして作製する。
試料をTHF中に入れ、25℃で数時間放置した後、十分振とうし、THFとよく混ぜ(試料の合一体が無くなるまで)、更に12時間以上静置する。その時THF中への放置時間が24時間となるようにする。その後、サンプル処理フィルター(ポアサイズ0.2μm以上0.5μm以下、例えばマイショリディスクH-25-2(東ソー社製)など使用できる。)を通過させたものをGPCの試料とする。又、試料濃度は、樹脂成分が0.5mg/ml以上5.0mg/ml以下となるように調整する。
上記方法で重量平均分子量、数平均分子量や分子量1500以下の分子量の割合を測定した。
尚、分子量1500以下の成分の割合は、横軸が分子量、縦軸がRI検出器からの信号強度(mV)とし、横軸を対数表示として作成したグラフにおける分子量1500以下の領域の面積割合である。
<樹脂中に含まれる低分子量成分の分析>
樹脂サンプル100mgをクロロホルム3mlに溶解する。サンプル処理フィルター(ポアサイズ0.2μm以上0.5μm以下、例えばマイショリディスクH-25-2(東ソー社製)など使用できる。)を取り付けたシリンジで吸引ろ過することで不溶分を除去する。分取HPLC(装置:日本分析工業製 LC-9130 NEXT 分取カラム 排除限界:20000、70000 2本連結)に可溶分を導入し流量3.5mlでクロロホルム溶離液を送液する。得られるクロマトグラフの表示でピークが確認できたら、単分散ポリスチレン標準試料で分子量1500となるリテンションタイム以降の部分を分取した。
分取した溶液を減圧蒸留し、溶媒を除去したものを8時間真空乾燥させたものをサンプルとした。得られたサンプルに重クロロホルムを加え、それをNMR用サンプルチューブに移しNMR測定サンプルとする。NMR(装置としては Bruker AVANCEIII 500MHz)を使用し、プロトンのスペクトルを測定。モノマー由来のピークを帰属し、それぞれのモノマー由来のピークの積分値から分子量1500以下に含まれる樹脂中の成分モル比を算出した。
<ポリエステル樹脂及びワックスの融点及び融解熱量の測定>
ポリエステル樹脂及びワックスの融点は、示差走査熱量分析装置「Q2000」(TAInstruments社製)を用いてASTM D3418-82に準じて測定したDSC曲線において、最大吸熱ピークのピーク温度を融点とし、ピークの面積から求められる熱量を融解熱量とする。
装置検出部の温度補正はインジウムと亜鉛の融点を用い、熱量の補正についてはインジウムの融解熱を用いる。具体的には、試料約2mgを精秤し、これをアルミニウム製のパンの中に入れ、リファレンスとして空のアルミニウム製のパンを用い、測定温度範囲30~200℃の間で、昇温速度10℃/minで測定を行う。尚、測定においては、一度200℃まで昇温させ、続いて30℃まで降温し、その後に再度昇温を行う。この2度目の昇温過程での温度30~200℃の範囲におけるDSC曲線の最大の吸熱ピーク温度を、融点、ピークの面積から求められる熱量を融解熱量とする。
<ポリエステル樹脂のTgの測定>
ポリエステル樹脂及びトナーのTgは、示差走査熱量分析装置「Q2000」(TA Instruments社製)を用いてASTM D3418-82に準じて測定する。装置検出部の温度補正はインジウムと亜鉛の融点を用い、熱量の補正についてはインジウムの融解熱を用いる。具体的には、試料約2mgを精秤し、これをアルミニウム製のパンの中に入れ、リファレンスとして空のアルミニウム製のパンを用い、測定温度範囲30~200℃の間で、昇温速度10℃/minで測定を行う。尚、測定においては、一度200℃まで昇温させ、続いて30℃まで降温し、その後に再度昇温を行う。この2度目の昇温過程での温度40℃~100℃の範囲において比熱変化が得られる。このときの比熱変化が出る前と出た後のベースラインの中間点の線と示差熱曲線との交点を、ポリエステル樹脂、或いはトナーのガラス転移温度Tgとする。
<ポリエステル樹脂及びトナーの軟化点の測定>
ポリエステル樹脂及びトナーの軟化点の測定は、定荷重押し出し方式の細管式レオメータ「流動特性評価装置 フローテスターCFT-500D」(島津製作所社製)を用い、装置付属のマニュアルに従って行う。本装置では、測定試料の上部からピストンによって一定荷重を加えつつ、シリンダに充填した測定試料を昇温させて溶融し、シリンダ底部のダイから溶融された測定試料を押し出し、この際のピストン降下量と温度との関係を示す流動曲線を得ることができる。
本発明においては、「流動特性評価装置 フローテスターCFT-500D」に付属のマニュアルに記載の「1/2法における溶融温度」を軟化点とする。尚、1/2法における溶融温度とは、次のようにして算出されたものである。まず、流出が終了した時点におけるピストンの降下量Smaxと、流出が開始した時点におけるピストンの降下量Sminとの差の1/2を求める(これをXとする。X=(Smax-Smin)/2)。そして、流動曲線においてピストンの降下量がXとSminの和となるときの流動曲線の温度が、1/2法における溶融温度である。
測定試料は、約1.0gの試料を、25℃の環境下で、錠剤成型圧縮機(例えば、NT-100H、エヌピーエーシステム社製)を用いて約10MPaで、約60秒間圧縮成型し、直径約8mmの円柱状としたものを用いる。
CFT-500Dの測定条件は、以下の通りである。
試験モード:昇温法
昇温速度:4℃/min
開始温度:50℃
到達温度:200℃
<ポリエステル樹脂の酸価の測定>
酸価は試料1gに含まれる酸を中和するために必要な水酸化カリウムのmg数である。ポリエステル樹脂の酸価はJIS K 0070-1992に準じて測定されるが、具体的には、以下の手順に従って測定する。
(1)試薬の準備
フェノールフタレイン1.0gをエチルアルコール(95vol%)90mlに溶かし、イオン交換水を加えて100mlとし、フェノールフタレイン溶液を得る。
特級水酸化カリウム7gを5mlの水に溶かし、エチルアルコール(95vol%)を加えて1lとする。炭酸ガス等に触れないように、耐アルカリ性の容器に入れて3日間放置後、ろ過して、水酸化カリウム溶液を得る。得られた水酸化カリウム溶液は、耐アルカリ性の容器に保管する。前記水酸化カリウム溶液のファクターは、0.1モル/l塩酸25mlを三角フラスコに取り、前記フェノールフタレイン溶液を数滴加え、前記水酸化カリウム溶液で滴定し、中和に要した前記水酸化カリウム溶液の量から求める。前記0.1モル/l塩酸は、JIS K 8001-1998に準じて作成されたものを用いる。
(2)操作
(A)本試験
粉砕したポリエステル樹脂の試料2.0gを200mlの三角フラスコに精秤し、トルエン/エタノール(2:1)の混合溶液100mlを加え、5時間かけて溶解する。次いで、指示薬として前記フェノールフタレイン溶液を数滴加え、前記水酸化カリウム溶液を用いて滴定する。尚、滴定の終点は、指示薬の薄い紅色が約30秒間続いたときとする。
(B)空試験
試料を用いない(すなわちトルエン/エタノール(2:1)の混合溶液のみとする)以外は、上記操作と同様の滴定を行う。
(3)得られた結果を下記式に代入して、酸価を算出する。
A=[(C-B)×f×5.61]/S
ここで、A:酸価(mgKOH/g)、B:空試験の水酸化カリウム溶液の添加量(ml)、C:本試験の水酸化カリウム溶液の添加量(ml)、f:水酸化カリウム溶液のファクター、S:試料(g)である。
<ポリエステル樹脂の水酸基価の測定>
水酸基価とは,試料1gをアセチル化するとき、水酸基と結合した酢酸を中和するのに要する水酸化カリウムのmg数である。ポリエステル樹脂の水酸基価はJIS K 0070-1992に準じて測定されるが、具体的には、以下の手順に従って測定する。
(1)試薬の準備
特級無水酢酸25gをメスフラスコ100mlに入れ、ピリジンを加えて全量を100mlにし、十分に振りまぜてアセチル化試薬を得る。得られたアセチル化試薬は、湿気、炭酸ガス等に触れないように、褐色びんにて保存する。
フェノールフタレイン1.0gをエチルアルコール(95vol%)90mlに溶かし、イオン交換水を加えて100mlとし、フェノールフタレイン溶液を得る。
特級水酸化カリウム35gを20mlの水に溶かし、エチルアルコール(95vol%)を加えて1lとする。炭酸ガス等に触れないように、耐アルカリ性の容器に入れて3日間放置後、ろ過して、水酸化カリウム溶液を得る。得られた水酸化カリウム溶液は、耐アルカリ性の容器に保管する。前記水酸化カリウム溶液のファクターは、0.5モル/l塩酸25mlを三角フラスコに取り、前記フェノールフタレイン溶液を数滴加え、前記水酸化カリウム溶液で滴定し、中和に要した前記水酸化カリウム溶液の量から求める。前記0.5モル/l塩酸は、JIS K 8001-1998に準じて作成されたものを用いる。
(2)操作
(A)本試験
粉砕したポリエステル樹脂の試料1.0gを200ml丸底フラスコに精秤し、これに前記のアセチル化試薬5.0mlをホールピペットを用いて正確に加える。この際、試料がアセチル化試薬に溶解しにくいときは、特級トルエンを少量加えて溶解する。
フラスコの口に小さな漏斗をのせ、約97℃のグリセリン浴中にフラスコ底部約1cmを浸して加熱する。このときフラスコの首の温度が浴の熱を受けて上昇するのを防ぐため、丸い穴をあけた厚紙をフラスコの首の付根にかぶせることが好ましい。
1時間後、グリセリン浴からフラスコを取り出して放冷する。放冷後、漏斗から水1mlを加えて振り動かして無水酢酸を加水分解する。さらに完全に加水分解するため、再びフラスコをグリセリン浴中で10分間加熱する。放冷後、エチルアルコール5mlで漏斗およびフラスコの壁を洗う。
指示薬として前記フェノールフタレイン溶液を数滴加え、前記水酸化カリウム溶液で滴定する。尚、滴定の終点は、指示薬の薄い紅色が約30秒間続いたときとする。
(B)空試験
ポリエステル樹脂の試料を用いない以外は、上記操作と同様の滴定を行う。
(3)得られた結果を下記式に代入して、水酸基価を算出する。
A=[{(B-C)×28.05×f}/S]+D
式中、
A:水酸基価(mgKOH/g)
B:空試験の水酸化カリウム溶液の添加量(ml)
C:本試験の水酸化カリウム溶液の添加量(ml)
f:水酸化カリウム溶液のファクター
S:試料(g)
D:ポリエステル樹脂の酸価(mgKOH/g)
である。
<重量平均粒径(D4)の測定方法>
トナーの重量平均粒径(D4)は、100μmのアパーチャーチューブを備えた細孔電気抵抗法による精密粒度分布測定装置「コールター・カウンター Multisizer3」(登録商標、ベックマン・コールター社製)と、測定条件設定及び測定データ解析をするための付属の専用ソフト「ベックマン・コールター Multisizer 3 Version3.51」(ベックマン・コールター社製)を用いて、実効測定チャンネル数2万5千チャンネルで測定し、測定データの解析を行い、算出した。
測定に使用する電解水溶液は、特級塩化ナトリウムをイオン交換水に溶解して濃度が約1質量%となるようにしたもの、例えば、「ISOTON II」(ベックマン・コールター社製)が使用できる。
尚、測定、解析を行う前に、以下のように専用ソフトの設定を行った。
専用ソフトの「標準測定方法(SOM)を変更画面」において、コントロールモードの総カウント数を50000粒子に設定し、測定回数を1回、Kd値は「標準粒子10.0μm」(ベックマン・コールター社製)を用いて得られた値を設定する。閾値/ノイズレベルの測定ボタンを押すことで、閾値とノイズレベルを自動設定する。また、カレントを1600μAに、ゲインを2に、電解液をISOTON IIに設定し、測定後のアパーチャーチューブのフラッシュにチェックを入れる。
専用ソフトの「パルスから粒径への変換設定画面」において、ビン間隔を対数粒径に、粒径ビンを256粒径ビンに、粒径範囲を2μmから60μmまでに設定する。
具体的な測定法は以下の通りである。
(1)Multisizer 3専用のガラス製250ml丸底ビーカーに前記電解水溶液約200mlを入れ、サンプルスタンドにセットし、スターラーロッドの撹拌を反時計回りで24回転/秒にて行う。そして、解析ソフトの「アパーチャーのフラッシュ」機能により、アパーチャーチューブ内の汚れと気泡を除去しておく。
(2)ガラス製の100ml平底ビーカーに前記電解水溶液約30mlを入れ、この中に分散剤として「コンタミノンN」(非イオン界面活性剤、陰イオン界面活性剤、有機ビルダーからなるpH7の精密測定器洗浄用中性洗剤の10質量%水溶液、和光純薬工業社製)をイオン交換水で3質量倍に希釈した希釈液を約0.3ml加える。
(3)発振周波数50kHzの発振器2個を位相を180度ずらした状態で内蔵し、電気的出力120Wの超音波分散器「Ultrasonic Dispension System Tetora150」(日科機バイオス社製)の水槽内に所定量のイオン交換水を入れ、この水槽中に前記コンタミノンNを約2ml添加する。
(4)前記(2)のビーカーを前記超音波分散器のビーカー固定穴にセットし、超音波分散器を作動させる。そして、ビーカー内の電解水溶液の液面の共振状態が最大となるようにビーカーの高さ位置を調整する。
(5)前記(4)のビーカー内の電解水溶液に超音波を照射した状態で、トナー約10mgを少量ずつ前記電解水溶液に添加し、分散させる。そして、さらに60秒間超音波分散処理を継続する。尚、超音波分散にあたっては、水槽の水温が10℃以上40℃以下となる様に適宜調節する。
(6)サンプルスタンド内に設置した前記(1)の丸底ビーカーに、ピペットを用いてトナーを分散した前記(5)の電解質水溶液を滴下し、測定濃度が約5%となるように調整する。そして、測定粒子数が50000個になるまで測定を行う。
(7)定データを装置付属の前記専用ソフトにて解析を行い、重量平均粒径(D4)を算出する。尚、専用ソフトでグラフ/体積%と設定したときの、分析/体積統計値(算術平均)画面の「平均径」が重量平均粒径(D4)である。
以上本発明の基本的な構成と特色について述べたが、以下実施例にもとづいて具体的に本発明について説明する。しかしながら、これによって本発明の実施の態様がなんら限定されるものではない。実施例中の部数は質量部である。
<ポリエステル樹脂Aの製造>
<樹脂A1-1の製造例>
窒素導入管、脱水管、撹拌器及び熱電対を装備した反応槽中に、アルコールモノマーとして1,10-デカンジオールを、酸モノマーとして1,10-デカン二酸を表1に示す配合量で投入した。
そして触媒としてジオクチル酸錫をモノマー総量100質量部に対して1質量部添加し、窒素雰囲気下で140℃に加熱して常圧下で水を留去しながら6時間反応させた。
次いで200℃まで10℃/時間で昇温しつつ反応させ、200℃に到達してから2時間反応させた後、反応槽内を5kPa以下に減圧して200℃で3.5時間反応させた。その後、反応槽内の圧力を序々に開放して常圧へ戻した後、表1に示した結晶核剤(n-オクタデカン酸)を記載の配合量加え、常圧下にて210℃で2時間反応させた。その後、再び反応槽内を5kPa以下へ減圧して190℃で3時間反応させることにより樹脂A1-1を得た。得られた樹脂A1-1のMALDI-TOFMSのマススペクトルには、樹脂A-1の分子末端にn-オクタデカン酸が結合した組成のピークが確認されたことから、樹脂A-1の分子末端と結晶核剤とが結合していることが確認された。
得られた樹脂A1-1の諸物性を表2に示す。
<ポリエステル樹脂A1-2乃至A12の製造例>
表1に記載のモノマー種及び配合量、結晶核剤とした以外は、ポリエステル樹脂A1-1と同様にポリエステル樹脂A1-2、A1-3、ポリエステル樹脂A2乃至A12を得た。また得られた樹脂A1-2、A1-3、ポリエステルA2乃至A9、A11、12に関しては、MALDI-TOFMSのマススペクトルを測定したところ、ポリエステル樹脂部の末端に結晶核剤が結合した組成のピークが確認され、分子末端と結晶核剤とが結合していることが確認された。
得られた樹脂A1-2、A1-3、ポリエステル樹脂A2乃至A12の諸物性を表2に示す。
Figure JPOXMLDOC01-appb-T000002
<ポリエステル樹脂B1の製造>
窒素導入管、脱水管、撹拌器及び熱電対を装備した反応槽中に、表3に示す配合量で、モノマーを入れた後、触媒としてジブチル錫をモノマー総量100質量部に対して1.5質量部添加した。
次いで窒素雰囲気下にて常圧で260℃の条件でエステル化反応を行い、水が留出しなくなった時点で終了させた。その後220℃に温度を保ち、槽内を0.2kPaになるように減圧し樹脂が所望の軟化点になるまで縮合反応を行った。所望の軟化点になった時点で反応槽内を常圧に戻し、加熱を停止した。反応物を窒素により加圧し約2時間をかけて取出し樹脂B1を得た。
得られた樹脂B1の諸物性を表4に示す。
また樹脂の低分子量成分のモノマー比を分析した所、TPA63.6mol部、TMA3.4mol部、BPA-PO付加物82.6mol部、BPA-EO付加物24.9mol部、EG0.4mol部を含有していた。この組成比から算出した低分子量成分のSP値は9.87(cal/cm1/2であった。
<ポリエステル樹脂B2の製造例>
表3に記載のモノマー種及び配合量とした以外は、ポリエステル樹脂B1と同様にポリエステル樹脂B2を得た。得られた樹脂B2の諸物性を表4に示す。また樹脂の低分子量成分のモノマー比を分析した所、TPA63.6mol部、TMA2.2mol部、FA1.1mol部、BPA-PO付加物53.3mol部、BPA-EO付加物24.9mol部、EG2.3mol部を含有していた。この組成比から算出した低分子量成分のSP値は10.01(cal/cm1/2であった。
<ポリエステル樹脂B3の製造例>
表3に記載のモノマー種及び配合量とした以外は、ポリエステル樹脂B1と同様にポリエステル樹脂B3を得た。得られた樹脂B3の諸物性を表4に示す。また樹脂の低分子量成分のモノマー比を分析した所、TPA63.6mol部、BPA-PO付加物12.7mol部、BPA-EO付加物7.1mol部、EG2.2mol部、PG4.2mol部、NPG4.6mol部を含有していた。この組成比から算出した低分子量成分のSP値は10.24(cal/cm1/2であった。
<ポリエステル樹脂B4の製造例>
表3に記載のモノマー種及び配合量とした以外は、ポリエステル樹脂B1と同様にポリエステル樹脂B4を得た。得られた樹脂B4の諸物性を表4に示す。また樹脂の低分子量成分のモノマー比を分析した所、TPA58.3mol部、TMA3.4mol部、BPA-PO付加物76.2mol部、BPA-EO付加物28.4mol部、EG0.7mol部を含有していた。この組成比から算出した低分子量成分のSP値は9.87(cal/cm1/2であった。
<ポリエステル樹脂B5の製造例>
軟化点を高めにするために縮合時間を長くすること以外は、ポリエステル樹脂B2と同様にポリエステル樹脂B5を得た。得られた樹脂B5の諸物性を表4に示す。また樹脂の低分子量成分のモノマー比を分析した所、TPA63.6mol部、TMA4.5mol部、FA1.7mol部、BPA-PO付加物55.9mol部、BPA-EO付加物25.6mol部、EG2.5mol部を含有していた。この組成比から算出した低分子量成分のSP値は10.03(cal/cm1/2であった。
<ポリエステル樹脂B6の製造例>
軟化点を低めにするために縮合時間を短くすること以外は、ポリエステル樹脂B1と同様にポリエステル樹脂B6を得た。得られた樹脂B6の諸物性を表4に示す。また樹脂の低分子量成分のモノマー比を分析した所、TPA63.6mol部、TMA3.4mol部、BPA-PO付加物88.9mol部、BPA-EO付加物21.3mol部、EG0.6mol部を含有していた。この組成比から算出した低分子量成分のSP値は9.86(cal/cm1/2であった。
<ポリエステル樹脂B7の製造例>
窒素導入管、脱水管、撹拌器及び熱電対を装備した反応槽中に、表3に示す配合量の各モノマーを入れた後、触媒としてジブチル錫をモノマー総量100質量部に対して1.5質量部添加した。
次いで窒素雰囲気下にて常圧で10℃/時間で昇温していき、220℃まで昇温してエステル化反応を行い、水が留出しなくなった時点で終了させた。その後220℃に温度を保ち、槽内を0.2kPaになるように減圧し樹脂が所望の軟化点になるまで縮合反応を行った。所望の軟化点になった時点で反応槽内を常圧に戻し、加熱を停止した。反応物を窒素により加圧し約2時間をかけて取出し樹脂B7を得た。
得られた樹脂B7の諸物性を表4に示す。
本製造例では使用したモノマーの種類を大幅に変更したことにより1500以下の分子量の面積%が低い樹脂B7が得られた。
また樹脂の低分子量成分のモノマー比を分析した所、TPA48.0mol部、EG3.3mol部、PG4.2mol部、NPG5.3mol部を含有していた。この組成比から算出した低分子量成分のSP値は10.49(cal/cm1/2であった。
<ポリエステル樹脂B8の製造>
窒素導入管、脱水管、撹拌器及び熱電対を装備した反応槽中に、表3に示す配合量の各モノマーを入れた後、触媒としてジブチル錫をモノマー総量100質量部に対して1.5質量部添加した。
次いで窒素雰囲気下にて常圧で180℃まで素早く昇温した後、180℃から200℃まで10℃/時間の速度で加熱しながら水を留去して重縮合を行った。
200℃に到達してから反応槽内を10kPa以下まで減圧し、200℃、10kPa以下の条件下にて重縮合を行い、樹脂B8を得た。
このとき得られる樹脂B8の軟化点が表4の値となるように重合時間を調整した。得られた樹脂B8の諸物性を表4に示す。
また樹脂の低分子量成分のモノマー比を分析した所、TPA49.5mol部、TMA3.4mol部、BPA-PO付加物94.3mol部、BPA-EO付加物29.1mol部、EG0.6mol部を含有していた。この組成比から算出した低分子量成分のSP値は9.81(cal/cm1/2であった。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
<実施例1>
・ポリエステル樹脂A1            20.0質量部
・ポリエステル樹脂B1            80.0質量部
・カーボンブラック               5.0質量部
・フィッシャートロプシュワックス(DSCピーク温度105℃)  5.0質量部
・3,5-ジ-t-ブチルサリチル酸アルミニウム化合物   0.5質量部
上記材料をヘンシェルミキサー(FM-75型、三井三池化工機(株)製)で混合した後、二軸混練機(池貝鉄工(株)製PCM-30型))にて回転数3.3s-1、混練樹脂温度110℃の条件で混練した。
得られた混練物を冷却し、ハンマーミルにて1mm以下に粗粉砕し、粗砕物を得た。得られた粗砕物を、機械式粉砕機(ターボ工業(株)製T-250)にて微粉砕した。さらに、得られた微粉砕粉末をコアンダ効果を利用した多分割分級機を用いて分級し、重量平均粒径7.0μmの負摩擦帯電性のトナー粒子を得た。
得られたトナー粒子100質量部に、イソブチルトリメトキシシラン15質量%で表面処理した一次粒子の平均径50nmの酸化チタン微粒子1.0質量部、及びヘキサメチルジシラザン20質量%で表面処理した一次粒子の平均径16nmの疎水性シリカ微粒子0.8質量部を添加し、ヘンシェルミキサー(三井三池化工機(株)製FM-75型)で混合して、トナー1を得た。
得られたトナー1の軟化点を表5に示す。
本実施例において、得られたトナー1の定着性及び長期間保存安定性の評価に用いるマシンは、市販のカラーレーザープリンタColor Laser Jet CP4525(HP社製)を用いた。この評価機において、トナーを本実施例で製造したトナー1に変更し、以下の評価を実施した。
(1)高速定着性 
市販のカラーレーザープリンタColor Laser Jet CP4525(HP社製)の定着器を取り出し、定着装置の定着温度、定着ニップ圧及びプロセススピードを任意に設定できるようにした外部定着器を用いた。
温度23℃、相対湿度50%環境下で、カラーレーザーコピア用紙(キヤノン製、80g/m)を使用し、評価に用いるカートリッジはブラックカートリッジを用いた。すなわち、市販のブラックカートリッジから製品トナーを抜き取り、エアーブローにて内部を清掃した後、本発明のトナー1を150g充填して評価を行った。なお、マゼンタ、イエロー、シアンの各ステーションにはそれぞれ製品トナーを抜き取り、トナー残量検知機構を無効としたマゼンタ、イエロー、およびシアンカートリッジを挿入して評価を行った。その後、トナー載り量0.6mg/cmとなるようにベタ黒の未定着画像を出力した。
定着器の定着温度を150℃とし、プロセススピードを300mm/secから500mm/secまでの範囲で20mm/secごとに上げていき、上記ベタ黒未定着画像の定着を行った。得られたベタ黒画像を約100gの荷重をかけたシルボン紙で5往復摺擦し、摺擦前後の画像濃度の濃度低下率が10%以下になる点を定着するプロセススピードとした。この速度が速い程、低温定着性(高速定着性)に優れたトナーである。 
評価結果を表6に示す。 
A:定着速度が400mm/sec以上である。
B:定着速度が350mm/sec以上、400mm/sec未満である。
C:定着速度が300mm/sec以上、350mm/sec未満である。
D:定着速度が300mm/sec未満である。
(2)低圧定着性 
上記定着試験において、定着器の定着温度を150℃とし、定着ニップ面圧を0.08MPaから0.24MPaまでの範囲で0.02MPaごとに上げていき、上記ベタ黒未定着画像の定着を行った。得られたベタ黒画像を約100gの荷重をかけたシルボン紙で5往復摺擦し、摺擦前後の画像濃度の濃度低下率が10%以下になる点を定着する定着ニップ面圧とした。この定着ニップ面圧が低い程、低温定着性(低圧定着性)に優れたトナーである。評価結果を表6に示す。 
A:定着ニップ圧が 0.10MPa未満である。 
B:定着ニップ圧が 0.10MPa以上、0.14MPa未満である。 
C:定着ニップ圧が 0.14MPa以上、0.20MPa未満である。
D:定着ニップ圧が 0.20MPa以上である。
(3)高温環境での長期保存安定性(カール性評価) 
上記定着試験において、定着温度150℃、定着ニップ圧を0.25MPa、プロセススピードを200mm/secとし、上記ベタ黒未定着画像の定着を行った。得られたベタ黒画像を温度40℃及び相対湿度50%の環境試験室に30日間放置する。放置後の画像を平面の台の上に置き、長手の片側をテープで固定する。その際に、もう片側の紙がカールすることによって生じる角度でカール性の評価を行った。角度の算出方法は、カールした紙の先端と台に接した部分を結んだ直線と平面の台との角度により算出した。
この角度が小さい程、高温環境での長期保存性が良好と言える。評価結果を表6に示す。A:10°未満である。
B:10°以上、20°未満である。 
C:20°以上、30°未満である。 
D:30°以上、40°未満である。 
E:40°以上である。 
(4)厚紙での定着性試験
市販のカラーレーザープリンタColor Laser Jet CP4525(HP社製)の定着器を取り出し、定着装置の定着温度、定着ニップ圧及びプロセススピードを任意に設定できるようにした外部定着器を用いた。
温度23℃、相対湿度50%環境下で、厚紙のGF-C104用紙(キヤノン製、104g/m)を使用し、評価に用いるカートリッジはブラックカートリッジを用いた。すなわち、市販のブラックカートリッジから製品トナーを抜き取り、エアーブローにて内部を清掃した後、本発明のトナー1を150g充填して評価を行った。なお、マゼンタ、イエロー、シアンの各ステーションにはそれぞれ製品トナーを抜き取り、トナー残量検知機構を無効としたマゼンタ、イエロー、およびシアンカートリッジを挿入して評価を行った。
その後、トナー載り量0.6mg/cmとなるようにベタ黒の未定着画像を出力した。
プロセススピードを200mm/sec、定着ニップ圧を0.25MPa、定着器の定着温度を100℃から200℃まで10℃刻みで振って未定着画像の定着を行った。
得られたベタ黒画像を約100gの荷重をかけたシルボン紙で5往復摺擦し、摺擦前後の画像濃度の濃度低下率が10%以下となる温度を定着温度とした。定着性の評価基準は下記の様に行った。評価結果を表6に示す。
A:定着温度が120℃未満である。 
B:定着温度が120℃以上130℃未満である。 
C:定着温度が130℃以上140℃未満である。 
D:定着温度が140℃以上150℃未満である。 
E:定着温度が150℃以上である。
(5)厚紙での定着画像の光沢ムラ試験
上記定着試験において、厚紙のGF-C104用紙(キヤノン製、104g/m)を使用し、定着温度150℃、定着ニップ圧を0.25MPa、プロセススピードを200mm/secとした時の画像の光沢度(%)を測定した。
光沢度(グロス)の測定は、ハンディ型グロスメーターPG-1(日本電色工業株式会社製)を用いて測定した。測定としては、投光角度、受光角度をそれぞれ75°に合わせた。画像光沢度は、出力した画像上10点の光沢度(グロス)を測定し、その内の最高と最低グロスとの差で光沢ムラの評価を行った。評価基準は下記の様に行った。評価結果を表6に示す。
A:グロス差が2%未満である。 
B:グロス差が2%以上5%未満である。 
C:グロス差が5%以上7%未満である。 
D:グロス差が7%以上10%未満である。 
E:グロス差が10%以上である。
以上、実施例1に関しては、何れの評価も良好な結果が得られた。
<実施例2乃至15>
表5に記載の処方とした以外は、実施例1と同様にして、トナー2乃至15を得た。トナー2乃至15の軟化点を表5に示す。また、実施例1と同様の評価を行った。得られた結果を表6に示す。
<比較例1乃至5>
表5に記載の処方とした以外は、実施例1と同様にして、トナー16乃至20を得た。得られたトナー16乃至20の軟化点を表5に示す。また、実施例1と同様の評価を行った。得られた結果を表6に示す。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
この出願は2012年6月22日に出願された日本国特許出願番号2012-141033からの優先権を主張するものであり、その内容を引用してこの出願の一部とするものである。

Claims (12)

  1.  ポリエステル樹脂A、ポリエステル樹脂B、及び着色剤を含有するトナー粒子を有するトナーであって、
     該ポリエステル樹脂Aは、結晶構造をとりうる部位を有するポリエステル部と、結晶核剤部とを有し、該ポリエステル部の末端に結晶核剤部が結合しており、
     該ポリエステル樹脂Bは、結晶構造をとりうる部位を有さない樹脂であり、
     該ポリエステル樹脂Bのテトラヒドロフラン(THF)可溶分の分子量分布を、ゲルパーミエーションクロマトグラフィー(GPC)によって測定した際に得られるチャートにおいて、分子量1500以下の成分の割合が5.0面積%以上、15.0面積%以下であり、
     該ポリエステル樹脂Aにおける該ポリエステル部のSP値をSa((cal/cm1/2)、該ポリエステル樹脂BのSP値をSb((cal/cm1/2)としたとき、該Saと該Sbとが下記式を満たすことを特徴とするトナー。
    9.50≦Sa≦11.00
    -0.65≦Sb-Sa≦0.70
  2.  該トナー粒子における前記ポリエステル樹脂Aと前記ポリエステル樹脂Bとの質量基準での含有量比が、5:95~40:60であることを特徴とする請求項1に記載のトナー。
  3.  該結晶核剤部は、炭素数10以上30以下である脂肪族カルボン酸及び炭素数10以上30以下である脂肪族アルコールからなる群より選ばれる少なくとも1つの化合物に由来する部位であることを特徴とする請求項1または2に記載のトナー。
  4.  該ポリエステル樹脂Aの軟化点をTmA(℃)、該ポリエステル樹脂Bの軟化点をTmB(℃)としたとき、TmAとTmBとが下記式を満足することを特徴とする請求項1乃至3のいずれか1項に記載のトナー。
    -10≦TmB-TmA≦40
    60≦TmA≦90
  5.  該Saが、9.50以上10.70以下であることを特徴とする請求項1乃至4のいずれか1項に記載のトナー。
  6.  該Saと該Sbとが下記式を満たすことを特徴とする請求項1乃至5のいずれか1項に記載のトナー。
    -0.55≦Sb-Sa≦0.70
  7.  該ポリエステル樹脂Bは、テトラヒドロフラン(THF)可溶分の分子量分布を、ゲルパーミエーションクロマトグラフィー(GPC)によって測定した際に得られるチャートにおいて、分子量1500以下の成分の割合を9.0面積%以上、13.0面積%以下含有することを特徴とする請求項1乃至6のいずれか1項に記載のトナー。
  8.  該ポリエステル樹脂Bに含有される分子量1500以下の成分にのSP値をScとしたとき、該Saと該Scとが下記式を満たすことを特徴とする請求項1乃至7のいずれか1項に記載のトナー。
    -0.50≦Sa-Sc≦0.50
  9.  該ポリエステル樹脂Aは、示差走査熱量計(DSC)測定において昇温時に観測される吸熱ピークの面積から求められる融解熱量(ΔH)が100J/g以上、140J/gであることを特徴とする請求項1乃至8のいずれか1項に記載のトナー。
  10.  該ポリエステル樹脂Aの軟化点をTmA(℃)、該ポリエステル樹脂Bの軟化点をTmB(℃)としたとき、TmAおよびTmBが下記関係を満たすことを特徴とする請求項1乃至9のいずれか1項に記載のトナー。
    -10≦TmB-TmA≦40
  11.  該ポリエステル樹脂Aの軟化点TmA(℃)が、70℃以上、85℃以下であることを特徴とする請求項10に記載のトナー。
  12.  該ポリエステル樹脂Bの軟化点TmBが、80℃以上、130℃以下であることを特徴とする請求項10又は11に記載のトナー。
PCT/JP2013/003787 2012-06-22 2013-06-18 トナー WO2013190828A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020157000915A KR20150023749A (ko) 2012-06-22 2013-06-18 토너
CN201380033073.4A CN104428718B (zh) 2012-06-22 2013-06-18 调色剂
DE112013003097.7T DE112013003097B4 (de) 2012-06-22 2013-06-18 Toner
US14/103,836 US9134637B2 (en) 2012-06-22 2013-12-11 Toner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-141033 2012-06-22
JP2012141033 2012-06-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/103,836 Continuation US9134637B2 (en) 2012-06-22 2013-12-11 Toner

Publications (1)

Publication Number Publication Date
WO2013190828A1 true WO2013190828A1 (ja) 2013-12-27

Family

ID=49768442

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/003787 WO2013190828A1 (ja) 2012-06-22 2013-06-18 トナー

Country Status (6)

Country Link
US (1) US9134637B2 (ja)
JP (1) JP6140002B2 (ja)
KR (1) KR20150023749A (ja)
CN (1) CN104428718B (ja)
DE (1) DE112013003097B4 (ja)
WO (1) WO2013190828A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015129289A1 (ja) * 2014-02-26 2015-09-03 株式会社リコー トナー、現像剤、画像形成装置

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9046800B2 (en) 2011-05-12 2015-06-02 Canon Kabushiki Kaisha Magnetic carrier
CN104395836B (zh) 2012-06-22 2018-12-25 佳能株式会社 调色剂
KR20150023755A (ko) 2012-06-22 2015-03-05 캐논 가부시끼가이샤 토너
CN105378566B (zh) 2013-07-31 2019-09-06 佳能株式会社 磁性调色剂
US9575425B2 (en) 2013-07-31 2017-02-21 Canon Kabushiki Kaisha Toner
DE112014003546B4 (de) 2013-07-31 2020-03-12 Canon Kabushiki Kaisha Toner
US9261806B2 (en) * 2013-08-01 2016-02-16 Canon Kabushiki Kaisha Toner
EP3144728B1 (en) * 2014-05-09 2021-04-21 Sanyo Chemical Industries, Ltd. Toner binder, and toner
JP6330716B2 (ja) 2015-04-16 2018-05-30 コニカミノルタ株式会社 トナーおよびその製造方法
US9971263B2 (en) 2016-01-08 2018-05-15 Canon Kabushiki Kaisha Toner
US9897932B2 (en) 2016-02-04 2018-02-20 Canon Kabushiki Kaisha Toner
JP6886353B2 (ja) * 2016-06-09 2021-06-16 三洋化成工業株式会社 トナー用樹脂及びトナー
JP6904801B2 (ja) 2016-06-30 2021-07-21 キヤノン株式会社 トナー、該トナーを備えた現像装置及び画像形成装置
JP6900279B2 (ja) 2016-09-13 2021-07-07 キヤノン株式会社 トナー及びトナーの製造方法
JP2018060067A (ja) * 2016-10-05 2018-04-12 富士ゼロックス株式会社 静電荷像現像用トナー、静電荷像現像剤、トナーカートリッジ、画像形成装置、及び、画像形成方法
US10295921B2 (en) 2016-12-21 2019-05-21 Canon Kabushiki Kaisha Toner
US10289016B2 (en) 2016-12-21 2019-05-14 Canon Kabushiki Kaisha Toner
US10303075B2 (en) 2017-02-28 2019-05-28 Canon Kabushiki Kaisha Toner
US10295920B2 (en) 2017-02-28 2019-05-21 Canon Kabushiki Kaisha Toner
US10241430B2 (en) 2017-05-10 2019-03-26 Canon Kabushiki Kaisha Toner, and external additive for toner
US10545420B2 (en) 2017-07-04 2020-01-28 Canon Kabushiki Kaisha Magnetic toner and image-forming method
US10768540B2 (en) 2018-02-14 2020-09-08 Canon Kabushiki Kaisha External additive, method for manufacturing external additive, and toner
JP7066439B2 (ja) 2018-02-14 2022-05-13 キヤノン株式会社 トナー用外添剤、トナー用外添剤の製造方法及びトナー
US11774872B2 (en) 2018-05-22 2023-10-03 Sanyo Chemical Industries, Ltd. Toner binder
JP7267705B2 (ja) 2018-10-02 2023-05-02 キヤノン株式会社 磁性トナー
JP7267706B2 (ja) 2018-10-02 2023-05-02 キヤノン株式会社 磁性トナー
JP2020095083A (ja) 2018-12-10 2020-06-18 キヤノン株式会社 トナー
JP7224885B2 (ja) 2018-12-10 2023-02-20 キヤノン株式会社 トナー
JP7207981B2 (ja) 2018-12-10 2023-01-18 キヤノン株式会社 トナー及びトナーの製造方法
JP7433872B2 (ja) 2018-12-28 2024-02-20 キヤノン株式会社 トナー
JP7443048B2 (ja) 2018-12-28 2024-03-05 キヤノン株式会社 トナー
JP7391640B2 (ja) 2018-12-28 2023-12-05 キヤノン株式会社 トナー
JP7504583B2 (ja) 2018-12-28 2024-06-24 キヤノン株式会社 トナーの製造方法
JP7301560B2 (ja) 2019-03-08 2023-07-03 キヤノン株式会社 トナー
JP7292965B2 (ja) 2019-05-13 2023-06-19 キヤノン株式会社 トナーおよびトナーの製造方法
JP7341718B2 (ja) 2019-05-13 2023-09-11 キヤノン株式会社 トナー
JP7313931B2 (ja) 2019-06-27 2023-07-25 キヤノン株式会社 トナー
JP7313930B2 (ja) 2019-06-27 2023-07-25 キヤノン株式会社 トナー
JP2022077739A (ja) 2020-11-12 2022-05-24 キヤノン株式会社 トナー
JP7642370B2 (ja) 2020-12-25 2025-03-10 キヤノン株式会社 トナー

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010038969A (ja) * 2008-07-31 2010-02-18 Sanyo Chem Ind Ltd 静電荷像現像用トナー
JP2011242750A (ja) * 2010-04-21 2011-12-01 Ricoh Co Ltd 結晶性ポリエステルを添加したトナー
JP2012053196A (ja) * 2010-08-31 2012-03-15 Ricoh Co Ltd トナー及び現像剤
JP2012098684A (ja) * 2010-11-04 2012-05-24 Xerox Corp トナープロセス
JP2012234103A (ja) * 2011-05-09 2012-11-29 Ricoh Co Ltd 電子写真用トナー、現像剤、プロセスカートリッジ及び画像形成装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1455237B1 (en) 2003-03-07 2011-05-25 Canon Kabushiki Kaisha Toner and two-component developer
JP2004326001A (ja) * 2003-04-28 2004-11-18 Dainippon Ink & Chem Inc 電子写真用トナーの製造方法
JP2005084226A (ja) * 2003-09-05 2005-03-31 Mitsubishi Rayon Co Ltd トナー用ポリエステル樹脂及び該樹脂を含むトナー
JP2007021595A (ja) 2005-07-12 2007-02-01 Asahi Diamond Industrial Co Ltd ブレード
JP2008107679A (ja) * 2006-10-27 2008-05-08 Canon Inc トナー
JP5247173B2 (ja) * 2007-07-11 2013-07-24 三洋化成工業株式会社 トナー用樹脂およびトナー組成物
US8067477B2 (en) * 2008-01-24 2011-11-29 Dic Corporation Resin composition for electrophotographic toners and electrophotographic toners
JP5299616B2 (ja) 2008-10-23 2013-09-25 富士ゼロックス株式会社 静電荷像現像用トナー及びその製造方法、静電荷像現像剤、トナーカートリッジ、プロセスカートリッジ、画像形成方法、並びに、画像形成装置
JP5473354B2 (ja) * 2009-02-23 2014-04-16 キヤノン株式会社 電子写真用トナー容器及び画像形成方法
JP5291649B2 (ja) * 2009-03-17 2013-09-18 三洋化成工業株式会社 樹脂粒子
JP5773752B2 (ja) * 2010-06-11 2015-09-02 キヤノン株式会社 トナー及びトナーの製造方法
JP5849651B2 (ja) * 2011-01-24 2016-01-27 株式会社リコー トナー及び現像剤
KR20150023755A (ko) 2012-06-22 2015-03-05 캐논 가부시끼가이샤 토너

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010038969A (ja) * 2008-07-31 2010-02-18 Sanyo Chem Ind Ltd 静電荷像現像用トナー
JP2011242750A (ja) * 2010-04-21 2011-12-01 Ricoh Co Ltd 結晶性ポリエステルを添加したトナー
JP2012053196A (ja) * 2010-08-31 2012-03-15 Ricoh Co Ltd トナー及び現像剤
JP2012098684A (ja) * 2010-11-04 2012-05-24 Xerox Corp トナープロセス
JP2012234103A (ja) * 2011-05-09 2012-11-29 Ricoh Co Ltd 電子写真用トナー、現像剤、プロセスカートリッジ及び画像形成装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015129289A1 (ja) * 2014-02-26 2015-09-03 株式会社リコー トナー、現像剤、画像形成装置
JPWO2015129289A1 (ja) * 2014-02-26 2017-03-30 株式会社リコー トナー、現像剤、画像形成装置
US9921503B2 (en) 2014-02-26 2018-03-20 Ricoh Company, Ltd. Toner, developer, and image formation device

Also Published As

Publication number Publication date
US20140099578A1 (en) 2014-04-10
DE112013003097B4 (de) 2024-01-04
KR20150023749A (ko) 2015-03-05
CN104428718B (zh) 2019-01-04
DE112013003097T5 (de) 2015-03-12
US9134637B2 (en) 2015-09-15
CN104428718A (zh) 2015-03-18
JP2014026274A (ja) 2014-02-06
JP6140002B2 (ja) 2017-05-31

Similar Documents

Publication Publication Date Title
JP6140002B2 (ja) トナー
JP6104072B2 (ja) トナー
JP6181992B2 (ja) トナー
JP5984528B2 (ja) トナー
US9116448B2 (en) Toner
JP2015045851A (ja) トナー
US9285697B2 (en) Toner
JP6448351B2 (ja) トナー及び二成分系現像剤
JP6214371B2 (ja) トナー
JP6195374B2 (ja) トナー
JP2015121580A (ja) トナー
JP6195375B2 (ja) トナー
JP6292865B2 (ja) トナー及び二成分系現像剤

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13806334

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1120130030977

Country of ref document: DE

Ref document number: 112013003097

Country of ref document: DE

ENP Entry into the national phase

Ref document number: 20157000915

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 13806334

Country of ref document: EP

Kind code of ref document: A1