[go: up one dir, main page]

WO2012120796A1 - 半導体装置及びその製造方法 - Google Patents

半導体装置及びその製造方法 Download PDF

Info

Publication number
WO2012120796A1
WO2012120796A1 PCT/JP2012/001088 JP2012001088W WO2012120796A1 WO 2012120796 A1 WO2012120796 A1 WO 2012120796A1 JP 2012001088 W JP2012001088 W JP 2012001088W WO 2012120796 A1 WO2012120796 A1 WO 2012120796A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
base
base layer
region
semiconductor device
Prior art date
Application number
PCT/JP2012/001088
Other languages
English (en)
French (fr)
Inventor
賢一 宮島
村山 啓一
昌宏 前田
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2012120796A1 publication Critical patent/WO2012120796A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/10Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
    • H10D62/17Semiconductor regions connected to electrodes not carrying current to be rectified, amplified or switched, e.g. channel regions
    • H10D62/177Base regions of bipolar transistors, e.g. BJTs or IGBTs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D10/00Bipolar junction transistors [BJT]
    • H10D10/01Manufacture or treatment
    • H10D10/021Manufacture or treatment of heterojunction BJTs [HBT]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/80Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
    • H10D62/85Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials being Group III-V materials, e.g. GaAs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D84/00Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
    • H10D84/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D84/00Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
    • H10D84/01Manufacture or treatment
    • H10D84/02Manufacture or treatment characterised by using material-based technologies
    • H10D84/05Manufacture or treatment characterised by using material-based technologies using Group III-V technology

Definitions

  • the present invention relates to a semiconductor device and a manufacturing method thereof, and more particularly to a semiconductor device having a heterojunction bipolar transistor and a manufacturing method thereof.
  • GaAs-MESFET Metal Semiconductor Field Effect Transistor
  • GaAs-HEMT High Electron Mobility Transistor
  • HBT HeteroTransistor
  • a heterojunction bipolar transistor does not require a negative power supply, as compared with a GaAs-MESFET.
  • a single positive power supply operation is possible.
  • the collector current density can be increased. Therefore, HBT has an advantage that the chip size can be reduced as compared with GaAs-MESFET.
  • a base ballast resistor connected to the base of the bipolar transistor and giving negative feedback to the voltage between the base and the emitter with respect to the temperature rise of the element is used.
  • the HBT was formed in an island shape on the subcollector layer 11, the collector layer 12 and the base layer 13 formed in an island shape on the subcollector layer 11, and the base layer 13. And an emitter layer 14.
  • the HBT further includes a collector electrode 15 formed on the subcollector layer 11 and an emitter electrode 18 formed on the emitter layer 14.
  • a DC terminal to which a DC bias is applied is connected to the first base electrode 16 formed on the base layer 13.
  • An RF terminal to which a high-frequency signal is input is connected to the second base electrode 17 formed on the base layer 13.
  • a ballast resistor element 19 for suppressing thermal runaway is connected (externally connected) to the DC terminal between the first base electrode 16.
  • FIG. 6 shows a cross-sectional configuration of an HBT according to a second conventional example in which no ballast resistor element is provided outside the transistor element.
  • the distance between the first base electrode 16 connected to the DC terminal and the end of the emitter layer 14 facing the base electrode 16 is the second base electrode 17 connected to the RF terminal. And the distance between the end of the emitter layer 14 facing the base electrode 16 is larger. Therefore, the first base electrode 16 side uses the internal resistance component 13a of the base layer 13 as a ballast resistor.
  • the ballast resistor element 19 connected to the DC terminal is connected to the outside of the transistor element.
  • a plurality of amplifying elements used for a mobile communication power amplifier are required.
  • one resistance element is required for one element, and there is a problem that the chip size increases as the amplification factor increases.
  • the HBT according to the second conventional example uses the internal resistance of the base layer as a ballast resistor by increasing the distance between the first base electrode connected to the DC terminal and the end of the emitter layer. For this reason, there is a problem that the cell size increases.
  • a semiconductor device having a ballast resistor having a desired resistance value can be realized without increasing the chip size and the cell size.
  • the semiconductor device has a high resistance region in a region between the base electrode to which a DC bias is applied in the base layer and the emitter layer.
  • a semiconductor device includes a collector layer made of a first conductivity type semiconductor, a base layer made of a second conductivity type semiconductor formed on the collector layer, and a base on the base layer. And an emitter layer made of a first conductivity type semiconductor selectively formed so as to expose the layer.
  • the semiconductor device further includes a first base electrode formed on the base layer and applied with a DC bias voltage, and a second base electrode formed on the base layer and input with a high-frequency signal.
  • the base layer has a high resistance region, and the high resistance region includes a peripheral region of the first base electrode in the lower portion of the first base electrode and is formed so as not to reach the lower portion of the emitter layer. The resistance value is higher than that of other regions.
  • the high resistance region of the base layer includes the peripheral region of the first base electrode in the lower portion of the first base electrode to which the DC bias voltage is applied, and the lower side of the emitter layer. It is formed so as not to reach the portion, and has a higher resistance value than other regions. Therefore, a ballast resistor effective for thermal runaway can be formed without providing a ballast resistor element outside the cell or increasing the distance between the first base electrode and the emitter layer.
  • a desired ballast resistance value can be obtained by controlling the dose amount and acceleration voltage of ion implantation regardless of the sheet resistance of the base layer. Therefore, the desired ballast resistance value can be controlled independently of the carrier concentration. Thereby, a high ballast resistance value can be realized without affecting the RF characteristics.
  • the emitter layer preferably includes a semiconductor layer having a band gap larger than that of the base layer at a portion in contact with the base layer.
  • HBT heterojunction bipolar transistor
  • the high resistance region may be formed by implanting ions.
  • the ions may be helium ions or boron ions.
  • the method of manufacturing a semiconductor device includes a step of forming a collector layer made of a first conductivity type semiconductor on a substrate, and a base layer made of a second conductivity type semiconductor on the collector layer. And a step of forming an emitter layer made of a first conductivity type semiconductor on the base layer. Further, the method for manufacturing a semiconductor device includes a step of forming the emitter layer in an island shape by selectively etching the emitter layer. Furthermore, the semiconductor device manufacturing method includes a step of forming the base layer and the collector layer in an island shape by selectively etching the base layer and the collector layer so as to include the island-shaped emitter layer. .
  • the method for manufacturing a semiconductor device includes a step of forming a high resistance region in the base layer by implanting ions at a distance from the emitter layer into a lateral region of the island-shaped emitter layer in the base layer. Furthermore, the method for manufacturing a semiconductor device includes a step of forming a base electrode to which a DC bias voltage is applied on a high resistance region.
  • a step of forming a high resistance region in the base layer by implanting ions into the side region of the island-shaped emitter layer in the base layer at a distance from the emitter layer It has. Therefore, a ballast resistor effective for thermal runaway can be formed without providing a ballast resistor element outside the cell or increasing the distance between the base electrode to which the DC bias voltage is applied and the emitter layer.
  • a desired ballast resistance value can be obtained by controlling the dose amount and acceleration voltage of ion implantation regardless of the sheet resistance of the base layer. Therefore, the desired ballast resistance value can be controlled independently of the carrier concentration. Thereby, a high ballast resistance value can be realized without affecting the RF characteristics.
  • the step of forming the emitter layer it is preferable to form a semiconductor layer having a band gap larger than that of the base layer in a portion in contact with the base layer in the emitter layer.
  • HBT heterojunction bipolar transistor
  • the ions in the step of forming the high resistance region, may be helium ions or boron ions.
  • the step of forming the high resistance region may be performed simultaneously with the formation of the element isolation region by ion implantation.
  • a semiconductor device having a ballast resistor having a desired resistance value can be realized without increasing the chip size and the cell size.
  • FIG. 1A is a plan view schematically showing a semiconductor device according to an embodiment of the present invention.
  • 1B is a cross-sectional view taken along line 1b-1b in FIG. 1A.
  • FIG. 2 is a graph comparing current-voltage characteristics of a high resistance base region implanted with helium ions with a conventional base layer in a semiconductor device according to an embodiment of the present invention.
  • FIG. 3 is a graph showing the dose dependency of the sheet resistance value in the high resistance base region of the semiconductor device according to the embodiment of the present invention.
  • FIG. 4A is a cross-sectional view in the order of steps showing the method for manufacturing the semiconductor device according to one embodiment of the present invention.
  • FIG. 4B is a cross-sectional view in the order of steps showing the method for manufacturing the semiconductor device according to the embodiment of the present invention.
  • FIG. 4C is a cross-sectional view in the order of steps showing the method for manufacturing the semiconductor device according to the embodiment of the present invention.
  • FIG. 4D is a cross-sectional view in the order of steps showing the method for manufacturing the semiconductor device according to the embodiment of the present invention.
  • FIG. 5 is a schematic cross-sectional view showing a heterojunction bipolar transistor to which a base ballast resistor according to a first conventional example is externally connected.
  • FIG. 6 is a cross-sectional view showing a heterojunction bipolar transistor having a base ballast resistor formed therein according to a second conventional example.
  • the heterojunction bipolar transistor (HBT) 100 includes a sub-collector layer made of n-type GaAs doped with impurities at a high concentration of about 5 ⁇ 10 18 cm ⁇ 3. 101. Also, the collector layer 102 made of n-type GaAs doped with impurities at a low concentration of about 1 ⁇ 10 16 m ⁇ 3 and p-type GaAs doped with impurities at a high concentration of about 4 ⁇ 10 19 cm ⁇ 3. And a base layer 103.
  • the emitter layer 104 has a stacked structure including a plurality of semiconductor layers containing n-type InGaP doped with an impurity concentration of about 1 ⁇ 10 17 cm ⁇ 3 .
  • the semiconductor layer in contact with the base layer 103 in the emitter layer 104 is made of a semiconductor layer having a larger band gap than that of the base layer 103, for example, InGaP.
  • the collector layer 102 and the base layer 103 are processed into a convex shape on the subcollector layer 101 to form a base island region.
  • the emitter layer 104 is processed into a convex shape on the base layer 103 to form an emitter island region.
  • collector electrodes 9 On the upper surface of the subcollector layer 101 exposed from the collector layer 102, for example, a plurality of collector electrodes 9 each formed by laminating gold germanium (AuGe) / nickel (Ni) / gold (Au) or the like are formed. A collector terminal 4 for applying a voltage to the collector layer 102 is connected to each of the collector electrodes 9.
  • a first base electrode 7 and a second base electrode 8 formed by thermal diffusion are formed on the upper surface of the base layer 103 exposed from the emitter layer 104 so as to be in ohmic contact with the base layer 103, respectively.
  • a metal laminated film such as platinum (Pt) / titanium (Ti) / platinum (Pt) / gold (Au) can be used.
  • a DC terminal 2 to which a direct current (DC) bias is applied is connected to the first base electrode 7.
  • the second base electrode 8 is connected to an RF terminal 3 to which high frequency (RF) power is supplied.
  • an emitter electrode 6 formed by laminating Pt / Ti / Pt / Au or the like is formed on the upper surface of the emitter layer 104.
  • An emitter terminal 1 is connected to the emitter electrode 6.
  • a high resistance base in which helium ions (He +) or the like are ion-implanted into the lower portion of the first base electrode 7 connected to the DC terminal 2 in the base layer 103 to increase the resistance.
  • Region 150 is formed.
  • the high resistance base region 150 is formed in a region larger than the plane area of the first base electrode 7. That is, the base layer 103 is formed so as to include the peripheral region of the first base electrode 7. However, the end of the high resistance base region 150 on the emitter layer 104 side does not reach the lower portion of the emitter layer 104.
  • the high resistance base region 150 preferably has a resistance value of about twice or more the resistance value before ion implantation in the base layer 103.
  • FIG. 2 shows current-voltage characteristics when helium ions (He +) or the like are implanted into the base layer (marked with ⁇ ) and when ions are not implanted (marked with ⁇ ). It can be seen that the graph of the base layer 103 implanted with helium ions according to the present embodiment has a smaller inclination than the graph of the conventional base layer into which helium ions are not implanted, that is, the resistance value is increased.
  • the high resistance base region 150 is ohmically connected to the first base electrode 7 and can be used as a resistance layer.
  • FIG. 3 shows a sheet when helium ions are implanted into a base layer made of p-type GaAs doped at a high concentration of about 4 ⁇ 10 19 cm ⁇ 3 at an acceleration voltage of 100 keV and a dose amount in three ways.
  • the measurement result of the resistance value (dependence on the He dose) is shown.
  • the resistance value can be changed by adjusting the dose during ion implantation. Therefore, it can be understood that an arbitrary resistance value can be realized by appropriately combining the base sheet resistance value and the ion implantation conditions (acceleration voltage and dose amount).
  • the high resistance base region 150 is formed in the region between the first base electrode 7 to which the DC bias voltage is applied in the base layer 103 and the emitter layer 104.
  • a ballast resistor effective for thermal runaway can be formed without providing a ballast resistor element outside the cell or increasing the distance between the first base electrode and the emitter layer as in the prior art. it can.
  • the high resistance base region 150 is formed by ion implantation, a desired ballast resistance value can be obtained by controlling (adjusting) the dose amount and acceleration voltage of ion implantation regardless of the sheet resistance value of the base layer 103. Obtainable. Therefore, the desired ballast resistance value can be controlled independently of the carrier concentration. Thereby, a high ballast resistance value can be realized without affecting the RF characteristics. That is, an HBT including a ballast resistor having a desired resistance value can be realized without increasing the chip size and the cell size.
  • a substrate (not shown) made of n-type GaAs is formed by a crystal growth method such as a molecular beam epitaxy method or a metal organic chemical vapor deposition method. ), An n-type GaAs layer 101A, an n-type GaAs layer 102A, a p-type GaAs layer 103A, and a laminated structure 104A are sequentially formed.
  • the n-type GaAs layer 101A is doped with an impurity at a high concentration of about 5 ⁇ 10 18 cm ⁇ 3
  • the n-type GaAs layer 102A is doped with an impurity at a low concentration of about 1 ⁇ 10 16 m ⁇ 3. Yes.
  • the p-type GaAs layer 103A is doped with an impurity at a high concentration of about 4 ⁇ 10 19 cm ⁇ 3
  • the stacked structure 104A is an n-type InGaP doped with an impurity of about 1 ⁇ 10 17 cm ⁇ 3. It consists of a plurality of semiconductor layers including layers.
  • a first resist mask 201 is formed by a lithography method so as to cover the emitter layer formation region, that is, the emitter island region in the stacked structure 104A including the n-type InGaP layer. Subsequently, in a state where the emitter island region is covered with the first resist mask 201, wet etching or dry etching is performed on the stacked structure body 104A, and as shown in FIG. An emitter layer 104 is formed.
  • the first resist mask 201 is removed.
  • the second resist mask 202 is formed by lithography again so as to cover the base layer and collector layer forming regions in the p-type GaAs layer 103A and the n-type GaAs layer 102A, that is, the base island region. Form.
  • wet etching or dry etching is performed on the p-type GaAs layer 103A and the n-type GaAs layer 102A in a state where the base island region is covered with the second resist mask 202.
  • an island-shaped base layer 103 and a collector layer 102 are formed from the p-type GaAs layer 103A and the n-type GaAs layer 102A.
  • a third resist mask 203 is formed on the n-type GaAs layer 101A so as to cover the emitter layer 104, the base layer 103, and the collector layer.
  • an opening pattern 203a is formed in the third resist mask 203 by lithography.
  • the opening pattern 203 a a region on one side of the emitter layer 104 in the base layer 103 and a region spaced from the emitter layer 104 is exposed. Ions are implanted into the base layer 103 through the third resist mask 203 having the opening pattern 203a.
  • helium ions He + having an acceleration voltage of about 100 keV and a dose of about 7.2 ⁇ 10 13 cm ⁇ 2 are implanted into the base layer 103.
  • helium ions are implanted into a region of the base layer 103 including the first base electrode formation region, so that the high resistance base region 150 is formed.
  • helium ions are selectively implanted into a region away from the base island region in the n-type GaAs layer 101A to form an element isolation region. Form. Thereby, the subcollector layer 101 is formed from the n-type GaAs layer 101A.
  • a resist mask having an opening pattern exposing the emitter electrode formation region is formed on the emitter layer 104.
  • a predetermined metal laminated film is formed by a sputtering method or a vacuum deposition method so that the opening pattern is filled on the resist mask.
  • the emitter electrode 6 is formed by a so-called lift-off method that removes the resist mask.
  • the first base electrode 7 made of a predetermined metal laminated film is formed on the high resistance base region 150 on the base layer 103 by a lift-off method.
  • a second base electrode 8 having the same composition as that of the first base electrode 7 is formed on the base layer 103 in a region opposite to the first base electrode 7 with respect to the emitter layer 104. .
  • a collector electrode 9 made of a predetermined metal laminated film is formed on the subcollector layer 101 by a lift-off method.
  • the order of formation of the emitter electrode 6, the first base electrode 7, the second base electrode 8, and the collector electrode 9 is not particularly limited.
  • the HBT 100 shown in FIGS. 1A and 1B can be obtained.
  • the helium ion implantation conditions are an acceleration voltage of about 100 keV and a dose amount of about 7.2 ⁇ 10 13 cm ⁇ 2 .
  • a desired resistance value can be given to the high resistance base region 150 by appropriately changing these implantation conditions.
  • helium ion ion implantation used for forming the high resistance base region 150 and helium ion ion implantation used for forming the element isolation region can be performed simultaneously. . Thereby, the process of implanting helium ions can be reduced.
  • helium ions are used to form the high resistance base region 150.
  • the ion species used for ion implantation is not limited to helium ions.
  • boron ions (B +) have the same effect. It goes without saying that it can be obtained.
  • hydrogen ions (H +) can be used in addition to helium ions and boron ions.
  • heterojunction bipolar transistor HBT
  • BT homojunction bipolar transistor
  • the semiconductor device and the manufacturing method thereof according to the present invention can realize a semiconductor device having a ballast resistor having a desired resistance value without increasing the chip size and the cell size.
  • a semiconductor device having a heterojunction bipolar transistor, such as a power amplifier is useful for a semiconductor device having a heterojunction bipolar transistor, such as a power amplifier.

Landscapes

  • Bipolar Transistors (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Bipolar Integrated Circuits (AREA)

Abstract

 半導体装置は、第1導電型のコレクタ層(102)と、コレクタ層の上に形成された第2導電型のベース層(103)と、ベース層の上に、ベース層を露出するように選択的に形成された第1導電型のエミッタ層(104)と、ベース層の上に形成され、直流バイアス電圧が印加される第1のベース電極(7)と、ベース層の上に形成され、高周波信号が入力される第2のベース電極(8)とを備えている。ベース層(103)は、第1のベース電極(7)の下側部分に、第1のベース電極(7)の周辺領域を含むと共にエミッタ層(104)の下側部分に達しないように形成され、他の領域と比べて抵抗値が高い高抵抗ベース領域(150)を有している。

Description

半導体装置及びその製造方法
 本発明は、半導体装置及びその製造方法に関し、特にヘテロ接合バイポーラトランジスタを有する半導体装置及びその製造方法に関する。
 現在、移動体通信用電力増幅器には、増幅素子として、GaAs―MESFET(Metal Semiconductor Field Effect Transistor)、GaAs―HEMT(High Electron Mobility Transistor)及びヘテロ接合バイポーラトランジスタ(HBT:Hetero―junction Bipolar Transistor)等が用いられている。特に、ヘテロ接合バイポーラトランジスタ(以下、HBTと略称する。)は、GaAs―MESFETと比較して、第1に、負電源を必要としないため、単一の正電源動作が可能である、第2に、コレクタ電流密度を大きくできる。そのため、HBTはGaAs-MESFETよりもチップサイズの小型化が可能である、という利点を有している。
 一般に、バイポーラトランジスタは、素子の温度が上昇すると、ベース-エミッタ間のオン電圧が低下するために、コレクタ電流が増加することが知られている。このため、複数のトランジスタを有する高周波電力増幅器において、コレクタ電流の集中が生じると、消費電力の増加により局所的な素子の温度上昇が発生する。これにより、さらに局所的な素子でコレクタ電流が増加するという悪循環に陥る。従って、各トランジスタ間の電流が不均一になると、電力増幅器の性能及び寿命に悪影響を与えるだけでなく、電流の集中がさらに進むことから、トランジスタが熱暴走の状態に陥り、破壊に至ることがある。
 このような問題に対して、バイポーラトランジスタのベースと接続され、素子の温度上昇に対してベース-エミッタ間の電圧に負帰還を与えるベースバラスト抵抗が用いられている。このベース-エミッタ間の電圧の負帰還により、温度上昇によるコレクタ電流の増加を相殺して、熱暴走を防ぐことが可能となる。
 以下に、第1の従来例に係る、ベースバラスト抵抗を用いたHBTの断面構成を説明する(例えば、特許文献1を参照。)。
 図5に示すように、HBTは、サブコレクタ層11と、サブコレクタ層11の上に島状に形成されたコレクタ層12及びベース層13と、ベース層13の上に島状に形成されたエミッタ層14とを有している。さらにHBTは、サブコレクタ層11の上に形成されたコレクタ電極15と、エミッタ層14の上に形成されたエミッタ電極18とを有している。
 ベース層13の上に形成された第1のベース電極16には、直流バイアスが印加されるDC端子が接続されている。ベース層13の上に形成された第2のベース電極17には、高周波信号が入力されるRF端子が接続されている。また、DC端子には熱暴走を抑止するためのバラスト抵抗素子19が第1のベース電極16との間に接続(外部接続)されている。
 図6は、バラスト抵抗素子をトランジスタ素子の外部に設けない、第2の従来例に係るHBTの断面構成を示す。
 第2の従来例においては、DC端子と接続された第1のベース電極16とエミッタ層14のベース電極16に対向する端部との距離が、RF端子と接続された第2のベース電極17とエミッタ層14のベース電極16に対向する端部との距離よりも大きい。従って、第1のベース電極16側はベース層13の内部抵抗成分13aをバラスト抵抗として利用している。
特許第4504326号
 しかしながら、第1の従来例に係るHBTは、DC端子と接続されたバラスト抵抗素子19がトランジスタ素子の外部に接続されている。一般に、移動体通信用電力増幅器に用いられる増幅素子は複数個が必要である。第1の従来例の場合は、1つの素子に対して1個の抵抗素子が必要となり、増幅率を大きくすればするほど、チップサイズが大きくなってしまうという問題がある。
 第2の従来例に係るHBTは、DC端子と接続された第1のベース電極とエミッタ層の端部までの距離を大きくすることにより、ベース層の内部抵抗をバラスト抵抗として用いている。このため、セルサイズが拡大してしまうという問題がある。
 また、より大きい抵抗値を得ようとすると、この距離を延長してセルサイズをより大きくするか、ベース層のキャリア濃度を下げてベース層のシート抵抗値を上げる必要がある。しかしながら、ベース層のキャリア濃度を下げてしまうと、RF端子と接続されたベース層の抵抗値も増大して、RF特性が劣化してしまう。
 かかる問題に鑑み、チップサイズ及びセルサイズを大きくすることなく、所望の抵抗値を持つバラスト抵抗を備えた半導体装置を実現できるようにする。
 半導体装置は、ベース層における直流バイアスが印加されるベース電極とエミッタ層との間の領域に高抵抗領域を有する。
 具体的に、本発明に係る半導体装置は、第1導電型の半導体からなるコレクタ層と、コレクタ層の上に形成された第2導電型の半導体からなるベース層と、ベース層の上にベース層を露出するように選択的に形成された第1導電型の半導体からなるエミッタ層とを有する。さらに、半導体装置は、ベース層の上に形成され、直流バイアス電圧が印加される第1のベース電極と、ベース層の上に形成され、高周波信号が入力される第2のベース電極とを有する。さらに、ベース層は高抵抗領域を有し、高抵抗領域は、第1のベース電極の下側部分に第1のベース電極の周辺領域を含むと共にエミッタ層の下側部分に達しないように形成され、他の領域と比べて抵抗値が高い。
 本発明の半導体装置によると、ベース層が有する高抵抗領域は、直流バイアス電圧が印加される第1のベース電極の下側部分に第1のベース電極の周辺領域を含むと共にエミッタ層の下側部分に達しないように形成され、他の領域と比べて抵抗値が高い。このため、バラスト抵抗素子をセルの外部に設けたり、第1のベース電極とエミッタ層との距離を拡大したりすることなく、熱暴走に有効なバラスト抵抗を形成することができる。その上、高抵抗領域をイオン注入により形成する場合には、ベース層のシート抵抗によらず、イオン注入のドーズ量及び加速電圧を制御することにより、所望のバラスト抵抗値を得ることができる。従って、所望のバラスト抵抗値をキャリア濃度とは独立して制御可能である。これにより、RF特性に影響を与えることなく、高いバラスト抵抗値を実現できる。
 本発明に係る半導体装置は、エミッタ層が、ベース層と接する部分にベース層と比べてバンドギャップが大きい半導体層を含むことが好ましい。
 このようにすると、ヘテロ接合バイポーラトランジスタ(HBT)を形成することができる。
 本発明に係る半導体装置は、高抵抗領域はイオンが注入されることにより形成されていてもよい。
 この場合に、イオンは、ヘリウムイオン又はボロンイオンであってもよい。
 本発明に係る半導体装置の製造方法は、基板の上に、第1導電型の半導体からなるコレクタ層を形成する工程と、コレクタ層の上に第2導電型の半導体からなるベース層を形成する工程と、ベース層の上に第1導電型の半導体からなるエミッタ層を形成する工程とを有する。さらに半導体装置の製造方法は、エミッタ層に対して選択的にエッチングを行うことにより、エミッタ層を島状に形成する工程を有する。さらに、半導体装置の製造方法は、ベース層及びコレクタ層に対して、島状のエミッタ層を含むように選択的にエッチングを行うことにより、ベース層及びコレクタ層を島状に形成する工程を有する。さらに半導体装置の製造方法は、ベース層における島状のエミッタ層の側方領域に対してエミッタ層から間隔をおいてイオンを注入することにより、ベース層に高抵抗領域を形成する工程を有する。さらに半導体装置の製造方法は、高抵抗領域の上に、直流バイアス電圧が印加されるベース電極を形成する工程を有する。
 本発明の半導体装置の製造方法によると、ベース層における島状のエミッタ層の側方領域に対してエミッタ層から間隔をおいてイオンを注入することにより、ベース層に高抵抗領域を形成する工程を備えている。このため、バラスト抵抗素子をセルの外部に設けたり、直流バイアス電圧が印加されるベース電極とエミッタ層との距離を拡大したりすることなく、熱暴走に有効なバラスト抵抗を形成することができる。その上、高抵抗領域をイオン注入により形成するため、ベース層のシート抵抗によらず、イオン注入のドーズ量及び加速電圧を制御することにより、所望のバラスト抵抗値を得ることができる。従って、所望のバラスト抵抗値をキャリア濃度とは独立して制御可能である。これにより、RF特性に影響を与えることなく、高いバラスト抵抗値を実現できる。
 本発明の半導体装置の製造方法は、エミッタ層を形成する工程において、エミッタ層におけるベース層と接する部分に、ベース層と比べてバンドギャップが大きい半導体層を形成することが好ましい。
 このようにすると、ヘテロ接合バイポーラトランジスタ(HBT)を形成することができる。
 本発明の半導体装置の製造方法は、高抵抗領域を形成する工程において、イオンはヘリウムイオン又はボロンイオンであってもよい。
 本発明の半導体装置の製造方法において、高抵抗領域を形成する工程は、イオン注入による素子分離領域の形成と同時に行ってもよい。
 本発明に係る半導体装置及びその製造方法によると、チップサイズ及びセルサイズを大きくすることなく、所望の抵抗値を持つバラスト抵抗を備えた半導体装置を実現することができる。
図1Aは、本発明の一実施形態に係る半導体装置を模式的に示した平面図である。 図1Bは、図1Aの1b-1b線における断面図である。 図2は、本発明の一実施形態に係る半導体装置における、ヘリウムイオンを注入された高抵抗ベース領域の電流-電圧特性を従来のベース層と比較したグラフである。 図3は、本発明の一実施形態に係る半導体装置の高抵抗ベース領域におけるシート抵抗値のドーズ量依存性を示すグラフである。 図4Aは、本発明の一実施形態に係る半導体装置の製造方法を示す工程順の断面図である。 図4Bは、本発明の一実施形態に係る半導体装置の製造方法を示す工程順の断面図である。 図4Cは、本発明の一実施形態に係る半導体装置の製造方法を示す工程順の断面図である。 図4Dは、本発明の一実施形態に係る半導体装置の製造方法を示す工程順の断面図である。 図5は、第1の従来例に係るベースバラスト抵抗が外部接続されたヘテロ接合バイポーラトランジスタを示す模式的な断面図である。 図6は、第2の従来例に係るベースバラスト抵抗が内部形成されたヘテロ接合バイポーラトランジスタを示す断面図である。
 (一実施形態)
 本発明の一実施形態について図1Aおよび図1Bを参照しながら説明する。
 図1A及び図1Bに示すように、本実施形態に係るヘテロ接合バイポーラトランジスタ(HBT)100は、不純物が5×1018cm-3程度の高濃度にドープされたn型GaAsからなるサブコレクタ層101を有する。また、不純物が1×1016-3程度の低濃度にドープされたn型GaAsからなるコレクタ層102と、不純物が4×1019cm-3程度の高濃度にドープされたp型GaAsからなるベース層103とを有する。また、不純物濃度が1×1017cm-3程度にドープされたn型InGaPを含む複数の半導体層からなる積層構造を有するエミッタ層104を有する。
 ここで、エミッタ層104におけるベース層103と接する半導体層は、ベース層103と比べてバンドギャップが大きい半導体層、例えばInGaPにより構成されている。
 コレクタ層102及びベース層103は、サブコレクタ層101上に凸型形状に加工されており、ベース島領域を形成している。また、エミッタ層104は、ベース層103上に凸型形状に加工されており、エミッタ島領域を形成している。
 サブコレクタ層101のコレクタ層102から露出した上面には、例えば、それぞれ金ゲルマニウム(AuGe)/ニッケル(Ni)/金(Au)等が積層されてなる複数のコレクタ電極9が形成されている。複数のコレクタ電極9には、コレクタ層102に電圧を印加するコレクタ端子4がそれぞれ接続されている。
 ベース層103のエミッタ層104から露出した上面には、ベース層103とオーミック接触するように熱拡散により形成された第1のベース電極7及び第2のベース電極8がそれぞれ形成されている。第1のベース電極7及び第2のベース電極8には、例えば、白金(Pt)/チタン(Ti)/白金(Pt)/金(Au)等の金属積層膜を用いることができる。
 第1のベース電極7には、直流(DC)バイアスが印加されるDC端子2が接続されている。一方、第2のベース電極8には、高周波(RF)電力が供給されるRF端子3が接続されている。
 エミッタ層104の上面には、Pt/Ti/Pt/Au等が積層されてなるエミッタ電極6が形成されている。エミッタ電極6には、エミッタ端子1が接続されている。
 本実施形態の特徴として、ベース層103におけるDC端子2と接続された第1のベース電極7の下側部分には、ヘリウムイオン(He+)等をイオン注入して高抵抗化された高抵抗ベース領域150が形成されている。高抵抗ベース領域150は、第1のベース電極7の平面積よりも大きい領域で形成されている。すなわち、ベース層103における第1のベース電極7の周辺領域を含むように形成されている。但し、高抵抗ベース領域150のエミッタ層104側の端部は、エミッタ層104の下側部分にまでは達していない。
 また、高抵抗ベース領域150は、ベース層103におけるイオン注入前の抵抗値の2倍以上程度の抵抗値を有することが好ましい。
 以下、ベース層にヘリウムイオン(He+)等をイオン注入した場合の電流-電圧特性と、シート抵抗値のドーズ量依存性との実験結果を示す。
 図2は、ベース層にヘリウムイオン(He+)等をイオン注入を行った場合(▲印)と、イオン注入を行わない場合(■印)との電流-電圧特性を示している。本実施形態に係るヘリウムイオンを注入されたベース層103のグラフは、ヘリウムイオンを注入されない従来のベース層のグラフと比べて傾きが小さく、すなわち抵抗値が上昇していることが分かる。
 また、低電圧領域においても高電圧領域においても、良好な線形性を示している。このことから、高抵抗ベース領域150は第1のベース電極7とオーミック接続されており、抵抗層として使用可能であるといえる。
 図3は、4×1019cm-3程度の高濃度にドープされたp型GaAsからなるベース層に、ヘリウムイオンを100keVの加速電圧で、ドーズ量を3通りに変えて注入したときのシート抵抗値の測定結果(Heドーズ量による依存性)を示している。図3に示すように、イオン注入の際のドーズ量を調節すれば抵抗値を変えることができる。従って、ベースシート抵抗値とイオン注入条件(加速電圧及びドーズ量)とを適当に組み合わせれば、任意の抵抗値を実現できることが分かる。
 このように、本実施形態によると、ベース層103におけるDCバイアス電圧が印加される第1のベース電極7とエミッタ層104との間の領域に高抵抗ベース領域150を形成する。これにより、従来のように、バラスト抵抗素子をセルの外部に設けたり、第1のベース電極とエミッタ層との距離を拡大したりすることなく、熱暴走に有効なバラスト抵抗を形成することができる。その上、高抵抗ベース領域150をイオン注入により形成するため、ベース層103のシート抵抗値によらず、イオン注入のドーズ量及び加速電圧を制御(調節)することにより、所望のバラスト抵抗値を得ることができる。従って、所望のバラスト抵抗値をキャリア濃度とは独立して制御が可能となる。これにより、RF特性に影響を与えることなく、高いバラスト抵抗値を実現できる。すなわち、チップサイズ及びセルサイズを大きくすることなく、所望の抵抗値を持つバラスト抵抗を備えたHBTを実現できる。
 以下、前記のような構成を有する半導体装置の製造方法について図4A~図4Dを参照しながら説明する。
 まず、図4Aに示すように、分子線エピタキシ(Molecular Beam Epitaxy)法又は有機金属化学気相成長(Metal Organic Chemical Vapor Deposition)法等の結晶成長法により、n型GaAsからなる基板(図示せず)の主面上に、n型GaAs層101Aと、n型GaAs層102Aと、p型GaAs層103Aと、積層構造体104Aとを順次形成する。n型GaAs層101Aには、不純物が5×1018cm-3程度の高濃度にドープされ、n型GaAs層102Aには、不純物が1×1016-3程度の低濃度にドープされている。また、p型GaAs層103Aには、不純物が4×1019cm-3程度の高濃度にドープされ、積層構造体104Aは、不純物が1×1017cm-3程度にドープされたn型InGaP層を含む複数の半導体層からなる。
 次に、リソグラフィ法により、n型InGaP層を含む積層構造体104Aにおけるエミッタ層形成領域、すなわちエミッタ島領域を覆うように第1のレジストマスク201を形成する。続いて、第1のレジストマスク201によりエミッタ島領域を覆った状態で、積層構造体104Aに対してウェットエッチング又はドライエッチングを行って、図4Bに示すように、積層構造体104Aから島状のエミッタ層104を形成する。
 次に、第1のレジストマスク201を除去する。その後、再度リソグラフィ法により、エミッタ層104を含み、且つ、p型GaAs層103A及びn型GaAs層102Aにおけるベース層及びコレクタ層形成領域、すなわちベース島領域を覆うように第2のレジストマスク202を形成する。続いて、第2のレジストマスク202によりベース島領域を覆った状態で、p型GaAs層103A及びn型GaAs層102Aに対してウェットエッチング又はドライエッチングを行う。そして、図4Cに示すように、p型GaAs層103A及びn型GaAs層102Aから島状のベース層103及びコレクタ層102を形成する。
 次に、第2のレジストマスク202を除去した後、n型GaAs層101Aの上に、エミッタ層104、ベース層103及びコレクタ層102を覆うように、第3のレジストマスク203を形成する。続いて、図4Dに示すように、リソグラフィ法により、第3のレジストマスク203に、開口パターン203aを形成する。開口パターン203aによって、ベース層103におけるエミッタ層104の一方の側方領域で、且つエミッタ層104から間隔をおいた領域が露出される。この開口パターン203aを有する第3のレジストマスク203を介した状態で、ベース層103にイオン注入する。具体的には、ベース層103に、加速電圧が100keV程度で、ドーズ量が7.2×1013cm-2程度のヘリウムイオン(He+)を注入する。これにより、ベース層103の第1のベース電極形成領域を含む領域にヘリウムイオンが注入されて、高抵抗ベース領域150が形成される。
 次に、図示はしていないが、第3のレジストマスク203を除去した後、n型GaAs層101Aにおけるベース島領域から離れた領域に、ヘリウムイオンを選択的に注入して、素子分離領域を形成する。これにより、n型GaAs層101Aからサブコレクタ層101が形成される。
 続いて、図示はしていないが、エミッタ層104の上に、エミッタ電極形成領域を露出する開口パターンを有するレジストマスクを形成する。その後、スパッタ法又は真空蒸着法等により、レジストマスクの上に開口パターンが埋まるように所定の金属積層膜を形成する。その後、レジストマスクを除去する、いわゆるリフトオフ法により、エミッタ電極6を形成する。
 続いて、リフトオフ法により、ベース層103の上の高抵抗ベース領域150の上に、所定の金属積層膜からなる第1のベース電極7を形成する。同時に、ベース層103の上であって、エミッタ層104に対して第1のベース電極7と反対側の領域に、第1のベース電極7と組成が同一の第2のベース電極8を形成する。
 続いて、リフトオフ法により、サブコレクタ層101の上に、所定の金属積層膜からなるコレクタ電極9を形成する。
 なお、エミッタ電極6、第1のベース電極7、第2のベース電極8及びコレクタ電極9における形成の順序は特に問われない。
 続いて、オーミックコンタクト及び注入イオンの活性化のための熱処理を行うことにより、図1A及び図1Bに示すHBT100を得ることができる。
 なお、本実施形態においては、ヘリウムイオンの注入条件を、加速電圧が100keV程度で、ドーズ量が7.2×1013cm-2程度としている。しかし、これらの注入条件を適宜変更することにより、高抵抗ベース領域150に所望の抵抗値を与えることができる。
 また、高抵抗ベース領域150に設定する抵抗値によっては、高抵抗ベース領域150の形成に用いるヘリウムイオンのイオン注入と、素子分離領域の形成に用いるヘリウムイオンのイオン注入とを同時に行うことができる。これにより、ヘリウムイオンの注入工程を削減することができる。
 また、本実施形態においては、高抵抗ベース領域150の形成にヘリウムイオンを用いたが、イオン注入に供されるイオン種はヘリウムイオンに限られず、例えばボロンイオン(B+)等でも同様の効果を得られることはいうまでもない。さらには、ヘリウムイオン及びボロンイオン以外にも、水素イオン(H+)を用いることができる。
 また、本実施形態においては、ヘテロ接合バイポーラトランジスタ(HBT)について説明したが、本発明は、HBTに限られず、例えば、ホモ接合のバイポーラトランジスタ(BT)でもよい。
 また、本発明の要旨を逸脱しない範囲で当業者が思いつく各種変形を施したものも本発明の範囲内に含まれる。
 本発明に係る半導体装置及びその製造方法は、チップサイズ及びセルサイズを大きくすることなく所望の抵抗値を持つバラスト抵抗を備えた半導体装置を実現できる。特にヘテロ接合バイポーラトランジスタを有する半導体装置、例えば電力増幅器等に有用である。
1  エミッタ端子
2  DC端子
3  RF端子
4  コレクタ端子
6,18  エミッタ電極
7,16  第1のベース電極
8,17  第2のベース電極
9,15  コレクタ電極
13a  内部抵抗成分
100  ヘテロ接合バイポーラトランジスタ(HBT)
11,101  サブコレクタ層
101A  n型GaAs層
12,102  コレクタ層
102A  n型GaAs層
13,103  ベース層
103A  p型GaAs層
14,104  エミッタ層
104A  積層構造体
150  高抵抗ベース領域(高抵抗領域)
201  第1のレジストマスク
202  第2のレジストマスク
203  第3のレジストマスク
203a  開口パターン

Claims (8)

  1.  第1導電型の半導体からなるコレクタ層と、
     前記コレクタ層の上に形成された第2導電型の半導体からなるベース層と、
     前記ベース層の上に前記ベース層を露出するように選択的に形成された第1導電型の半導体からなるエミッタ層と、
     前記ベース層の上に形成され、直流バイアス電圧が印加される第1のベース電極と、
     前記ベース層の上に形成され、高周波信号が入力される第2のベース電極とを備え、
     前記ベース層は、前記第1のベース電極の下側部分に前記第1のベース電極の周辺領域を含むと共に前記エミッタ層の下側部分に達しないように形成され、他の領域と比べて抵抗値が高い高抵抗領域を有している半導体装置。
  2.  前記エミッタ層は、前記ベース層と接する部分に、前記ベース層と比べてバンドギャップが大きい半導体層を含む請求項1に記載の半導体装置。
  3.  前記高抵抗領域は、イオンが注入されることにより形成されている請求項1又は2に記載の半導体装置。
  4.  前記イオンは、ヘリウムイオン又はボロンイオンである請求項3に記載の半導体装置。
  5.  基板の上に、第1導電型の半導体からなるコレクタ層を形成する工程と、
     前記コレクタ層の上に第2導電型の半導体からなるベース層を形成する工程と、
     前記ベース層の上に第1導電型の半導体からなるエミッタ層を形成する工程と、
     前記エミッタ層に対して選択的にエッチングを行うことにより、前記エミッタ層を島状に形成する工程と、
     前記ベース層及びコレクタ層に対して、前記島状のエミッタ層を含むように選択的にエッチングを行うことにより、前記ベース層及びコレクタ層を島状に形成する工程と、
     前記ベース層における前記島状のエミッタ層の側方領域に対して、前記エミッタ層から間隔をおいてイオンを注入することにより、前記ベース層に高抵抗領域を形成する工程と、
     前記高抵抗領域の上に、直流バイアス電圧が印加されるベース電極を形成する工程とを備えている半導体装置の製造方法。
  6.  前記エミッタ層を形成する工程において、前記エミッタ層における前記ベース層と接する部分に、前記ベース層と比べてバンドギャップが大きい半導体層を形成する請求項5に記載の半導体装置の製造方法。
  7.  前記高抵抗領域を形成する工程において、前記イオンは、ヘリウムイオン又はボロンイオンである請求項5又は6に記載の半導体装置の製造方法。
  8.  前記高抵抗領域を形成する工程は、前記イオンを用いたイオン注入による素子分離領域の形成と同時に行う請求項5~7のいずれかに記載の半導体装置の製造方法。
PCT/JP2012/001088 2011-03-08 2012-02-20 半導体装置及びその製造方法 WO2012120796A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011050071A JP2014099426A (ja) 2011-03-08 2011-03-08 半導体装置及びその製造方法
JP2011-050071 2011-03-08

Publications (1)

Publication Number Publication Date
WO2012120796A1 true WO2012120796A1 (ja) 2012-09-13

Family

ID=46797773

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/001088 WO2012120796A1 (ja) 2011-03-08 2012-02-20 半導体装置及びその製造方法

Country Status (2)

Country Link
JP (1) JP2014099426A (ja)
WO (1) WO2012120796A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI754492B (zh) * 2020-02-19 2022-02-01 日商村田製作所股份有限公司 高頻功率放大元件

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004111941A (ja) * 2002-08-29 2004-04-08 Matsushita Electric Ind Co Ltd バイポーラトランジスタ及びその製造方法
JP2006313881A (ja) * 2005-04-05 2006-11-16 Matsushita Electric Ind Co Ltd バイポーラトランジスタおよび高周波増幅回路
JP2006332295A (ja) * 2005-05-26 2006-12-07 Matsushita Electric Ind Co Ltd ヘテロ接合バイポーラトランジスタ及びヘテロ接合バイポーラトランジスタの製造方法
JP2010199558A (ja) * 2009-01-27 2010-09-09 Panasonic Corp 半導体装置およびその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004111941A (ja) * 2002-08-29 2004-04-08 Matsushita Electric Ind Co Ltd バイポーラトランジスタ及びその製造方法
JP2006313881A (ja) * 2005-04-05 2006-11-16 Matsushita Electric Ind Co Ltd バイポーラトランジスタおよび高周波増幅回路
JP2006332295A (ja) * 2005-05-26 2006-12-07 Matsushita Electric Ind Co Ltd ヘテロ接合バイポーラトランジスタ及びヘテロ接合バイポーラトランジスタの製造方法
JP2010199558A (ja) * 2009-01-27 2010-09-09 Panasonic Corp 半導体装置およびその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI754492B (zh) * 2020-02-19 2022-02-01 日商村田製作所股份有限公司 高頻功率放大元件
US11990873B2 (en) 2020-02-19 2024-05-21 Murata Manufacturing Co., Ltd. Radio-frequency power-amplifying element

Also Published As

Publication number Publication date
JP2014099426A (ja) 2014-05-29

Similar Documents

Publication Publication Date Title
CN101320733B (zh) 半导体器件及其制造方法
US7728357B2 (en) Heterojunction bipolar transistor and manufacturing method thereof
US20070096151A1 (en) Bipolar transistor and method for fabricating the same
JP2006332295A (ja) ヘテロ接合バイポーラトランジスタ及びヘテロ接合バイポーラトランジスタの製造方法
TWI604530B (zh) Heterojunction Bipolar Transistors and Power Amplifier Modules
JP2008117885A (ja) 電界効果トランジスタおよびその製造方法
JP2005259755A (ja) ヘテロ接合バイポーラトランジスタおよびその製造方法
US6881639B2 (en) Method of manufacturing semiconductor device
US20100187571A1 (en) Semiconductor device and manufacturing method thereof
US7001820B1 (en) Heterojunction bipolar transistor and method for fabricating the same
KR100296705B1 (ko) 이종 접합 쌍극자 소자를 이용한 집적 회로 소자의 제조 방법
WO2012120796A1 (ja) 半導体装置及びその製造方法
CN104392923B (zh) 异质结双极型晶体管的制作方法
JP4494739B2 (ja) バイポーラトランジスタ及びその製造方法
JP2010183054A (ja) ヘテロ接合バイポーラトランジスタ及びその製造方法
TWI778598B (zh) 功率電晶體的製作方法及功率電晶體
JP3859149B2 (ja) ヘテロ接合バイポーラトランジスタの製造方法
JP2006278544A (ja) 能動素子およびその製造方法
JP2006278541A (ja) 化合物半導体装置およびその製造方法
CN119300372A (zh) 一种垂直结构的氧化镓基异质结双极晶体管及其制造方法
JP2683552B2 (ja) バイポーラトランジスタの製法
JP4364628B2 (ja) 半導体装置の製造方法
JP2005294804A (ja) ヘテロ接合バイポーラトランジスタ及びその製造方法
JP2006128528A (ja) ヘテロ接合型バイポーラ半導体装置及びその製造方法
JPS63318778A (ja) ヘテロ接合バイポ−ラトランジスタおよびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12755374

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12755374

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP