WO2012133698A1 - リチウムイオン二次電池及びリチウムイオン二次電池用非水電解液 - Google Patents
リチウムイオン二次電池及びリチウムイオン二次電池用非水電解液 Download PDFInfo
- Publication number
- WO2012133698A1 WO2012133698A1 PCT/JP2012/058459 JP2012058459W WO2012133698A1 WO 2012133698 A1 WO2012133698 A1 WO 2012133698A1 JP 2012058459 W JP2012058459 W JP 2012058459W WO 2012133698 A1 WO2012133698 A1 WO 2012133698A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fluorine
- hcf
- ocf
- secondary battery
- ion secondary
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0569—Liquid materials characterised by the solvents
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0567—Liquid materials characterised by the additives
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0025—Organic electrolyte
- H01M2300/0028—Organic electrolyte characterised by the solvent
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a lithium ion secondary battery including a nonaqueous solvent in which the content of a specific compound is reduced and a nonaqueous electrolytic solution containing an electrolyte salt.
- the present invention also relates to a non-aqueous electrolyte used for a lithium ion secondary battery.
- lithium-ion secondary batteries having high energy density is in progress. Further, as the application field of lithium ion secondary batteries expands, improvement of battery characteristics is desired. In particular, when lithium ion secondary batteries are used in vehicles, safety and battery characteristics will become increasingly important.
- the lithium ion secondary battery is not sufficient for safety such as when the battery is overcharged, when it is internally short-circuited, and when it is pierced with a nail, etc. Furthermore, it is necessary to make the battery highly safe. In addition, in the case of in-vehicle use, it is necessary to further increase the voltage used at present in order to increase the capacity.
- Patent Document 1 As a method for improving the safety and increasing the voltage of a non-aqueous electrolyte secondary battery, it has been proposed to use a fluorinated ether having a specific structure (see, for example, Patent Document 1).
- the non-aqueous electrolyte secondary battery of Patent Document 1 has a problem in that the discharge capacity decreases when the battery is left in a high temperature environment or repeatedly charged and discharged.
- An object of the present invention is to provide a lithium ion secondary battery excellent in high temperature storage characteristics and high voltage cycle characteristics, and a non-aqueous electrolyte used therein.
- the present invention is a lithium ion secondary battery comprising a positive electrode, a negative electrode, and a nonaqueous electrolyte solution containing a nonaqueous solvent and an electrolyte salt
- the non-aqueous solvent is represented by the general formula (1): Rf 1 -O-Rf 2 (1) (Wherein Rf 1 and Rf 2 are the same or different and are an alkyl group having 1 to 10 carbon atoms or a fluoroalkyl group having 1 to 10 carbon atoms; provided that at least one of Rf 1 and Rf 2 is a fluoroalkyl group) Containing the indicated fluorine-containing ether, and
- the present invention relates to a lithium ion secondary battery comprising a total of 5000 ppm or less of the compounds represented by the following (I) and (II) with respect to the fluorine-containing ether.
- (I) Fluorine-containing unsaturated compound (II) General formula (2): Rf 1 OH (2) (Where
- the hydroxyl group-containing compound (II) is (II-1) HCF 2 CF 2 CH 2 OH It is preferable that
- the hydroxyl group-containing compound (II) is (II-1) HCF 2 CF 2 CH 2 OH It is preferable that
- the content of the fluorine-containing ether represented by the general formula (1) is preferably 0.01 to 90% by weight in the non-aqueous solvent.
- the present invention is a non-aqueous electrolyte for a lithium ion secondary battery containing a non-aqueous solvent and an electrolyte salt
- the non-aqueous solvent is represented by the general formula (1): Rf 1 -O-Rf 2 (1) (Wherein Rf 1 and Rf 2 are the same or different and are an alkyl group having 1 to 10 carbon atoms or a fluoroalkyl group having 1 to 10 carbon atoms; provided that at least one of Rf 1 and Rf 2 is a fluoroalkyl group) Containing the indicated fluorine-containing ether, and
- the present invention relates to a non-aqueous electrolyte for a lithium ion secondary battery characterized in that it contains a total of 5000 ppm or less of the compounds represented by the following (I) and (II) with respect to the fluorine-containing ether.
- (I) Fluorine-containing unsaturated compound (II) General formula (2): Rf 1
- the present invention can provide a lithium ion secondary battery excellent in storage characteristics at high temperatures and high voltage cycle characteristics, and a non-aqueous electrolyte used therein.
- the lithium ion secondary battery of the present invention includes a positive electrode, a negative electrode, and a nonaqueous electrolyte solution containing a nonaqueous solvent and an electrolyte salt
- the non-aqueous solvent is represented by the general formula (1): Rf 1 -O-Rf 2 (1) (Wherein Rf 1 and Rf 2 are the same or different and are an alkyl group having 1 to 10 carbon atoms or a fluoroalkyl group having 1 to 10 carbon atoms; provided that at least one of Rf 1 and Rf 2 is a fluoroalkyl group) Containing the indicated fluorine-containing ether, and The compounds represented by the following (I) and (II) are contained in a total of 5000 ppm or less with respect to the fluorine-containing ether.
- (I) Fluorine-containing unsaturated compound (II)
- fluorine-containing ether represented by the general formula (1) include, for example, HCF 2 CF 2 CH 2 OCF 2 CF 2 H, CF 3 CF 2 CH 2 OCF 2 CF 2 H, and HCF 2 CF 2 CH 2.
- HCF 2 CF 2 CH 2 OCF 2 CF 2 H and HCF 2 CF 2 CH 2 OCF 2 CFHCF 3 One or more compounds selected from the group consisting of HCF 2 CF 2 CH 2 OCF 2 CF 2 H are more preferable.
- the fluorine content of the fluorinated ether used in the present invention is preferably 50% by weight or more from the viewpoint of good oxidation resistance and safety.
- a particularly preferred fluorine content is 55 to 66% by weight.
- the fluorine content is calculated from the structural formula.
- the content of the fluorine-containing ether represented by the general formula (1) is preferably 0.01 to 90% by weight in the non-aqueous solvent.
- the fluorine-containing ether content is less than 0.01% by weight, there is a tendency that almost no improvement in safety and high voltage is observed.
- it exceeds 90% by weight the electrolyte solution is separated into two layers or the viscosity becomes high. Too much, the load characteristics at low temperatures tend to deteriorate.
- 0.1 weight% is more preferable and 0.5 weight% is still more preferable.
- 80 weight% is more preferable, 60 weight% is still more preferable, and 20 weight% is especially preferable.
- the fluorine-containing unsaturated compound (I) is derived from a by-product generated when the fluorine-containing ether represented by the general formula (1) is synthesized. Specifically, hydrogen fluoride (HF) is eliminated from the fluorine-containing ether represented by the general formula (1) and an unsaturated bond is generated.
- HF hydrogen fluoride
- the hydroxyl group-containing compound (II) is derived from a raw material when the fluorine-containing ether represented by the general formula (1) is synthesized, and the general formula (2): Rf 1 OH (2) It is shown by.
- Rf 1 can include the same compounds as in general formula (1), and specific examples of the hydroxyl group-containing compound (II) include (II-1) HCF 2 CF 2 CH 2 OH. Can do.
- (I) a fluorine-containing unsaturated compound (II) a hydroxyl group-containing compound, and the specific compounds (I-1) to (I-6) and (II-1) are simply referred to as a compound (I ), Compound (II), compounds (I-1) to (I-6), and compound (II-1).
- Compound (I) is Compound (I-1) and Compound (I-2), Compound (II) is Compound (II-1), or Compound (I) is Compound (I-3), Compound (I-4), Compound (I-5) and Compound (I-6), and a combination wherein Compound (II) is Compound (II-1) is preferred.
- the compounds (I) and (II) are impurities contained in the fluorinated ether. Accordingly, the fluorine-containing ether used in the present invention is purified in advance, and the content of the compounds (I) and (II) in the non-aqueous solvent is within the above range (total of 5000 ppm or less with respect to the fluorine-containing ether). It can be.
- ppm is based on weight, and 5000 ppm or less with respect to the fluorinated ether indicates 0.5 parts by weight or less with respect to 100 parts by weight of the fluorinated ether.
- the discharge characteristics after high-temperature storage tend to be lowered, or the cycle deterioration tends to increase when the voltage is increased.
- the capacity tends to decrease when the hydroxyl group-containing compound (II) remains.
- the fluorine-containing unsaturated compound (I) has a double bond, when many of these remain, there is a tendency that they easily react with moisture and the like in the electrolytic solution and decompose.
- the lower limit of the total amount of compounds (I) and (II) is, for example, 100 ppm.
- the lower limit is preferably 300 ppm, more preferably 500 ppm.
- the HOMO energy of the compounds (I) and (II) obtained by molecular activation calculation is higher than that of the fluorinated ether represented by the general formula (1), the oxidation resistance is weak. Therefore, it is considered that when the voltage is increased, it is decomposed and becomes a cause of deterioration. From this, it is considered that the smaller the content of the compounds (I) and (II) in the fluorinated ether, the smaller the storage characteristics of the lithium ion secondary battery and the decrease in high voltage cycle.
- Examples of the method for purifying the fluorinated ether represented by the general formula (1) include a method of rectifying using a distillation column having 5 or more theoretical plates. Specifically, for example, a method of subjecting a fluorine-containing ether containing impurities (hereinafter sometimes referred to as a fluorine-containing ether crude liquid) to countercurrent extraction using water as an extraction solvent (separating agent) for the fluorine-containing alkyl alcohol. Is mentioned.
- the countercurrent extraction method is a type of liquid-liquid extraction method.
- a vertical extraction device is used for extraction, and a crude liquid having a large specific gravity (for example, a specific gravity of about 1.5) is injected from the top of the extraction device. Then, water (specific gravity 1.0) is injected from the lower part, and if necessary, it is allowed to float above the apparatus as water droplets while stirring, and in the meantime, the fluorinated ether crude liquid and water are sufficiently brought into contact with each other. Is extracted with individual water droplets. The water used for extraction is extracted from above the apparatus.
- a typical countercurrent extraction device is a mixer-settler type extraction device provided with a stirrer in multiple stages.
- HCF 2 CF 2 CH 2 OCF 2 CF 2 H and HCF 2 CF 2 CH 2 OCF 2 CFHCF 3 which are more preferable specific examples will be described.
- the fluorine-containing ether represented by the general formula (1) is HCF 2 CF 2 OCH 2 CF 2 CF 2 H
- the compound (I) is converted into the compound (I-1) and the compound (I-2).
- the compound (II) is preferably a combination of the compound (II-1), and the fluorine-containing ether represented by the general formula (1) is HCF 2 CF 2 CH 2 OCF 2 CFHCF 3
- the compound (I) is the compound (I-3), the compound (I-4), the compound (I-5) and the compound (I-6), and the compound (II) is the compound (II- The combination which is 1) is preferable.
- any known components can be used as the solvent for the non-aqueous electrolyte secondary battery.
- alkylene carbonates such as ethylene carbonate, propylene carbonate, and butylene carbonate
- dialkyl carbonates such as dimethyl carbonate, diethyl carbonate, di-n-propyl carbonate, and ethylmethyl carbonate
- Cyclic ethers such as tetrahydrofuran and 2-methyltetrahydrofuran
- chain ethers such as dimethoxyethane and dimethoxymethane
- cyclic carboxylic acid ester compounds such as ⁇ -butyrolactone and ⁇ -valerolactone
- methyl acetate and propionic acid examples thereof include chain carboxylic acid esters such as methyl and ethyl propionate. Two or more of these may be used in combination.
- One preferable non-aqueous solvent is mainly composed of alkylene carbonate and dialkyl carbonate.
- a mixed solvent containing 20 to 45% by volume of an alkylene carbonate having an alkylene group having 2 to 4 carbon atoms and 55 to 80% by volume of a dialkyl carbonate having an alkyl group having 1 to 4 carbon atoms is an electrolytic solution. It is preferable because the electric conductivity of the liquid is high, and the cycle characteristics and high current discharge characteristics are high.
- alkylene carbonate having an alkylene group having 2 to 4 carbon atoms examples include ethylene carbonate, propylene carbonate, butylene carbonate and the like. Among these, ethylene carbonate or propylene carbonate is preferable.
- dialkyl carbonate having an alkyl group having 1 to 4 carbon atoms examples include dimethyl carbonate, diethyl carbonate, di-n-propyl carbonate, ethyl methyl carbonate, methyl-n-propyl carbonate, and ethyl-n-propyl carbonate. Among these, dimethyl carbonate, diethyl carbonate, or ethyl methyl carbonate is preferable.
- non-aqueous solvent contains at least one organic solvent selected from the group consisting of ethylene carbonate, propylene carbonate, ⁇ -butyrolactone, and ⁇ -valerolactone, and the total of these organic solvents is 60. It is preferably at least volume%, more preferably at least 85 volume%.
- An electrolytic solution in which a lithium salt is dissolved in this non-aqueous solvent causes less solvent evaporation and liquid leakage even when used at high temperatures.
- a mixture containing 5 to 45% by volume of ethylene carbonate and 55 to 95% by volume of ⁇ -butyrolactone, or a solvent containing 30 to 60% by volume of ethylene carbonate and 40 to 70% by volume of propylene carbonate has cycle characteristics and large current discharge. This is preferable because the balance of characteristics and the like is good.
- Still another example of a preferable non-aqueous solvent includes a phosphorus-containing organic solvent.
- the phosphorus-containing organic solvent include trimethyl phosphate, triethyl phosphate, dimethyl ethyl phosphate, methyl diethyl phosphate, ethylene methyl phosphate, ethylene ethyl phosphate, and the like.
- the phosphorus-containing organic solvent is contained in the nonaqueous solvent so as to be 10% by volume or more, the flammability of the electrolytic solution can be reduced.
- the content of the phosphorus-containing organic solvent is 10 to 80% by volume
- the other components are mainly at least one organic solvent selected from the group consisting of ⁇ -butyrolactone, ⁇ -valerolactone, alkylene carbonate and dialkyl carbonate. It is preferable to dissolve the lithium salt in a non-aqueous solvent to obtain an electrolytic solution because the balance between cycle characteristics and large current discharge characteristics is improved.
- the cyclic carbonate having a carbon-carbon unsaturated bond in the molecule is preferably contained in the non-aqueous solvent in an amount of 8% by weight or less, more preferably 0.01 to 8% by weight.
- the cyclic carbonate exceeds 8% by weight, the battery characteristics after storage tend to deteriorate, or the internal pressure of the battery tends to increase due to gas generation.
- a more preferred lower limit is 0.1% by weight, and a more preferred upper limit is 3% by weight.
- Examples of the cyclic carbonate having a carbon-carbon unsaturated bond in the molecule include vinylene carbonate, methyl vinylene carbonate, ethyl vinylene carbonate, 4,5-dimethyl vinylene carbonate, 4,5-diethyl vinylene carbonate, fluoro vinylene carbonate, trifluoro Vinylene carbonate compounds such as methyl vinylene carbonate; 4-vinylethylene carbonate, 4-methyl-4-vinylethylene carbonate, 4-ethyl-4-vinylethylene carbonate, 4-n-propyl-4-vinylethylene carbonate, 5-methyl -4-vinylethylene carbonate, 4,4-divinylethylene carbonate, 4,5-divinylethylene carbonate, 4,4-dimethyl-5-methyleneethylene carbonate, 4,4- Vinyl ethylene carbonate compounds such as ethyl-5-methylene-ethylene carbonate.
- vinylene carbonate 4-vinylethylene carbonate, 4-methyl-4-vinylethylene carbonate or 4,5-divinylethylene carbonate, particularly vinylene carbonate or 4-vinylethylene carbonate are preferred. Two or more of these may be used in combination.
- non-aqueous solvent may contain other useful compounds, for example, conventionally known additives, dehydrating agents, deoxidizing agents, and overcharge preventing agents as required.
- carbonate compounds such as fluoroethylene carbonate, trifluoropropylene carbonate, phenylethylene carbonate and erythritan carbonate; succinic anhydride, glutaric anhydride, maleic anhydride, citraconic anhydride, glutaconic anhydride, itaconic anhydride, Carboxylic anhydrides such as diglycolic anhydride, cyclohexanedicarboxylic anhydride, cyclopentanetetracarboxylic dianhydride and phenylsuccinic anhydride; ethylene sulfite, 1,3-propane sultone, 1,4-butane sultone, methane Sulfur-containing compounds such as methyl sulfonate, busulfan, sulfolane, sulfolene, dimethyl sulfone, and tetramethylthiuram monosulfide; 1-methyl-2-pyrrolidinone, 1-methyl-2-piperidone
- aromatic compounds such as cyclohexylbenzene, biphenyl, alkylbiphenyl, terphenyl, terphenyl partial hydride, t-butylbenzene, t-amylbenzene, diphenyl ether, benzofuran and dibenzofuran; 2-fluorobiphenyl And partially fluorinated products of the aromatic compounds such as fluorinated anisole compounds such as 2,4-difluoroanisole, 2,5-difluoroanisole and 2,6-difluoroanisole.
- the battery can be prevented from bursting or igniting during overcharge or the like.
- lithium salts include inorganic lithium salts such as LiClO 4 , LiPF 6 and LiBF 4 ; LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), LiC (CF 3 SO 2 ) 3 , LiPF 4 (CF 3 ) 2 , LiPF 4 (C 2 F 5 ) 2 , LiPF 4 (CF 3 SO 2 ) 2 , LiPF 4 (C 2 F 5 SO 2 ) 2 , LiBF 2 (CF 3 ) 2 , LiBF 2 (C 2 F 5 ) 2 , LiBF 2 (CF 3 SO 2 ) 2 and LiBF 2 (C 2 F 5 SO 2 ) 2 Fluorine-containing organic acid lithium salts such as these can be used, and these can be used alone or in combination of two or more.
- inorganic lithium salts such as LiClO 4 , LiPF 6 and LiBF 4 ; LiCF 3 SO 3
- LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 or LiN (C 2 F 5 SO 2 ) 2 , particularly LiPF 6 or LiBF 4 are preferred.
- an inorganic lithium salt such as LiPF 6 or LiBF 4 and a fluorine-containing organic lithium salt such as LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 or LiN (C 2 F 5 SO 2 ) 2 are used in combination, This is preferable because deterioration after storage at high temperature is reduced.
- LiBF 4 accounts for 50% by weight or more of the total lithium salt.
- LiBF 4 and 5 lithium salt selected from the group consisting of LiPF 6 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 and LiN (C 2 F 5 SO 2 ) 2 Those that account for ⁇ 50% by weight are particularly preferred.
- the electrolyte salt concentration in the electrolytic solution is preferably 0.5 to 3 mol / liter. Outside this range, the electrical conductivity of the electrolytic solution tends to be low, and the battery performance tends to deteriorate.
- Examples of the material of the negative electrode constituting the battery according to the present invention include carbonaceous materials capable of occluding and releasing lithium, such as organic pyrolysis products under various pyrolysis conditions, artificial graphite, and natural graphite; tin oxide, silicon oxide Metal oxide materials that can occlude and release lithium, such as lithium metal, and various lithium alloys can be used. Two or more of these negative electrode materials may be mixed and used.
- Carbonaceous materials capable of occluding and releasing lithium include artificial graphite or purified natural graphite produced by high-temperature treatment of graphitizable pitch obtained from various raw materials, or surface treatment with pitch or other organic substances on these graphites. Those obtained by carbonization after application are preferred.
- the negative electrode may be manufactured by a conventional method. For example, a method of adding a binder, a thickener, a conductive material, a solvent, and the like to the negative electrode material to form a slurry, applying the slurry to the current collector, drying, and pressing to increase the density can be given.
- any material can be used as long as it is a material that is safe with respect to the solvent and the electrolyte used in manufacturing the electrode.
- examples thereof include polyvinylidene fluoride, polytetrafluoroethylene, polyethylene, polypropylene, styrene / butadiene rubber, isoprene rubber, butadiene rubber, ethylene-acrylic acid copolymer, and ethylene-methacrylic acid copolymer.
- thickener examples include carboxymethylcellulose, methylcellulose, hydroxymethylcellulose, ethylcellulose, polyvinyl alcohol, oxidized starch, phosphorylated starch, and casein.
- Examples of the conductive material include metal materials such as copper and nickel; carbon materials such as graphite and carbon black.
- Examples of the material of the negative electrode current collector include copper, nickel, and stainless steel. Of these, copper foil is preferred from the viewpoint of easy processing into a thin film and cost.
- a lithium-containing transition metal composite oxide that produces a high voltage is particularly preferable.
- Formula (1) Li a Mn 2-b M 1 b O 4 9 ⁇ a; 0 ⁇ b ⁇ 1.5; M 1 is Fe, Co, Ni, Cu, Zn, Al, Sn, Cr, V, Ti, Mg, Ca, Sr, B, Ga, In, Si, and Ge Lithium / manganese spinel composite oxide represented by the formula (2): LiNi 1-c M 2 c O 2 (where 0 ⁇ c ⁇ 0.5; at least one metal selected from the group consisting of M 2 is at least one metal selected from the group consisting of Fe, Co, Mn, Cu, Zn, Al, Sn, Cr, V, Ti, Mg, Ca, Sr, B, Ga, In, Si, and Ge) in the lithium-nickel composite oxide expressed, or LiCo 1-d M d O 2 (where, 0 ⁇ d ⁇ 0.5; M 3
- LiCoO 2 , LiMnO 2 , LiNiO 2 , LiMn 2 O 4 , LiNi 0.8 Co 0.15 Al 0.05 O 2 , or LiNi 1/3 Co 1/3 Mn 1/3 O 2 is preferable from the viewpoint of providing a lithium ion secondary battery with high energy density and high output.
- positive electrode actives such as LiFePO 4 , LiNi 0.8 Co 0.2 O 2 , Li 1.2 Fe 0.4 Mn 0.4 O 2 , LiNi 0.5 Mn 0.5 O 2 , LiV 3 O 6, etc. It may be a substance.
- the blending amount of the positive electrode active material is preferably 50 to 99% by mass, more preferably 80 to 99% by mass of the positive electrode mixture, from the viewpoint of high battery capacity.
- the particles of the positive electrode active material mainly consist of secondary particles, and the secondary particles. It is preferable to contain 0.5 to 7.0% by volume of fine particles having an average particle size of 40 ⁇ m or less and an average primary particle size of 1 ⁇ m or less. By containing fine particles having an average primary particle diameter of 1 ⁇ m or less, the contact area with the electrolytic solution is increased, and the diffusion of lithium ions between the electrode and the electrolytic solution can be accelerated, and the output performance can be improved. .
- the binder for the positive electrode the same material as that for the negative electrode can be used, and any material can be used as long as it is a safe material for the solvent and the electrolyte used in the production of the electrode.
- examples thereof include polyvinylidene fluoride, polytetrafluoroethylene, polyethylene, polypropylene, styrene / butadiene rubber, isoprene rubber, butadiene rubber, ethylene-acrylic acid copolymer, and ethylene-methacrylic acid copolymer.
- the thickener of a positive electrode the thing similar to a negative electrode can be used, and carboxymethylcellulose, methylcellulose, hydroxymethylcellulose, ethylcellulose, polyvinyl alcohol, an oxidized starch, phosphorylated starch, casein, etc. are mentioned.
- Examples of the conductive material include carbon materials such as graphite and carbon black.
- Examples of the material for the positive electrode current collector include metals such as aluminum, titanium, and tantalum, and alloys thereof. Of these, aluminum or an alloy thereof is preferable.
- the material and shape of the separator used in the lithium ion secondary battery of the present invention are arbitrary as long as they are stable in the electrolyte and excellent in liquid retention.
- a porous sheet or nonwoven fabric made of polyolefin such as polyethylene and polypropylene is preferred.
- the shape of the battery is arbitrary, and examples thereof include a cylindrical shape, a square shape, a laminate shape, a coin shape, and a large size.
- the shape and structure of a positive electrode, a negative electrode, and a separator can be changed and used according to the shape of each battery.
- the present invention is a non-aqueous electrolyte for a lithium ion secondary battery containing a non-aqueous solvent and an electrolyte salt
- the non-aqueous solvent is represented by the general formula (1): Rf 1 -O-Rf 2 (1) (Wherein Rf 1 and Rf 2 are the same or different and are an alkyl group having 1 to 10 carbon atoms or a fluoroalkyl group having 1 to 10 carbon atoms; provided that at least one of Rf 1 and Rf 2 is a fluoroalkyl group) Containing the indicated fluorine-containing ether, and
- the present invention relates to a non-aqueous electrolyte for a lithium ion secondary battery, which contains a total of 5000 ppm or less of the compounds represented by the following (I) and (II) with respect to the fluorine-containing ether.
- (I) Fluorine-containing unsaturated compound (II) General formula (2): Rf 1 OH (2)
- the non-aqueous solvent, the electrolyte salt, and the amount of each added used in the non-aqueous electrolyte for a lithium ion secondary battery of the present invention are the same as described above.
- the measurement method employed in the present invention is as follows.
- the lower layer fluorine-containing ether of the product liquid is HCF 2 CF 2 CH 2 OCF 2 CF 2 H (boiling point 92 ° C., specific gravity 1.52), and the composition of the lower layer fluorine-containing ether product liquid analyzed by GC is fluorine-containing.
- the ether concentration is 98.7%
- Compound (II-1) HCF 2 CF 2 CH 2 OH is 1.02%
- Compound (I-2) HCF 2 CF ⁇ CHOCF 2 CF 2 H was 0.23%.
- Synthesis Example 2 Synthesis of HCF 2 CF 2 CH 2 OCF 2 CFHCF 3
- the inside of a 3 L autoclave made of stainless steel was evacuated to 84 g (1.35 mol) of potassium hydroxide, 800 ml of water, and fluorine-containing alkyl alcohol.
- 2,3,3-tetrafluoro-1-propanol HCF 2 CF 2 CH 2 OH (boiling point 109 ° C., specific gravity 1.4) 600 g (4.5 mol) was injected, and then vacuum-nitrogen replacement was performed at room temperature. 20 times.
- the lower layer fluorine-containing ether of the product liquid is HCF 2 CF 2 CH 2 OCF 2 CFHCF 3 (boiling point 108 ° C., specific gravity 1.61), and the composition of the lower layer fluorine-containing ether generation liquid analyzed by GC is fluorine-containing ether.
- Example 1 Under a dry argon atmosphere, 3 parts by weight of rectified liquid C of HCF 2 CF 2 CH 2 OCF 2 CF 2 H was added to 97 parts by weight of a mixture of ethylene carbonate and ethyl methyl carbonate (volume ratio 3: 7). The dried LiPF 6 was dissolved in a ratio of 1 mol / liter to obtain an electrolytic solution.
- LiNi 1/3 Mn 1/3 Co 1/3 O 2 , carbon black, and polyvinylidene fluoride manufactured by Kureha Chemical Co., Ltd., trade name: KF-7200
- a positive electrode mixture slurry was prepared by dispersing the positive electrode active material in N-methyl-2-pyrrolidone to form a slurry.
- the obtained positive electrode mixture slurry is uniformly applied on an aluminum current collector, dried to form a positive electrode mixture layer (thickness 50 ⁇ m), and then compression molded by a roller press machine to form a positive electrode laminate.
- the positive electrode laminate was punched into a diameter of 1.6 mm with a punching machine to produce a circular positive electrode.
- a negative electrode current collector (thickness 10 ⁇ m) was prepared by adding styrene-butadiene rubber dispersed in distilled water to artificial graphite powder to a solid content of 6% by mass and mixing with a disperser to form a slurry. On the copper foil) and dried to form a negative electrode mixture layer. After that, compression molding was performed with a roller press machine, and a circular negative electrode was produced with a punching machine having a diameter of 1.6 mm.
- the above-mentioned circular positive electrode is opposed to the positive electrode and the negative electrode through a microporous polyethylene film (separator) having a thickness of 20 ⁇ m, the electrolytic solution is injected, and the electrolytic solution sufficiently permeates the separator, and then sealed. Precharging and aging were performed to produce a coin-type lithium ion secondary battery.
- the coin-type lithium ion secondary battery was examined for high voltage cycle characteristics and high temperature storage characteristics as follows.
- Example 2 HCF seminal distillate C for 2 CF 2 CH 2 OCF 2 CF 2 H, to prepare a battery except for the seminal effusion B of HCF 2 CF 2 CH 2 OCF 2 CF 2 H in the same manner as in Example 1 Test Went.
- Example 3 A battery was fabricated and tested in the same manner as in Example 1 except that the rectified liquid C of HCF 2 CF 2 CH 2 OCF 2 CF 2 H was changed to the rectified F of HCF 2 CF 2 CH 2 OCF 2 CFHCF 3. It was.
- Example 4 A battery was fabricated and tested in the same manner as in Example 1 except that the rectified liquid C of HCF 2 CF 2 CH 2 OCF 2 CF 2 H was changed to the rectified liquid E of HCF 2 CF 2 CH 2 OCF 2 CFHCF 3. went.
- Comparative Example 1 A battery was produced and tested in the same manner as in Example 1 except that the rectified liquid C of HCF 2 CF 2 CH 2 OCF 2 CF 2 H was changed to the fluorinated ether crude liquid 1.
- Comparative Example 3 Seminal distillate C of HCF 2 CF 2 CH 2 OCF 2 CF 2 H, HCF 2 CF 2 CH 2 OCF 2 CF 2 H rectification distillate C in compound (I-1) to that added in an amount of 7000ppm A battery was produced and tested in the same manner as in Example 1 except that.
- Comparative Example 4 Seminal distillate C of HCF 2 CF 2 CH 2 OCF 2 CF 2 H, HCF 2 CF 2 CH 2 OCF 2 CF 2 H rectification distillate C to compound (II-1) to that added in an amount of 7000ppm A battery was produced and tested in the same manner as in Example 1 except that.
- Comparative Example 5 A battery was produced and tested in the same manner as in Example 1 except that the rectified liquid C of HCF 2 CF 2 CH 2 OCF 2 CF 2 H was changed to the fluorinated ether crude liquid 2.
- Comparative Example 6 A battery was fabricated and tested in the same manner as in Example 1 except that the rectified liquid C of HCF 2 CF 2 CH 2 OCF 2 CF 2 H was changed to a rectified liquid D of HCF 2 CF 2 CH 2 OCF 2 CFHCF 3. went.
- Comparative Example 7 The rectified liquid C of HCF 2 CF 2 CH 2 OCF 2 CF 2 H was prepared by adding the compound (I-3) to the rectified liquid F of HCF 2 CF 2 CH 2 OCF 2 CFHCF 3 at a ratio of 7000 ppm. A battery was prepared and tested in the same manner as in Example 1 except for the above.
- Comparative Example 8 The rectified liquid C of HCF 2 CF 2 CH 2 OCF 2 CF 2 H was prepared by adding the compound (I-4) to the rectified liquid F of HCF 2 CF 2 CH 2 OCF 2 CFHCF 3 at a ratio of 7000 ppm. A battery was prepared and tested in the same manner as in Example 1 except for the above.
- the total content of the compounds (I-1), (I-2) and (II-1) in the rectified liquid of HCF 2 CF 2 CH 2 OCF 2 CF 2 H is calculated as HCF 2 CF 2 CH 2 OCF. It can be seen that the storage characteristics at high temperature and the high voltage cycle characteristics are improved by setting it to 5000 ppm or less with respect to 2 CF 2 H. Similarly, the total content of the compounds (I-3) to (I-6) and (II-1) in the rectified liquid of HCF 2 CF 2 CH 2 OCF 2 CFHCF 3 is changed to HCF 2 CF 2 CH 2 OCF 2 by the 5000ppm or less with respect to CFHCF 3, it can be seen that improved storage characteristics and high-voltage cycle characteristics at high temperatures.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Secondary Cells (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Description
前記非水溶媒が、一般式(1):
Rf1-O-Rf2 (1)
(式中、Rf1及びRf2は同じか又は異なり、炭素数1~10のアルキル基又は炭素数1~10のフルオロアルキル基;ただし、Rf1及びRf2の少なくとも一方はフルオロアルキル基)で示される含フッ素エーテルを含有し、かつ、
下記(I)、(II)で示される化合物を、前記含フッ素エーテルに対して合計で5000ppm以下含有することを特徴とする、リチウムイオン二次電池に関する。
(I)含フッ素不飽和化合物
(II)一般式(2):
Rf1OH (2)
(式中、Rf1は前記同様)
で示される水酸基含有化合物。
含フッ素不飽和化合物(I)が、
(I-1)CF2=CFCH2OCF2CF2H、及び、
(I-2)HCF2CF=CHOCF2CF2H
であり、
水酸基含有化合物(II)が、
(II-1)HCF2CF2CH2OH
であることが好ましい。
含フッ素不飽和化合物(I)が、
(I-3)CF2=CFCH2OCF2CFHCF3、
(I-4)HCF2CF2CH2OCF=CFCF3、
(I-5)HCF2CF2CH2OCF2CF=CF2、及び、
(I-6)HCF2CF=CHOCF2CFHCF3
であり、
水酸基含有化合物(II)が、
(II-1)HCF2CF2CH2OH
であることが好ましい。
前記非水溶媒が、一般式(1):
Rf1-O-Rf2 (1)
(式中、Rf1及びRf2は同じか又は異なり、炭素数1~10のアルキル基又は炭素数1~10のフルオロアルキル基;ただし、Rf1及びRf2の少なくとも一方はフルオロアルキル基)で示される含フッ素エーテルを含有し、かつ、
下記、(I)、(II)で示される化合物を、前記含フッ素エーテルに対して合計で5000ppm以下含有することを特徴とするリチウムイオン二次電池用非水電解液に関する。
(I)含フッ素不飽和化合物
(II)一般式(2):
Rf1OH (2)
(式中、Rf1は前記同様)
で示される水酸基含有化合物。
前記非水溶媒が、一般式(1):
Rf1-O-Rf2 (1)
(式中、Rf1及びRf2は同じか又は異なり、炭素数1~10のアルキル基又は炭素数1~10のフルオロアルキル基;ただし、Rf1及びRf2の少なくとも一方はフルオロアルキル基)で示される含フッ素エーテルを含有し、かつ、
下記(I)、(II)で示される化合物を、前記含フッ素エーテルに対して合計で5000ppm以下含有することを特徴とするものである。
(I)含フッ素不飽和化合物
(II)一般式(2):
Rf1OH (2)
(式中、Rf1は前記同様)
で示される水酸基含有化合物。
Rf1OH (2)
で示されるものである。ここで、Rf1としては、一般式(1)と同様のものを挙げることができ、水酸基含有化合物(II)として具体的には、(II-1)HCF2CF2CH2OHを挙げることができる。
化合物(I)、(II)の含有量の上限値としては、前記含フッ素エーテルに対して合計で3500ppmであることが好ましく、2000ppmであることがより好ましい。化合物(I)、(II)の合計量の下限値としては、例えば、100ppmである。下限値としては、好ましくは300ppmであり、より好ましくは500ppmである。
前記非水溶媒が、一般式(1):
Rf1-O-Rf2 (1)
(式中、Rf1及びRf2は同じか又は異なり、炭素数1~10のアルキル基又は炭素数1~10のフルオロアルキル基;ただし、Rf1及びRf2の少なくとも一方はフルオロアルキル基)で示される含フッ素エーテルを含有し、かつ、
下記(I)、(II)で示される化合物を、前記含フッ素エーテルに対して合計で5000ppm以下含有することを特徴とする、リチウムイオン二次電池用非水電解液に関する。
(I)含フッ素不飽和化合物
(II)一般式(2):
Rf1OH (2)
(式中、Rf1は前記同様)
で示される水酸基含有化合物。
NMR法:BRUKER社製のAC-300を使用。
19F-NMR:
測定条件:282MHz(トリクロロフルオロメタン=0ppm)
1H-NMR:
測定条件:300MHz(テトラメチルシラン=0ppm)
ガスクロマトグラフィ(GC)法:(株)島津製作所製のGC-17Aを使用。
カラム:DB624(Length 60m、I.D. 0.32mm、Film 1.8μm)
測定限界:0.001%
ステンレススチール製の6Lオートクレーブの系内を真空状態にし、水酸化カリウム 401g(7.15モル)、水 1604mL、含フッ素アルキルアルコールとして、2,2,3,3-テトラフルオロ-1-プロパノール:HCF2CF2CH2OH(沸点109℃、比重1.4)1716g(13モル)を注入した後、室温で真空-窒素置換を20回行った。系内を真空にした後、テトラフルオロエチレン(TFE)を0.1MPaとなるように満たし、反応系内が85℃になるよう加熱した。内温が85℃に達してから、反応圧が0.5~0.8MPaを保つようにTFEを少しずつ加えていった。系内温は75~95℃を保つように調節した。
ミキサー-セトラー型抽出装置:(塔高3300mm、内径200mm)
段数:24段
撹拌速度:285rpm
重液供給速度:160kg/hr
軽液:純水
軽液供給速度:100kg/hr
処理温度:27℃
処理時間:0.01時間
ステンレススチール製の3Lオートクレーブの系内を真空状態にし、水酸化カリウム 84g(1.35モル)、水800ml、含フッ素アルキルアルコールとして、2,2,3,3-テトラフルオロ-1-プロパノール:HCF2CF2CH2OH(沸点109℃、比重1.4)600g(4.5モル)を注入した後、室温で真空-窒素置換を20回行った。系内を真空にした後、ヘキサフルオロプロペン:CF2=CFCF3 681g(4.5モル)を0.1MPaとなるように満たし、反応系内が85℃になるよう加熱した。内温が85℃に達してから、反応圧が0.5~0.8MPaを保つようにCF2=CFCF3を少しずつ加えていった。系内温は91~111℃を保つように調節した。
ミキサー-セトラー型抽出装置:(塔高3300mm、内径200mm)
段数:24段
撹拌速度:285rpm
重液供給速度:160kg/hr
軽液:純水
軽液供給速度:100kg/hr
処理温度:27℃
処理時間:0.01時間
乾燥アルゴン雰囲気下、エチレンカーボネート及びエチルメチルカーボネートの混合物(容量比3:7)97重量部に、HCF2CF2CH2OCF2CF2Hの精留液C 3重量部を添加し、次いで十分に乾燥したLiPF6を1モル/リットルの割合となるように溶解して電解液とした。
LiNi1/3Mn1/3Co1/3O2とカーボンブラックとポリフッ化ビニリデン(呉羽化学(株)製、商品名:KF-7200)を92/3/5(質量%比)で混合した正極活物質をN-メチル-2-ピロリドンに分散してスラリー状とした正極合剤スラリーを準備した。アルミ集電体上に、得られた正極合剤スラリーを均一に塗布し、乾燥して正極合剤層(厚さ50μm)を形成し、その後、ローラプレス機により圧縮成形して、正極積層体を製造した。正極積層体を打ち抜き機で直径1.6mmの大きさに打ち抜き、円状の正極を作製した。
コイン型リチウムイオン二次電池について、つぎの要領で高電圧でのサイクル特性と高温保存特性を調べた。
充電:0.5C、4.3Vにて充電電流が1/10Cになるまでを保持(CC・CV充電)
放電:0.5C 3.0Vcut(CC放電)
サイクル特性については、上記の充放電条件(1.0Cで所定の電圧にて充電電流が1/10Cになるまで充電し1C相当の電流で3.0Vまで放電する)で行う充放電サイクルを1サイクルとし、5サイクル後の放電容量と100サイクル後の放電容量を測定する。サイクル特性は、つぎの計算式で求められた値を容量維持率の値とする。その結果を表3に示す。
高温保存特性については上記の充放電条件(1.0Cで所定の電圧にて充電電流が1/10Cになるまで充電し1C相当の電流で3.0Vまで放電する)により充放電を行い、放電容量を調べた。その後、再度上記の充電条件で充電をし、85℃の恒温槽の中に1日保存した。保存後の電池を25℃において、上記の放電条件で放電終止電圧3Vまで放電させて残存容量を測定し、更に上記の充電条件で充電した後、上記の放電条件での定電流で放電終止電圧3Vまで放電を行って回復容量を測定した。保存前の放電容量を100とした場合の回復容量を表3に示す。
HCF2CF2CH2OCF2CF2Hの精留液Cを、HCF2CF2CH2OCF2CF2Hの精留液Bにした以外は実施例1と同様にして電池を作製し試験を行った。
HCF2CF2CH2OCF2CF2Hの精留液Cを、HCF2CF2CH2OCF2CFHCF3の精留Fにした以外は実施例1と同様にして電池を作製し試験を行った。
HCF2CF2CH2OCF2CF2Hの精留液Cを、HCF2CF2CH2OCF2CFHCF3の精留液Eにした以外は実施例1と同様にして電池を作製し試験を行った。
HCF2CF2CH2OCF2CF2Hの精留液Cを、含フッ素エーテル粗液1にした以外は実施例1と同様にして電池を作製し試験を行った。
HCF2CF2CH2OCF2CF2Hの精留液Cを、HCF2CF2CH2OCF2CF2Hの精留液Aにした以外は実施例1と同様にして電池を作製し試験を行った。
HCF2CF2CH2OCF2CF2Hの精留液Cを、HCF2CF2CH2OCF2CF2Hの精留液Cに化合物(I-1)を7000ppmの割合で添加したものにした以外は実施例1と同様にして電池を作製し試験を行った。
HCF2CF2CH2OCF2CF2Hの精留液Cを、HCF2CF2CH2OCF2CF2Hの精留液Cに化合物(II-1)を7000ppmの割合で添加したものにした以外は実施例1と同様にして電池を作製し試験を行った。
HCF2CF2CH2OCF2CF2Hの精留液Cを、含フッ素エーテル粗液2にした以外は実施例1と同様にして電池を作製し試験を行った。
HCF2CF2CH2OCF2CF2Hの精留液Cを、HCF2CF2CH2OCF2CFHCF3の精留液Dにした以外は実施例1と同様にして電池を作製し試験を行った。
HCF2CF2CH2OCF2CF2Hの精留液Cを、HCF2CF2CH2OCF2CFHCF3の精留液Fに化合物(I-3)を7000ppmの割合で添加したものにした以外は実施例1と同様にして電池を作製し試験を行った。
HCF2CF2CH2OCF2CF2Hの精留液Cを、HCF2CF2CH2OCF2CFHCF3の精留液Fに化合物(I-4)を7000ppmの割合で添加したものにした以外は実施例1と同様にして電池を作製し試験を行った。
HCF2CF2CH2OCF2CF2Hの精留液Cを、HCF2CF2CH2OCF2CFHCF3の精留液Fに化合物(I-5)を7000ppmの割合で添加したものにした以外は実施例1と同様にして電池を作製し試験を行った。
HCF2CF2CH2OCF2CF2Hの精留液Cを、HCF2CF2CH2OCF2CFHCF3の精留液Fに化合物(I-6)を7000ppmの割合で添加したものにした以外は実施例1と同様にして電池を作製し試験を行った。
Claims (5)
- 正極、負極、並びに、非水溶媒及び電解質塩を含む非水電解液を備えるリチウムイオン二次電池であって、
前記非水溶媒が、一般式(1):
Rf1-O-Rf2 (1)
(式中、Rf1及びRf2は同じか又は異なり、炭素数1~10のアルキル基又は炭素数1~10のフルオロアルキル基;ただし、Rf1及びRf2の少なくとも一方はフルオロアルキル基)で示される含フッ素エーテルを含有し、かつ、
下記(I)、(II)で示される化合物を、前記含フッ素エーテルに対して合計で5000ppm以下含有することを特徴とする、リチウムイオン二次電池。
(I)含フッ素不飽和化合物
(II)一般式(2):
Rf1OH (2)
(式中、Rf1は前記同様)
で示される水酸基含有化合物。 - 一般式(1)で示される含フッ素エーテルが、HCF2CF2CH2OCF2CF2Hであり、
含フッ素不飽和化合物(I)が、
(I-1)CF2=CFCH2OCF2CF2H、及び、
(I-2)HCF2CF=CHOCF2CF2H
であり、
水酸基含有化合物(II)が、
(II-1)HCF2CF2CH2OH
である請求項1記載のリチウムイオン二次電池。 - 一般式(1)で示される含フッ素エーテルが、HCF2CF2CH2OCF2CFHCF3であり、
含フッ素不飽和化合物(I)が、
(I-3)CF2=CFCH2OCF2CFHCF3、
(I-4)HCF2CF2CH2OCF=CFCF3、
(I-5)HCF2CF2CH2OCF2CF=CF2、及び、
(I-6)HCF2CF=CHOCF2CFHCF3
であり、
水酸基含有化合物(II)が、
(II-1)HCF2CF2CH2OH
である請求項1記載のリチウムイオン二次電池。 - 一般式(1)で示される含フッ素エーテルの含有量が、非水溶媒中0.01~90重量%である請求項1~3のいずれかに記載のリチウムイオン二次電池。
- 非水溶媒、及び、電解質塩を含むリチウムイオン二次電池用非水電解液であって、
前記非水溶媒が、一般式(1):
Rf1-O-Rf2 (1)
(式中、Rf1及びRf2は同じか又は異なり、炭素数1~10のアルキル基又は炭素数1~10のフルオロアルキル基;ただし、Rf1及びRf2の少なくとも一方はフルオロアルキル基)で示される含フッ素エーテルを含有し、かつ、
下記(I)、(II)で示される化合物を、前記含フッ素エーテルに対して合計で5000ppm以下含有することを特徴とする、リチウムイオン二次電池用非水電解液。
(I)含フッ素不飽和化合物
(II)一般式(2):
Rf1OH (2)
(式中、Rf1は前記同様)
で示される水酸基含有化合物。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/008,285 US10720664B2 (en) | 2011-03-31 | 2012-03-29 | Lithium ion secondary battery and nonaqueous electrolyte for lithium ion secondary battery |
CN201280015785.9A CN103460496B (zh) | 2011-03-31 | 2012-03-29 | 锂离子二次电池和锂离子二次电池用非水电解液 |
EP12765720.3A EP2693558B1 (en) | 2011-03-31 | 2012-03-29 | Lithium ion secondary battery and nonaqueous electrolyte for lithium ion secondary battery |
KR1020137027417A KR20140003601A (ko) | 2011-03-31 | 2012-03-29 | 리튬 이온 2차 전지 및 리튬 이온 2차 전지용 비수 전해액 |
PL12765720T PL2693558T3 (pl) | 2011-03-31 | 2012-03-29 | Litowo-jonowa bateria akumulatorowa i niewodny elektrolit do litowo-jonowej baterii akumulatorowej |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011-080298 | 2011-03-31 | ||
JP2011080298 | 2011-03-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012133698A1 true WO2012133698A1 (ja) | 2012-10-04 |
Family
ID=46931400
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/058459 WO2012133698A1 (ja) | 2011-03-31 | 2012-03-29 | リチウムイオン二次電池及びリチウムイオン二次電池用非水電解液 |
Country Status (9)
Country | Link |
---|---|
US (1) | US10720664B2 (ja) |
EP (1) | EP2693558B1 (ja) |
JP (1) | JP5120513B2 (ja) |
KR (1) | KR20140003601A (ja) |
CN (1) | CN103460496B (ja) |
HU (1) | HUE054535T2 (ja) |
PL (1) | PL2693558T3 (ja) |
TW (1) | TW201246656A (ja) |
WO (1) | WO2012133698A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103633371A (zh) * | 2013-12-13 | 2014-03-12 | 深圳新宙邦科技股份有限公司 | 一种用于锂离子电池的非水电解液和锂离子电池 |
JPWO2015080102A1 (ja) * | 2013-11-28 | 2017-03-16 | 日本電気株式会社 | 二次電池用電解液およびこれを用いた二次電池 |
US10243234B2 (en) | 2014-10-24 | 2019-03-26 | Nec Corporation | Secondary battery |
WO2022070646A1 (ja) * | 2020-09-30 | 2022-04-07 | パナソニックIpマネジメント株式会社 | リチウム二次電池 |
Families Citing this family (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6011713B2 (ja) * | 2013-03-04 | 2016-10-19 | ダイキン工業株式会社 | 電解液、電気化学デバイス、リチウムイオン二次電池、及び、モジュール |
TW201349633A (zh) * | 2013-04-23 | 2013-12-01 | Yih Shan New Tech Co Ltd | 鋰離子電池、其陰極、其陰極材料及該陰極材料之製造方法 |
US10193141B2 (en) | 2014-02-27 | 2019-01-29 | Toda Kogyo Corporation | Positive electrode mixture and non-aqueous electrolyte secondary battery |
JP2015201310A (ja) * | 2014-04-07 | 2015-11-12 | 旭化成株式会社 | 非水蓄電デバイス用電解液及びリチウムイオン二次電池 |
CN103928709B (zh) * | 2014-04-23 | 2016-09-28 | 中国科学院宁波材料技术与工程研究所 | 一种非水电解液和锂离子电池 |
CN107394269B (zh) * | 2016-05-17 | 2020-10-02 | 宁德新能源科技有限公司 | 电解液及锂离子电池 |
CN108808086B (zh) | 2017-04-28 | 2020-03-27 | 深圳新宙邦科技股份有限公司 | 锂离子电池非水电解液和锂离子电池 |
CN108808066B (zh) * | 2017-04-28 | 2020-04-21 | 深圳新宙邦科技股份有限公司 | 锂离子电池非水电解液和锂离子电池 |
CN108808065B (zh) | 2017-04-28 | 2020-03-27 | 深圳新宙邦科技股份有限公司 | 锂离子电池非水电解液和锂离子电池 |
CN108808084B (zh) | 2017-04-28 | 2020-05-08 | 深圳新宙邦科技股份有限公司 | 锂离子电池非水电解液和锂离子电池 |
CN108933292B (zh) | 2017-05-27 | 2020-04-21 | 深圳新宙邦科技股份有限公司 | 锂离子电池非水电解液和锂离子电池 |
CN109326823B (zh) | 2017-07-31 | 2020-04-21 | 深圳新宙邦科技股份有限公司 | 锂离子电池非水电解液及锂离子电池 |
CN109326824B (zh) | 2017-07-31 | 2020-04-21 | 深圳新宙邦科技股份有限公司 | 锂离子电池非水电解液及锂离子电池 |
PL3651255T3 (pl) * | 2017-08-25 | 2023-09-04 | Daikin Industries, Ltd. | Elektrolit do litowo-jonowej baterii akumulatorowej, litowo-jonowa bateria akumulatorowa oraz moduł |
CN109148960B (zh) * | 2018-10-10 | 2020-10-02 | 杉杉新材料(衢州)有限公司 | 一种锂离子电池用非水电解液及使用该电解液的锂离子电池 |
JP7086880B2 (ja) * | 2019-03-18 | 2022-06-20 | 株式会社東芝 | 二次電池、電池パック及び車両 |
US20210013545A1 (en) * | 2019-07-12 | 2021-01-14 | Honeywell International Inc. | Electrolyte solution for a lithium ion cell |
GB201916217D0 (en) * | 2019-10-03 | 2019-12-25 | Mexichem Fluor Sa De Cv | Composition |
CN111584936A (zh) * | 2020-06-29 | 2020-08-25 | 四川东为氢源科技有限公司 | 电解液及其制备方法 |
WO2022123253A1 (en) * | 2020-12-11 | 2022-06-16 | Mexichem Fluor S.A. De C.V. | Composition |
WO2022123255A1 (en) * | 2020-12-11 | 2022-06-16 | Mexichem Fluor S.A. De C.V. | Composition |
WO2022172951A1 (ja) | 2021-02-10 | 2022-08-18 | ダイキン工業株式会社 | 化合物、組成物、電気化学デバイス、リチウムイオン二次電池及びモジュール |
WO2023002341A1 (en) * | 2021-07-20 | 2023-01-26 | 3M Innovative Properties Company | Hydrofluoroolefins and uses thereof |
CN114520369A (zh) * | 2022-02-18 | 2022-05-20 | 湖北亿纬动力有限公司 | 一种高压体系的电解液及制备方法和含有其的锂离子电池 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3807459B2 (ja) | 1997-06-30 | 2006-08-09 | ダイキン工業株式会社 | 非水電解液電池用電解液およびこれを用いた非水電解液電池 |
JP2009508304A (ja) * | 2005-09-08 | 2009-02-26 | スリーエム イノベイティブ プロパティズ カンパニー | 電解質組成物 |
JP2010146740A (ja) * | 2008-12-16 | 2010-07-01 | Daikin Ind Ltd | 電解液 |
WO2010147105A1 (ja) * | 2009-06-15 | 2010-12-23 | ダイキン工業株式会社 | 高純度含フッ素エーテルの製造方法 |
WO2011001985A1 (ja) * | 2009-06-30 | 2011-01-06 | 旭硝子株式会社 | 帯電デバイス用電解液、リチウム二次イオン電池用電解液、および二次電池 |
JP2011040311A (ja) * | 2009-08-13 | 2011-02-24 | Asahi Glass Co Ltd | 二次電池用電解液およびリチウムイオン二次電池 |
JP2012074135A (ja) * | 2010-09-27 | 2012-04-12 | Tosoh F-Tech Inc | ジフルオロエチルエーテルを含有する非水電解液 |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5754393A (en) | 1995-03-07 | 1998-05-19 | Asahi Glass Company Ltd. | Electric double layer capacitor |
JP4000603B2 (ja) | 1995-03-07 | 2007-10-31 | 旭硝子株式会社 | 電気二重層コンデンサ |
JP2000208372A (ja) | 1999-01-08 | 2000-07-28 | Mitsubishi Chemicals Corp | 電解液及びそれを用いた電気二重層キャパシタ |
JP3463926B2 (ja) | 1999-11-15 | 2003-11-05 | セントラル硝子株式会社 | 電気化学ディバイス用電解液 |
JP3482488B2 (ja) | 2000-12-28 | 2003-12-22 | 独立行政法人産業技術総合研究所 | 含フッ素エーテル化合物の製造方法 |
US7229718B2 (en) | 2002-08-22 | 2007-06-12 | Samsung Sdi Co., Ltd. | Electrolyte for rechargeable lithium battery and rechargeable lithium battery comprising same |
JP4416991B2 (ja) | 2002-08-22 | 2010-02-17 | 三星エスディアイ株式会社 | リチウム二次電池用の非水電解液及びリチウム二次電池 |
JPWO2006123563A1 (ja) | 2005-05-17 | 2008-12-25 | 旭硝子株式会社 | 含フッ素アルキルエーテルの処理方法 |
WO2008078626A1 (ja) | 2006-12-22 | 2008-07-03 | Daikin Industries, Ltd. | 非水系電解液 |
CN101578675B (zh) | 2007-01-12 | 2011-11-09 | 大金工业株式会社 | 双电层电容器 |
JP5234000B2 (ja) | 2007-09-12 | 2013-07-10 | ダイキン工業株式会社 | 電解液 |
EP2305626B1 (en) | 2008-06-20 | 2015-08-05 | Daikin Industries, Ltd. | Method for producing fluorine-containing ether |
KR101290895B1 (ko) | 2008-11-14 | 2013-07-29 | 다이킨 고교 가부시키가이샤 | 전기 이중층 캐패시터 |
JP2010135431A (ja) | 2008-12-02 | 2010-06-17 | Daikin Ind Ltd | 電気二重層キャパシタ |
US20140029165A1 (en) | 2011-03-31 | 2014-01-30 | Daikin Industries, Ltd. | Electric double-layer capacitor and non-aqueous electrolyte for electric double-layer capacitor |
-
2012
- 2012-03-29 WO PCT/JP2012/058459 patent/WO2012133698A1/ja active Application Filing
- 2012-03-29 KR KR1020137027417A patent/KR20140003601A/ko not_active Ceased
- 2012-03-29 US US14/008,285 patent/US10720664B2/en active Active
- 2012-03-29 CN CN201280015785.9A patent/CN103460496B/zh active Active
- 2012-03-29 EP EP12765720.3A patent/EP2693558B1/en active Active
- 2012-03-29 HU HUE12765720A patent/HUE054535T2/hu unknown
- 2012-03-29 PL PL12765720T patent/PL2693558T3/pl unknown
- 2012-03-29 JP JP2012077706A patent/JP5120513B2/ja active Active
- 2012-03-30 TW TW101111436A patent/TW201246656A/zh unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3807459B2 (ja) | 1997-06-30 | 2006-08-09 | ダイキン工業株式会社 | 非水電解液電池用電解液およびこれを用いた非水電解液電池 |
JP2009508304A (ja) * | 2005-09-08 | 2009-02-26 | スリーエム イノベイティブ プロパティズ カンパニー | 電解質組成物 |
JP2010146740A (ja) * | 2008-12-16 | 2010-07-01 | Daikin Ind Ltd | 電解液 |
WO2010147105A1 (ja) * | 2009-06-15 | 2010-12-23 | ダイキン工業株式会社 | 高純度含フッ素エーテルの製造方法 |
WO2011001985A1 (ja) * | 2009-06-30 | 2011-01-06 | 旭硝子株式会社 | 帯電デバイス用電解液、リチウム二次イオン電池用電解液、および二次電池 |
JP2011040311A (ja) * | 2009-08-13 | 2011-02-24 | Asahi Glass Co Ltd | 二次電池用電解液およびリチウムイオン二次電池 |
JP2012074135A (ja) * | 2010-09-27 | 2012-04-12 | Tosoh F-Tech Inc | ジフルオロエチルエーテルを含有する非水電解液 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2693558A4 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2015080102A1 (ja) * | 2013-11-28 | 2017-03-16 | 日本電気株式会社 | 二次電池用電解液およびこれを用いた二次電池 |
US20170170520A1 (en) * | 2013-11-28 | 2017-06-15 | Nec Corporation | Electrolyte solution for secondary battery and secondary battery using same |
US10587008B2 (en) * | 2013-11-28 | 2020-03-10 | Nec Corporation | Electrolyte solution for secondary battery and secondary battery using same |
CN103633371A (zh) * | 2013-12-13 | 2014-03-12 | 深圳新宙邦科技股份有限公司 | 一种用于锂离子电池的非水电解液和锂离子电池 |
US10243234B2 (en) | 2014-10-24 | 2019-03-26 | Nec Corporation | Secondary battery |
WO2022070646A1 (ja) * | 2020-09-30 | 2022-04-07 | パナソニックIpマネジメント株式会社 | リチウム二次電池 |
Also Published As
Publication number | Publication date |
---|---|
US20140017560A1 (en) | 2014-01-16 |
EP2693558A4 (en) | 2014-08-27 |
EP2693558B1 (en) | 2021-03-24 |
US10720664B2 (en) | 2020-07-21 |
TW201246656A (en) | 2012-11-16 |
KR20140003601A (ko) | 2014-01-09 |
CN103460496B (zh) | 2016-11-16 |
EP2693558A1 (en) | 2014-02-05 |
HUE054535T2 (hu) | 2021-09-28 |
JP2012216539A (ja) | 2012-11-08 |
JP5120513B2 (ja) | 2013-01-16 |
CN103460496A (zh) | 2013-12-18 |
PL2693558T3 (pl) | 2021-10-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5120513B2 (ja) | リチウムイオン二次電池及びリチウムイオン二次電池用非水電解液 | |
JP5436512B2 (ja) | 非水電解液 | |
WO2014050877A1 (ja) | 非水電解液、電気化学デバイス、リチウムイオン二次電池、及び、モジュール | |
WO2010004952A1 (ja) | 非水系電解液 | |
JP5590192B2 (ja) | 電気化学デバイス及び電気化学デバイス用非水電解液 | |
JP2014072102A (ja) | 非水電解液、電気化学デバイス、リチウムイオン二次電池、及び、モジュール | |
JP2004111359A (ja) | 非水系電解液二次電池および非水系電解液 | |
JP6143410B2 (ja) | 電気化学デバイス及び電気化学デバイス用非水電解液 | |
JP2012216390A (ja) | 電気化学デバイス及び電気化学デバイス用非水電解液 | |
JP2012216391A (ja) | 電気化学デバイス及び電気化学デバイス用非水電解液 | |
JP2012216387A (ja) | 電気化学デバイス及び電気化学デバイス用非水電解液 | |
JP2013069512A (ja) | 非水電解液、リチウムイオン二次電池、及び、モジュール | |
JP5849526B2 (ja) | 非水電解液、リチウムイオン二次電池、及び、モジュール | |
JP4219127B2 (ja) | 非水系電解液二次電池および非水系電解液 | |
JP2009026766A (ja) | シクロへキシルベンゼン | |
JP2012216389A (ja) | 電気化学デバイス及び電気化学デバイス用非水電解液 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12765720 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14008285 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012765720 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20137027417 Country of ref document: KR Kind code of ref document: A |