[go: up one dir, main page]

WO2011157880A1 - Composición antioxidante - Google Patents

Composición antioxidante Download PDF

Info

Publication number
WO2011157880A1
WO2011157880A1 PCT/ES2011/070427 ES2011070427W WO2011157880A1 WO 2011157880 A1 WO2011157880 A1 WO 2011157880A1 ES 2011070427 W ES2011070427 W ES 2011070427W WO 2011157880 A1 WO2011157880 A1 WO 2011157880A1
Authority
WO
WIPO (PCT)
Prior art keywords
galactomannan
hydrogel
cells
skin
acetyl
Prior art date
Application number
PCT/ES2011/070427
Other languages
English (en)
French (fr)
Inventor
María Begoña CASTRO FEO
Iker Azcoitia Ramsden
Teodoro Palomares Casado
Jone Herrero de Miguel
Ana Isabel Alonso Varona
Maite Del Olmo Basterrechea
Original Assignee
Histocell, S.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to DK11758490.4T priority Critical patent/DK2583682T3/da
Priority to MX2012014673A priority patent/MX2012014673A/es
Priority to JP2013514747A priority patent/JP5827324B2/ja
Priority to KR1020187006902A priority patent/KR101872429B1/ko
Priority to AU2011266978A priority patent/AU2011266978B2/en
Priority to BR112012032146-3A priority patent/BR112012032146B1/pt
Priority to CA2801048A priority patent/CA2801048C/en
Priority to KR1020137001113A priority patent/KR20130121812A/ko
Application filed by Histocell, S.L. filed Critical Histocell, S.L.
Priority to EP11758490.4A priority patent/EP2583682B1/en
Priority to US13/704,207 priority patent/US9492475B2/en
Priority to ES11758490.4T priority patent/ES2473577T3/es
Priority to CN201180029933.8A priority patent/CN103096900B/zh
Publication of WO2011157880A1 publication Critical patent/WO2011157880A1/es
Priority to US15/283,759 priority patent/US10231992B2/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/715Polysaccharides, i.e. having more than five saccharide radicals attached to each other by glycosidic linkages; Derivatives thereof, e.g. ethers, esters
    • A61K31/736Glucomannans or galactomannans, e.g. locust bean gum, guar gum
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/12Ketones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/195Carboxylic acids, e.g. valproic acid having an amino group
    • A61K31/197Carboxylic acids, e.g. valproic acid having an amino group the amino and the carboxyl groups being attached to the same acyclic carbon chain, e.g. gamma-aminobutyric acid [GABA], beta-alanine, epsilon-aminocaproic acid or pantothenic acid
    • A61K31/198Alpha-amino acids, e.g. alanine or edetic acid [EDTA]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/30Nerves; Brain; Eyes; Corneal cells; Cerebrospinal fluid; Neuronal stem cells; Neuronal precursor cells; Glial cells; Oligodendrocytes; Schwann cells; Astroglia; Astrocytes; Choroid plexus; Spinal cord tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/32Bones; Osteocytes; Osteoblasts; Tendons; Tenocytes; Teeth; Odontoblasts; Cartilage; Chondrocytes; Synovial membrane
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/33Fibroblasts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/36Skin; Hair; Nails; Sebaceous glands; Cerumen; Epidermis; Epithelial cells; Keratinocytes; Langerhans cells; Ectodermal cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • A61K36/48Fabaceae or Leguminosae (Pea or Legume family); Caesalpiniaceae; Mimosaceae; Papilionaceae
    • A61K36/483Gleditsia (locust)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/88Liliopsida (monocotyledons)
    • A61K36/906Zingiberaceae (Ginger family)
    • A61K36/9066Curcuma, e.g. common turmeric, East Indian arrowroot or mango ginger
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/04Dispersions; Emulsions
    • A61K8/042Gels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/33Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
    • A61K8/35Ketones, e.g. benzophenone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/40Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing nitrogen
    • A61K8/44Aminocarboxylic acids or derivatives thereof, e.g. aminocarboxylic acids containing sulfur; Salts; Esters or N-acylated derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/40Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing nitrogen
    • A61K8/44Aminocarboxylic acids or derivatives thereof, e.g. aminocarboxylic acids containing sulfur; Salts; Esters or N-acylated derivatives thereof
    • A61K8/447Aminocarboxylic acids or derivatives thereof, e.g. aminocarboxylic acids containing sulfur; Salts; Esters or N-acylated derivatives thereof containing sulfur
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/46Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing sulfur
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/73Polysaccharides
    • A61K8/737Galactomannans, e.g. guar; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/96Cosmetics or similar toiletry preparations characterised by the composition containing materials, or derivatives thereof of undetermined constitution
    • A61K8/98Cosmetics or similar toiletry preparations characterised by the composition containing materials, or derivatives thereof of undetermined constitution of animal origin
    • A61K8/981Cosmetics or similar toiletry preparations characterised by the composition containing materials, or derivatives thereof of undetermined constitution of animal origin of mammals or bird
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0014Skin, i.e. galenical aspects of topical compositions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/02Drugs for dermatological disorders for treating wounds, ulcers, burns, scars, keloids, or the like
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/06Antipsoriatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/16Emollients or protectives, e.g. against radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/18Antioxidants, e.g. antiradicals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/10Antimycotics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/06Immunosuppressants, e.g. drugs for graft rejection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P39/00General protective or antinoxious agents
    • A61P39/06Free radical scavengers or antioxidants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q17/00Barrier preparations; Preparations brought into direct contact with the skin for affording protection against external influences, e.g. sunlight, X-rays or other harmful rays, corrosive materials, bacteria or insect stings
    • A61Q17/04Topical preparations for affording protection against sunlight or other radiation; Topical sun tanning preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • A61Q19/08Anti-ageing preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/52Stabilizers
    • A61K2800/522Antioxidants; Radical scavengers

Definitions

  • the present invention relates to antioxidant compositions and their use in the treatment of diseases, disorders and conditions that affect the skin, particularly skin conditions that occur with the production of reactive oxygen species in human skin, such as photoaging and other Age-related skin damage. It also refers to wound dressings and particularly compositions for the administration of active ingredients to wounds.
  • the organism When an oxidative stress situation occurs, the organism has detoxification mechanisms that allow controlling the excess of reactive oxygen species generated, however, when there is a lack of adjustment between the organism's detoxifying capacity and the free radicals present in the bed of the wound, the healing process is hindered, resulting in a chronic ulcer.
  • MROs reactive oxygen metabolisms
  • a wound dressing material which is formed by mixing dry hydrocolloidal polymer powder with water contained in a sealed container that has a temporary barrier or that can be manually removed so that the polymer Dry and water can be stored separately from each other while they are in the container.
  • tissue contact materials such as biocompatible polymer comprising a non-gellable polysaccharide, such as guar gum, which traps oxygen within the closed-cell foam-like material that can provide or maintain optimal oxygen tension in a compromised tissue site while absorbing excess fluid and optimize the microenvironment to facilitate tissue repair and regeneration if necessary.
  • Patent application EP0781550A1 describes a bioadhesive pharmaceutical composition for the controlled release of active ingredients, antiulcer agents among others, consisting of a copolymer of vinyl acetate and polyvinylpyrrolidone and an additional component, such as locust bean gum among others.
  • the antioxidant activity of galactomannans with the reduction of lipid peroxidation of systems subjected to UVA radiation has also recently been described. Its ability to increase the elasticity of different mixtures of hydrogels and its ability to absorb water are also known, which can provide the wound bed with the necessary degree of moisture needed by the healing process.
  • the administration system comprises a xerogel in which the material that forms the gel is a polysaccharide, for example galactomannan derivatives.
  • a xerogel comes into contact with fluids, it is rehydrated and forms a hydrogel, whereby the applied active ingredients dissolve and are released at a controlled rate from the hydrogel leading to a locally high concentration.
  • Solid bioabsorbable materials are described for use as wound dressings in patent application EP0792653, in which a solid of this type is formed by a mixture of xanthan, and at least one galactomannan, such as guar gum or locust bean gum.
  • the material also comprises therapeutic agents among which those that actively heal wounds such as glycosaminoglycans are particularly preferred.
  • wound healing Other types of wound healing are described in international applications WO2004 / 112850 and WO2005 / 049101 in which generally the material is formed by a bioabsorbable substrate, which could be galactomannan, stained with an antioxidant dye, which can react with reactive oxygen species, thereby reducing the level of oxidative stress in the wound.
  • N-acetyl-cysteine is also known as an antioxidant molecule that acts by increasing the synthesis of intracellular glutathione (GSH).
  • GSH glutathione
  • the GSH reduction effect helps to directly eliminate reactive oxygen species and also to recycle used antioxidants. Its use in chronic ulcers would reduce their oxidative stress, thus favoring their healing (Manikandan, P. et al, Molecular and Cellular Biochemistry, 2006, 290, 87-96; Rani Thaakur, S. et al, Pharmacologyonline, 2009, 1, 369-376).
  • Curcumin is the purified state of the raw extract of turmeric root, a plant grown mainly in Southeast Asia and widely used in traditional medicine for the treatment of skin-related diseases.
  • Gopinath, D. Biomaterials, 2004, 25, 1911-1917
  • Gopinath, D. demonstrates the improved wound healing capacity by the antioxidant curcumin when incorporated into a collagen matrix, which also acts as a support matrix for regenerative tissue.
  • curcumin or turmeric
  • the present invention relates to an antioxidant composition comprising galactomannan and N-acetyl-cysteine for use in the therapeutic or prophylactic treatment of a disease or a cutaneous condition resulting from the production of reactive species of oxygen in the skin of a subject or of a disease or a cutaneous state that induces the production of reactive oxygen species in the skin of a subject.
  • locust bean gum as a galactomannan in the composition used in the invention is particularly preferred.
  • the antioxidant composition as defined above further comprises curcumin (turmeric) as an additional antioxidant component.
  • the invention also relates to a method for the therapeutic or prophylactic treatment of a disease or a cutaneous condition that results from the production of reactive oxygen species in the skin of a subject or a disease. or a cutaneous state that induces the production of reactive oxygen species in the skin of a subject, which comprises the administration of a therapeutically effective amount of a composition comprising galactomannan and N-acetyl-cysteine.
  • Another aspect of the present invention relates to an antioxidant composition
  • an antioxidant composition comprising galactomannan, N-acetylcysteine and curcumin.
  • Another aspect of the present invention relates to the antioxidant composition as defined above for use as a medicament.
  • Another aspect of the invention relates to a hydrogel comprising galactomannan and N-acetyl-cysteine, wherein the galactomannan is in the form of a cross-linked matrix, and N-acetyl-cysteine is incorporated into said cross-linked galactomannan matrix.
  • the galactomannan is crosslinked by means of a crosslinking agent, preferably the crosslinking agent is glutaraldehyde.
  • the invention relates to the hydrogel as defined above, in which the galactomannan matrix further comprises curcumin incorporated therein.
  • the present invention also relates to the hydrogel as defined above which further includes cells.
  • cells selected from the group consisting of fibroblasts, keratinocytes, endothelial cells, differentiated or undifferentiated mesenchymal stem cells, corneal cells, epithelial cells, leukocyte system cells, hematopoietic system cells, differentiated or undifferentiated stem cells, chondrogenic cells, osteoblasts, myocytes, adipocytes and neurons or other peripheral and central nervous system cells.
  • a further aspect of the present invention relates to a process for the preparation of a hydrogel as defined above comprising:
  • a) dissolve the galactomannan in an aqueous solution; b) subjecting the galactomannan to chemical crosslinking by adding a crosslinking agent to the aqueous galactomannan solution to obtain a hydrogel comprising a crosslinked glucomannan matrix; c) incorporate N-acetyl-cysteine, and optionally curcumin, in the crosslinked glucomannan matrix.
  • Another aspect of the present invention relates to a wound dressing comprising the hydrogel as defined above.
  • a further aspect of the present invention relates to a hydrogel as defined above for use as a medicament.
  • Another aspect of the invention relates to a hydrogel as defined above for use in the treatment and / or healing of acute traumatic and surgical wounds, burns, scalds, fistulas, venous ulcers, arterial ulcers, pressure ulcers, diabetic ulcers, ulcers of mixed etiology, and other inflammatory lesions and disorders and chronic or necrotic wounds.
  • a further aspect of the invention relates to a cosmetic composition
  • a cosmetic composition comprising galactomannan and N-acetylcysteine.
  • the invention relates to the cosmetic composition as defined above, which further comprises curcumin.
  • Another aspect of the present invention relates to the use of a cosmetic composition as defined above for the treatment of age-related skin damage.
  • Another aspect of the present invention relates to the use of a cosmetic composition as defined above as a protector against UV radiation.
  • Figure 1 shows: (a) the results of cell proliferation in fibroblasts by means of the colorimetric assay of MTT, using different concentrations of NAC, and (b) IC 50 values with respect to the control.
  • Figure 2 shows: (a) the results of cell proliferation in fibroblasts by means of the MTT colorimetric assay, using different concentrations of turmeric, and (b) IC 50 values with respect to the control.
  • Figure 3 shows the results corresponding to the MTT colorimetric test when a fibroblast culture is subjected to an oxidative environment and when it is contacted with 1% LBG, 1 mM NAC, 1 ⁇ turmeric and combinations thereof.
  • Figure 4 shows the intracellular MRO levels of fibroblasts subjected to an oxidative environment using 1 mM H 2 0 2 , by means of the fluorescence units obtained in the tide with the 2 ', 7' -dichlorofluorescein diacetate probe and when Fibroblasts are contacted with 1% LBG, 5 mM NAC, 5 ⁇ turmeric and combinations thereof.
  • Figure 5 shows photographs taken of the scanning electron microscope (SEM) of a glutaraldehyde crosslinked gum hydrogel to: (a) 0% by weight; (b) 0.5% by weight; (c) 1% by weight and (d) 2.5% by weight.
  • SEM scanning electron microscope
  • Figure 6 shows a macroscopic view of a biopsy of the evolution during 10 days of surgically generated skin lesions in the dorsal area in an animal model of healing in pigs.
  • Figure 7 shows a photograph of the 3-day evolution of surgically generated skin lesions in the dorsal area in an animal model of healing in pigs.
  • the antioxidant composition used in the invention comprises two antioxidant agents, namely a galactomannan and N-acetyl-cysteine. These components are physically mixed in the composition without being bound by any interaction or chemical bond. As shown in experimental tests, the combination of a galactomannan, such as locust bean gum, and N-acetyl-cysteine provides a synergistic antioxidant effect on cell cultures of fibroblasts subjected to oxidative stress, improving cell survival capacity while Intracellular levels of reactive oxygen metabolites are reduced.
  • a galactomannan such as locust bean gum
  • N-acetyl-cysteine provides a synergistic antioxidant effect on cell cultures of fibroblasts subjected to oxidative stress, improving cell survival capacity while Intracellular levels of reactive oxygen metabolites are reduced.
  • Galactomannans are polysaccharides that contain a major structure of mannose with galactose side groups, more specifically a major structure of beta-D-manopyranose with bonds (1-4) with branching points from their positions 6 linked to alpha-D-galactose , that is, alpha-D-galactopyranose with links 1-6.
  • Galactomannan gums include locust bean gum, locust bean gum, guar gum, Cassia gum, tara gum, mesquite gum and fenugreek gum.
  • the galactomannan is selected from the group consisting of guar gum, locust bean gum, Cassia gum, tara gum, mesquite gum, fenugreek gum and white clover seed gum. More preferably, the galactomannan is locust bean gum.
  • Locust bean gum is a galactomannan polysaccharide consisting of a main structure of manopyranose with branching points from their positions 6 linked to ⁇ -D-galactose residues. Locust bean gum has approximately 4 mannose residues for each galactose residue (a mannose / galactose ratio of approximately 4).
  • Galactomannans can be obtained from recombinant or synthetic sources.
  • galactomanose can be synthesized in vivo from GDP-mannose and UDP-galactose by the morning enzymes synthase and galactosyltransferase.
  • the DNA encoding these proteins has been isolated and characterized (US publication 2004/0143871) and it has been shown that recombinant plants transformed with these enzymes express elevated levels of galactomannan.
  • the degree of galactosylation of the main structure of Manopyranose may be influenced by the presence (or absence) of alpha-galactosidase in vivo, (see Ed ards et al.
  • Alpha-galactosidase removes galactose residues from the main structure of manopiranose.
  • seeds that naturally express galactomannans with a lower degree of galactosylation can express (or express more) alpha galactosidase, which removes galactose residues from the main structure of manopiranose in those plant species.
  • the enzyme alpha-galactosidase can be used to reduce the presence of galactose in the main manopiranose structure of galactomanose gums that occur naturally in a laboratory manipulation of the characteristics of naturally occurring galactomanose gum.
  • Embodiments of the present invention include galactomannans, which have been treated with alpha-galactosidase to reduce the presence of galactose in the main structure of manopiranose.
  • Embodiments of the present invention include galactomannan gums that have been treated with alpha-galactosidase or other enzymes or chemical treatments, to give the gum the desired characteristics as cell culture surfaces.
  • the proportion by weight of galactomannan in the composition of the invention ranges from 1 to 5% with respect to the total weight of the composition.
  • N-acetyl-cysteine is an antioxidant molecule that is involved in the synthesis of intracellular glutathione, a compound that helps directly eliminate oxygen free radicals in the cell, as well as recycle antioxidants already used.
  • the N-acetyl-cysteine is preferably present in the composition of the invention in a concentration ranging from 1 to 10 mM, more preferably between 1 and 5 mM.
  • the antioxidant composition used in the invention is suitable for topical application on the skin.
  • Topical antioxidant compositions can take any of a wide variety of forms, and include, for example, dressings, lotions, solutions, aerosols, creams, gels, ointments or the like.
  • Lotions are preparations that have to be applied on the surface of the skin without friction, and are usually liquid or semi-liquid preparations in which solid particles, including the active ingredients, are present in an aqueous or alcoholic base.
  • Lotions are usually suspensions of solids, and preferably comprise a liquid oily emulsion of the oil-in-water type. Lotions are preferred formulations for treating large body areas due to the ease of applying a more fluid composition. Generally, it is preferred that the matter insoluble in a lotion (hydrogel) be finely divided. Lotions contain from about 0.001% to about 30% of the active ingredients, from 1% to 25% of an emollient and the appropriate amount of water.
  • emollients are hydrocarbon waxes and oils such as mineral oils, petrolatum, paraffin, ceresin, microcrystalline wax, polyethylene and perhydrosqualene; silicone oils such as dimethylpolysiloxanes, methylphenylpolysiloxanes and copolymers of water soluble and alcohol soluble gl i 1-silicone; triglycerides, such as animal and vegetable fats and oils; alkyl esters of fatty acids having 10 to 20 carbon atoms, alkenyl esters of fatty acids having 10 to 20 carbon atoms; fatty acids having 10 to 20 carbon atoms, such as pelargonic, lauric, myristic, palmitic, stearic, isostearic, hydroxystearic, oleic, linoleic, ricinoleic, arachidonic, behenic and erucic acids; fatty alcohols having 10 to 20 carbon atoms, such as lauryl, myristy
  • the lotions of the invention would additionally contain from 1% to 30% of an emulsifier.
  • the emulsifiers can be anionic, cationic or non-ionic.
  • non-ionic emulsifiers include, but are not limited to, fatty alcohols having 10 to 20 carbon atoms, fatty alcohols having 10 to 20 carbon atoms condensed with 2 to 20 moles of ethylene oxide or oxide of propylene, alkyl phenols with 6 to 12 carbons in the alkyl chain fused with 2 to 20 moles of ethylene oxide, mono- and di-acyl esters of ethylene glycol, in which the fatty acid contains from 10 to 20 carbons, monoglycerides in which the fatty acid contains from 10 to 20 carbons, diethylene glycol, polyethylene glycols of molecular weight 200 to 6000, polypropylene glycol of molecular weight 200 to 3000, glycerol, sorbitol, sorbitan, polyoxyethylene sorbitol, polyoxyethylene
  • Suitable anionic emulsifiers include, but are not limited to, saponified fatty acids (soaps) with potassium, sodium or triethanolamine, in which the fatty acid contains from 10 to 20 carbons.
  • Other suitable anionic emulsifiers include, but are not limited to, alkali metals, ammonium or ammonium substituted with alkyl sulfates, alkyl arylsulfonates and alkylethoxy ether sulfonates having from 10 to 30 carbons in the alkyl chain and from 1 to 50 units of ethylene oxide.
  • Suitable cationic emulsifiers they include quaternary ammonium and morpholinium and pyridinium compounds.
  • composition is water.
  • Lotions are formulated simply by mixing all the components together.
  • the active ingredients are dissolved in the emollient and the resulting mixture is added to the water.
  • compositions of the present invention can also be formulated in the form of a solution.
  • the solutions are homogeneous mixtures prepared by dissolving the active ingredients in a liquid such that the molecules of the dissolved active ingredients are dispersed among those of the solvent.
  • the solutions contain from 0.001% to 30% of the antioxidant active ingredients and the appropriate amount of an organic solvent.
  • Organic substances useful as a solvent are propylene glycol, polyethylene glycol, polypropylene glycol, glycerin, sorbitol esters, 1,2,6-hexanotriol, ethanol, isopropanol, diethyl tartrate, butanediol and mixtures thereof.
  • Such solvent systems may also contain water.
  • compositions are applied to the skin in the form of a solution, or aerosol solutions are formulated and applied to the skin as a spray.
  • the aerosol compositions additionally contain from 25% to 80% of a suitable propellant.
  • suitable propellants include, but are not limited to chlorinated, fluorinated or fluorochlorinated low molecular weight hydrocarbons. Nitrous oxide and carbon dioxide are also used as propellant gases. Sufficient amount is used to expel the contents of the cartridge.
  • composition of the present invention can also be formulated in the form of a cream.
  • creams as is well known in the techniques of pharmaceutical and cosmetic formulations, are liquid or semi-solid viscous emulsions, either oil in water or water in oil.
  • the cream bases are washable with water and contain an oily phase, an emulsifier and an aqueous phase.
  • the oily phase is composed generally by petrolatum and a fatty alcohol such as cetyl or stearyl alcohol.
  • the aqueous phase exceeds the oil phase by volume, and generally contains a humectant.
  • the emulsifier in a cream formulation is generally a nonionic, anionic, cationic or amphoteric surfactant and can be selected from emulsifiers mentioned above for lotions or mixtures thereof.
  • Gels are suspension systems, semi-solid.
  • Single phase gels contain organic macromolecules distributed substantially uniformly throughout the carrier liquid, which is normally aqueous, but also, preferably, contain an alcohol and, optionally, an oil.
  • Preferred organic macromolecules, ie gelling agents can be chemically crosslinked polymers such as crosslinked acrylic acid polymers, for example the "carbomer” family of polymers, for example, carboxypolyalkylenes, which can be obtained commercially under the trademark Carbopol®.
  • Hydrophilic polymers such as polyethylene oxide, polyoxyethylene polyoxypropylene copolymers and polyvinyl alcohol may also be preferred; cellulosic polymers such as hydroxypropylcellulose, hydroxyethylcellulose, hydroxypropylmethylcellulose and methylcellulose; gums such as gum tragacanth and xanthan; sodium alginate; and jelly.
  • Ointments are semi-solid preparations that are normally based on petrolatum or other petroleum derivatives.
  • the specific ointment base to be used is one that will provide several desirable characteristics, for example emolliency or the like.
  • Ointment bases can be grouped into four classes: oil bases, emulsifiable bases, emulsion bases and water soluble bases.
  • Oil ointment bases include, for example, vegetable oils, animal fats and semi-solid hydrocarbons obtained from petroleum.
  • Emulsifiable also known as absorbent ointment bases, contain little or no water and include, for example, hydroxystearin sulfate, anhydrous lanolin and hydrophilic petrolatum.
  • the emulsion ointment bases are either water in oil emulsions or oil in water emulsions and include, for example, cetyl alcohol, glyceryl monostearate, lanolin and stearic acid.
  • Preferred water soluble ointment bases are prepared from polyethylene glycols of varying molecular weight.
  • An acceptable pharmaceutical vehicle can also be incorporated into the compositions and can be any vehicle conventionally used in the art. Examples include water, lower alcohols, higher alcohols, polyhydric alcohols, monosaccharides, disaccharides, polysaccharides, hydrocarbon oils, waxes, fatty acids, silicone oils, non-ionic surfactants, ionic surfactants, silicone surfactants and water-based mixtures and emulsion-based mixtures of said vehicles.
  • the topical compositions described above can be applied regularly to any area of the skin that requires treatment with the frequency and in the amount necessary to achieve the desired results.
  • the frequency of treatment depends on the nature of the disease or the cutaneous state, that is, the disease or the cutaneous state that results from the production of reactive oxygen species in the skin or that involves the production of reactive oxygen species in the skin. skin, as well as the degree of damage or deterioration of the skin.
  • This treatment includes contacting the skin of a subject by directly applying to the skin a topical formulation as described herein, in a manner that affects the subject, and / or the skin tissue in the subject and / or a or a plurality of cells, to obtain a desired pharmacological and / or physiological effect.
  • the effect may be prophylactic in terms of completely or partially preventing a disease or disorder such as a condition that results from the production of reactive oxygen species in the skin or that involves the production of reactive oxygen species in the skin, or sign or symptom thereof, and / or the effect may be therapeutic in relieving symptoms or signs or providing a partial or complete cure for such a disorder or disease and / or substantially reducing an adverse effect attributable to the disorder or disease.
  • a disease or disorder such as a condition that results from the production of reactive oxygen species in the skin or that involves the production of reactive oxygen species in the skin, or sign or symptom thereof
  • the effect may be therapeutic in relieving symptoms or signs or providing a partial or complete cure for such a disorder or disease and / or substantially reducing an adverse effect attributable to the disorder or disease.
  • the treatment of a disease or a cutaneous condition that results from the production of reactive oxygen species includes repair and regeneration of damaged or injured cells or tissue at the site of skin damage.
  • This damage can be the result of the subject's exposure to a source of oxidative stress that can promote the production of oxygen radical species in the skin, such as sunlight radiation (photodamage), agents chemicals (including other topical agents such as medical, pharmaceutical or cosmetic compounds), radiotherapy or chemotherapy.
  • a source of oxidative stress that can promote the production of oxygen radical species in the skin
  • UV radiation ultraviolet radiation
  • chemical agents including other agents topics such as medical, pharmaceutical or cosmetic compounds
  • the disease or cutaneous condition results from exposure to sunlight, more specifically to UV radiation of the UVA, UVB and UVC type.
  • States that are directly or indirectly a consequence of (or are exacerbated by, or include as a risk factor) exposure to such radiation include both direct and immediate effects, as well as longer-term effects, and complications and sequelae that arise from direct damage, over a longer period.
  • UV radiation affects the skin through a direct and indirect mechanism.
  • Direct damage is that which occurs after immediate exposure to radiation, while indirect effects include those that follow the generation of damaged biological molecules and the generation of highly reactive oxygen species that then activate other pathological and biological processes.
  • Reactive oxygen species may have detrimental effects on the immediate location in which they are generated, such as on the skin, or at distant sites, where such reactive species may have broader systemic effects, as evidenced by It is called "oxidative stress.”
  • An intervention that effectively reduces the level of reactive species, thereby having an antioxidant effect can slow, improve or stop the evolution of a wide range of diseases.
  • the health problems associated with exposure to UV radiation involve states or diseases of the skin, but more widespread and systemic states may also arise, or be a part of complications that continue as a consequence of such conditions or skin diseases. Therefore, such states, collectively, may include sunburn, photosensitivity, immunosuppression, premature aging, psoriasis, various types of skin cancer and various immune diseases, as well as localized or widespread inflammation, various bacterial or fungal infections, skin rashes and stresses.
  • Polymorphic solar eruption for example, is an eruption induced by exposure to sunlight, which is understood to be involved in skin allergy. Types of skin cancer linked to exposure to sunlight include, in order of increasing severity, basal cell cancer, squamous cell cancer and malignant melanoma.
  • the disease or cutaneous condition that induces the production of reactive oxygen species in the skin of a subject is selected from acute traumatic and surgical wounds, burns, scalds, fistulas, venous ulcers, arterial ulcers, pressure ulcers , diabetic ulcers, ulcers of mixed etiology, and other inflammatory lesions and disorders and chronic or necrotic wounds.
  • the antioxidant composition of the invention further comprises curcumin as an additional active ingredient. It has been found that the combination of ga 1 a c t orna n a n o with N-acetyl-c i s t e i na and curcumin provides an even greater synergistic antioxidant effect as shown in the examples provided in the present application.
  • Curcumin also known as turmeric, is a naturally occurring o-methoxyphenol derivative of the formula:
  • Curcumin also acts as a free radical scavenger and antioxidant, inhibiting lipid peroxidation and oxidative damage to DNA.
  • Curcumin is preferably present in the composition of the invention in a concentration ranging from 1 to about 7.5 ⁇ , more preferably between 1 and 5 ⁇ .
  • Another aspect of the present invention relates to an antioxidant composition
  • an antioxidant composition comprising glactomannan, N-acetyl-cysteine and curcumin.
  • Said antioxidant composition is also suitable for topical application on the skin and can take any of a wide variety of forms, including, for example, dressings, lotions, solutions, sprays, creams, gels, ointments or the like, such as those mentioned above.
  • the present invention relates to the antioxidant composition comprising galactomannan, N-acetylcysteine and curcumin for use as a medicament.
  • This antioxidant composition can also be used to treat or prevent a disease or a cutaneous state that results from the production of reactive oxygen species in the skin of a subject or a disease or a cutaneous state that involves the production of reactive oxygen species in the skin of a subject, such as those mentioned above.
  • the present invention relates to a hydrogel comprising galactomannan and N-acetylcysteine, wherein the galactomannan is in the form of a matrix crosslinked and N-acetyl-cysteine is incorporated into said crosslinked galactomannan matrix.
  • hydrogel refers to a network of polymer chains comprising crosslinked galactomannan chains that are insoluble in water but swellable in water, that is, water is the dispersion medium.
  • the hydrogel of the invention provides a reliable and effective means of administering N-acetyl-ci stein to the site of interest, such as a wound, ulcer, burn or scald, while improving the antioxidant and healing properties of this active ingredient.
  • site of interest such as a wound, ulcer, burn or scald
  • experimental tests have shown the synergistic antioxidant effect induced by the combination of a galactomannan, such as locust bean gum, and N-acetyl-ci stein on fibroblast cell cultures, improving cell survival capacity while reducing levels intracellular oxygen reactive metabolites.
  • the hydrogel also provides a very good moisture regulation ability to promote wound healing.
  • the hydrogel of the invention comprises polymerized galactomannan chains, said galactomannan chains are crosslinked in order to prepare water insoluble but water swellable galactomannan.
  • the degree of crosslinking determines the rheological properties of the hydrogel, as well as its inflatable properties, and allows obtaining a porosity that favors the controlled administration of N-acetyl-cysteine.
  • galactomannan is selected from the group consisting of guar gum, locust bean gum, Cassia gum, tara gum, mesquite gum, fenugreek gum and white clover seed gum. More preferably, the galactomannan is locust bean gum.
  • the galactomannan is crosslinked by means of a crosslinking agent.
  • a crosslinking agent Chemical agents such as borax (sodium borohydrate), glutaraldehyde and epoxy derivatives can be used.
  • the most preferred crosslinking agent is glutaraldehyde.
  • the crosslinking agent content determines the pore size of the matrix and therefore the administration profile of the active ingredient incorporated therein.
  • the galactomannan may be present in the hydrogel according to the invention in an amount of at least 50% by weight with respect to the total weight of the hydrogel, preferably at least 75% by weight. More preferably, at least 90% by weight of the hydrogel consists of galactomannan.
  • the rest of the hydrogel comprises water (up to 20% by weight), the active ingredient (N-acetyl-cysteine) and, optionally, salts or other structural compounds that improve the rheological properties of the hydrogel.
  • proteins such as collagen, f ib ro ne cti na, laminin, elastin or combinations thereof, as well as glycosaminoglycans, such as hyaluronates, heparin sulfate or sulfate are preferred.
  • the hydrogel according to the present invention will absorb water or fluid from the wound and therefore will be wetted, swollen or converted into a gelatinous mass but will not dissolve or spontaneously disperse therein.
  • the low solubility makes such materials especially suitable for use as wound dressings to remove reactive oxygen species from the wound fluid.
  • N-acetyl-cysteine can be incorporated directly into the crosslinked galactomannan matrix.
  • This active ingredient can be incorporated by absorption of the agent by the matrix or by adding the agent in the initial formulation for the matrix before crosslinking.
  • the incorporation of N-acetyl-cysteine in the galactomannan matrix is carried out by the formation of a xerogel.
  • xerogel refers to a solid substrate formed from a hydrogel by free shrinkage drying. It retains a high porosity (at least 25%) and a huge surface area (150-900 m 2 / g) together with a very small pore size (1-10 nm).
  • the xerogel obtained is introduced into an aqueous solution comprising N-acetyl-cysteine and then this active ingredient is gradually incorporated into the pore of the matrix or dispersed therein until equilibrium is reached.
  • the N-acetyl-cysteine is preferably present in the hydrogel in a concentration ranging from 1 to 10 mM, more preferably between 1 and 5 mM.
  • Another aspect of the present invention relates to the hydrogel of the invention mentioned above which further comprises curcumin as an additional active ingredient to be incorporated into the galactomannan matrix. It has been found that the combination of a galactomannan, such as locust bean gum, with N-acetyl-cysteine and curcumin provides an even greater synergistic antioxidant effect.
  • curcumin may also be incorporated into the galactomannan matrix by absorption of this compound by the matrix or by adding it in the initial formulation for the matrix together with the N-acetyl-cysteine before crosslinking The galactomannan.
  • curcumin and N-acetyl-cysteine by introducing a galactomannan xerogel into a solution comprising both active ingredients, thus allowing their gradual incorporation into the galactomannan matrix.
  • Curcumin is preferably present in the hydrogel in a concentration ranging from about 1 to about 7.5 ⁇ , more preferably between 1 and 5 ⁇ .
  • the active ingredients are incorporated into the hydrogel, so that the agents are released directly from the hydrogel and are further administered by means of the transdermal or transmucosal pathways.
  • the incorporated agents can be released over a prolonged period of time in order to facilitate wound healing.
  • one part of the agent resides in the matrix while the other part of the agent dissolves in the phase free liquid and moves freely through the matrix. Because the agent dissolves in the free liquid phase, a concentration gradient of the active agent is created between the hydrogel matrix and the moisture of the wound itself.
  • the soluble agent when the hydrogel is placed on a wet surface such as an open wound, the soluble agent will move through the free liquid phase to the moisture of the agent free wound, resulting in the administration of the agent to the wound. .
  • This movement of soluble agent also disrupts the balance between soluble and insoluble agents, and causes more agent to dissolve in the free liquid phase, thereby causing more agent to be administered to the wound.
  • the administration of the active ingredients can also be controlled by the degree of cross-linking in the matrix.
  • the combination of cross-linked chains together creates microcavities in which the active ingredients are encapsulated.
  • By controlling the amount of crosslinking agent and the length of the galactomannan chains it is possible to regulate the size of the microcavities of the galactomannan matrix. Larger microcavities are produced by a lower degree of crosslinking, which allow for freer migration and faster administration of active agents, while smaller microcavities increase administration time.
  • the process for preparing the hydrogel of the invention comprises:
  • the galactomannan is dissolved in distilled water at room temperature in an amount ranging from 1% to 5% by weight with respect to the total weight of the solution. This solution is kept under stirring for approximately 2-3 hours. Depending on the galactomannan, it may be necessary to increase the temperature in order to facilitate its dissolution.
  • the galactomannan is locust bean gum.
  • the solution must be carried out at a temperature between 110 and 120 ° C.
  • the cross-linking stage is carried out with the aim of forming a three-dimensional matrix structure, providing it with pores or cavities in which the active principle will be incorporated.
  • Crosslinking methods include UV induced crosslinking and chemical crosslinking. Chemical agents such as borax (sodium borohydrate), glutaraldehyde, epoxy derivatives and other methods known in the art can be used. UV crosslinking methods require a photoinitiator that starts the gelation or crosslinking process after UV radiation exposure.
  • the degree of crosslinking depends on the amount of crosslinking agent added to the solution and ranges from about 1% to about 5% by weight with respect to the total weight of the aqueous solution.
  • the crosslinking agent is glutaraldehyde.
  • the galactomannan solution and the crosslinking agent are kept under stirring for at least 30 minutes. Subsequently, the solution is poured into molds, remaining therein until the formation of the hydrogel. The unreacting crosslinking agent is removed by several washes.
  • N-acetyl-cysteine, and curcumin when this active substance is present in the hydrogel formulation, can be carried out by absorption of the agent by matrix.
  • the active ingredient (s) can be added to the aqueous galactomannan solution before crosslinking.
  • the incorporation of the active ingredient (s) comprises the following steps:
  • step b) drying the hydrogel obtained in step b) to form a xerogel
  • a dry xerogel or film matrix can be obtained from a hydrogel by a method of freeze drying or convection drying according to processes known to one skilled in the art.
  • the dry xerogel is formed from the hydrogel by an evaporative drying process, preferably air drying, vacuum drying or convection drying.
  • the xerogel is rehydrated to form a hydrogel that achieves proper release kinetics and, at the same time, a high concentration of active ingredient (s) is incorporated into the release side of the galactomannan matrix.
  • hydrogel is partially dried for later application to the site of interest.
  • the hydrogel further comprises cells incorporated into the galactomannan matrix or on the surface thereof.
  • the incorporation of cells enhances the regenerative activity of the hydrogel and the tissue repair process in those highly damaged tissues or without the possibility of cell contribution in situ of the patient, since this biomaterial contains healthy cells of the same type as those present in the damaged tissue .
  • the cells incorporated into the hydrogel are selected from the group consisting of fibroblasts, keratinocytes, endothelial cells, differentiated or undifferentiated mesenchymal stem cells, corneal cells, epithelial cells, leukocyte system cells, hematopoietic system cells, differentiated stem cells or undifferentiated, chondrogenic cells, osteoblasts, myocytes, adipocytes and neurons or other peripheral and central nervous system cells.
  • the hydrogel is incorporated into a wound dressing. Therefore, another aspect of the present invention relates to a wound dressing comprising the hydrogel of the invention.
  • the wound dressing is preferably sheet-shaped and comprises an active layer of the hydrogel according to the invention.
  • the active layer would normally be the contact layer with the wound in use, but in some embodiments it could be separated from the wound by a liquid permeable topsheet.
  • the wound dressing may include other components.
  • water loss control agents may be added in order to increase the permeability of the wound dressing material.
  • a decrease in the permeability of the wound dressing material controls the loss of fluids from the wound.
  • Preferred water loss control agents are glycolipids, ceramides, free fatty acids, cholesterol, triglycerides, stearyl esters and silicone oil.
  • a plasticizer may also be added to the wound dressing.
  • the presently preferred plasticizers are glycerol and water, however, propylene glycol and butanol can also be used.
  • the wound dressing further comprises a support foil that extends over the active layer opposite the side that faces the wound of the active layer.
  • the support sheet is larger than the active layer so that a marginal region extends around the active layer to form a so-called island dressing.
  • the backing sheet is preferably coated with a pressure-sensitive medical grade adhesive in at least its marginal region.
  • the support sheet is permeable to water vapor, but is not permeable to liquid water or wound exudate.
  • the support sheet is also impermeable to microorganisms. This allows the wound under the dressing material to heal in moist conditions without causing the skin around the wound to macerate.
  • Suitable polymers for forming the backing sheet include polyurethanes and poly (alkoxyalkyl acrylates and methacrylates) such as those disclosed in GB-A-1280631.
  • the adhesive layer (when present) must be a moisture vapor transmitter and / or be designed to allow water vapor to pass through it.
  • the adhesive layer is preferably a continuous moisture vapor transmitting pressure sensitive adhesive layer of the type conventionally used for island wound dressings, for example, a pressure sensitive adhesive based on acrylate ester copolymers, polyvinyl ethyl ether and polyurethane as described for example in GB-A-1280631.
  • the surface of the dressing facing the wound is preferably protected by a separable cover sheet.
  • the cover sheet is normally formed by flexible thermoplastic material. Suitable materials include polyesters and polyolefins.
  • the surface that faces the adhesive of the cover sheet is a release surface. That is, one surface that is only weakly adherent to the active layer and the adhesive on the support sheet, to help peel off the adhesive layer from the cover sheet.
  • the cover sheet may be formed of a non-stick plastic such as a fluoropolymer, or it may be provided with a release coating such as a fluoropolymer or silicone release coating.
  • the wound dressing according to the invention is sterile and is packaged in a container impervious to microorganisms.
  • the hydrogel of the present invention can be used on injured tissue and for drainage of body fluids in which control and management of fluid and secretions are desired.
  • body fluid includes, but is not limited to, saliva, gingival secretions, cerebrospinal fluid, gastrointestinal fluid, mucus, urogenital secretions, synovial fluid, blood, serum, plasma, urine, cystic fluid, lymphatic fluid, ascites, effusion pleural, interstitial fluid, intracellular fluid, eye fluids, seminal fluid, breast secretions, vitreous humor and nasal secretions.
  • the hydrogel may preferably be applied for use in chronic and acute wounds with exudation to control moisture from the accumulated exudate, support the wound bed and surrounding tissues.
  • the present invention provides the hydrogel according to the present invention for use in the treatment and / or healing of acute traumatic and surgical wounds, burns, scalds, fistulas, venous ulcers, arterial ulcers, ulcers by pressure, diabetic ulcers, ulcers of mixed etiology, and other inflammatory lesions and disorders and chronic or necrotic wounds.
  • the hydrogel of the present invention is intended for the treatment of both infected and uninfected wounds (which is the same as wounds that show no clinical signs of infection)
  • the wound is a chronic or necrotic wound.
  • the chronic wound is selected from the group consisting of ulcers of venous, mixed arterial etiology, pressure ulcers or diabetic ulcers.
  • the hydrogel is used as an antioxidant to reduce oxidative stress in the wound environment and thereby promote wound healing.
  • the hydrogel or the wound dressing that contains it, is placed in direct contact with the wound bed. If required, it can be held in position with the wound dressing as described above. If necessary, the wound dressing and the hydrogel are removed, whereby any exudate and accumulated necrotic tissue is removed.
  • the hydrogel can be replaced by a new hydrogel and another suitable wound dressing.
  • the hydrogel may experience a swelling action as it absorbs moisture from the exudate, however, it will not dissolve.
  • the swelling action displaces the necrotic material from the surface of the wound and forces the material into the hydrogel matrix.
  • the moisture content charged and the retention of moisture near the wound bed by the hydrogel contribute to the stimulation of the autolytic debridement process by which the body's own enzymes break down the necrotic tissue and cellular debris.
  • Another aspect of the present invention relates to a cosmetic composition
  • a cosmetic composition comprising galactomannan and N-acetylcysteine.
  • the cosmetic composition includes any liquid composition or any composition that comprises the combination of galactomannan and N-acetyl-steroid and that is in the form of a gel, cream, ointment or balm for topical administration.
  • Such compositions are characterized in that they have emollient, protective and healing properties even when they have no associated cosmetically active molecule.
  • the cosmetic composition may also incorporate active molecules that, although having no therapeutic effect, have properties as a cosmetic agent.
  • emollient agents Among the active molecules that can be incorporated into the antioxidant composition there may be mentioned emollient agents, preservatives, fragrance substances, anti-acne agents, antifungal agents, antioxidants, deodorants, antiperspirants, anti-scavenging agents, depigmenting agents, anti-seborrheic agents, colorants, tanning lotions, absorbents UV light, enzymes, fragrance substances, among others.
  • the cosmetic composition may further comprise pH control agents, such as, for example, buffering agents, which prevent the pH of the composition from being reduced to values below 5, as well as preservatives that prevent significant structural changes in the composition.
  • pH control agents such as, for example, buffering agents, which prevent the pH of the composition from being reduced to values below 5, as well as preservatives that prevent significant structural changes in the composition.
  • the cosmetic composition of the invention can be used in the treatment of age-related skin damage.
  • Age-related skin damage refers to any state or disorder of the skin associated with, caused by, or affected by, intrinsic aging and / or extrinsic aging that are often attributed to damage caused by oxygen free radicals. Oxygen free radicals can damage cells and are believed to accelerate age-related diseases. Age-related skin damage can also be caused by years of sun damage, poor nutrition, high levels of stress, exposure to environmental pollution and certain lifestyle choices, such as smoking and using drugs and alcohol.
  • the state of the skin related to aging may involve wrinkles, age spots, sun damage (particularly oxidative stress induced by UV radiation), defects, hyperpigmented skin, increased skin thickness, loss of skin elasticity and collagen and / or dry skin content.
  • the present invention relates to the use of the cosmetic composition as described above as a protector against UV radiation.
  • N-acetyl-c i s t e i na NAC
  • LBG locust bean gum
  • curcumin turmeric or Cur
  • NAC and turmeric after in vitro proliferation and cytotoxicity tests in human fibroblasts within a range of from 0.5 mM to 20 mM for NAC and from 0.5 ⁇ to 50 ⁇ for turmeric.
  • MTT is a yellow tetrazolium salt that forms formazan crystals in active cells. Formazan crystals are solubilized and the resulting color is quantified by spectrophotometry at 550 nm.
  • Fibroblasts were seeded in a 96-well plate at a density of 4000 cells per well. The cells were kept at 37 ° C in an incubation oven. The next day, NAC and turmeric treatments were added to the cell culture using a volume of 200 ⁇ per well. The cell culture was allowed to incubate for 24, 48 and 72 hours.
  • Figures la and 2a show the results of the proliferation and c i t or t or x i c i d tests by means of the MTT colorimetric test, using different concentrations of NAC and turmeric.
  • the IC 50 of each component was established, that is, the concentration that causes a 50% decrease in cells with respect to the control, as a toxicity limit ( Figures Ib and 2b).
  • Example 2 Effect of the components of the composition of the invention and the combination thereof on the viability of human fibroblasts
  • the objective of the test is to determine the effect caused by LBG, NAC, turmeric and combinations thereof on the Survival capacity of cells in an adverse environment, such as that in the bed of a wound.
  • fibroblasts were subjected to an oxidative environment using hydrogen peroxide for 1 hour and contacted with LBG, NAC, turmeric and combinations thereof.
  • the cell viability of the fibroblasts in culture was analyzed by means of the MTT colorimetric assay as defined above. Sowing cells for the assay
  • fibroblasts were seeded in a 96-well plate at a density of 11,500 cells per well. All tests were performed in triplicate. Test
  • a solution of 1% locust bean gum in distilled water was prepared and heated to more than 100 ° C until the dissolution of the gum was completed. The solution was then centrifuged for 20 minutes at 4000 rpm to remove impurities from the mixture. The locust bean gum solution was lyophilized. The lyophilisate was dissolved in cell growth medium (DMEM + 10% FBS) at a concentration of 1%.
  • DMEM + 10% FBS cell growth medium
  • NAC and curcumin and hydrogen peroxide were prepared just before starting the test. To prepare the turmeric stock solution, it is necessary to know the purity of the available turmeric batch and adjust the calculation again to add the necessary concentration. The treatments and hydrogen peroxide were added at the same time and allowed to incubate for 1 hour.
  • FMD dose modification factor
  • HR combination factor
  • the original formula analyzes the dose modification factor based on the percentage of cell inhibition produced by two drugs administered alone and in combination (Thrall BD et al. Differential sensitivities of murine melanocytes and melanoma cells to buthionine sulfoximine and anticancer drugs. Cell Res. 1991; 4: 237-9). This formula has been used and published in subsequent international articles of our research group.
  • the formula presented herein is an original formula from one of the patent authors (T. Palomares) that analyzes the percentage of surviving cells in the presence of an agent, alone or in combination with others, with with respect to the number of original cells by subtracting the number of surviving cells from the oxidized control. Therefore, the increase in the number of surviving cells is analyzed with respect to cells that are not treated and exposed to the oxidant.
  • the formula is as follows:
  • Table I shows the percentage of viability of the cells subjected to oxidative stress with respect to the non-oxidized control group.
  • Table II shows the indices obtained through the application of formulas A and B in which it is concluded that there is a synergistic effect in the combinations of LBG + NAC and the triple combination of LBG + NAC + turmeric.
  • the analysis of the most pronounced protection effects shows that the combination of the three agents results in the greatest protective effect (100% of surviving cells).
  • the combination of the three agents shows an effect that is 1.3 times greater than the treatment with LBG + NAC (77.77%).
  • Example 3 Effect of the components of the composition of the invention, alone or in combination, on the decrease in reactive oxygen metabolites generated in human fibroblasts subjected to an oxidative environment
  • the increase in reactive oxygen metabolites (MROs) is one of the main causes that make wound healing difficult. This effect contributes to the loss of proliferative capacity of the cells and the increase in the expression of metalloproteases, which degrades the new dermal matrix formed and prevents healing.
  • Intracellular MROs were quantified by means of their mapping with the 2 ', 7'-dichlorofluorescein fluorescent probe (Molecular Probes D399). This probe can emit fluorescence at 538 nm when oxidized with reactive oxygen metabolites. The cellular oxidation with 1 mM hydrogen peroxide was carried out.
  • fibroblasts were seeded in a 96-well plate at a density of 11,500 cells per well. All tests were performed in triplicate.
  • a solution of 1% locust bean gum in distilled water was prepared and heated to more than 100 ° C until the dissolution of the gum was completed.
  • the solution was then centrifuged for 20 minutes at
  • the locust bean gum solution was lyophilized. He dissolved lyophilized in cell growth medium (DMEM + 10% FBS) at a concentration of 1%.
  • the cells were labeled with the fluorescent probe at a concentration of 50 ⁇ for 30 minutes in the dark.
  • the fluorescence emitted at 538 nm was collected by the probe 20 minutes after the start of oxidation.
  • Figure 4 shows the intracellular MRO levels of the fibroblasts subjected to an oxidative environment using 1 mM H 2 0 2 , by means of the fluorescence units obtained in the tide with the 2 ', 7' -dichlorofluorescein diacetate probe and also when the fibroblasts are contacted with 1% LBG, 5 mM NAC, 5 fiM turmeric and combinations thereof.
  • Table III shows the data of the percentage decrease of the MROs with respect to the oxidized control, when the cells were subjected to 1 mM of hydrogen peroxide and in contact with the components of the composition of the invention.
  • NAC NAC
  • Example 4 Preparation of a locust bean hydrogel with N-acetyl-cysteine incorporated therein.
  • locust bean gum was dispersed in distilled water to form a solution containing 1-5% by weight of said gum.
  • sulfuric acid was added to the solution until a pH of 2 was obtained, in order to protonate the hydroxyl groups of the locust bean gum.
  • the solution was stirred at room temperature for 2-3 hours and then the temperature was raised to 100-120 ° C. At this temperature, the solution is stirred for at least 30 minutes.
  • the solution was centrifuged at 4000 rpm for 20 minutes in order to remove impurities in the mixture, therefore, the pure locust bean gum solution is in the supernatant and the impurities are deposited in the sediment.
  • the locust bean gum solution was subjected to a chemical cross-linking step using glutaraldehyde as the cross-linking agent.
  • glutaraldehyde was added to the locust bean gum solution while stirring for at least 30 minutes.
  • the amount of glutaraldehyde depends on the desired final characteristics of the hydrogel. If rapid administration of N-acetyl-cysteine is required, smaller amounts of crosslinking agent are added to the locust bean gum solution in order to obtain a low degree of crosslinking. On the contrary, if an increased administration time of the N-acetyl-cysteine is required, large amounts of cross-linking agent are added to the locust bean gum solution in order to obtain a high degree of cross-linking.
  • Figures 5a-5d correspond to photographs taken of the scanning electron microscope (MEB) that show the increase in the porosity degree of a 3% by weight carob rubber hydrogel when the concentration of the crosslinking agent is increased from 0 to 2.5% by weight
  • the mixture of locust bean gum and glutaraldehyde was placed on Petri dishes.
  • the crosslinking reaction was carried out at 37 ° C.
  • the hydrogel was formed, it was washed with 5% sodium bisulfate (Sigma 13438) and then with distilled water, in order to remove unreacted glutaraldehyde. Subsequently, the hydrogel was dried in an oven at 65 ° C to form a xerogel.
  • the xerogel was rehydrated by introducing it into a saturated solution of N-acetyl-cysteine and PBS. Finally, the hydrogel obtained was dried for later use.
  • Example 5 Evaluation of the effect of a hydrogel containing LBG, LBG + NAC and LBG + NAC + Cur on the wound healing process in pigskin.
  • the animals were sedated with azaperone intramuscularly (4 mg / kg) + ketamine (10 mg / kg) and intubated tracheally and analgesia was induced with intravenous buprenorphine (0.01 mg / kg). Anesthesia was induced and maintained with propofol (4 mg / kg), isoflurane (1.5-2%, oxygen). Preoperative antibiotic therapy with intravenous cephalothin (22 mg / kg) was performed.
  • Figure 6 shows a macroscopic view of a 10-day evolution biopsy, in which an increase in the formation of new tissue can be observed in the treated groups, but particularly in the group treated with LBG + NAC + Cur.
  • Table V shows the estimated area of injury in the different treated groups and the index that indicates the capacity for wound reduction presented by these groups. The index also indicates that the greatest effect was achieved by treatment with LBG + NAC + Cur.
  • Figure 7 shows a photograph of the evolution over three days in which the treatments with LBG + NAC and LBG + NAC + Cur were compared with an established treatment with collagen. As can be seen, there is a reduction in the area of lesion in both groups of LBG + NAC and LBG + NAC + Cur with respect to the control group treated with collagen, and again that of LBG + NAC + Cur presented the greatest reduction of area and the best quality healing process.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Dermatology (AREA)
  • Birds (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Cell Biology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • Virology (AREA)
  • Mycology (AREA)
  • Botany (AREA)
  • Microbiology (AREA)
  • Alternative & Traditional Medicine (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Gerontology & Geriatric Medicine (AREA)
  • Emergency Medicine (AREA)
  • Oncology (AREA)
  • Communicable Diseases (AREA)
  • Rheumatology (AREA)
  • Dispersion Chemistry (AREA)
  • Biochemistry (AREA)
  • Toxicology (AREA)

Abstract

La presente invención se refiere a una composición antioxidante que comprende una combinación de galatomanano y N- acetil-cisteina para su uso en el tratamiento de una enfermedad o un estado cutáneo que resulta de la producción de especies reactivas de oxigeno en la piel o que implica la producción de especies reactivas de oxigeno en la piel, a un hidrogel que contiene dicha combinación, asi como a apositos para heridas que comprenden dicho hidrogel y a su uso en la cicatrización de úlceras, heridas, quemaduras y escaldaduras.

Description

COMPOSICIÓN ANTIOXIDANTE
DESCRIPCIÓN
CAMPO DE LA INVENCIÓN
La presente invención se refiere a composiciones antioxidantes y a su uso en el tratamiento de enfermedades, trastornos y estados que afectan a la piel, particularmente estados cutáneos que cursan con la producción de especies reactivas de oxigeno en la piel humana, tales como fotoenvej ecimiento y otro daño de la piel relacionado con la edad. También se refiere a apositos para heridas y particularmente a composiciones para la administración de principios activos a heridas .
ANTECEDENTES
El envejecimiento de la población y el aumento de enfermedades metabólicas crónicas tales como hipertensión o diabetes han favorecido la presencia de úlceras crónicas en los últimos años .
Ocasionalmente, debido al estado de salud del paciente (diabetes) o a la presencia de una gran cantidad de daño en el tejido (quemaduras graves), pueden surgir fenómenos que alteran la serie de procesos que deben tener lugar para que se produzca la cicatrización, desarrollándose una úlcera crónica.
La formación de una úlcera crónica está asociada con un proceso inflamatorio excesivo que altera la síntesis de las moléculas de señalización implicadas en la regulación del proceso que tiene lugar en la cicatrización. Estudios recientes relacionan directamente la f i s i opa t o 1 o gí a de las úlceras crónicas con el estrés oxidativo presente en el lecho de la herida, como consecuencia del entorno proinflamatorio de la zona lesionada .
Cuando se produce una situación de estrés oxidativo, el organismo tiene mecanismos de detoxificación que permiten controlar el exceso de especies reactivas de oxígeno generadas, en cambio, cuando hay una falta de ajuste entre la capacidad detoxificante del organismo y los radicales libres presentes en el lecho de la herida, se obstaculiza el proceso de cicatrización, dando lugar a una úlcera crónica.
Una falta de ajuste en los mecanismos de detoxificación de los metabolismos reactivos de oxigeno (MRO) es una de las causas principales de cronicidad en las úlceras.
La cicatrización de heridas crónicas se puede inducir mediante el uso de apositos antioxidantes para heridas que reaccionan específicamente con especies reactivas de oxígeno en exceso y por tanto reducen el nivel de estrés oxidativo. En la técnica, se describen diferentes ejemplos de materiales para promover la cicatrización.
Por ejemplo, en el documento US 6406712, se ha descrito un material de aposito para heridas, que se forma mezclando polvo de polímero hidrocoloidal seco con agua contenida en un envase sellado que tiene una barrera temporal o que puede retirarse manualmente de modo que el polímero seco y el agua pueden almacenarse por separado el uno del otro mientras se encuentran en el envase.
Otra descripción, en la solicitud de patente WO 01/49258A2, comprende materiales de contacto con tejido, tales como polímero biocompatible que comprende un polisacárido no gelificable, tal como goma guar, que atrapa oxígeno dentro del material de tipo espuma de célula cerrada que puede proporcionar o mantener una tensión de oxígeno óptima en un sitio tisular comprometido mientras absorbe el fluido en exceso y optimizar el microentorno para facilitar la reparación y regeneración tisulares si es necesario.
La solicitud de patente EP0781550A1 describe una composición farmacéutica bioadhesiva para la liberación controlada de principios activos, antiulcerosos entre otros, constituida por un copolímero de acetato de vinilo y polivinilpirrolidona y un componente adicional, tal como la goma de algarrobo entre otros .
También se ha descrito recientemente la actividad antioxidante de los galactomananos con la reducción de la peroxidación lipídica de sistemas sometidos a radiación UVA. También se conocen su capacidad para aumentar la elasticidad de diferentes mezclas de hidrogeles y su capacidad para absorber agua, que pueden proporcionar al lecho de la herida el grado necesario de humedad que necesita el proceso de la cicatrización.
La solicitud internacional WO2005/084650A1 reivindica un sistema de administración de principios activos secos y estables en almacenamiento para principios farmacéuticamente activos para su uso dérmico con fines de cicatrización de heridas. El sistema de administración comprende un xerogel en el que el material que forma el gel es un polisacárido, por ejemplo derivados de galactomanano . Cuando el xerogel entra en contacto con fluidos, se rehidrata y forma un hidrogel, mediante lo cual se disuelven los principios activos aplicados y se liberan a una velocidad controlada desde el hidrogel conduciendo a una concentración localmente alta.
Se describen materiales bioabsorbibles sólidos para su uso como apositos para heridas en la solicitud de patente EP0792653, en los que se forma un sólido de este tipo mediante una mezcla de xantano, y al menos un galactomanano, tal como goma guar o goma de algarrobo. El material también comprende agentes terapéuticos entre los que se prefieren particularmente los que promueven activamente la cicatrización de heridas tales como glucosaminoglicanos .
En un procedimiento similar tal como se describió anteriormente, la solicitud internacional W099/25395 reivindica un aposito para heridas con fines de cicatrización, en el que la matriz comprende un polímero reticulado biocompatible y un polisacárido no gelificable, un galactomanano, que incluye también uno o más principios activos, por ejemplo, agentes de cicatrización de heridas como factores de crecimiento, mucopolisacáridos y proteínas.
Se describen otros tipos de apositos para la cicatrización de heridas en las solicitudes internacionales WO2004/112850 y WO2005/049101 en los que generalmente el material está formado por un sustrato bioabsorbible , que podría ser galactomanano, teñido con un colorante antioxidante, que puede reaccionar con especies reactivas de oxigeno, reduciendo, de esa manera, el nivel de estrés oxidativo en la herida.
También se conoce la N-acetil-cisteina como molécula antioxidante que actúa aumentando la síntesis de glutatión (GSH) intracelular . El efecto de reducción de GSH contribuye a eliminar directamente las especies reactivas de oxígeno y también a reciclar antioxidantes ya usados. Su uso en úlceras crónicas reduciría el estrés oxidativo de las mismas, favoreciendo así su cicatrización (Manikandan, P. et al, Molecular and Cellular Biochemistry, 2006, 290, 87-96; Rani Thaakur, S. et al, Pharmacologyonline, 2009, 1, 369-376) .
También se conoce la actividad antioxidante de la curcumina. La curcumina es el estado purificado del extracto bruto de la raíz de la cúrcuma, una planta cultivada principalmente en el Sureste asiático y ampliamente usada en la medicina tradicional para el tratamiento de enfermedades relacionadas con la piel. Gopinath, D. (Biomaterials , 2004, 25, 1911-1917) demuestra la capacidad mejorada de cicatrización de heridas por el antioxidante curcumina cuando se incorpora en una matriz de colágeno, que también actúa como matriz de soporte para el tejido regenerativo .
Aunque las propiedades antioxidantes de galactomananos y N-acetil-cisteína están bien documentadas en la técnica anterior, no existe ninguna indicación sobre las ventajas particulares conferidas por la combinación de ambos componentes y, particularmente, en cuanto al efecto antioxidante sinérgico proporcionado sobre cultivos celulares que experimentan un estrés oxidativo extenso.
BREVE DESCRIPCIÓN DE LA INVENCIÓN
Los autores de la presente invención han descubierto que la combinación de galactomanano y N-acetil-cisteína proporciona un efecto sinérgico en la capacidad antioxidante de ambos componentes, que da como resultado una ventaja inesperada para su uso en el tratamiento de enfermedades o trastornos que resultan de la producción de especies reactivas de oxigeno en la piel de un sujeto o enfermedades o estados que inducen la producción de especies reactivas de oxigeno en la piel de un suj eto .
Las pruebas experimentales han mostrado que células de piel humana (fibroblastos) sometidas a un estrés oxidativo experimentan un aumento en la capacidad / preservación de la supervivencia celular cuando se administra una combinación de galactomanano, tal como goma de algarrobo, y N-acetil-cisteina a las células en cultivo.
Experimentos adicionales también han revelado que dicha combinación proporciona una reducción significativa en los niveles intracelulares de metabolitos reactivos de oxigeno en cultivos celulares de fibroblastos sometidos a un estrés oxidativo en presencia de peróxido de oxigeno, en comparación con goma de algarrobo o N-acetil-cisteina solas.
Además, se ha observado un efecto sinérgico incluso mayor cuando se añade curcumina (o cúrcuma) a la combinación de galactomanano y N-acetil-cisteina.
Por tanto, en un primer aspecto la presente invención se refiere a una composición antioxidante que comprende galactomanano y N-acetil-cisteina para su uso en el tratamiento terapéutico o profiláctico de una enfermedad o un estado cutáneo que resulta de la producción de especies reactivas de oxigeno en la piel de un sujeto o de una enfermedad o un estado cutáneo que induce la producción de especies reactivas de oxigeno en la piel de un sujeto.
Se prefiere particularmente el uso de goma de algarrobo como galactomanano en la composición usada en la invención.
En una realización particular, la composición antioxidante tal como se definió anteriormente comprende además curcumina (cúrcuma) como componente antioxidante adicional.
La invención también se refiere a un método para el tratamiento terapéutico o profiláctico de una enfermedad o un estado cutáneo que resulta de la producción de especies reactivas de oxigeno en la piel de un sujeto o de una enfermedad o un estado cutáneo que induce la producción de especies reactivas de oxigeno en la piel de un sujeto, que comprende la administración de una cantidad terapéuticamente eficaz de una composición que comprende galactomanano y N-acetil-cisteina .
Otro aspecto de la presente invención se refiere a una composición antioxidante que comprende galactomanano, N-acetil- cisteina y curcumina.
Otro aspecto de la presente invención se refiere a la composición antioxidante tal como se ha definido anteriormente para su uso como medicamento.
Otro aspecto de la invención se refiere a un hidrogel que comprende galactomanano y N-acetil-cisteina, en el que el galactomanano está en forma de una matriz reticulada, y se incorpora N-acetil-cisteina en dicha matriz reticulada de galactomanano. En una realización particular, el galactomanano se retícula por medio de un agente de reticulación, preferiblemente el agente de reticulación es glutaraldehído .
En otro aspecto, la invención se refiere al hidrogel tal como se ha definido anteriormente, en el que la matriz de galactomanano comprende además curcumina incorporada en la misma .
Adicionalmente , la presente invención también se refiere al hidrogel tal como se ha definido anteriormente que incluye además células. Se prefieren particularmente células seleccionadas del grupo que consiste en fibroblastos, queratinocitos , células endotel iale s, células madre mesenquimales diferenciadas o no diferenciadas, células corneales, células epiteliales, células del sistema leucocitario , células del sistema hematopoyético , células madre diferenciadas o no diferenciadas, células condrogénicas, osteoblastos , miocitos, adipocitos y neuronas u otras células del sistema nervioso periférico y central.
Un aspecto adicional de la presente invención se refiere a un procedimiento para la preparación de un hidrogel tal como se ha definido anteriormente que comprende:
a) disolver el galactomanano en una disolución acuosa; b) someter el galactomanano a una reticulación química añadiendo un agente de reticulación a la disolución acuosa de galactomanano para obtener un hidrogel que comprende una matriz de glucomanano reticulada; c) incorporar N-acetil-cisteína, y opcionalmente la curcumina, en la matriz de glucomanano reticulada.
Otro aspecto de la presente invención se refiere a un aposito para heridas que comprende el hidrogel tal como se ha definido anteriormente.
Un aspecto adicional de la presente invención se refiere a un hidrogel tal como se ha definido anteriormente para su uso como medicamento.
Otro aspecto de la invención se refiere a un hidrogel tal como se ha definido anteriormente para su uso en el tratamiento y/o la cicatrización de heridas traumáticas y quirúrgicas agudas, quemaduras, escaldaduras, fístulas, úlceras venosas, úlceras arteriales, úlceras por presión, úlceras diabéticas, úlceras de etiología mixta, y otras lesiones y trastornos inflamatorios y heridas crónicas o necróticas.
Un aspecto adicional de la invención se refiere una composición cosmética que comprende galactomanano y N-acetil- cisteína .
En otro aspecto, la invención se refiere a la composición cosmética tal como se ha definido anteriormente, que comprende además curcumina.
Otro aspecto de la presente invención se refiere al uso de una composición cosmética tal como se ha definido anteriormente para el tratamiento de un daño de la piel relacionado con la edad .
Otro aspecto de la presente invención se refiere al uso de una composición cosmética tal como se ha definido anteriormente como protector frente a la radiación UV.
BREVE DESCRIPCIÓN DE LOS DIBUJOS
La figura 1 muestra: (a) los resultados de proliferación celular en fibroblastos por medio del ensayo colorimétrico de MTT, usando diferentes concentraciones de NAC, y (b) los valores de CI50 con respecto al control.
La figura 2 muestra: (a) los resultados de proliferación celular en fibroblastos por medio del ensayo colorimétrico de MTT, usando diferentes concentraciones de cúrcuma, y (b) los valores de CI50 con respecto al control.
La figura 3 muestra los resultados correspondientes al ensayo colorimétrico de MTT cuando se somete un cultivo de fibroblastos a un entorno oxidativo y cuando se pone en contacto con LBG al 1%, NAC 1 mM, cúrcuma 1 μΜ y combinaciones de los mismos .
La figura 4 muestra los niveles intracelulares de MRO de fibroblastos sometidos a un entorno oxidativo usando 1 mM de H202, por medio de las unidades de fluorescencia obtenidas en el mareaje con la sonda diacetato de 2 ' , 7 ' -diclorofluoresceina y cuando se ponen en contacto los fibroblastos con LBG al 1%, NAC 5 mM, cúrcuma 5 μΜ y combinaciones de los mismos.
La figura 5 muestra fotografías tomadas del microscopio electrónico de barrido (MEB) de un hidrogel de goma de algarrobo reticulada con glutaraldehído a: (a) el 0% en peso; (b) el 0,5% en peso; (c) el 1% en peso y (d) el 2,5% en peso.
La figura 6 muestra una vista macroscópica de una biopsia de la evolución durante 10 días de lesiones cutáneas generadas quirúrgicamente en la zona dorsal en un modelo animal de cicatrización en cerdos.
La figura 7 muestra una fotografía de la evolución durante 3 días de lesiones cutáneas generadas quirúrgicamente en la zona dorsal en un modelo animal de cicatrización en cerdos. DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
La composición antioxidante usada en la invención comprende dos agentes antioxidantes, concretamente un galactomanano y N-acetil-cisteína . Estos componentes se mezclan físicamente en la composición sin estar unidos por ninguna interacción o enlace químico. Tal como se muestra en las pruebas experimentales, la combinación de un galactomanano, tal como goma de algarrobo, y N-acetil-cisteina proporciona un efecto antioxidante sinérgico sobre cultivos celulares de fibroblastos sometidos a un estrés oxidativo, mejorando la capacidad de supervivencia celular mientras se reducen los niveles intracelulares de metabolitos reactivos de oxigeno.
Los galactomananos son polisacáridos que contienen una estructura principal de mañosa con grupos laterales de galactosa, más específicamente una estructura principal de beta- D-manopiranosa con enlaces (1-4) con puntos de ramificación desde sus posiciones 6 unidas a alfa-D-galactosa, es decir, alfa-D-galactopiranosa con enlaces 1-6. Las gomas de galactomananos incluyen goma de algarrobo (LBG, locust bean gum) , goma guar, goma de Cassia, goma tara, goma de mezquite y goma de alholva.
En una realización particular, el galactomanano se selecciona del grupo que consiste en goma guar, goma de algarrobo, goma de Cassia, goma tara, goma de mezquite, goma de alholva y goma de semilla de trébol blanco. Más preferiblemente, el galactomanano es goma de algarrobo. La goma de algarrobo es un polisacárido de galactomanano que consiste en una estructura principal de manopiranosa con puntos de ramificación desde sus posiciones 6 unidas a residuos de α-D-galactosa. La goma de algarrobo tiene aproximadamente 4 residuos de mañosa por cada residuo de galactosa (una razón mañosa/galactosa de aproximadamente 4) .
Los galactomananos pueden obtenerse a partir de fuentes recombinantes o sintéticas. Por ejemplo, la galactomanosa puede sintetizarse in vivo a partir de GDP-manosa y UDP-galactosa por las enzimas mañano sintasa y galactosiltransferasa . Se ha aislado y caracterizado el ADN que codifica para estas proteínas, (publicación estadounidense 2004/0143871) y se ha mostrado que las plantas recombinantes transformadas con estas enzimas expresan niveles elevados de galactomanano. Además, el grado de galactosilac i ó n de la estructura principal de manopiranosa puede verse influida por la presencia (o ausencia) de alfa-galactosidasa in vivo, (véase Ed ards et al. Plant Physiology (2004) 134: 1153-1162) . La alfa-galactosidasa elimina residuos de galactosa de la estructura principal de manopiranosa. Por ejemplo, las semillas que expresan de manera natural galactomananos con un menor grado de galactosilación pueden expresar (o expresar más) alfa galactosidasa, que elimina restos de galactosa de la estructura principal de manopiranosa en esas especies de planta. La enzima alfa-galactosidasa puede emplearse para reducir la presencia de galactosa en la estructura principal de manopiranosa de gomas de galactomanosa que se producen de manera natural en una manipulación de laboratorio de las características de la goma de galactomanosa que se produce de manera natural. Las realizaciones de la presente invención incluyen galactomananos, que se han tratado con alfa-galactosidasa para reducir la presencia de galactosa en la estructura principal de manopiranosa. Las realizaciones de la presente invención incluyen gomas de galactomanano que se han tratado con alfa-galactosidasa u otras enzimas o tratamientos químicos, para dotar a la goma de las características deseadas como superficies de cultivo celular.
La proporción en peso de galactomanano en la composición de la invención oscila entre el 1 y el 5% con respecto al peso total de la composición.
La N-acetil-cisteína es una molécula antioxidante que interviene en la síntesis de glutatión intracelular , un compuesto que contribuye a eliminar directamente los radicales libres de oxígeno en la célula, así como a reciclar antioxidantes ya utilizados.
La N-acetil-cisteína está preferiblemente presente en la composición de la invención en una concentración que oscila entre 1 y 10 mM, más preferiblemente entre 1 y 5 mM.
En una realización preferida, la composición antioxidante utilizada en la invención es adecuada para la aplicación tópica sobre la piel. Las composiciones antioxidantes tópicas pueden adoptar cualquiera de una amplia variedad de formas, e incluyen, por ejemplo apositos, lociones, disoluciones, aerosoles, cremas, geles, pomadas o similares.
Las lociones son preparaciones que han de aplicarse en la superficie de la piel sin fricción, y son normalmente preparaciones liquidas o semiliquidas en las que están presentes partículas sólidas, incluyendo los principios activos, en una base acuosa o alcohólica. Las lociones son habitualmente suspensiones de sólidos, y comprenden preferiblemente una emulsión aceitosa líquida del tipo de aceite en agua. Las lociones son formulaciones preferidas para tratar grandes áreas corporales debido a la facilidad de aplicar una composición más fluida. Generalmente, se prefiere que la materia insoluble en una loción (hidrogel) esté finamente dividida. Las lociones contienen desde aproximadamente el 0,001% hasta aproximadamente el 30% de los principios activos, desde el 1% hasta el 25% de un emoliente y la cantidad apropiada de agua. Ejemplos de emolientes son ceras hidrocarbonadas y aceites tales como aceites minerales, vaselina, parafina, ceresina, cera microcristalina, polietileno y perhidroescualeno ; aceites de silicona tales como dimetilpolisiloxanos , metilfenilpolisiloxanos y copolímeros de gl i co 1-silicona solubles en agua y solubles en alcohol; triglicéridos , tales como grasas y aceites animales y vegetales; alquil ésteres de ácidos grasos que tienen de 10 a 20 átomos de carbono, alquenil ésteres de ácidos grasos que tienen de 10 a 20 átomos de carbono; ácidos grasos que tienen de 10 a 20 átomos de carbono, tales como ácidos pelargónico, láurico, mirístico, palmítico, esteárico, isoesteárico, hidroxiesteárico , oleico, linoleico, ricinoleico, araquidónico , behénico y erúcico; alcoholes grasos que tienen de 10 a 20 átomos de carbono, tales como los alcoholes laurílico, miristílico, palmitílico, estearílico, isoestearílico, hidroxiestearílico , oleílico, ricinoleílico, behenílico, erucílico y 2-octildodecanol son ejemplos apropiados de alcoholes grasos; éteres de alcoholes grasos, tales como alcoholes grasos etoxilados que tienen de 10 a 20 átomos de carbono incluyendo alcoholes laurílico, cetílico, estearílico, isoestearílico, oleílico y de colesterol que tienen unidos a los mismos desde 1 hasta 50 grupos óxido de etileno o de 1 a 50 grupos óxido de propileno; lanolina y derivados; ceras tales como cera de abejas, esperma de ballena, miristato de miristoilo y estearato de estearilo; derivados de cera de abejas, tales como cera de abejas de polioxietileno-sorbitol ; ceras vegetales, incluyendo, pero sin limitarse a, ceras carnauba y candelilla; fosfolipidos tales como lecitina y derivados; esteróles, tales como colesterol y acil ésteres de colesterol; y amidas, tales como amidas de ácidos grasos, acilamidas etoxiladas y alcanolamidas de ácidos grasos sólidas.
Las lociones de la invención contendrían adicionalmente desde el 1% hasta el 30% de un emulsionante. Los emulsionantes puede ser aniónicos, catiónicos o no iónicos. Los ejemplos de emulsionantes no iónicos incluyen, pero no se limitan a, alcoholes grasos que tienen de 10 a 20 átomos de carbono, alcoholes grasos que tienen de 10 a 20 átomos de carbono condensados con de 2 a 20 moles de óxido de etileno u óxido de propileno, alquilfenoles con de 6 a 12 carbonos en la cadena de alquilo condensados con de 2 a 20 moles de óxido de etileno, mono- y di-acil ésteres de etilenglicol , en los que el ácido graso contiene desde 10 hasta 20 carbonos, monoglicéridos en los que el ácido graso contiene desde 10 hasta 20 carbonos, dietilenglicol , polietilenglicoles de peso molecular 200 a 6000, polipropilenglicol de peso molecular 200 a 3000, glicerol, sorbitol, sorbitano, polioxietileno-sorbitol, polioxietileno- sorbitano y ésteres de cera hidrófilos. Los emulsionantes aniónicos adecuados incluyen, pero no se limitan a, ácidos grasos saponificados (jabones) con potasio, sodio o trietanolamina, en los que el ácido graso contiene desde 10 hasta 20 carbonos. Otros emulsionantes aniónicos adecuados incluyen, pero no se limitan a, metales alcalinos, amonio o amonio sustituido con sulfatos de alquilo, arilsulfonatos de alquilo y alquiletoxi-étersulfonatos que tienen de 10 a 30 carbonos en la cadena de alquilo y desde 1 hasta 50 unidades de óxido de etileno. Los emulsionantes catiónicos adecuados incluyen compuestos de amonio y morfolinio y piridinio cuaternarios .
El resto de la composición es agua. Las lociones se formulan simplemente mezclando todos los componentes entre si. Preferiblemente, los principios activos se disuelven en el emoliente y se añade la mezcla resultante al agua.
Las composiciones de la presente invención también pueden formularse en forma de una disolución. Las disoluciones son mezclas homogéneas preparadas disolviendo los principios activos en un liquido de tal manera que las moléculas de los principios activos disueltos se dispersan entre las del disolvente. Las disoluciones contienen desde el 0,001% hasta el 30% de los principios activos antioxidantes y la cantidad adecuada de un disolvente orgánico. Sustancias orgánicas útiles como disolvente son propilenglicol , polietilenglicol , polipropilenglicol , glicerina, ésteres de sorbitol, 1 , 2 , 6-hexanotriol , etanol, isopropanol, tartrato de dietilo, butanodiol y mezclas de los mismos. Tales sistemas de disolventes también pueden contener agua .
Estas composiciones se aplican sobre la piel en forma de una disolución, o se formulan disoluciones en forma de aerosol y se aplican sobre la piel como una pulverización.
Las composiciones en forma de aerosol contienen adicionalmente desde el 25% hasta el 80% de un propelente adecuado. Los ejemplos de propelentes adecuados incluyen, pero no se limitan a hidrocarburos de bajo peso molecular clorados, fluorados o fluoroclorados . También se usan óxido nitroso y dióxido de carbono como gases propelentes. Se usa suficiente cantidad para expeler el contenido del cartucho.
La composición de la presente invención puede formularse también en forma de una crema. Por ejemplo, las cremas, tal como se sabe bien en las técnicas de formulaciones farmacéuticas y cosméticas, son emulsiones liquidas o semisólidas viscosas, o bien de aceite en agua o bien de agua en aceite. Las bases de cremas son lavables con agua y contienen una fase aceitosa, un emulsionante y una fase acuosa. La fase aceitosa está compuesta generalmente por vaselina y un alcohol graso tal como alcohol cetílico o estearílico. Habitualmente, aunque no necesariamente, la fase acuosa supera a la fase aceitosa en volumen, y generalmente contiene un humectante. El emulsionante en una formulación de crema es generalmente un tensioactivo no iónico, aniónico, catiónico o anfótero y puede seleccionarse de emulsionantes mencionados anteriormente para lociones o mezclas de los mismos.
Los geles son sistemas de tipo suspensión, semisólidos. Los geles de fase única contienen macromoléculas orgánicas distribuidas de manera sustancialmente uniforme por todo el liquido portador, que es normalmente acuoso, pero también, preferiblemente, contienen un alcohol y, opcionalmente , un aceite. Macromoléculas orgánicas preferidas, es decir, agentes gelificantes , pueden ser polímeros químicamente reticulados tales como polímeros de ácido acrílico reticulados, por ejemplo la familia "carbómero" de polímeros, por ejemplo, carboxipolialquilenos , que pueden obtenerse comercialmente con la marca comercial Carbopol®. También pueden preferirse polímeros hidrófilos tales como poli (óxido de etileno) , copolímeros de polioxietileno-polioxipropileno y poli (alcohol vinílico ) ; polímeros celulósicos tale s como hidroxipropilcelulosa, hidroxietilcelulosa, hidroxipropilmetilcelulosa y metilcelulosa; gomas tales como goma tragacanto y xantana; alginato de sodio; y gelatina.
Las pomadas, tal como se conoce bien en la técnica, son preparaciones semisólidas que normalmente se basan en vaselina u otros derivados del petróleo. La base de pomada específica que va a usarse, tal como apreciarán los expertos en la técnica, es una que proporcionará varias características deseables, por ejemplo emoliencia o similares. Las bases de pomadas pueden agruparse en cuatro clases: bases oleaginosas, bases emulsionables, bases de emulsión y bases solubles en agua. Las bases de pomada oleaginosas incluyen, por ejemplo, aceites vegetales, grasas obtenidas de animales e hidrocarburos semisólidos obtenidos del petróleo. Las bases de pomada emulsionables, también conocidas como bases de pomada absorbentes, contienen poca o nada de agua e incluyen, por ejemplo, sulfato de hidroxiestearina , lanolina anhidra y vaselina hidrófila. Las bases de pomada de emulsión son o bien emulsiones de agua en aceite o bien emulsiones de aceite en agua e incluyen, por ejemplo, alcohol cetilico, monoestearato de glicerilo, lanolina y ácido esteárico. Las bases de pomada solubles en agua preferidas se preparan a partir de polietilenglicoles de peso molecular variable.
También puede incorporarse un vehículo farmacéutico aceptable en las composiciones y puede ser cualquier vehículo usado convencionalmente en la técnica. Los ejemplos incluyen agua, alcoholes inferiores, alcoholes superiores, alcoholes polihidroxilados , monosacáridos , disacáridos, polisacáridos, aceites de hidrocarburos, ceras, ácidos grasos, aceites de silicona, tensioactivos no iónicos, tensioactivos iónicos, tensioactivos de silicona y mezclas a base de agua y mezclas a base de emulsión de dichos vehículos.
Las composiciones tópicas descritas anteriormente pueden aplicarse regularmente a cualquier zona de la piel que requiera tratamiento con la frecuencia y en la cantidad necesarias para lograr los resultados deseados. La frecuencia de tratamiento depende de la naturaleza de la enfermedad o el estado cutáneo, es decir, la enfermedad o el estado cutáneo que resulta de la producción de especies reactivas de oxígeno en la piel o que implica la producción de especies reactivas de oxígeno en la piel, así como el grado de daño o deterioro de la piel.
Debido a las propiedades antioxidantes de la combinación de galactomanano y N-acetil-cisteína, puede usarse para tratar o prevenir una enfermedad o un estado cutáneo que resulta de la producción de especies reactivas de oxígeno en la piel de un sujeto, o de una enfermedad o un estado cutáneo que implica la producción de especies reactivas de oxígeno en la piel de un sujeto, particularmente en fibroblastos y queratinocitos de la piel. Este tratamiento incluye poner en contacto con la piel de un sujeto aplicando directamente a la piel una formulación tópica tal como se describe en el presente documento, de una manera que afecta al sujeto, y/o al tejido cutáneo en el sujeto y/o a una o una pluralidad de células, para obtener un efecto farmacológico y/o efecto fisiológico deseado. El efecto puede ser profiláctico en cuanto a prevenir completa o parcialmente una enfermedad o un trastorno tal como un estado que resulta de la producción de especies reactivas de oxigeno en la piel o que implica la producción de especies reactivas de oxigeno en la piel, o un signo o síntoma del mismo, y/o el efecto puede ser terapéutico en cuanto a aliviar síntomas o signos o proporcionar una cura parcial o completa para un trastorno o una enfermedad de este tipo y/o sustancialmente reducir un efecto adverso atribuible al trastorno o la enfermedad.
Las realizaciones relacionadas contemplan, a modo de ej emplo :
(i) prevenir que se produzca la enfermedad o el trastorno (por ejemplo, estado cutáneo que resulta de la producción de especies reactivas de oxígeno o que implica la producción de especies reactivas de oxígeno) en un sujeto que puede estar predispuesto a la enfermedad o el trastorno, pero al que aún no se le ha diagnosticado que lo tiene;
(ü) inhibir la enfermedad o el trastorno, es decir, detener su evolución; o
(iii) aliviar o mejorar la enfermedad o el trastorno, es decir, provocar su regresión.
En una realización particular, el tratamiento de una enfermedad o un estado cutáneo que resulta de la producción de especies reactivas de oxígeno incluye la reparación y regeneración de células o tejido dañado o lesionado en el sitio de daño de la piel. Este daño puede ser el resultado de la exposición del sujeto a una fuente de estrés oxidativo que puede promover la producción de especies de radicales de oxígeno en la piel, tal como la radiación de la luz solar (fotodaño), agentes químicos (incluyendo otros agentes tópicos tales como compuestos médicos, farmacéuticos o cosméticos) , radioterapia o quimioterapia. También incluye tratamientos profilácticos para prevenir tal daño, por ejemplo, antes de la exposición del sujeto a una fuente de estrés oxidativo que puede promover la producción de especies de radicales de oxígeno en la piel, tal como radiación UV, agentes químicos (incluyendo otros agentes tópicos tales como compuestos médicos, farmacéuticos o cosméticos) o antes de la radioterapia o quimioterapia.
Más particularmente, la enfermedad o el estado cutáneo resulta de la exposición a la luz solar, más específicamente a la radiación UV de tipo UVA, UVB y UVC . Estados que son directa o indirectamente una consecuencia de (o bien se exacerban por, o bien incluyen como un factor de riesgo) la exposición a tal radiación incluyen efectos tanto directos como inmediatos, así como efectos a más largo plazo, y complicaciones y secuelas que surgen del daño directo, a lo largo de un plazo más largo.
Se cree que la radiación UV incide sobre la piel a través de un mecanismo tanto directo como indirecto. El daño directo es el que se produce tras la exposición inmediata a la radiación, mientras que los efectos indirectos incluyen los que siguen a la generación de moléculas biológicas dañadas y la generación de especies de oxígeno sumamente reactivas que entonces activan otros procesos patológicos y biológicos. Las especies reactivas de oxígeno pueden tener efectos perjudiciales en la ubicación inmediata en la que se generan, como en la piel, o en sitios distantes, en los que tales especies reactivas pueden tener efectos sistémicos más amplios, tal como se pone de manifiesto por lo que se denomina "estrés oxidativo". Una intervención que reduce eficazmente el nivel de especies reactivas, teniendo de ese modo un efecto antioxidante, puede ralentizar, mejorar o detener la evolución de una amplia gama de enfermedades.
Los problemas de salud asociados con la exposición a radiación UV implican estados o enfermedades de la piel, pero también pueden surgir estados más extendidos y sistémicos, o ser una parte de complicaciones que siguen como consecuencia de tales estados o enfermedades de la piel. Por consiguiente, tales estados, colectivamente, pueden incluir quemadura solar, fotosensibilidad, inmunosupresión, envejecimiento prematuro, psoriasis, varios tipos de cáncer de piel y diversas enfermedades inmunológicas , asi como inflamación localizada o extendida, diversas infecciones bacterianas o fúngicas, erupciones cutáneas y estreses oxidativos sistémicos provocados por la exposición a la radiación UV y la dieta. La queratosis actinica, por ejemplo, es una lesión precancerosa desarrollada tras muchos años de exposición solar. La erupción solar polimorfa, por ejemplo, es una erupción inducida por la exposición a la luz solar, que se entiende que está implicada en alergia localizada en la piel. Los tipos de cáncer de piel vinculados a la exposición a la luz solar incluyen, en orden de gravedad creciente, cáncer de células básales, cáncer de células escamosas y melanoma maligno.
En otra realización particular, la enfermedad o el estado cutáneo que induce la producción de especies reactivas de oxigeno en la piel de un sujeto se selecciona de heridas traumáticas y quirúrgicas agudas, quemaduras, escaldaduras, fístulas, úlceras venosas, úlceras arteriales, úlceras por presión, úlceras diabéticas, úlceras de etiología mixta, y otras lesiones y trastornos inflamatorios y heridas crónicas o necróticas .
En una realización particular de la presente invención, la composición antioxidante de la invención comprende además curcumina como principio activo adicional. Se ha encontrado que la combinación de ga 1 a c t orna n a n o con N-acetil-c i s t e i na y curcumina proporciona un efecto antioxidante sinérgico incluso mayor tal como muestran los ejemplos proporcionados en la presente solicitud.
La curcumina, también conocida como cúrcuma, es un derivado de o-metoxifenol que se produce de manera natural de formula :
Figure imgf000020_0001
Es un pigmento amarillo obtenido de los rizomas de Cúrcuma Longa y se ha usado durante siglos en la medicina tradicional para el tratamiento de una variedad de estados inflamatorios. La curcumina también actúa como eliminador de radicales libres y antioxidante, inhibiendo la peroxidación de lipidos y el daño oxidativo al ADN.
La curcumina está presente preferiblemente en la composición de la invención en una concentración que oscila entre 1 y aproximadamente 7,5 μΜ, más preferiblemente entre 1 y 5 μΜ.
Por tanto, otro aspecto de la presente invención se refiere a una composición antioxidante que comprende glactomanano , N-acetil-cisteina y curcumina.
Dicha composición antioxidante es también adecuada para aplicación tópica sobre la piel y puede tomar cualquiera de una amplia variedad de formas, incluyendo, por ejemplo apositos, lociones, disoluciones, pulverizaciones, cremas, geles, pomadas o similares, tal como las mencionadas anteriormente.
Adi cionalmente , la presente invención se refiere a la composición antioxidante que comprende galactomanano, N-acetil- cisteina y curcumina para su uso como medicamento.
Esta composición antioxidante puede usarse también para tratar o prevenir una enfermedad o un estado cutáneo que resulta de la producción de especies reactivas de oxigeno en la piel de un sujeto o una enfermedad o un estado cutáneo que implica la producción de especies reactivas de oxigeno en la piel de un sujeto, tal como los mencionados anteriormente.
En otra realización particular, la presente invención se refiere a un hidrogel que comprende galactomanano y N-acetil- cisteina, en el que el galactomanano está en forma de una matriz reticulada y se incorpora N-acetil-cisteína en dicha matriz reticulada de galactomanano.
El término "hidrogel" se refiere a una red de cadenas poliméricas que comprende cadenas de galactomanano reticuladas que son insolubles en agua pero hinchables en agua, es decir, el agua es el medio de dispersión.
El hidrogel de la invención proporciona un medio fiable y eficaz para administrar N-acetil-ci steina al sitio de interés, tal como a una herida, úlcera, quemadura o escaldadura, mientras se mejoran las propiedades antioxidantes y de cicatrización de este principio activo. De hecho, las pruebas experimentales han mostrado el efecto antioxidante sinérgico inducido por la combinación de un galactomanano, tal como goma de algarrobo, y N-acetil-ci steina sobre cultivos celulares de fibroblastos, mejorando la capacidad de supervivencia celular mientras se reducen los niveles intracelulares de metabolitos reactivos de oxigeno. El hidrogel también proporciona una muy buena capacidad de regulación de la humedad para promover la cicatrización de heridas .
El hidrogel de la invención comprende cadenas polimerizadas de galactomanano, dichas cadenas de galactomanano están reticuladas con el fin de preparar galactomanano insoluble en agua pero hinchable en agua. El grado de reticulación determina las propiedades reológicas del hidrogel, asi como sus propiedades hinchables, y permite obtener una porosidad que favorece la administración controlada de N-acetil-cisteina .
Particularmente, el galactomanano se selecciona del grupo que consiste en goma guar, goma de algarrobo, goma de Cassia, goma tara, goma de mezquite, goma de alholva y goma de semilla de trébol blanco. Más preferiblemente, el galactomanano es goma de algarrobo .
En una realización particular, el galactomanano se retícula por medio de un agente de reticulación. Pueden usarse agentes químicos tales como bórax (borohidrato de sodio) , glutaraldehí do y derivados epoxídicos. Particularmente, el agente de reticulación más preferido es glutaraldehído . El contenido en agente de reticulación determina el tamaño de poro de la matriz y por tanto el perfil de administración del principio activo incorporado en la misma.
El galactomanano puede estar presente en el hidrogel según la invención en una cantidad de al menos el 50% en peso con respecto al peso total del hidrogel, preferiblemente al menos el 75% en peso. Más preferiblemente, al menos el 90% en peso del hidrogel consiste en galactomanano.
El resto del hidrogel comprende agua (hasta el 20% en peso) , el principio activo (N-acetil-cisteina) y, opcionalmente , sales u otros compuestos estructurales que mejoran las propiedades reológicas del hidrogel.
Entre los compuestos estructurales que pueden estar presentes opcionalmente en el hidrogel, se prefieren proteínas tales como colágeno, f ib r o ne c t i na , laminina, elastina o combinaciones de los mismos, así como glicosaminoglicanos , tales como hialuronatos , sulfato de heparina o sulfato de condroitina.
Preferiblemente, el hidrogel según la presente invención absorberá agua o fluido de la herida y por tanto se humedecerá, hinchará o se convertirá en una masa gelatinosa pero no se disolverá ni se dispersará espontáneamente en la misma. La baja solubilidad hace que tales materiales sean especialmente adecuados para su uso como apositos para heridas para eliminar especies reactivas de oxígeno del fluido de la herida.
Puede incorporarse directamente N-acetil-cisteína en la matriz de galactomanano reticulada. Este principio activo puede incorporarse mediante la absorción del agente por la matriz o añadiendo el agente en la formulación inicial para la matriz antes de la reticulación.
En una realización preferida de la invención, la incorporación de N-acetil-cisteína en la matriz de galactomanano se lleva a cabo mediante la formación de un xerogel .
El término "xerogel" se refiere a un sustrato sólido formado a partir de un hidrogel mediante secado con contracción libre. Retiene una alta porosidad (al menos el 25%) y una enorme área de superficie (150-900 m2/g) junto con un tamaño de poro muy pequeño (1-10 nm) .
El xerogel obtenido se introduce en una disolución acuosa que comprende N-acetil-cisteina y entonces este principio activo se incorpora gradualmente en el poro de la matriz o se dispersa en la misma hasta que se alcanza el equilibrio.
La N-acetil-cisteina está presente preferiblemente en el hidrogel en una concentración que oscila entre 1 y 10 mM, más preferiblemente entre 1 y 5 mM.
Otro aspecto de la presente invención se refiere al hidrogel de la invención mencionado anteriormente que comprende además curcumina como un principio activo adicional que va a incorporarse en la matriz de galactomanano. Se ha encontrado que la combinación de un galactomanano, tal como goma de algarrobo, con N-acetil-cisteina y curcumina proporciona un efecto antioxidante sinérgico incluso mayor.
Como en el caso de la N-acetil-cisteina, puede incorporarse también curcumina en la matriz de galactomanano mediante la absorción de este compuesto por la matriz o añadiéndolo en la formulación inicial para la matriz junto con la N-acetil-cisteina antes de reticular el galactomanano.
Sin embargo, también se prefiere incorporar curcumina y N- acetil-cisteina introduciendo un xerogel de galactomanano en una disolución que comprende ambos principios activos, permitiendo asi la incorporación gradual de los mismos en la matriz de galactomanano .
La curcumina está presente preferiblemente en el hidrogel en una concentración que oscila entre aproximadamente 1 y aproximadamente 7,5 μΜ, más preferiblemente entre 1 y 5 μΜ.
Debe entenderse que los principios activos se incorporan en el hidrogel, de modo que los agentes se liberan directamente del hidrogel y se administran además por medio de las vías transdérmica o transmucosa. Los agentes incorporados pueden liberarse a lo largo de un periodo de tiempo prolongado con el fin de facilitar la cicatrización de heridas. En una realización particular, una vez que el/los principio (s) activo (s) se incorporan y dispersan por toda la matriz de glucomanano, una parte del agente reside en la matriz mientras que la otra parte del agente se disuelve en la fase liquida libre y se mueve libremente a través de la matriz. Debido a que el agente se disuelve en la fase liquida libre, se crea un gradiente de concentración del agente activo entre la matriz del hidrogel y la humedad de la propia herida. Por tanto, cuando el hidrogel se coloca sobre una superficie húmeda tal como una herida abierta, el agente soluble se moverá a través de la fase liquida libre hacia la humedad de la herida libre de agente, dando como resultado la administración del agente a la herida. Este movimiento de agente soluble altera además el equilibrio entre agentes solubles e insolubles, y provoca que se disuelva más agente en la fase liquida libre, provocando asi que se administre más agente a la herida.
La administración de los principios activos también puede controlarse mediante el grado de reticulación en la matriz. La combinación de cadenas reticuladas entre si crea microcavidades en las que los principios activos están encapsulados. Controlando la cantidad de agente de reticulación y la longitud de las cadenas de galactomanano, es posible regular el tamaño de las microcavidades de la matriz de galactomanano. Se producen microcavidades más grandes mediante un grado de reticulación inferior, que permiten una migración más libre y una administración más rápida de los agentes activos, mientras que microcavidades más pequeñas aumentan el tiempo de administración .
El procedimiento para la preparación del hidrogel de la invención comprende:
a) disolver el galactomanano en una disolución acuosa;
b) someter el galactomanano a una reticulación química añadiendo un agente de reticulación a la disolución acuosa de galactomanano para obtener un hidrogel que comprende una matriz de glucomanano reticulada; c) incorporar N-acetil-cisteína, y opcionalmente la curcumina, en la matriz de glucomanano reticulada.
Preferiblemente, el galactomanano se disuelve en agua destilada a temperatura ambiente en una cantidad que oscila entre el 1% y el 5% en peso con respecto al peso total de la disolución. Esta disolución se mantiene con agitación durante aproximadamente 2-3 horas. Dependiendo del galactomanano, puede requerirse aumentar la temperatura con el fin de facilitar la disolución del mismo.
En una realización particular, el galactomanano es goma de algarrobo. En este caso, la disolución debe realizarse a una temperatura entre 110 y 120°C.
La etapa de reticulación se lleva a cabo con el objetivo de formar una estructura de matriz tridimensional, dotándola de poros o cavidades en los que se incorporará el principio activo. Los métodos de reticulación incluyen reticulación inducida por UV y reticulación química. Pueden usarse agentes químicos tales como bórax (borohidrato de sodio) , glutaraldehído , derivados epoxídicos y otros métodos conocidos en la técnica. Los métodos de reticulación por UV requieren un fotoiniciador que inicia el proceso de gelificación o reticulación tras la exposición de radiación UV.
El grado de reticulación depende de la cantidad de agente de reticulación añadida a la disolución y oscila entre aproximadamente el 1% y aproximadamente el 5% en peso con respecto al peso total de la disolución acuosa. Preferiblemente, el agente de reticulación es glutaraldehído .
En una realización particular, la disolución de galactomanano y el agente de reticulación se mantienen con agitación durante al menos 30 minutos. Posteriormente, la disolución se vierte en moldes, manteniéndose en los mismos hasta la formación del hidrogel. El agente de reticulación que no reacciona se elimina mediante varios lavados .
La incorporación de la N-acetil-cisteína, y curcumina cuando este principio activo está presente en la formulación del hidrogel, puede realizarse mediante la absorción del agente por la matriz. Alternativamente, el/los principio (s) activo (s) pueden añadirse a la disolución acuosa de galactomanano antes de la reticulación de la misma.
En una realización preferida de la invención, la incorporación del/de los principio (o) activo (s) comprende las siguientes etapas:
1) secar el hidrogel obtenido en la etapa b) para formar un xerogel;
2) rehidratar el xerogel introduciéndolo en una disolución acuosa que comprende N-acetil-cisteina, y opcionalmente curcumina, para formar un hidrogel en el que se incorporan N-acetil-cisteina, y opcionalmente curcumina, en la matriz de glucomanano reticulada.
3) secar parcialmente el hidrogel obtenido en la etapa 2) . Puede obtenerse un xerogel seco o matriz de película a partir de un hidrogel mediante un método de secado por congelación o secado por convección según procesos conocidos por un experto en la técnica. En una realización preferida, el xerogel seco se forma a partir del hidrogel mediante un proceso de secado evaporativo, preferiblemente secado al aire, secado a vacío o secado por convección.
Posteriormente, el xerogel se rehidrata para formar un hidrogel que logra una cinética de liberación apropiada y, al mismo tiempo, se incorpora una alta concentración de principio (o) activo (s) en el lado de liberación de la matriz de galactomanano .
Finalmente, el hidrogel se seca parcialmente para su posterior aplicación al sitio de interés.
En una realización particular de la invención, el hidrogel comprende además células incorporadas en la matriz de galactomanano o en la superficie de la misma. La incorporación de células potencia la actividad regenerativa del hidrogel y el proceso de reparación tisular en aquellos tejidos sumamente dañados o sin la posibilidad de contribución celular in situ del paciente, puesto que este biomaterial contiene células sanas del mismo tipo que las presentes en el tejido dañado. Preferiblemente, las células incorporadas en el hidrogel se seleccionan del grupo que consiste en fibroblastos, queratinocitos , células endoteliales , células madre mesenquimales diferenciadas o no diferenciadas, células corneales, células epiteliales, células del sistema leucocitario , células del sistema hematopoyético , células madre diferenciadas o no diferenciadas, células condrogénicas , osteoblastos , miocitos, adipocitos y neuronas u otras células del sistema nervioso periférico y central.
En una realización particular de la invención, el hidrogel se incorpora en un aposito para heridas. Por tanto, otro aspecto de la presente invención se refiere a un aposito para heridas que comprende el hidrogel de la invención. El aposito para heridas tiene preferiblemente forma de lámina y comprende una capa activa del hidrogel según la invención. La capa activa seria normalmente la capa de contacto con la herida en uso, pero en algunas realizaciones podría estar separada de la herida mediante una lámina superior permeable a líquidos .
El aposito para heridas puede incluir otros componentes. Por ejemplo, con el fin de aumentar la permeabilidad del material de aposito para heridas, pueden añadirse agentes de control de la pérdida de agua. Una disminución en la permeabilidad del material de aposito para heridas controla la pérdida de fluidos a partir de la herida. Agentes de control de la pérdida de agua preferidos son glicolípidos , ceramidas, ácidos grasos libres, colesterol, triglicéridos , estearil ésteres y aceite de silicona.
Si se desea, puede añadirse también un plastificante al aposito para heridas. Los plastificantes actualmente preferidos son glicerol y agua, sin embargo, también pueden usarse propilenglicol y butanol .
Si se desea, puede añadirse también un agente de control de la hidratación al material de aposito para heridas. El agente de control de la hidratación preferido es alcohol isopropílico, sin embargo, también pueden usarse etanol, glicerol, butanol y propilenglicol . Preferiblemente, el aposito para heridas comprende además una lámina de soporte que se extiende sobre la capa activa opuesta al lado que se orienta hacia la herida de la capa activa. Preferiblemente, la lámina de soporte es mayor que la capa activa de manera que una región marginal se extiende alrededor de capa activa para formar un denominado aposito de isla. En tales casos, la lámina de soporte está recubierta preferiblemente con un adhesivo de calidad médica sensible a la presión en al menos su región marginal.
Preferiblemente, la lámina de soporte es permeable al vapor de agua, pero no es permeable a agua liquida o exudado de la herida. Preferiblemente, la lámina de soporte es también impermeable a microorganismos. Esto permite que la herida bajo el material para aposito cicatrice en estados húmedos sin provocar que la piel que rodea a la herida se macere.
Los polímeros adecuados para formar la lámina de soporte incluyen poliuretanos y poli (acrilatos y metacrilatos de alcoxialquilo) tales como los dados a conocer en el documento GB-A-1280631.
La capa adhesiva (cuando está presente) debe ser transmisora de vapor de humedad y/o estar diseñada para permitir el paso de vapor de agua a través de la misma. La capa adhesiva es preferiblemente una capa adhesiva sensible a la presión transmisora de vapor de humedad continua del tipo convencionalmente usado para apositos para heridas de tipo isla, por ejemplo, un adhesivo sensible a la presión basado en copolímeros de éster de acrilato, polivinil etil éter y poliuretano tal como se describe por ejemplo en el documento GB- A-1280631.
La superficie del aposito que se orienta hacia la herida está protegida preferiblemente por una lámina de cubierta separable. La lámina de cubierta está formada normalmente por material termoplástico flexible. Los materiales adecuados incluyen poliésteres y poliolefinas . Preferiblemente, la superficie que se orienta hacia el adhesivo de la lámina de cubierta es una superficie de liberación. Es decir, una superficie que es sólo débilmente adherente a la capa activa y el adhesivo sobre la lámina de soporte, para ayudar a despegar la capa adhesiva de la lámina de cubierta. Por ejemplo, la lámina de cubierta puede estar formada por un plástico no adherente tal como un fluoropolimero , o puede estar dotada de un recubrimiento de liberación tal como un recubrimiento de liberación de fluoropolimero o silicona.
Normalmente, el aposito para heridas según la invención es estéril y está envasado en un recipiente impermeable a los microorganismos.
Por tanto, el hidrogel de la presente invención puede usarse sobre tejido lesionado y para drenajes de fluidos corporales en los que se desea el control y la gestión del fluido y las secreciones. La expresión "fluido corporal" incluye, pero no se limita a, saliva, secreciones gingivales, liquido cefalorraquídeo, líquido gastrointestinal, moco, secreciones urogenitales, líquido sinovial, sangre, suero, plasma, orina, líquido quístico, líquido linfático, ascitis, efusión pleural, líquido intersticial, líquido intracelular, líquidos oculares, líquido seminal, secreciones mamarias, humor vitreo y secreciones nasales .
En particular, el hidrogel puede aplicarse preferiblemente para su uso en heridas crónicas y agudas con exudación para controlar la humedad del exudado que se acumula, soportar el lecho de la herida y los tejidos circundantes.
Por consiguiente, en un aspecto adicional, la presente invención proporciona el hidrogel según la presente invención para su uso en el tratamiento y/o la cicatrización de heridas traumáticas y quirúrgicas agudas, quemaduras, escaldaduras, fístulas, úlceras venosas, úlceras arteriales, úlceras por presión, úlceras diabéticas, úlceras de etiología mixta, y otras lesiones y trastornos inflamatorios y heridas crónicas o necróticas .
El hidrogel de la presente invención está destinado al tratamiento de heridas tanto infectadas como no infectadas (que es lo mismo que heridas que no muestran signos clínicos de infección) . Preferiblemente, la herida es una herida crónica o necrótica. Más preferiblemente, la herida crónica se selecciona del grupo que consiste en úlceras de etiología venosa, arterial mixta, úlceras de decúbito o úlceras diabéticas . Preferiblemente, el hidrogel se usa como antioxidante para reducir el estrés oxidativo en el entorno de la herida y de ese modo promover la cicatrización de heridas.
En uso, el hidrogel, o el aposito para heridas que lo contiene, se coloca en contacto directo con el lecho de la herida. Si se requiere, puede sujetarse en la posición con el aposito para heridas tal como el descrito anteriormente. Si es necesario, el aposito para heridas y el hidrogel se retiran, mediante lo cual cualquier exudado y tejido necrótico acumulado se elimina. El hidrogel puede sustituirse por un hidrogel nuevo y otro aposito para heridas adecuado.
El hidrogel puede experimentar una acción de hinchamiento a medida que absorbe humedad del exudado, sin embargo, no se disolverá. La acción de hinchamiento desplaza el material necrótico de la superficie de la herida y fuerza al material al interior de la matriz del hidrogel. El contenido en humedad cargado y la retención de la humedad cerca del lecho de la herida por el hidrogel contribuyen a la estimulación del proceso de desbridamiento autolítico mediante el cual las propias enzimas del organismo rompen el tejido necrótico y los residuos celulares.
Otro aspecto de la presente invención se refiere a una composición cosmética que comprende galactomanano y N-acetil- cisteína .
La composición cosmética incluye cualquier composición líquida o cualquier composición que comprende la combinación de galactomanano y N-acetil-ci steí na y que está en forma de gel, crema, pomada o bálsamo para su administración tópica. Dichas composiciones se caracterizan porque tienen propiedades emolientes, protectoras y cicatrizantes incluso cuando no tienen ninguna molécula cosméticamente activa asociada. En una variante de la invención, la composición cosmética puede incorporar también moléculas activas que, aunque no tienen ningún efecto terapéutico, tienen propiedades como agente cosmético. Entre las moléculas activas que pueden incorporarse en la composición antioxidante pueden mencionarse agentes emolientes, conservantes, sustancias de fragancia, agentes antiacné, agentes antifúngicos , antioxidantes, desodorantes, antiperspirantes , agentes anticapsa, despigmentantes , agentes antiseborreicos , colorantes, lociones de bronceado, absorbentes de luz UV, enzimas, sustancias de fragancia, entre otros.
La composición cosmética puede comprender además agentes de control del pH, tales como, por ejemplo, agentes tamponantes, que evitan que el pH de la composición se reduzca hasta valores por debajo de 5, asi como conservantes que evitan cambios estructurales importantes en la composición. Un experto en la técnica puede determinar componentes adicionales que pueden usarse y si son necesarios, siendo muchos de ellos de uso común en composiciones cosméticas.
La composición cosmética de la invención puede usarse en el tratamiento de un daño de la piel relacionado con la edad.
El daño de la piel relacionado con la edad se refiere a cualquier estado o trastorno de la piel asociado con, provocado por, o afectado por, envejecimiento intrínseco y/o envejecimiento extrínseco que a menudo se atribuyen al daño provocado por radicales libres de oxígeno. Los radicales libres de oxígeno pueden dañar células y se cree que aceleran las enfermedades relacionadas con la edad. El daño de la piel relacionado con la edad puede estar provocado también por años de daño solar, mala nutrición, altos niveles de estrés, exposición a la contaminación medioambiental y ciertas elecciones del estilo de vida, tal como fumar y consumir drogas y alcohol.
Por ejemplo, el estado de la piel relacionado con el envejecimiento puede implicar arrugas, manchas por envejecimiento, daño solar (particularmente estrés oxidativo inducido por radiación UV) , defectos, piel hiperpigmentada, aumento del grosor de la piel, pérdida de elasticidad de la piel y del contenido en colágeno y/o piel seca.
En otro aspecto, la presente invención se refiere al uso de la composición cosmética tal como se describió anteriormente como protector frente a la radiación UV.
Esta invención se ilustra adicionalmente mediante los siguientes ejemplos que no deben interpretarse de ningún modo como que imponen limitaciones al alcance de la misma. Ejemplos
Ejemplo 1. Estimación de las concentraciones limite de NAC y cúrcuma
N-acetil-c i s t e i na (NAC) , goma de algarrobo (LBG) y curcumina (cúrcuma o Cur) fueron suministrados por Sigma.
Se establecieron las concentraciones limite en el uso de
NAC y cúrcuma tras ensayos de proliferación y citotoxicidad in vitro en fibroblastos humanos dentro de un intervalo de desde 0,5 mM hasta 20 mM para NAC y desde 0,5 μΜ hasta 50 μΜ para cúrcuma .
Se llevó a cabo el ensayo de proliferación usando el ensayo colorimétrico de MTT (Roche 11465007001) . MTT es una sal de tetrazolio amarilla que forma cristales de formazán en células activas. Los cristales de formazán se solubilizan y el color resultante se cuantifica por medio de espectrofotometria a 550 nm.
Se sembraron fibroblastos en una placa de 96 pocilios a una densidad de 4000 células por pocilio. Se mantuvieron las células a 37°C en una estufa de incubación. Al siguiente dia, se añadieron los tratamientos de NAC y cúrcuma al cultivo celular usando un volumen de 200 μΐ por pocilio. Se dejó incubar el cultivo celular durante 24, 48 y 72 horas.
Tras cada tiempo de incubación, se añadieron 20 μΐ de MTT (una concentración final de 0,5 mg/ml) a cada pocilio. Se mantuvo la placa durante 4 horas en la estufa de incubación con el fin de permitir la formación de cristales de formazán. Posteriormente, se añadieron 100 μΐ de solubilizante a cada pocilio y se dejó la placa en la estufa de incubación hasta el siguiente dia. Entonces, se midieron los datos de absorbancia a 550 nm .
Las figuras la y 2a muestran los resultados de los ensayos de proliferación y c i t o t o x i c i da d por medio del ensayo colorimétrico de MTT, usando diferentes concentraciones de NAC y cúrcuma .
Se estableció la CI50 de cada componente, es decir, la concentración que provoca una disminución de células del 50% con respecto al control, como limite de toxicidad (figuras Ib y 2b) .
Para el caso de NAC, ninguna de las concentraciones estudiadas alcanzó la CI50 a las 72 horas, aunque concentraciones de 10 y 20 mM redujeron progresivamente la proliferación celular con respecto al control. El limite máximo de concentración de NAC podía establecerse a 10 mM . Basándose en los resultados obtenidos en los experimentos, se seleccionaron concentraciones de 1 y 5 mM de NAC puesto que dieron como resultado una mejora de la tasa de proliferación de los fibroblastos.
En el caso del estudio del límite máximo de concentración de cúrcuma, se observó cómo las concentraciones de 20 y 50 μΜ tuvieron toxicidad desde las primeras 24 horas, superando el límite de CI50. La concentración de 10 μΜ supera el límite a las 72 horas y la concentración de 7,5 μΜ alcanza la CI50 a las 72 horas. Por tanto, puede establecerse la concentración de 7,5 μΜ como el límite máximo de uso de cúrcuma en la mezcla.
Se seleccionaron concentraciones de 1 y 5 μΜ de cúrcuma para los experimentos puesto que no se observaron efectos tóxicos .
Ejemplo 2. Efecto de los componentes de la composición de la invención y la combinación de los mismos sobre la viabilidad de fibroblastos humanos
El objetivo del ensayo es determinar el efecto provocado por LBG, NAC, cúrcuma y combinaciones de los mismos sobre la capacidad de supervivencia de las células en un entorno adverso, tal como el que hay en el lecho de una herida.
Para este fin, se sometieron fibroblastos a un entorno oxidativo usando peróxido de hidrógeno durante 1 hora y se pusieron en contacto con LBG, NAC, cúrcuma y combinaciones de los mismos. Se analizó la viabilidad celular de los fibroblastos en cultivo por medio del ensayo colorimétrico de MTT tal como se definió anteriormente. Siembra de células para el ensayo
El dia antes del ensayo, se sembraron los fibroblastos en una placa de 96 pocilios a una densidad de 11500 células por pocilio. Se realizaron todos los ensayos por triplicado. Ensayo
Se prepararon los tratamientos en el dia del experimento y se añadió el peróxido de hidrógeno justo antes del ensayo.
Preparación de la goma de algarrobo al 1% en medio de crecimiento celular normal
Se preparó una disolución de goma de algarrobo del 1% en agua destilada y se calentó a más de 100°C hasta que se completó la disolución de la goma. Entonces se centrifugó la disolución durante 20 minutos a 4000 rpm para eliminar las impurezas de la mezcla. Se liofilizó la disolución de la goma de algarrobo. Se disolvió el liofilizado en medio de crecimiento celular (DMEM+10% de FBS) a una concentración del 1%.
Preparación de los tratamientos de NAC y curcumina y de peróxido de hidrógeno
Se prepararon los tratamientos de NAC y curcumina y el peróxido de hidrógeno justo antes de comenzar el ensayo. Para preparar la disolución madre de cúrcuma, es necesario conocer la pureza del lote de cúrcuma disponible y volver a ajusfar el cálculo para añadir la concentración necesaria. Se añadieron los tratamientos y el peróxido de hidrógeno a la vez y se dejaron incubar durante 1 hora.
Tras la incubación, se eliminaron los tratamientos de las células y se añadieron medio de crecimiento normal y 10% de MTT. Se añadió el solubilizante a las 4 horas.
Entonces, se midieron los datos de absorbancia a 550 nm.
Para estudiar el efecto sinérgico o aditivo de la combinación de los componentes, se analizaron los resultados por medio de la aplicación de las fórmulas diseñadas específicamente para estudiar estos parámetros:
A. Fórmula adaptada del factor de modificación de la dosis (FMD) , denominado factor de combinación (FC) .
La fórmula original analiza el factor de modificación de la dosis tomando como datos el porcentaje de inhibición celular producido por dos fármacos administrados solos y en combinación (Thrall BD et al. Differential sensitivities of murine melanocytes and melanoma cells to buthionine sulfoximine and anticancer drugs . Cell. Res. 1991; 4: 237-9) . Dicha fórmula se ha usado y publicado en artículos internacionales posteriores de nuestro grupo de investigación.
La fórmula presentada en el presente documento está adaptada a partir de la indicada anteriormente, tomando como referencia el aumento en el porcentaje de células supervivientes con respecto al control oxidado, y es tal como sigue:
% de protección de LBG + NAC
FC
(% de protección de LBG) + (% de protección de NAC)
n / , . , Valor tratado . . . . . .
% de protección = < xlOO > - 100
Valor control oxidado
B. Fórmula original denominada índice combinado (IC)
La fórmula presentada en el presente documento es una fórmula original de uno de los autores de la patente (T. Palomares) que analiza el porcentaje de células supervivientes en presencia de un agente, solo o en combinación con otros, con respecto al número de células originales restando el número de células supervivientes del control oxidado. Por tanto, se analiza el aumento en el número de células supervivientes con respecto a las células que no se tratan y exponen al oxidante. La fórmula es tal como sigue:
( % Cs LBG + NAC ) - ( % Cs Cox )
( % Cs LBG - % Cs Cox ) + ( % Cs AC - % Cs Cox )
Cox: control oxidado
Cs : células supervivientes con respecto al control inicial sin oxidación
En ambas fórmulas, un valor > 1 indica un efecto sinérgico
(con mayor significación cuanto mayor es dicho valor) y < 1 indica un efecto aditivo con un valor mayor cuanto más próximo a 1 es .
Una vez que se han realizado las verificaciones numéricas apropiadas, se obtienen resultados idénticos con ambas fórmulas.
Los resultados correspondientes al análisis de los experimentos en los que se sometieron las células a un entorno oxidativo (1 mM H202) y se trataron con LBG al 1%, NAC 1 mM, cúrcuma 1 mM y combinaciones de los mismos se muestran en la figura 3. Se obtuvieron los datos experimentales 1 hora tras la oxidación. Estos datos indican que la combinación triple LBG+NAC+Cur produce el mejor efecto de protección, alcanzado los niveles de control. La combinación de LBG+NAC aumenta también la viabilidad celular con respecto al control oxidado y con respecto a los tratamientos con LBG, NAC, Cur, LBG+Cur y NAC+Cur .
La tabla I muestra el porcentaje de viabilidad de las células sometidas a estrés oxidativo con respecto al grupo control no oxidado.
Oxidación H2 D2 1 mM
TRATAMIENTOS Absorb . % de viabilidad
Control 0,18 100
Control con oxidación 0,09 48,8
LBG al 1% 0,1 56,59 1 mM NAC 0,1 57,14
1 %LBG + 1 mM NAC 0,14 77,77
1 μιτι Cúrcuma 0, 12 63, 18
1 mM NAC + 1 μτη Cúrcuma 0, 12 64,28
1 %LBG + 1 mM NAC + 1 μιτι cúrcuma 0,2 100
La tabla II muestra los índices obtenidos por medio de la aplicación de las fórmulas A y B en la que se concluye que existe es un efecto sinérgico en las combinaciones de LBG + NAC y la combinación triple de LBG + NAC + cúrcuma.
Tratamiento lililí Efecto
1 %LBG +"Ύ" mM "NAC |¡ll¡¡¡¡ Sinérgico
1 %LBG + 1 μΜ Cur Aditivo
1 mM NAC + 1 μΜ Cur ¡|¡| §||§|||¡§ Aditivo
1% LBG + 1 mM NAC + 1 μΜ Cur 1¡IÍ¡¡¡¡ Sinérgico
Los resultados han señalado que las combinaciones de LBG, o bien con NAC o bien con NAC + Cur, producen un efecto sinérgico en el aumento de viabilidad celular en una situación de estrés oxidativo. Sin embargo, la combinación de LBG + Cur y NAC + Cur produce el efecto aditivo esperado.
El análisis de los efectos de protección más pronunciados muestra que la combinación de los tres agentes da como resultado el mayor efecto protector (100% de células supervivientes) . La combinación de los tres agentes muestra un efecto que es 1,3 times mayor que el tratamiento con LBG + NAC (77.77%) .
Ejemplo 3. Efecto de los componentes de la composición de la invención, solos o en combinación, sobre la disminución de los metabolitos reactivos de oxígeno generados en los fibroblastos humanos sometidos a un entorno oxidativo El aumento de metabolitos reactivos de oxígeno (MRO) es una de las principales causas que dificultan la cicatrización de una herida. Este efecto contribuye a la pérdida de capacidad proli ferativa de las células y del aumento en la expresión de metaloproteasas , lo que degrada la nueva matriz dérmica formada e impide la cicatrización.
Para cuantificar la capacidad antioxidante o de disminución de MRO de LBG, NAC y cúrcuma, se midió la producción de los MRO generados con la oxidación de un cultivo de fibroblastos con una alta concentración de peróxido de hidrógeno .
Se cuantificaron los MRO intracelulares por medio del mareaje de los mismos con la sonda fluorescente diacetato de 2 ' , 7 ' -diclorofluoresceína (Molecular Probes D399) . Esta sonda puede emitir fluorescencia a 538 nm cuando se oxida con metabolitos reactivos de oxígeno. Se llevó a cabo la oxidación celular con peróxido de hidrógeno 1 mM.
Siembra de células para el ensayo
El día antes del ensayo, se sembraron los fibroblastos en una placa de 96 pocilios a una densidad de 11500 células por pocilio. Se realizaron todos los ensayos por triplicado.
Ensayo
Se prepararon los tratamientos el día del experimento y se añadió el peróxido de hidrógeno justo antes del ensayo.
Preparación de la goma de algarrobo al 1% en medio de crecimiento celular normal
Se preparó una disolución de goma de algarrobo del 1% en agua destilada y se calentó a más de 100°C hasta que se completó la disolución de la goma.
Entonces se centrifugó la disolución durante 20 minutos a
4000 rpm para eliminar las impurezas de la mezcla. Se liofilizó la disolución de la goma de algarrobo. Se disolvió el liofilizado en medio de crecimiento celular (DMEM+10% de FBS) a una concentración del 1%.
Mareaje de las células con la sonda fluorescente
Antes de añadir los tratamientos y el peróxido de hidrógeno, se marcaron las células con la sonda fluorescente a una concentración de 50 μΜ durante 30 minutos en la oscuridad.
Preparación de los tratamientos con NAC y cúrcuma y de peróxido de hidrógeno
Se prepararon los tratamientos con NAC y cúrcuma y el peróxido de hidrógeno justo antes de comenzar el ensayo. Para preparar la disolución madre de cúrcuma, es necesario conocer la pureza del lote de cúrcuma disponible y reajustar el cálculo para añadir la concentración necesaria.
Tras marcar las células, se añadieron los tratamientos antioxidantes y el peróxido de hidrógeno.
Se recogió la fluorescencia emitida a 538 nm por la sonda 20 minutos tras el comienzo de la oxidación.
La figura 4 muestra los niveles de MRO intracelulares de los fibroblastos sometidos a un entorno oxidativo usando 1 mM de H202, por medio de las unidades de fluorescencia obtenidas en el mareaje con la sonda diacetato de 2 ' , 7 ' -diclorofluoresceina y también cuando se ponen en contacto los fibroblastos con LBG al 1%, NAC 5 mM, cúrcuma 5 fiM y combinaciones de los mismos.
La tabla III muestra los datos del porcentaje de disminución de los MRO con respecto al control oxidado, cuando se sometieron las células a 1 mM de peróxido de hidrógeno y en contacto con los componentes de la composición de la invención.
H202 1 mM
U. F. % de disminución
de ERO
CONTROL 0, 157
CONTROL OXIDADO 12,47
LBG 1, 74 86 NAC 1, 82 85
Cur 2, 31 81
NAC+Cur 0, 97 92
LBG+Cur 1 91
LBG+NAC 0, 307 97
LBG+NAC+Cur 0, 157 99
Tal como puede observarse, existe una disminución significativa de los niveles de MRO intracelulares en las células que están en contacto con LBG , NAC, cúrcuma y combinaciones de los mismos.
La adición de NAC a la disolución de LBG provoca una disminución significativa de los niveles de MRO intracelulares con respecto a la LBG sola.
Sin embargo, la combinación triple LBG + NAC + Cur produce el mayor beneficio en cuanto a la disminución de los niveles de MRO intracelulares, que son similares a los del grupo control (sin oxidación) .
Para verificar el efecto sinérgico o aditivo de la combinación de los diferentes componentes, se analizaron los resultados aplicando las fórmulas A y B mencionadas en el ejemplo 2. Sin embargo, en este caso, la disminución en los niveles de MRO intracelulares se tomó como referencia con respecto al control oxidado.
Los resultados se muestran en la tabla IV:
Figure imgf000040_0001
La aplicación de las fórmulas A y B muestra claramente un efecto sinérgico producido por las combinaciones LBG+NAC y LBG+NAC+Cur, mientras que las combinaciones LBG+NAC y NAC+Cur producen un efecto aditivo, con respecto a la reducción de ERO intracelular .
Ejemplo 4. Preparación de un hidrogel de goma de algarrobo con N-acetil-cisteina incorporada en el mismo.
Se dispersó una cantidad pesada de goma de algarrobo en agua destilada para formar una disolución que contiene el 1-5% en peso de dicha goma. Para favorecer la síntesis del hidrogel, se añadió ácido sulfúrico a la disolución hasta obtener un pH de 2, con el objetivo de protonar los grupos hidroxilo de la goma de algarrobo. Se agitó la disolución a temperatura ambiente durante 2-3 horas y, posteriormente, se elevó la temperatura hasta 100-120°C. A esta temperatura, se agita la disolución durante al menos 30 minutos.
Se centrifugó la disolución a 4000 rpm durante 20 minutos con el fin de eliminar las impurezas en la mezcla, por tanto, la disolución de goma de algarrobo pura está en el sobrenadante y las impurezas se depositan en el sedimento.
Se sometió la disolución de goma de algarrobo a una etapa de reticulación química usando glutaraldehí do como agente de reticulación. Para este fin, se añadió glutaraldehí do a la disolución de goma de algarrobo mientras se agita durante al menos 30 minutos. La cantidad de glutaraldehído depende de las características finales deseadas del hidrogel. Si se requiere una administración rápida de la N-acetil-cisteína, se añaden menores cantidades de agente de reticulación a la disolución de goma de algarrobo con el fin de obtener un bajo grado de reticulación. Por el contrario, si se requiere un tiempo de administración aumentado de la N-acetil-cisteína, se añaden grandes cantidades de agente de reticulación a la disolución de goma de algarrobo con el fin de obtener un alto grado de reticulación. Las figuras 5a-5d corresponden a fotografías tomadas del microscopio electrónico de barrido (MEB) que muestran el aumento en el grado de porosidad de un hidrogel de goma de algarrobo al 3% en peso cuando se aumenta la concentración del agente de reticulación desde el 0 hasta el 2,5% en peso.
Se colocó la mezcla de goma de algarrobo y glutaraldehido sobre placas Petri. Se llevó a cabo la reacción de reticulación a 37°C.
Una vez que se formó el hidrogel, se lavó con bisulfato de sodio (Sigma 13438) al 5% y luego con agua destilada, con el fin de eliminar el glutaraldehido sin reaccionar. Posteriormente, se secó el hidrogel en un horno a 65°C para formar un xerogel .
Con el fin de incorporar la N-acetil-ci steina en la estructura de la goma de algarrobo, se rehidrató el xerogel introduciéndolo en una disolución saturada de N-acetil-cisteina y PBS . Finalmente, se secó parcialmente el hidrogel obtenido para su uso posterior.
Ejemplo 5. Evaluación del efecto de un hidrogel que contiene LBG, LBG + NAC y LBG + NAC + Cur sobre el proceso de cicatrización de heridas en la piel de cerdo.
Se seleccionaron cuatro cerdos macho de 25-35 kg de peso corporal. Antes de comenzar el procedimiento, se sometieron los animales a un periodo de aclimatación de 1 semana.
De manera preoperatoria, se sedaron los animales con azaperona por via intramuscular (4 mg/kg) + ketamina (10 mg/kg) y se intubaron por via traqueal y se indujo analgesia con buprenorfina intravenosa (0,01 mg/kg) . Se indujo anestesia y se mantuvo con propofol (4 mg/kg) , isoflurano (al 1,5-2%, oxigeno) . Se realizó una terapia con antibióticos prequirúrgica con cefalotina intravenosa (22 mg/kg) .
Se generaron quirúrgicamente cuatro lesiones cutáneas en la zona dorsal de cada cerdo. Se aplicaron tres combinaciones de matrices de biomateriales (LBG, LBG+NAC y LBG+NAC+Cur) en tres de las cuatro lesiones y se aplicó solución salina en la lesión de control. Se sustituyeron los apositos cada 3 días cuando se limpiaron las heridas y se cambiaron los apositos. En el periodo posoperatorio, se realizó una evaluación macroscópica de la cicatrización del tejido durante todo el experimento. Se obtuvieron biopsias para la evaluación histológica a los 5, 10 y 15 días tras la generación de las lesiones. Todas las muestras de biopsia de piel se fijaron en formalina tamponada neutra al 10%, se procesaron de manera rutinaria y se tiñeron con hematoxilina y eosina (H&E) para el estudio histopatológico . Se realizó la evaluación histopatológica en las zonas tratadas y de control. Se evaluaron parámetros tales como reepitelización de la epidermis, presencia de inflamación dérmica y fase de maduración y formación de tejido de granulación.
Los resultados muestran la evolución más rápida desde los días iniciales, principalmente en las lesiones tratadas con LBG+NAC y LBG+NAC+Cur. Además, el análisis microscópico mostró una mejora en la formación de tejido de granulación y en la maduración de este tejido con respecto a la lesión de control.
La figura 6 muestra una vista macroscópica de una biopsia de 10 días de evolución, en la que puede observarse un aumento en la formación de nuevo tejido en los grupos tratados, pero particularmente en el grupo tratado con LBG+NAC+Cur.
Cuando se realizaron cálculos de la superficie de herida en los tres grupos, se mostró una mejora en la capacidad de cierre de heridas en los tres grupos. Sin embargo, este efecto aumentó en el grupo de LBG+NAC y se observó el mayor efecto en el grupo de LBG+NAC+Cur.
La tabla V muestra el área de lesión estimada en los diferentes grupos tratados y el índice que indica la capacidad de reducción de heridas presentada por estos grupos. El índice también indica que se logró el mayor efecto mediante el tratamiento con LBG+NAC+Cur.
Area de índice de reducción del área de lesión (cm2) lesión
(con relación al grupo control)
Control 7 1 LBG 5,88 1,2
LBG+NAC 4, 62 1,5
LBG+NAC+Cur 3,78 1, 85
La figura 7 muestra una fotografía de la evolución durante tres días en la que se compararon los tratamientos con LBG+NAC y LBG+NAC+Cur con un tratamiento establecido con colágeno. Tal como puede observarse, existe una reducción en la zona de lesión en ambos grupos de LBG+NAC y LBG+NAC+Cur con respecto al grupo control y tratado con colágeno, y de nuevo el de LBG+NAC+Cur presentó la mayor reducción de área y el proceso de cicatrización de mejor calidad.

Claims

REIVINDICACIONES
Una composición antioxidante que comprende galactomanano y N-acetil-cisteina para su uso en el tratamiento terapéutico o profiláctico de una enfermedad o un estado cutáneo que resulta de la producción de especies reactivas de oxigeno en la piel de un sujeto o de una enfermedad o un estado cutáneo que implica la producción de especies reactivas de oxigeno en la piel de un sujeto.
Composición según la reivindicación 1, en la que el galactomanano es goma de algarrobo.
Composición según la reivindicación 1 ó 2, en la que la producción de especies reactivas de oxigeno resulta de la exposición del sujeto a la radiación de la luz solar, agentes químicos, radioterapia o quimioterapia.
Composición según una cualquiera de las reivindicaciones 1 a 3, en la que la enfermedad o el estado cutáneo que resulta de la producción de especies reactivas de oxígeno en la piel de un sujeto se selecciona de quemadura solar, fotosensibilidad, inmunosupresión, envejecimiento prematuro, psoriasis, cáncer de piel seleccionado de cáncer de células básales, cáncer de células escamosas y melanoma maligno, una enfermedad inmunológica, una inflamación localizada o extendida, una infección bacteriana o fúngica, erupciones cutáneas, estreses oxidativos sistémicos y queratosis actínica.
Composición según la reivindicación 1 ó 2, en la que la enfermedad o el estado cutáneo que implica la producción de especies reactivas de oxígeno en la piel de un sujeto se selecciona de heridas traumáticas y quirúrgicas agudas, quemaduras, escaldaduras, fístulas, úlceras venosas, úlceras arteriales, úlceras por presión, úlceras diabéticas, úlceras de etiología mixta, y otras lesiones y trastornos inflamatorios y heridas crónicas o necróticas. Composición según cualquiera de las reivindicaciones anteriores, que además comprende curcumina como componente antioxidante adicional. Una composición antioxidante que comprende galactomanano, N-acetil-cisteina y curcumina.
Composición antioxidante según la reivindicación 7, para su uso como medicamento.
Un hidrogel que comprende galactomanano y N-acetil- cisteina, en el que el galactomanano está en forma de una matriz reticulada y se incorpora N-acetil-cisteina en dicha matriz reticulada de galactomanano.
Hidrogel según la reivindicación 9, en el que el galactomanano es goma de algarrobo.
Hidrogel según la reivindicación 9 ó 10, en el que la matriz de galactomanano comprende además curcumina incorporada en la misma.
Hidrogel según una cualquiera de las reivindicaciones 9 a 11, que comprende además células.
Hidrogel según la reivindicación 12, en el que las células se seleccionan del grupo que consiste en fibroblastos, queratinocitos , células endoteliales, células madre mesenquimatosas diferenciadas o no diferenciadas, células corneales, células epiteliales, células del sistema leucocitario , células del sistema hematopoyético, células madre diferenciadas o no diferenciadas, células condrogénicas , o s t e oblastos , miocitos, adipocitos y neuronas u otras células del sistema nervioso periférico y central .
Procedimiento para la preparación de un hidrogel según una cualquiera de las reivindicaciones 9 a 13, que comprende: a) disolver el galactomanano en una disolución acuosa;
b) someter el galactomanano a una reticulación química añadiendo un agente de reticulación a la disolución acuosa de galactomanano para obtener un hidrogel que comprende una matriz de glucomanano reticulada;
c) incorporar N-acetil-cisteína, y opcionalmente la curcumina, en la matriz de glucomanano reticulada.
Procedimiento según la reivindicación 14, en el que la incorporación de N-acetil cisteína, y opcionalmente 46
curcumina, en la matriz de glucomanano reticulada comprende las siguientes etapas:
1) secar el hidrogel obtenido en la etapa b) para formar un xerogel;
2) rehidratar el xerogel introduciéndolo en una disolución acuosa que comprende N-acetil-cisteína, y opcionalmente curcumina, para formar un hidrogel en el que se incorporan N-acetil-cisteina, y opcionalmente curcumina, en la matriz de glucomanano reticulada.
3) secar parcialmente el hidrogel obtenido en la etapa 2) . Hidrogel según una cualquiera de las reivindicaciones 9 a 13, para su uso como medicamento.
Hidrogel según una cualquiera de las reivindicaciones 9 a 13, para su uso en el tratamiento y/o la cicatrización de heridas traumáticas y quirúrgicas agudas, quemaduras, escaldaduras, fístulas, úlceras venosas, úlceras arteriales, úlceras por presión, úlceras diabéticas, úlceras de etiología mixta, y otras lesiones y trastornos inflamatorios y heridas crónicas o necróticas.
Un aposito para heridas que comprende un hidrogel según cualquiera de las reivindicaciones 9 a 13.
Composición cosmética que comprende galactomanano y N- acetil-cisteína.
Composición cosmética según la reivindicación 19, que comprende además curcumina.
Uso de una composición cosmética según la reivindicación 19 ó 20, para el tratamiento de un daño de la piel relacionado con la edad.
Uso de una composición cosmética según la reivindicación 19 ó 20, como protector frente a la radiación UV.
HOJA DE REEMPLAZO (Regla 26)
PCT/ES2011/070427 2010-06-15 2011-06-14 Composición antioxidante WO2011157880A1 (es)

Priority Applications (13)

Application Number Priority Date Filing Date Title
CA2801048A CA2801048C (en) 2010-06-15 2011-06-14 Antioxidant composition comprising galactomannan and n-acetyl cysteine
JP2013514747A JP5827324B2 (ja) 2010-06-15 2011-06-14 抗酸化組成物
KR1020187006902A KR101872429B1 (ko) 2010-06-15 2011-06-14 항산화 조성물
AU2011266978A AU2011266978B2 (en) 2010-06-15 2011-06-14 Antioxidant composition
BR112012032146-3A BR112012032146B1 (pt) 2010-06-15 2011-06-14 Composição antioxidante, hidrogel, processo para a preparação de um hidrogel, curativo para ferimento, composição cosmética e uso da composição
DK11758490.4T DK2583682T3 (da) 2010-06-15 2011-06-14 Antioxidantpræparat omfattende galactomannan og N-acetylcystein
US13/704,207 US9492475B2 (en) 2010-06-15 2011-06-14 Antioxidant composition
KR1020137001113A KR20130121812A (ko) 2010-06-15 2011-06-14 항산화 조성물
EP11758490.4A EP2583682B1 (en) 2010-06-15 2011-06-14 Antioxidant compostion comprising galactomannan and n-acetyl cysteine
MX2012014673A MX2012014673A (es) 2010-06-15 2011-06-14 Composicion antioxidante.
ES11758490.4T ES2473577T3 (es) 2010-06-15 2011-06-14 Composición antioxidante que comprende galactomanano y N-acetil-ciste�na
CN201180029933.8A CN103096900B (zh) 2010-06-15 2011-06-14 抗氧化剂组合物
US15/283,759 US10231992B2 (en) 2010-06-15 2016-10-03 Antioxidant composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP10165939.9 2010-06-15
EP10165939A EP2397125A1 (en) 2010-06-15 2010-06-15 Antioxidant composition

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/704,207 A-371-Of-International US9492475B2 (en) 2010-06-15 2011-06-14 Antioxidant composition
US15/283,759 Division US10231992B2 (en) 2010-06-15 2016-10-03 Antioxidant composition

Publications (1)

Publication Number Publication Date
WO2011157880A1 true WO2011157880A1 (es) 2011-12-22

Family

ID=42933133

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2011/070427 WO2011157880A1 (es) 2010-06-15 2011-06-14 Composición antioxidante

Country Status (13)

Country Link
US (2) US9492475B2 (es)
EP (2) EP2397125A1 (es)
JP (1) JP5827324B2 (es)
KR (2) KR101872429B1 (es)
CN (1) CN103096900B (es)
AU (1) AU2011266978B2 (es)
BR (1) BR112012032146B1 (es)
CA (1) CA2801048C (es)
DK (1) DK2583682T3 (es)
ES (1) ES2473577T3 (es)
MX (1) MX2012014673A (es)
PT (1) PT2583682E (es)
WO (1) WO2011157880A1 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113925999A (zh) * 2021-10-29 2022-01-14 华中科技大学 一种硅磷基复合支架及其制备方法和应用

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2397125A1 (en) * 2010-06-15 2011-12-21 Histocell, S.L. Antioxidant composition
WO2014059008A1 (en) 2012-10-09 2014-04-17 The Procter & Gamble Company Method of identifying or evaluating beneficial actives and compositions containing the same
EP2906197A1 (en) 2012-10-09 2015-08-19 The Procter & Gamble Company Method of identifying synergistic cosmetic combinations
IN2014DE00939A (es) * 2014-04-01 2015-10-09 Council Scient Ind Res
WO2015166677A1 (ja) * 2014-04-28 2015-11-05 三井製糖株式会社 外用組成物
CA2974011A1 (en) 2015-01-27 2016-08-04 Florengale, Llc Healing topical composition
WO2016154070A1 (en) * 2015-03-20 2016-09-29 William Marsh Rice University Hypothermic 3d bioprinting of living tissues supported by perfusable vasculature
CN105497025B (zh) * 2015-12-08 2018-11-23 吴健 联氨基姜黄素在制备抗皮肤鳞状细胞癌药物中的应用
ES2932359T3 (es) 2017-11-06 2023-01-18 Dermalena Di Calderan Andrea Formulación basada en N-acetilcisteína y urea para el tratamiento de trastornos dermatológicos
US20190135741A1 (en) 2017-11-09 2019-05-09 Nacuity Pharmaceuticals, Inc. Methods of Making Deuterium-Enriched N-acetylcysteine Amide (D-NACA) and (2R, 2R')-3,3'-Disulfanediyl BIS(2-Acetamidopropanamide) (DINACA) and Using D-NACA and DINACA to Treat Diseases Involving Oxidative Stress
CN108420743A (zh) * 2018-05-09 2018-08-21 刘忠芳 一种激活细胞活性的护肤品制备方法及该方法产品的用途
US12186456B2 (en) 2018-08-09 2025-01-07 Osaka University Artificial bone and manufacturing method of artificial bone
US11766413B2 (en) 2019-01-11 2023-09-26 Nacuity Pharmaceuticals, Inc. Treatment of age-related macular degeneration, glaucoma, and diabetic retinopathy with n-acetylcysteine amide (NACA) or (2R,2R′)-3,3′-disulfanediyl BIS(2-acetamidopropanamide)(DiNACA)
WO2020146660A1 (en) 2019-01-11 2020-07-16 Nacuity Pharmaceuticals, Inc. N-acetylcysteine amide (naca) and (2r,2r')-3-3'-disulfanediyl bis (2-acetamidopropanamide) (dinaca) for prevention and treatment of radiation pneumonitis and treatment of pulmonary function in cystic fibrosis
WO2020146666A1 (en) * 2019-01-11 2020-07-16 Nacuity Pharmaceuticals, Inc. N-acetylcysteine amide (naca) and (2r,2r')-3,3'-disulfanediyl bis (2-acetamidopropanamide) (dinaca) for the prevention and treatment of radiation dermatitis and skin lightening, skin whitening and skin improvement
US20220257561A1 (en) * 2019-06-07 2022-08-18 Advanced Delivery Labs Llc Compositions and methods for improving wellness
RU2704322C1 (ru) * 2019-06-11 2019-10-28 Федеральное государственное автономное образовательное учреждение высшего образования "Белгородский государственный национальный исследовательский университет" (НИУ "БелГУ") Крем с секретомом мультипотентных мезенхимальных стромальных клеток для коррекции псориазиформного воспаления в эксперименте
ES2978950T3 (es) * 2019-07-24 2024-09-23 Histocell Sl Nueva composición antioxidante para cicatrización de heridas
CN113559054B (zh) * 2021-05-14 2024-08-13 南京工业大学 活性氧清除/响应变构自组装水凝胶及其应用
CN114642631B (zh) * 2021-07-01 2023-09-22 舒泰神(北京)生物制药股份有限公司 一种通便口服液及其制备方法
CN114306726A (zh) * 2021-12-17 2022-04-12 广西萌大夫生物技术有限公司 一种可注射仿生抗氧化水凝胶的制备方法和使用方法
CN115409073B (zh) * 2022-10-31 2023-03-24 之江实验室 一种面向i/q信号识别的半监督宽度学习方法及装置

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1280631A (en) 1968-07-09 1972-07-05 Smith & Nephew Adhesive materials
EP0781550A1 (fr) 1995-12-29 1997-07-02 Adir Et Compagnie Composition pharmaceutique bioadhésive pour la libération contrÔlée de principes actifs
EP0792653A2 (en) 1996-02-28 1997-09-03 JOHNSON &amp; JOHNSON MEDICAL, INC. Solid polysaccharide materials for use as wound dressings
EP0848951A1 (en) * 1996-12-20 1998-06-24 Johnson &amp; Johnson Medical Ltd. Use of acetylcysteine for the manufacture of a medicament for the treatment of chronic ulcers
US5804213A (en) * 1991-10-09 1998-09-08 Lectec Corporation Biologically active aqueous gel wound dressing
WO1999025395A2 (en) 1997-11-14 1999-05-27 Acrymed Improved wound dressing device
WO2001049258A2 (en) 1999-12-30 2001-07-12 Acrymed Methods and compositions for improved delivery devices
US20040143871A1 (en) 2002-11-14 2004-07-22 Pioneer Hi-Bred International, Inc. Genes for galactomannan production in plants and methods of use
WO2004112850A1 (en) 2003-06-20 2004-12-29 Johnson & Johnson Medical Limited Antioxidant wound dressing materials
WO2005049101A1 (en) 2003-11-18 2005-06-02 Ethicon, Inc. Antioxidant and antimicrobial wound dressing materials
WO2005084650A1 (en) 2004-03-03 2005-09-15 Switch Biotech Ag Pharmaceutical composition for topical use in form of xerogels or films and methods for production
WO2009137827A2 (en) * 2008-05-09 2009-11-12 Tiara Pharmaceuticals, Inc. Controlled release of n-acetylcysteine (nac) for reduction of systemic and/or vascular inflammation

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1053517A (ja) * 1996-05-22 1998-02-24 Shiseido Co Ltd 抗老化皮膚外用剤及びコラーゲン架橋防止用皮膚外用剤
EP1221865B1 (en) * 1999-10-18 2007-01-03 Muscletech Research and Development Inc. Food supplement for increasing lean mass and strength
JP2002080338A (ja) * 2000-06-20 2002-03-19 Shiseido Co Ltd 老化防止用皮膚外用剤
US6896894B2 (en) * 2001-10-30 2005-05-24 Battelle Memorial Institute Proteins stabilized with polysaccharide gums
US20040136968A1 (en) 2002-09-27 2004-07-15 Verigen Ag Autologous cells on a support matrix for tissue repair
DE102004008017A1 (de) * 2004-03-17 2005-11-03 Wheli Inter Ag Anwendung von Polysacchariden wie Galaktomannane, Glucomannane und dergleichen zur Einschleusung von Wirkstoffen, insbesondere dem menschlichen Wachstumshormons HGH in den menschlichen oder tierischen Stoffwechsel
JP2005320264A (ja) * 2004-05-06 2005-11-17 Daiya Seiyaku Kk 外用ゲル基剤及び容器充填型パッド材
US20060104931A1 (en) * 2004-11-12 2006-05-18 Takeshi Fukutome Cosmetic treatment article comprising substrate and gel composition
US20060286046A1 (en) * 2005-01-05 2006-12-21 Haber C Andrew Skin care compositions
EP2397125A1 (en) * 2010-06-15 2011-12-21 Histocell, S.L. Antioxidant composition

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1280631A (en) 1968-07-09 1972-07-05 Smith & Nephew Adhesive materials
US6406712B1 (en) 1991-10-09 2002-06-18 Lectec Corporation Aqueous gel and package for a wound dressing and method
US5804213A (en) * 1991-10-09 1998-09-08 Lectec Corporation Biologically active aqueous gel wound dressing
EP0781550A1 (fr) 1995-12-29 1997-07-02 Adir Et Compagnie Composition pharmaceutique bioadhésive pour la libération contrÔlée de principes actifs
EP0792653A2 (en) 1996-02-28 1997-09-03 JOHNSON &amp; JOHNSON MEDICAL, INC. Solid polysaccharide materials for use as wound dressings
EP0848951A1 (en) * 1996-12-20 1998-06-24 Johnson &amp; Johnson Medical Ltd. Use of acetylcysteine for the manufacture of a medicament for the treatment of chronic ulcers
WO1999025395A2 (en) 1997-11-14 1999-05-27 Acrymed Improved wound dressing device
WO2001049258A2 (en) 1999-12-30 2001-07-12 Acrymed Methods and compositions for improved delivery devices
US20040143871A1 (en) 2002-11-14 2004-07-22 Pioneer Hi-Bred International, Inc. Genes for galactomannan production in plants and methods of use
WO2004112850A1 (en) 2003-06-20 2004-12-29 Johnson & Johnson Medical Limited Antioxidant wound dressing materials
WO2005049101A1 (en) 2003-11-18 2005-06-02 Ethicon, Inc. Antioxidant and antimicrobial wound dressing materials
WO2005084650A1 (en) 2004-03-03 2005-09-15 Switch Biotech Ag Pharmaceutical composition for topical use in form of xerogels or films and methods for production
WO2009137827A2 (en) * 2008-05-09 2009-11-12 Tiara Pharmaceuticals, Inc. Controlled release of n-acetylcysteine (nac) for reduction of systemic and/or vascular inflammation

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
EDWARDS ET AL., PLANT PHYSIOLOGY, vol. 134, 2004, pages 1153 - 1162
GOPINATH, D., BIOMATERIALS, vol. 25, 2004, pages 1911 - 1917
MANIKANDAN PANCHATCHARAM ET AL: "Curcumin improves wound healing by modulating collagen and decreasing reactive oxygen species", MOLECULAR AND CELLULAR BIOCHEMISTRY, KLUWER ACADEMIC PUBLISHERS, BO, vol. 290, no. 1-2, 13 June 2006 (2006-06-13), pages 87 - 96, XP019436632, ISSN: 1573-4919, DOI: 10.1007/S11010-006-9170-2 *
MANIKANDAN, P. ET AL., MOLECULAR AND CELLULAR BIOCHEMISTRY, vol. 290, 2006, pages 87 - 96
RANI THAAKUR, S. ET AL., PHARMACOLOGYONLINE, vol. 1, 2009, pages 369 - 376
SCHARSTUHL A ET AL: "Curcumin-induced fibroblast apoptosis and in vitro wound contraction are regulated by antioxidants and heme oxygenase: implications for scar formation", JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, UNIVERSITY PRESS CAROL DAVILA, BUCHAREST, RO, vol. 13, no. 4, 1 April 2009 (2009-04-01), pages 712 - 725, XP002606793, ISSN: 1582-1838, DOI: 10.1111/J.1582-4934.2008.00339.X *
THRALL BD ET AL.: "Differential sensitivities of murine melanocytes and melanoma cells to buthionine sulfoximine and anticancer drugs", CELL. RES., vol. 4, 1991, pages 237 - 9

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113925999A (zh) * 2021-10-29 2022-01-14 华中科技大学 一种硅磷基复合支架及其制备方法和应用
CN113925999B (zh) * 2021-10-29 2023-01-24 华中科技大学 一种硅磷基复合支架及其制备方法和应用

Also Published As

Publication number Publication date
BR112012032146B1 (pt) 2022-03-29
AU2011266978A1 (en) 2013-01-10
US20130095049A1 (en) 2013-04-18
CN103096900A (zh) 2013-05-08
KR101872429B1 (ko) 2018-06-28
JP5827324B2 (ja) 2015-12-02
CN103096900B (zh) 2015-12-09
AU2011266978B2 (en) 2016-05-05
DK2583682T3 (da) 2014-07-07
CA2801048A1 (en) 2011-12-22
US20170020914A1 (en) 2017-01-26
BR112012032146A2 (pt) 2020-09-01
EP2397125A1 (en) 2011-12-21
KR20130121812A (ko) 2013-11-06
KR20180030245A (ko) 2018-03-21
ES2473577T3 (es) 2014-07-07
US9492475B2 (en) 2016-11-15
US10231992B2 (en) 2019-03-19
CA2801048C (en) 2018-06-12
MX2012014673A (es) 2013-03-21
PT2583682E (pt) 2014-07-10
JP2013533234A (ja) 2013-08-22
EP2583682B1 (en) 2014-04-09
EP2583682A1 (en) 2013-04-24

Similar Documents

Publication Publication Date Title
ES2473577T3 (es) Composición antioxidante que comprende galactomanano y N-acetil-ciste�na
Morgado et al. Ibuprofen loaded PVA/chitosan membranes: A highly efficient strategy towards an improved skin wound healing
WO2006109734A1 (ja) 創傷治療用外用剤
CN102078636A (zh) 含重组人表皮生长因子的水凝胶敷料及其制备方法与应用
CA2883455C (en) Improved wound healing compositions comprising microspheres
BRPI0715361B1 (pt) Uso de polietileno glicol em inflamação relacionada com doenças ou distúrbios tópicos e cicatrização de ferimento
RU2699362C2 (ru) Композиция на основе наночастиц диоксида церия и полисахаридов бурых водорослей для лечения ран
RU2470640C1 (ru) Средство для лечения воспалительных заболеваний полости рта и способ лечения воспалительных заболеваний полости рта
EP3010516B1 (fr) Composition cicatrisante et utilisation
WO2023187632A1 (en) Composition, application of the composition, cosmetic preparation hydrogel bio-mask in the form of a compress, method of manufacturing the preparation
KR20110139486A (ko) 꿀 및 봉독을 유효성분으로 함유하는 상처 치유용 피부외용제 조성물
CZ20032011A3 (cs) Použití nemetabolizovatelného cukru a polymerového absorpčního činidla pro podporu buněčné rekonstrukce a/nebo buněčné diferenciace
CN116194078A (zh) 水凝胶形式的包含橙来源的细胞外囊泡的药物组合物
CN114601959A (zh) 一种医用皮肤护理敷料及其制备方法和应用
Meng et al. Multifunctional hydrogels loaded with tellurium nanozyme for spinal cord injury repair
CN114886794A (zh) 一种具有抗炎和抗氧化作用的组合物及其应用
JP2004339107A (ja) 細胞外マトリックス濃縮液を利用した皮膚疾患治療剤及び皮膚疾患治療用被覆材。
PT1891940E (pt) Formulações intra-sinoviais de estanozolol
KR20200122868A (ko) 대계 추출물을 유효성분으로 포함하는 피부상처 치유 또는 피부재생 촉진용 조성물

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180029933.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11758490

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2801048

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2011758490

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13704207

Country of ref document: US

Ref document number: MX/A/2012/014673

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2013514747

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2011266978

Country of ref document: AU

Date of ref document: 20110614

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137001113

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012032146

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012032146

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20121217