WO2013046419A1 - 窒化物半導体素子及びその製造方法 - Google Patents
窒化物半導体素子及びその製造方法 Download PDFInfo
- Publication number
- WO2013046419A1 WO2013046419A1 PCT/JP2011/072524 JP2011072524W WO2013046419A1 WO 2013046419 A1 WO2013046419 A1 WO 2013046419A1 JP 2011072524 W JP2011072524 W JP 2011072524W WO 2013046419 A1 WO2013046419 A1 WO 2013046419A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- electrode
- nitride semiconductor
- type algan
- semiconductor device
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 106
- 150000004767 nitrides Chemical class 0.000 title claims abstract description 65
- 238000004519 manufacturing process Methods 0.000 title claims description 14
- 229910002704 AlGaN Inorganic materials 0.000 claims abstract description 73
- 238000009792 diffusion process Methods 0.000 claims abstract description 33
- 229910052751 metal Inorganic materials 0.000 claims abstract description 23
- 239000002184 metal Substances 0.000 claims abstract description 23
- 239000000758 substrate Substances 0.000 claims abstract description 12
- 229910044991 metal oxide Inorganic materials 0.000 claims abstract description 6
- 150000004706 metal oxides Chemical class 0.000 claims abstract description 5
- 239000010410 layer Substances 0.000 claims description 307
- 238000000034 method Methods 0.000 claims description 39
- 238000000137 annealing Methods 0.000 claims description 36
- 238000012545 processing Methods 0.000 claims description 18
- 230000002265 prevention Effects 0.000 claims description 17
- 238000000151 deposition Methods 0.000 claims description 12
- 239000012790 adhesive layer Substances 0.000 claims description 9
- 238000000059 patterning Methods 0.000 claims description 9
- 238000010438 heat treatment Methods 0.000 description 27
- 238000005253 cladding Methods 0.000 description 21
- 238000005275 alloying Methods 0.000 description 18
- 239000000523 sample Substances 0.000 description 15
- 230000000052 comparative effect Effects 0.000 description 13
- 239000012298 atmosphere Substances 0.000 description 8
- 229910052594 sapphire Inorganic materials 0.000 description 8
- 239000010980 sapphire Substances 0.000 description 8
- 238000002474 experimental method Methods 0.000 description 7
- 229920002120 photoresistant polymer Polymers 0.000 description 7
- 230000004888 barrier function Effects 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 5
- 238000005530 etching Methods 0.000 description 5
- 239000007789 gas Substances 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 230000006866 deterioration Effects 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 239000013074 reference sample Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 238000005566 electron beam evaporation Methods 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000012299 nitrogen atmosphere Substances 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 238000004380 ashing Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 125000005842 heteroatom Chemical group 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 238000001451 molecular beam epitaxy Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000001020 plasma etching Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/80—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
- H10D62/85—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials being Group III-V materials, e.g. GaAs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/80—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
- H10D62/85—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials being Group III-V materials, e.g. GaAs
- H10D62/8503—Nitride Group III-V materials, e.g. AlN or GaN
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/60—Electrodes characterised by their materials
- H10D64/62—Electrodes ohmically coupled to a semiconductor
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/01—Manufacture or treatment
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/01—Manufacture or treatment
- H10H20/032—Manufacture or treatment of electrodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/01—Manufacture or treatment
- H10H20/036—Manufacture or treatment of packages
- H10H20/0364—Manufacture or treatment of packages of interconnections
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/811—Bodies having quantum effect structures or superlattices, e.g. tunnel junctions
- H10H20/812—Bodies having quantum effect structures or superlattices, e.g. tunnel junctions within the light-emitting regions, e.g. having quantum confinement structures
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/822—Materials of the light-emitting regions
- H10H20/824—Materials of the light-emitting regions comprising only Group III-V materials, e.g. GaP
- H10H20/825—Materials of the light-emitting regions comprising only Group III-V materials, e.g. GaP containing nitrogen, e.g. GaN
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/83—Electrodes
- H10H20/831—Electrodes characterised by their shape
- H10H20/8316—Multi-layer electrodes comprising at least one discontinuous layer
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/83—Electrodes
- H10H20/832—Electrodes characterised by their material
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/83—Electrodes
- H10H20/832—Electrodes characterised by their material
- H10H20/835—Reflective materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/85—Packages
- H10H20/857—Interconnections, e.g. lead-frames, bond wires or solder balls
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/01—Manufacture or treatment
- H10H20/011—Manufacture or treatment of bodies, e.g. forming semiconductor layers
- H10H20/013—Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials
- H10H20/0137—Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials the light-emitting regions comprising nitride materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/83—Electrodes
- H10H20/831—Electrodes characterised by their shape
- H10H20/8312—Electrodes characterised by their shape extending at least partially through the bodies
Definitions
- the present invention relates to a nitride semiconductor device and a method of manufacturing the same, and more particularly to a nitride semiconductor light emitting device having an emission center wavelength of about 365 nm or less used for a light emitting diode, a laser diode, etc. Electrode structure of n electrode and p electrode used for
- Nitride semiconductor light emitting devices such as LEDs (light emitting diodes) and semiconductor lasers in which a light emitting device structure including a plurality of nitride semiconductor layers is formed by epitaxial growth on a substrate such as sapphire.
- Nitride semiconductor layer is represented by the general formula Al 1-x-y Ga x In y N (0 ⁇ x ⁇ 1,0 ⁇ y ⁇ 1,0 ⁇ x + y ⁇ 1).
- the light emitting device has a single quantum well structure (SQW: Single-Quantum-Well) or a multiple quantum well structure (MQW: Multi-Quantum-Well) between an n-type nitride semiconductor layer and a p-type nitride semiconductor layer.
- SQW Single-Quantum-Well
- MQW Multi-Quantum-Well
- the adjustment can be made within the range of 2 eV) as the lower limit and the upper limit, respectively, and an ultraviolet light emitting device having an emission wavelength of about 200 nm to about 365 nm can be obtained. Specifically, by causing a forward current to flow from the p-type nitride semiconductor layer to the n-type nitride semiconductor layer, light emission corresponding to the band gap energy is generated in the active layer.
- FIG. 10 schematically shows an element structure of a general light emitting diode.
- an n-type nitride semiconductor layer 101, an active layer 102, and a p-type nitride semiconductor layer 103 are formed on a template 100 formed by depositing a nitride semiconductor layer on a sapphire substrate or the like.
- the p-type nitride semiconductor layer 103 and a part of the active layer 102 are removed by etching until the n-type nitride semiconductor layer 101 is exposed, and the exposed surface of the n-type nitride semiconductor layer 101 is Is formed by forming ap electrode 105 on the surface of the p-type nitride semiconductor layer 103, respectively.
- the active layer is an AlGaN-based semiconductor layer
- the n-type nitride semiconductor layer and the p-type nitride semiconductor layer sandwiching the active layer are formed of an AlGaN-based semiconductor layer having a higher AlN mole fraction than the active layer. Therefore, the n electrode and the p electrode each have a laminated structure of two or more layers, and the lower layer side is formed of a metal layer capable of ohmic contact with the n-type AlGaN based semiconductor layer and the p-type AlGaN based semiconductor layer, respectively, It is common practice to form an Au layer to enable wire bonding with an Au wire or the like.
- n-electrode a 4-layer structure of Ti / Al / Ti / Au from the lower layer side
- a 2-layer structure of Ni / Au from the lower layer side is used as the p-electrode.
- the n electrode when emitting light from the active layer from the back surface side, by making the n electrode contain Al, light reflected from the interface on the back surface side toward the active layer side is directed to the back surface side by the n electrode. Rereflection makes it possible to improve the external quantum efficiency of the light-emitting element.
- the n- and p-electrodes are annealed or sintered to form an ohmic connection between the lower metal layer and the n-type or p-type AlGaN-based semiconductor layer after deposition and patterning, respectively.
- a heat treatment called is performed.
- alloying occurs between the metal layer on the lower layer side and Au on the upper layer side, and the metallized alloy other than Au is exposed on the surface of each electrode and the surface state is deteriorated. In particular, when the heat treatment temperature is high, the deterioration is remarkable.
- Patent Document 1 a barrier metal layer made of a metal having a melting point higher than that of Al is provided on the surface of the lower Al layer, and the Au layer and the Al layer are separated by the barrier metal layer. It has been proposed to prevent alloying of Al and Ti with Au on the upper layer side.
- the band gap energy of the active layer is equal to or higher than the band gap energy of GaN, and AlGaN constituting an n-type nitride semiconductor layer and a p-type nitride semiconductor layer sandwiching the active layer
- the band gap energy of the base semiconductor layer is set larger than that of the active layer. Therefore, approximately 20% or more of the AlN mole fraction of the n-type nitride semiconductor layer sandwiching the active layer and the AlGaN-based semiconductor layer constituting the p-type nitride semiconductor layer is required.
- the contact resistance C C between the n-electrode (Ti / Al / Ti / Au: the lowermost layer is Ti and the uppermost layer is Au) formed on the n - type Al x Ga 1-x N layer and the n-type AlGaN layer.
- the relationship between (unit: ⁇ cm 2 ) and heat treatment temperature T (unit: ° C.) was measured for the AlN mole fraction x of the n-type AlGaN layer at 0%, 25%, 40%, 60%. Show. Each point shown in FIG.
- the contact resistance was measured by the known transmission line model (TLM) method.
- TLM transmission line model
- the contact resistance C C is lowered at each AlN mole fraction x, and there is a range of the heat treatment temperature T at or near the lowest value, the smaller the AlN mole fraction x Is distributed widely in the low temperature region, and as it is larger, it is understood that the range narrows and moves to the high temperature region.
- the contact resistance C C rises above the temperature range
- the contact resistance C C rises
- the contact resistance C C also rises and the heat treatment temperature T falls. If it does, ohmic contact will not be formed.
- the AlN mole fraction x becomes 0.6 or more, the variation in the contact resistance C C increases, and therefore, in order to stably obtain a low contact resistance C C , a higher temperature Heat treatment is required.
- heat treatment at about 600 ° C. or more is necessary to form an n electrode on the n-type AlGaN layer with low contact resistance. That is, as the AlN mole fraction x increases, heat treatment at a higher temperature is required.
- FIG. 2 shows the relationship between the heat treatment temperature and the alloying of the uppermost layer Au and the lower layer metal in the Ti / Al / Ti / Au four-layer n-electrode structure.
- FIG. 2 (a) is a photograph of the electrode surface of a reference sample not subjected to heat treatment
- FIGS. 2 (b) to 2 (h) are heat treatment temperatures of 450 ° C., 600 ° C., 650 ° C., 700 ° C., respectively.
- It is a photograph of the electrode surface of each heat processing sample in 750 ° C, 800 ° C, and 900 ° C.
- each layer of the n-electrode is 10 nm / 100 nm / 50 nm / 100 nm from the lower layer side, and the heat treatment time and the atmosphere in the processing chamber are 120 seconds and a nitrogen atmosphere.
- the image shown in FIG. 2 is an image obtained by monochrome and binarizing a color photograph, but at a heat treatment temperature of 600 ° C. or higher, the brightness of the surface is bright compared to the reference sample, and alloying of Au occurs. It can be seen that there is no remaining amount of Au capable of bonding on the electrode surface. As a result of actually trying wire bonding to the n electrode heat treated under the same conditions, it was confirmed that wire bonding could not be performed.
- FIG. 3 shows the relationship between the heat treatment temperature and the alloying of the uppermost layer Au and the lower layer Ni in the Ni / Au two-layer p-electrode.
- Fig.3 (a) is a photograph of the electrode surface of the reference
- FIG.3 (b) is a photograph of the electrode surface of the heat processing sample in 450 degreeC of heat processing temperatures.
- the film thickness of each layer of the p electrode is 60 nm / 50 nm from the lower layer side, and the heat treatment time and the atmosphere in the processing chamber are air for 120 seconds.
- the present invention has been made in view of the above-mentioned problems, and an object thereof is to prevent the alloying of Au on the surfaces of n electrode and p electrode in a nitride semiconductor device.
- the present invention provides an underlying structure portion, an element structural portion having at least an n-type AlGaN-based semiconductor layer and a p-type AlGaN-based semiconductor layer formed on the underlying structure portion; An n-electrode contact portion formed on the n-type AlGaN-based semiconductor layer, an n-electrode pad portion formed on the n-electrode contact portion, and a p-electrode formed on the p-type AlGaN-based semiconductor layer And the n-type AlGaN-based semiconductor layer has an AlN mole fraction of 20% or more, the n-electrode contact portion is formed of one or more metal layers, and the p-electrode and the n-electrode pad portion are It has an Au layer in the uppermost layer, and has a common laminated structure of two or more layers having an Au diffusion preventing layer below the uppermost layer for preventing diffusion of Au made of a conductive metal oxide. Nitride
- the n electrode is formed of the n electrode contact portion and the n electrode pad portion, and the p electrode has a laminated structure common to the n electrode pad portion.
- the said common laminated structure has Au diffusion prevention layer, alloying of Au can be prevented in the heat processing at the time of formation of ap electrode and a n-electrode pad part. That is, it is possible to prevent the alloying of Au without increasing the number of steps as compared with the conventional method of depositing and patterning the p electrode and the n electrode separately and performing annealing treatment.
- the Au diffusion preventing layer is made of a metal oxide and is in a stable state by bonding of metal and oxygen, so the metal of the Au diffusion preventing layer is bonded to Au. Since it is difficult to prevent the diffusion of Au, it is possible to prevent the alloying of Au and the metal on the lower layer side of the Au diffusion prevention layer.
- the n electrode contact portion contains Al.
- Al is diffused into the n-type AlGaN-based semiconductor layer of the underlayer by heat treatment, whereby a good ohmic contact can be realized between the n-electrode contact portion and the n-type AlGaN-based semiconductor layer.
- the nitride semiconductor device is an ultraviolet light emitting device and is a back emission type light emitting device using flip chip mounting, light emitted toward the inside of the device is reflected back to the back side by the n electrode. The external quantum efficiency of the light emitting device is improved.
- the said Au diffusion prevention layer is an ITO layer.
- the n-electrode contact portion does not contain Au. This can reduce the consumption of Au for forming the n electrode.
- the conductive adhesion for bonding the Au layer and the Au diffusion prevention layer between the Au layer which is the uppermost layer of the common laminated structure and the Au diffusion prevention layer It is more preferable that a layer be provided, and the film thickness of the conductive adhesive layer be half or less of the film thickness of the Au layer. Thereby, peeling of the Au layer can be prevented when the adhesiveness between the Au layer and the Au diffusion prevention layer is not good.
- the film thickness of the conductive adhesive layer is not more than half the film thickness of the Au layer, even if the Au layer and the conductive adhesive layer are alloyed to some extent, Au to the lower layer side from the Au diffusion prevention layer The Au layer on the surface of the electrode can be maintained in a bondable state because the diffusion of Au is prevented, and the corrosion of Au does not progress further.
- the nitride semiconductor device having the above features is characterized in that the device structure portion comprises a light emitting device having an active layer having an AlGaN-based semiconductor layer between the n-type AlGaN-based semiconductor layer and the p-type AlGaN-based semiconductor layer. It is further characterized by
- the present invention is a manufacturing method of the nitride semiconductor device of the above-mentioned feature, and the process of forming the above-mentioned ground structure part, the process of forming the above-mentioned light emitting element structure part, a step of performing a first annealing process after depositing and patterning a metal layer constituting an n-electrode contact portion to form the n-electrode contact portion on the n-type AlGaN-based semiconductor layer; A multilayer film is deposited and patterned to form the n electrode pad portion on the n electrode contact portion and the p electrode on the p type AlGaN based semiconductor layer at the same time, and then a second annealing process is performed
- a process for producing a nitride semiconductor device comprising the steps of:
- the common laminated structure of the p electrode and the n electrode pad portion has the Au diffusion preventing layer for preventing the diffusion of Au
- the p electrode and the n electrode pad portion are formed Au can be prevented from diffusing and alloying during the second annealing process of That is, it is possible to prevent the alloying of Au without increasing the number of steps as compared with the conventional method of depositing and patterning the p electrode and the n electrode separately and performing annealing treatment.
- the p electrode can be formed simultaneously with the formation of the n electrode pad portion in the process of forming the n electrode, the number of steps is increased as compared to the case where the conventional p electrode and n electrode are individually formed. Therefore, the above-described prevention of alloying of Au can be achieved.
- the processing temperature of the second annealing process is lower than the processing temperature of the first annealing process.
- the influence of the second annealing process is eliminated, and the optimum according to the AlN mole fraction of the n-type AlGaN-based semiconductor layer for minimizing the contact resistance between the n-electrode contact portion and the n-type AlGaN-based semiconductor layer
- the first annealing process can be performed at various temperatures.
- processing temperature of the 1st annealing processing is 700 ° C or more and 1000 ° C or less.
- the processing temperature of the second annealing is preferably 400 ° C. or more and 600 ° C. or less.
- FIG. 1 is a cross-sectional view schematically showing a laminated structure in an embodiment of a nitride semiconductor device according to the present invention.
- FIG. 2 is a cross-sectional view schematically showing an electrode structure of ap electrode and an n electrode in an embodiment of the nitride semiconductor device according to the present invention. It is a figure which shows the demonstration test result that an ITO layer functions as an Au diffusion prevention layer.
- process drawing which shows the general
- nitride semiconductor device is an ultraviolet light emitting device and is a light emitting diode.
- the nitride semiconductor device according to the present invention is abbreviated as a "light emitting device”.
- the light emitting device 1 of this embodiment uses a substrate obtained by growing the AlN layer 3 and the AlGaN layer 4 on a sapphire substrate 2 as a template 5 (corresponding to a base structure portion).
- An n-type cladding layer 6 made of n-type AlGaN, an active layer 7, an electron block layer 8 of p-type AlGaN having an Al mole fraction larger than that of the active layer 7, a p-type cladding layer 9 of p-type AlGaN, p-type GaN It has a laminated structure in which the p-type contact layers 10 are laminated in order. Reactive ion etching until a part of the surface of the n-type cladding layer 6 is exposed.
- the active layer 7, the electron block layer 8, the p-type cladding layer 9 and the part of the p-type contact layer 10 above the n-type cladding layer 6 are exposed.
- the light emitting element structure portion 11 from the n-type cladding layer 6 to the p-type contact layer 10 is formed in the first region R1 on the n-type cladding layer 6 after the removal.
- the active layer 7 has, for example, a single-layered quantum well structure including a 10 nm-thick n-type AlGaN barrier layer 7 a and a 3.5 nm-thick AlGaN well layer 7 b.
- the active layer 7 may have a double hetero junction structure in which n-type and p-type AlGaN layers having a large Al mole fraction are sandwiched between the lower layer and the upper layer, and the quantum well structure of the single layer is multilayered. It may be a multiple quantum well structure. Furthermore, the p electrode 12 is formed on the surface of the p-type contact layer 10 and the n electrode 13 is formed on a part of the surface of the second region R2 other than the first region R1 of the n-type cladding layer 6.
- Each AlGaN layer is formed by a known epitaxial growth method such as metal organic chemical vapor deposition (MOVPE) or molecular beam epitaxy (MBE), and as the donor impurity of the n-type layer, for example, Si, p-type
- MOVPE metal organic chemical vapor deposition
- MBE molecular beam epitaxy
- the AlN layer and the AlGaN layer which do not specify the conductivity type are undoped layers into which no impurity is implanted.
- the AlN mole fraction of the n-type AlGaN layer and the active layer is, for example, 20% or more and 100% or less for the AlGaN layer 4, the n-type cladding layer 6 and the electron block layer 8, and 0% to 80% for the active layer 7.
- the peak emission wavelength of the light emitting element 1 is 223 nm or more and 365 nm or less.
- the backside emission type light emitting element for extracting the light emission from the well layer 7b from the sapphire substrate 2 side the AlN mole fraction of the AlGaN layer 4 needs to be set larger than the well layer 7b
- the AlN mole fractions of the AlGaN layer 4 and the n-type cladding layer 6 are set to be the same.
- the AlN mole fraction of the AlGaN layer 4 may be larger than that of the n-type cladding layer 6.
- each AlGaN layer of the light emitting element structure other than the active layer 7 is, for example, 2000 nm for the n-type cladding layer 6, 2 nm for the electron block layer 8, 540 nm for the p-type cladding layer 9, and 200 nm for the p-type contact layer 10. It is. Further, for the template 5, the film thickness of the AlN layer 3 is preferably set to 2200 nm to 6600 nm or less, more preferably 3000 nm to 6000 nm or less, and the film thickness of the AlGaN layer 4 is 200 nm to 300 nm, for example. Set to range.
- the conductivity type of the AlGaN layer 4 may not be an undoped layer but an n-type layer. May be integrated with the n-type cladding layer 6 and the template 5 may be formed of only the AlN layer 3.
- FIG. 5 shows an example of a plan view pattern of the light emitting element 1.
- FIG. 5 shows the first region R1 and the second region R2 before the p electrode 12 and the n electrode 13 are formed.
- the p electrode 12 is formed on substantially the entire surface of the first region R1
- the n electrode 13 is formed on substantially the entire surface of the second region R2.
- the chip size of the light emitting element 1 used in the examples described later is 800 ⁇ m in the vertical and horizontal directions
- the area of the first region R1 is about 168000 ⁇ m 2 .
- the first region R1 shown in FIG. 4 is a part of the first region R1 shown in FIG.
- this embodiment is characterized by the laminated structure of the p electrode 12 and the n electrode 13.
- the p electrode 12 is formed on the p type AlGaN layer
- the n electrode 13 is formed on the n type AlGaN layer.
- the element structure functions as an ultraviolet light emitting element
- the structure of the template 5 and the light emitting element structure portion 11 and the film thickness and composition of each layer can be appropriately changed.
- FIG. 6 (a) shows the laminated structure of the n electrode 13
- FIG. 6 (b) shows the laminated structure of the p electrode 12.
- the n-electrode 13 has a two-step structure of an n-electrode contact portion 13a and an n-electrode pad portion 13b, and the n-electrode pad portion 13b and the p electrode 12 have exactly the same laminated structure (common laminated structure). The point that it has is the first feature.
- the n-electrode contact portion 13a is formed of one or more metal layers
- the n-electrode pad portion 13b and the p-electrode 12 have the Au layer 14 for bonding on the top layer
- the lower layer side of the Au layer 14 is conductive.
- the second feature of the present invention is to have an Au diffusion preventing layer 15 for preventing the diffusion of Au made of a metallic oxide.
- n-electrode contact portion 13a a three-layer structure of Ti / Al / Ti from the lower layer side and a film thickness of 10 nm / 100 nm / 50 nm is adopted as a preferable example of the n-electrode contact portion 13a.
- n electrode pad portion 13b and the p electrode 12 a four-layer structure (common laminated structure) of Ni / ITO / Ni / Au from the lower layer side and a film thickness of 60 nm / 100 nm / 10 nm / 200 nm is adopted.
- ITO indium tin oxide
- the Au diffusion prevention layer 15 can use other conductive metal oxides such as ZnO and NiO in addition to ITO.
- the Ni layer 16 is used as the lowermost layer as a metal capable of making an ohmic contact with the p-type contact layer 10 in the case of the p electrode 12. If the Au diffusion preventing layer 15 can be in ohmic contact with the p-type contact layer 10 well, the lowermost Ni layer 16 may be omitted. When the Au diffusion prevention layer 15 is an ITO layer, the lowermost Ni layer 16 can be omitted.
- the Ni layer 17 on the ITO layer 15 functions as an adhesive layer for securing the adhesion between the Au layer 14 and the ITO layer 15. Therefore, a film thickness of several nm is sufficient, and the present embodiment The form is 10 nm. Since the Ni layer 17 as the adhesive layer is alloyed with the Au layer 14 as the film thickness becomes large, it is preferable to suppress the thickness to half or less of the film thickness of the Au layer 14 even if it is thick. When the adhesion between the Au diffusion prevention layer 15 and the Au layer 14 is good, the Ni layer 17 as the adhesive layer may be omitted.
- the n-electrode contact portion 13a may have a two-layer structure of Ti / Al or a single-layer structure of only Al, in addition to the three-layer structure. Specifically, the n-electrode contact portion 13a preferably contains Al and does not contain Au.
- sample # 1 the following three metal multilayer film samples (samples # 1 to # 3) are prepared, and subjected to annealing treatment at 450 ° C. for 120 seconds in an air atmosphere by RTA (instant thermal annealing). The reflectance of the metal multilayer film surface was measured.
- Sample # 1 was produced by vapor-depositing a two-layer film of Au / Ni (film thickness 50 nm / 60 nm) from the lower layer side on a sapphire substrate.
- Sample # 2 was produced by vapor-depositing a two-layer film of ITO / Ni (film thickness 100 nm / 60 nm) from the lower layer side on a sapphire substrate.
- Sample # 3 was produced by vapor-depositing a three-layer film of Au / ITO / Ni (film thickness 50 nm / 100 nm / 60 nm) from the lower layer side on a sapphire substrate.
- the measurement of the reflectance was performed by irradiating each sample surface from an ultraviolet light source with a wavelength of 250 nm to 400 nm with ultraviolet light, and measuring the intensity of the reflected light using an integrating sphere.
- FIG. 7 shows the measurement results of the reflectance. From FIG. 7, in the sample # 2 and the sample # 3, almost no difference in the reflectance is seen, but in the sample # 1 and the samples # 2 and # 3, a difference in the reflectance is seen. This indicates that there is no difference in the surface properties of the multilayer film between sample # 2 and sample # 3, and that there is a difference in the surface properties of the multilayer film between sample # 1 and samples # 2, # 3. . From this, it can be seen that in sample # 1, alloying of Au and Ni occurs, but in sample # 3, alloying of Au and Ni is blocked by the ITO layer.
- the template 5 of the light emitting element 1 and each layer of the light emitting element structure portion 11 are formed by the known growth method as described above (steps # 1 and # 2).
- a first photoresist to be a reverse pattern of the n electrode 13 is formed (step # 3A), and a Ti / Al / Ti multilayer to be an n electrode contact portion 13a on the entire surface.
- a film is deposited by electron beam evaporation or the like (step # 3B).
- the first photoresist is removed by lift-off, and the Ti / Al / Ti multilayer film on the first photoresist is peeled off and patterned (step # 3C), RTA (instant thermal annealing), etc.
- a first annealing process is performed (step # 3D), and an n-electrode contact 13a is formed on the surface of the n-type cladding layer 6 exposed in the second region R2 (step # 3).
- the treatment temperature of the first annealing treatment is an optimum treatment temperature capable of reducing the contact resistance with the n-type cladding layer 6 according to the AlN mole fraction of the underlying n-type cladding layer 6, for example, 600 ° C. to 1000.
- the first annealing process is performed, for example, in a nitrogen atmosphere for 120 seconds.
- the conditions for the first annealing process are not limited to the conditions exemplified in this embodiment.
- a second photoresist is formed to be a reverse pattern of the p electrode 12 and the n electrode 13 (step # 4A), and Ni is formed on the entire surface to form the p electrode 12 and the n electrode pad portion 13b.
- / ITO / Ni / Au multilayer film is deposited by electron beam evaporation or the like (step # 4B).
- the second photoresist is removed by lift-off, and the Ni / ITO / Ni / Au multilayer film on the second photoresist is peeled off and patterned (step # 4C), RTA (instant thermal annealing) And the like (step # 4D) to form the p electrode 12 on the surface of the p-type contact layer 10 and the n electrode pad portion 13b on the n electrode contact portion 13a (step # 4) .
- the treatment temperature of the second annealing treatment is set to an optimum treatment temperature capable of reducing the contact resistance with the p-type contact layer 10, and is set within a temperature range of 400 ° C. to 600 ° C., for example. Further, in the present embodiment, the second annealing process is performed, for example, in an air atmosphere for 120 seconds.
- the conditions of the second annealing process are not limited to the conditions exemplified in the present embodiment.
- step # 5 the electrode surface is dry-cleaned by ashing treatment or the like (step # 5), and a mounting process such as bonding is performed (step # 6).
- the electrode structure of the n electrode and the p electrode of Example 1 used in this experiment was the same as the structure shown in FIG. 6, and was formed as shown in FIG.
- the treatment temperature, treatment time and atmosphere gas of the first annealing treatment are 950 ° C., 60 seconds, nitrogen, and the treatment temperature, treatment time and atmosphere gas of the second annealing treatment are 450 ° C., 120 seconds, with air is there.
- Comparative Example 1 has an electrode structure in which an n-electrode having a four-layer structure of Ti / Al / Ti / Au and a two-layer structure having a p-electrode Ni / Au are individually formed and annealed.
- the film thickness of each layer of the n electrode of Comparative Example 1 is 10 nm / 100 nm / 50 nm / 100 nm from the lower layer side, and the treatment temperature, treatment time and atmosphere gas of the annealing treatment of the n electrode are the first annealing of Example 1 above. It is the same as processing.
- the film thickness of each layer of the p electrode of Comparative Example 1 is 60 nm / 50 nm from the lower layer side, and the treatment temperature, treatment time and atmosphere gas of the annealing treatment of the p electrode are the same as the second annealing treatment of Example 1 above. is there.
- Comparative Example 2 has an electrode structure in which a Ti / Au layer is reformed without annealing treatment on each surface of the p electrode and the n electrode of Comparative Example 1.
- the film thickness of the reformed Ti / Au layer is 100 nm / 200 nm from the lower layer side.
- the AlN mole fraction of n-type AlGaN, which is the underlayer of each n electrode of Example 1 and Comparative Examples 1 and 2, is 60%, and the underlayer of each p electrode of Example 1 and Comparative Examples 1 and 2 is It is p-type GaN.
- the embodiment of the light emitting element 1 has been described in detail.
- the template 5 and the light emitting element structure 11 shown in FIG. 4 have been described as an example of the base structure portion and the light emitting element structure portion constituting the light emitting element 1.
- the AlN mole fraction of the AlGaN layer is an example, and the template 5 and the light emitting element structure 11 are not limited to the specific example.
- the plan view shape of the light emitting element 1 is not limited to the shape illustrated in FIG.
- the method of forming the p electrode 12 and the n electrode 13 is not limited to the specific example of the above embodiment, and for example, the patterning of the n electrode contact portion 13a, the p electrode 12, and the n electrode pad portion 13b
- the present invention is not necessarily limited to the lift-off method, and an etching method may be used.
- the etching method the deposition of each multilayer film, the formation of the photoresist, the etching sequence, etc. are by the known etching method, and the patterning of the n electrode contact portion 13a is larger than that of the n electrode 13. You may form.
- the nitride semiconductor device according to the present invention is an ultraviolet light emitting device and further a light emitting diode, but the electrode structure described in the above embodiment and the method for manufacturing the same The present invention is also applicable to an ultraviolet light receiving element.
- the nitride semiconductor device according to the present invention can be used for a light emitting diode or the like in which the AlN mole fraction of the n-type cladding layer is 20% or more, and is effective for improving the surface properties of the p electrode and the n electrode.
- Nitride semiconductor device light emitting diode
- Sapphire substrate 3: AlN layer 4: AlGaN layer 5: Template (base structure part) 6: n-type cladding layer (n-type AlGaN) 7: Active layer 7a: Barrier layer 7b: Well layer 8: Electron block layer (p-type AlGaN) 9: p-type cladding layer (p-type AlGaN) 10: p contact layer (p-type GaN) 11: Light emitting element structure (element structure) 12: p electrode 13: n electrode 13a: n electrode contact portion 13b: n electrode pad portion 14: Au layer 15: Au diffusion preventing layer (ITO layer) 16: Ni layer 17: Ni layer (adhesive layer)
- R2 Second area
Landscapes
- Led Devices (AREA)
- Electrodes Of Semiconductors (AREA)
Abstract
Description
2: サファイア基板
3: AlN層
4: AlGaN層
5: テンプレート(下地構造部)
6: n型クラッド層(n型AlGaN)
7: 活性層
7a: バリア層
7b: 井戸層
8: 電子ブロック層(p型AlGaN)
9: p型クラッド層(p型AlGaN)
10: pコンタクト層(p型GaN)
11: 発光素子構造部(素子構造部)
12: p電極
13: n電極
13a: n電極コンタクト部
13b: n電極パッド部
14: Au層
15: Au拡散防止層(ITO層)
16: Ni層
17: Ni層(接着層)
R1: 第1領域
R2: 第2領域
Claims (10)
- 下地構造部と、
前記下地構造部上に形成された、少なくともn型AlGaN系半導体層とp型AlGaN系半導体層を有する素子構造部と、
前記n型AlGaN系半導体層上に形成されたn電極コンタクト部と、
前記n電極コンタクト部上に形成されたn電極パッド部と、
前記p型AlGaN系半導体層上に形成されたp電極と、を備えてなり、
前記n型AlGaN系半導体層のAlNモル分率が20%以上であり、
前記n電極コンタクト部が、1層以上の金属層で構成され、
前記p電極と前記n電極パッド部が、最上層にAu層を有し、前記最上層より下側に導電性の金属酸化物からなるAuの拡散を防止するAu拡散防止層を有する2層以上の共通積層構造を有することを特徴とする窒化物半導体素子。 - 前記n電極コンタクト部が、Alを含むことを特徴とする請求項1に記載の窒化物半導体素子。
- 前記Au拡散防止層が、ITO層であることを特徴とする請求項1または2に記載の窒化物半導体素子。
- 前記n電極コンタクト部が、Auを含まないことを特徴とする請求項1~3の何れか1項に記載の窒化物半導体素子。
- 前記共通積層構造の最上層である前記Au層と前記Au拡散防止層の間に、前記Au層と前記Au拡散防止層を接着させるための導電性接着層が設けられ、
前記導電性接着層の膜厚が前記Au層の膜厚の2分の1以下であることを特徴とする請求項1~4の何れか1項に記載の窒化物半導体素子。 - 前記素子構造部が、前記n型AlGaN系半導体層と前記p型AlGaN系半導体層の間に、AlGaN系半導体層を有する活性層を備えた発光素子構造部であることを特徴とする請求項1~5の何れか1項に記載の窒化物半導体素子。
- 請求項1~6の何れか1項に記載の窒化物半導体素子の製造方法であって、
前記下地構造部を形成する工程と、
前記素子構造部を形成する工程と、
前記n電極コンタクト部を構成する金属層を堆積及びパターニングして、前記n型AlGaN系半導体層上に前記n電極コンタクト部を形成した後に、第1のアニール処理を施す工程と、
前記共通積層構造を構成する多層膜を堆積及びパターニングして、前記n電極コンタクト部上に前記n電極パッド部を、前記p型AlGaN系半導体層上に前記p電極を同時に形成した後に、第2のアニール処理を施す工程と、有することを特徴とする窒化物半導体素子の製造方法。 - 前記第2のアニール処理の処理温度が前記第1のアニール処理の処理温度より低温であることを特徴とする請求項7に記載の窒化物半導体素子の製造方法。
- 前記第1のアニール処理の処理温度が700℃以上1000℃以下であることを特徴とする請求項7または8に記載の窒化物半導体素子の製造方法。
- 前記第2のアニール処理の処理温度が400℃以上600℃以下であることを特徴とする請求項7~9の何れか1項に記載の窒化物半導体素子の製造方法。
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013535762A JP5732140B2 (ja) | 2011-09-30 | 2011-09-30 | 窒化物半導体素子及びその製造方法 |
RU2014116553/28A RU2566383C1 (ru) | 2011-09-30 | 2011-09-30 | Нитридный полупроводниковый элемент и способ его изготовления |
PCT/JP2011/072524 WO2013046419A1 (ja) | 2011-09-30 | 2011-09-30 | 窒化物半導体素子及びその製造方法 |
EP11873108.2A EP2763192B1 (en) | 2011-09-30 | 2011-09-30 | Nitride semiconductor element and method for producing same |
KR1020147005511A KR101568624B1 (ko) | 2011-09-30 | 2011-09-30 | 질화물 반도체 소자 및 그 제조 방법 |
US14/344,602 US9281439B2 (en) | 2011-09-30 | 2011-09-30 | Nitride semiconductor element and method for producing same |
TW101130845A TWI501425B (zh) | 2011-09-30 | 2012-08-24 | Nitride semiconductor device and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2011/072524 WO2013046419A1 (ja) | 2011-09-30 | 2011-09-30 | 窒化物半導体素子及びその製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013046419A1 true WO2013046419A1 (ja) | 2013-04-04 |
Family
ID=47994526
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/072524 WO2013046419A1 (ja) | 2011-09-30 | 2011-09-30 | 窒化物半導体素子及びその製造方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US9281439B2 (ja) |
EP (1) | EP2763192B1 (ja) |
JP (1) | JP5732140B2 (ja) |
KR (1) | KR101568624B1 (ja) |
RU (1) | RU2566383C1 (ja) |
TW (1) | TWI501425B (ja) |
WO (1) | WO2013046419A1 (ja) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016032193A1 (ko) * | 2014-08-27 | 2016-03-03 | 서울바이오시스 주식회사 | 발광 소자 및 이의 제조 방법 |
JP2016066691A (ja) * | 2014-09-24 | 2016-04-28 | 日亜化学工業株式会社 | 半導体発光素子 |
JP5953447B1 (ja) * | 2015-02-05 | 2016-07-20 | Dowaエレクトロニクス株式会社 | Iii族窒化物半導体発光素子およびその製造方法 |
US9847458B2 (en) | 2014-08-27 | 2017-12-19 | Seoul Viosys Co., Ltd. | Light emitting diode and method of fabricating the same |
WO2018096899A1 (ja) * | 2016-11-24 | 2018-05-31 | 日機装株式会社 | 半導体発光素子の製造方法 |
WO2018096898A1 (ja) * | 2016-11-24 | 2018-05-31 | 日機装株式会社 | 半導体発光素子の製造方法 |
JP2018206817A (ja) * | 2017-05-30 | 2018-12-27 | 豊田合成株式会社 | 発光素子 |
JP2018206818A (ja) * | 2017-05-30 | 2018-12-27 | 豊田合成株式会社 | 発光素子及びその製造方法 |
JP2019029536A (ja) * | 2017-07-31 | 2019-02-21 | Dowaホールディングス株式会社 | Iii族窒化物エピタキシャル基板、電子線励起型発光エピタキシャル基板及びそれらの製造方法、並びに電子線励起型発光装置 |
WO2019082603A1 (ja) * | 2017-10-26 | 2019-05-02 | 日機装株式会社 | 半導体発光素子の製造方法 |
WO2019093013A1 (ja) * | 2017-11-10 | 2019-05-16 | 日機装株式会社 | 半導体発光素子および半導体発光素子の製造方法 |
JP2019207925A (ja) * | 2018-05-29 | 2019-12-05 | 日機装株式会社 | 半導体発光素子および半導体発光素子の製造方法 |
Families Citing this family (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9412911B2 (en) | 2013-07-09 | 2016-08-09 | The Silanna Group Pty Ltd | Optical tuning of light emitting semiconductor junctions |
EP2881982B1 (en) * | 2013-12-05 | 2019-09-04 | IMEC vzw | Method for fabricating cmos compatible contact layers in semiconductor devices |
JP6206159B2 (ja) * | 2013-12-17 | 2017-10-04 | 三菱電機株式会社 | 半導体装置の製造方法 |
US11322643B2 (en) | 2014-05-27 | 2022-05-03 | Silanna UV Technologies Pte Ltd | Optoelectronic device |
WO2015181657A1 (en) | 2014-05-27 | 2015-12-03 | The Silanna Group Pty Limited | Advanced electronic device structures using semiconductor structures and superlattices |
WO2015181656A1 (en) | 2014-05-27 | 2015-12-03 | The Silanna Group Pty Limited | Electronic devices comprising n-type and p-type superlattices |
KR102333773B1 (ko) | 2014-05-27 | 2021-12-01 | 실라나 유브이 테크놀로지스 피티이 리미티드 | 광전자 디바이스 |
JP6832620B2 (ja) * | 2015-07-17 | 2021-02-24 | スタンレー電気株式会社 | 窒化物半導体発光素子 |
WO2017145026A1 (en) | 2016-02-23 | 2017-08-31 | Silanna UV Technologies Pte Ltd | Resonant optical cavity light emitting device |
US10418517B2 (en) | 2016-02-23 | 2019-09-17 | Silanna UV Technologies Pte Ltd | Resonant optical cavity light emitting device |
US10804435B2 (en) * | 2016-08-25 | 2020-10-13 | Epistar Corporation | Light-emitting device |
TWI746596B (zh) * | 2016-08-25 | 2021-11-21 | 晶元光電股份有限公司 | 發光元件 |
WO2018038105A1 (ja) * | 2016-08-26 | 2018-03-01 | スタンレー電気株式会社 | Iii族窒化物半導体発光素子 |
US10121932B1 (en) * | 2016-11-30 | 2018-11-06 | The United States Of America As Represented By The Secretary Of The Navy | Tunable graphene light-emitting device |
KR20180074198A (ko) | 2016-12-23 | 2018-07-03 | 서울바이오시스 주식회사 | 반도체 발광 소자 |
JP6674394B2 (ja) * | 2017-02-01 | 2020-04-01 | 日機装株式会社 | 半導体発光素子および半導体発光素子の製造方法 |
CN109564959B (zh) * | 2017-02-15 | 2021-04-13 | 创光科学株式会社 | 氮化物半导体紫外线发光元件及其制造方法 |
JP2020021798A (ja) * | 2018-07-31 | 2020-02-06 | 日機装株式会社 | 窒化物半導体発光素子及びその製造方法 |
US10622514B1 (en) | 2018-10-15 | 2020-04-14 | Silanna UV Technologies Pte Ltd | Resonant optical cavity light emitting device |
TWI821302B (zh) * | 2018-11-12 | 2023-11-11 | 晶元光電股份有限公司 | 半導體元件及其封裝結構 |
US11227978B2 (en) * | 2018-11-12 | 2022-01-18 | Epistar Corporation | Semiconductor device and package structure |
CN112599412A (zh) * | 2020-11-24 | 2021-04-02 | 上海工程技术大学 | 一种防击穿的氮化镓基功率器件制备方法 |
US20230420536A1 (en) * | 2022-06-24 | 2023-12-28 | Wolfspeed, Inc. | Methods of forming ohmic contacts on semiconductor devices with trench/mesa structures |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11307811A (ja) * | 1998-04-16 | 1999-11-05 | Furukawa Electric Co Ltd:The | 紫外光発光素子 |
JP2005340860A (ja) * | 2005-08-12 | 2005-12-08 | Toshiba Electronic Engineering Corp | 半導体発光素子 |
JP2005354040A (ja) | 2004-05-11 | 2005-12-22 | Rohm Co Ltd | 半導体発光素子およびその製法 |
WO2006104063A1 (ja) * | 2005-03-28 | 2006-10-05 | Tokyo Institute Of Technology | 窒化物系深紫外発光素子およびその製造方法 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH118410A (ja) | 1997-06-18 | 1999-01-12 | Nichia Chem Ind Ltd | n型窒化物半導体の電極 |
JPH1121804A (ja) * | 1997-07-04 | 1999-01-26 | Fujimura Fume Kan Kk | 歩道版及び該歩道版を使用した歩道施工方法並びに遊歩道の施工方法、階段ブロック及び該階段ブロックを使用した階段施工方法 |
JP3462720B2 (ja) * | 1997-07-16 | 2003-11-05 | 三洋電機株式会社 | n型窒化物半導体の電極及び前記電極を有する半導体素子並びにその製造方法 |
ATE500616T1 (de) * | 2002-08-29 | 2011-03-15 | Seoul Semiconductor Co Ltd | Lichtemittierendes bauelement mit lichtemittierenden dioden |
JP3950801B2 (ja) * | 2003-01-31 | 2007-08-01 | 信越半導体株式会社 | 発光素子及び発光素子の製造方法 |
US20050218414A1 (en) * | 2004-03-30 | 2005-10-06 | Tetsuzo Ueda | 4H-polytype gallium nitride-based semiconductor device on a 4H-polytype substrate |
JP2006128527A (ja) * | 2004-11-01 | 2006-05-18 | Osaka Gas Co Ltd | GaN系化合物半導体の製造方法 |
JP4868821B2 (ja) * | 2005-10-21 | 2012-02-01 | 京セラ株式会社 | 窒化ガリウム系化合物半導体及び発光素子 |
JP2007158262A (ja) | 2005-12-08 | 2007-06-21 | Rohm Co Ltd | 半導体発光素子の製造方法 |
JP5162909B2 (ja) | 2006-04-03 | 2013-03-13 | 豊田合成株式会社 | 半導体発光素子 |
US8552455B2 (en) * | 2009-09-07 | 2013-10-08 | Seoul Opto Device Co., Ltd. | Semiconductor light-emitting diode and a production method therefor |
-
2011
- 2011-09-30 RU RU2014116553/28A patent/RU2566383C1/ru active
- 2011-09-30 KR KR1020147005511A patent/KR101568624B1/ko active Active
- 2011-09-30 JP JP2013535762A patent/JP5732140B2/ja active Active
- 2011-09-30 US US14/344,602 patent/US9281439B2/en active Active
- 2011-09-30 EP EP11873108.2A patent/EP2763192B1/en active Active
- 2011-09-30 WO PCT/JP2011/072524 patent/WO2013046419A1/ja active Application Filing
-
2012
- 2012-08-24 TW TW101130845A patent/TWI501425B/zh active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11307811A (ja) * | 1998-04-16 | 1999-11-05 | Furukawa Electric Co Ltd:The | 紫外光発光素子 |
JP2005354040A (ja) | 2004-05-11 | 2005-12-22 | Rohm Co Ltd | 半導体発光素子およびその製法 |
WO2006104063A1 (ja) * | 2005-03-28 | 2006-10-05 | Tokyo Institute Of Technology | 窒化物系深紫外発光素子およびその製造方法 |
JP2005340860A (ja) * | 2005-08-12 | 2005-12-08 | Toshiba Electronic Engineering Corp | 半導体発光素子 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2763192A4 |
Cited By (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9847458B2 (en) | 2014-08-27 | 2017-12-19 | Seoul Viosys Co., Ltd. | Light emitting diode and method of fabricating the same |
WO2016032193A1 (ko) * | 2014-08-27 | 2016-03-03 | 서울바이오시스 주식회사 | 발광 소자 및 이의 제조 방법 |
JP2016066691A (ja) * | 2014-09-24 | 2016-04-28 | 日亜化学工業株式会社 | 半導体発光素子 |
US10193016B2 (en) | 2015-02-05 | 2019-01-29 | Dowa Electronics Materials Co., Ltd. | III-nitride semiconductor light emitting device and method of producing the same |
JP5953447B1 (ja) * | 2015-02-05 | 2016-07-20 | Dowaエレクトロニクス株式会社 | Iii族窒化物半導体発光素子およびその製造方法 |
WO2016125492A1 (ja) * | 2015-02-05 | 2016-08-11 | Dowaエレクトロニクス株式会社 | Iii族窒化物半導体発光素子およびその製造方法 |
JP2016165012A (ja) * | 2015-02-05 | 2016-09-08 | Dowaエレクトロニクス株式会社 | Iii族窒化物半導体発光素子およびその製造方法 |
CN109980057B (zh) * | 2015-02-05 | 2021-06-11 | 同和电子科技有限公司 | 第iii族氮化物半导体发光元件和其制造方法 |
CN109980057A (zh) * | 2015-02-05 | 2019-07-05 | 同和电子科技有限公司 | 第iii族氮化物半导体发光元件和其制造方法 |
US10720547B2 (en) | 2016-11-24 | 2020-07-21 | Nikkiso Co., Ltd. | Method of manufacturing semiconductor light emitting device |
US10854773B2 (en) | 2016-11-24 | 2020-12-01 | Nikkiso Co., Ltd. | Method of manufacturing semiconductor light emitting device |
WO2018096899A1 (ja) * | 2016-11-24 | 2018-05-31 | 日機装株式会社 | 半導体発光素子の製造方法 |
JP2018085455A (ja) * | 2016-11-24 | 2018-05-31 | 日機装株式会社 | 半導体発光素子の製造方法 |
WO2018096898A1 (ja) * | 2016-11-24 | 2018-05-31 | 日機装株式会社 | 半導体発光素子の製造方法 |
JP2018085456A (ja) * | 2016-11-24 | 2018-05-31 | 日機装株式会社 | 半導体発光素子の製造方法 |
JP2018206817A (ja) * | 2017-05-30 | 2018-12-27 | 豊田合成株式会社 | 発光素子 |
JP2018206818A (ja) * | 2017-05-30 | 2018-12-27 | 豊田合成株式会社 | 発光素子及びその製造方法 |
JP7000062B2 (ja) | 2017-07-31 | 2022-01-19 | Dowaホールディングス株式会社 | Iii族窒化物エピタキシャル基板、電子線励起型発光エピタキシャル基板及びそれらの製造方法、並びに電子線励起型発光装置 |
JP2019029536A (ja) * | 2017-07-31 | 2019-02-21 | Dowaホールディングス株式会社 | Iii族窒化物エピタキシャル基板、電子線励起型発光エピタキシャル基板及びそれらの製造方法、並びに電子線励起型発光装置 |
WO2019082603A1 (ja) * | 2017-10-26 | 2019-05-02 | 日機装株式会社 | 半導体発光素子の製造方法 |
JP2019079982A (ja) * | 2017-10-26 | 2019-05-23 | 日機装株式会社 | 半導体発光素子の製造方法 |
US11575068B2 (en) | 2017-10-26 | 2023-02-07 | Nikkiso Co., Ltd. | Method of manufacturing semiconductor light emitting element |
CN111316453A (zh) * | 2017-11-10 | 2020-06-19 | 日机装株式会社 | 半导体发光元件及半导体发光元件的制造方法 |
JP2019091738A (ja) * | 2017-11-10 | 2019-06-13 | 日機装株式会社 | 半導体発光素子および半導体発光素子の製造方法 |
WO2019093013A1 (ja) * | 2017-11-10 | 2019-05-16 | 日機装株式会社 | 半導体発光素子および半導体発光素子の製造方法 |
US11322656B2 (en) | 2017-11-10 | 2022-05-03 | Nikkiso Co., Ltd. | Semiconductor light emitting element and method of manufacturing semiconductor light emitting element |
JP2019207925A (ja) * | 2018-05-29 | 2019-12-05 | 日機装株式会社 | 半導体発光素子および半導体発光素子の製造方法 |
JP7049186B2 (ja) | 2018-05-29 | 2022-04-06 | 日機装株式会社 | 半導体発光素子および半導体発光素子の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
US20150048304A1 (en) | 2015-02-19 |
RU2566383C1 (ru) | 2015-10-27 |
TW201314960A (zh) | 2013-04-01 |
EP2763192B1 (en) | 2019-12-25 |
JPWO2013046419A1 (ja) | 2015-03-26 |
TWI501425B (zh) | 2015-09-21 |
EP2763192A4 (en) | 2015-06-24 |
EP2763192A1 (en) | 2014-08-06 |
JP5732140B2 (ja) | 2015-06-10 |
KR20140043163A (ko) | 2014-04-08 |
US9281439B2 (en) | 2016-03-08 |
KR101568624B1 (ko) | 2015-11-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013046419A1 (ja) | 窒化物半導体素子及びその製造方法 | |
KR100631840B1 (ko) | 플립칩용 질화물 반도체 발광소자 | |
KR101161897B1 (ko) | 질화물 반도체 소자 | |
US8884329B2 (en) | Semiconductor light-emitting element, electrode structure and light-emitting device | |
US8835938B2 (en) | Nitride semiconductor light-emitting element and method of manufacturing the same | |
US9099627B2 (en) | Method for producing group III nitride semiconductor light-emitting device | |
JP2008103674A (ja) | 多層反射膜電極及びそれを備えた化合物半導体発光素子 | |
US8648377B2 (en) | Semiconductor light-emitting device | |
TW200807756A (en) | Process for producing semiconductor light emitting element, semiconductor light emitting element, and lamp equipped with the same | |
JP2008153676A (ja) | 窒化ガリウム系半導体発光素子及びその製造方法 | |
US6946372B2 (en) | Method of manufacturing gallium nitride based semiconductor light emitting device | |
JP2019207925A (ja) | 半導体発光素子および半導体発光素子の製造方法 | |
CN100380697C (zh) | 第ⅲ族氮化物发光器件 | |
JP5471485B2 (ja) | 窒化物半導体素子および窒化物半導体素子のパッド電極の製造方法 | |
TW201034252A (en) | Light emitting device | |
CN101051661B (zh) | GaN基半导体发光器件及其制造方法 | |
KR101025948B1 (ko) | 질화물 반도체 발광소자 및 그 제조방법 | |
TWI260099B (en) | Positive electrode structure and gallium nitride-based compound semiconductor light-emitting device | |
TWI281758B (en) | Transparent positive electrode | |
JP7227476B2 (ja) | 発光装置及びその製造方法 | |
TWI257721B (en) | Gallium nitride-based compound semiconductor light emitting device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11873108 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2013535762 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20147005511 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011873108 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2014116553 Country of ref document: RU Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14344602 Country of ref document: US |