WO2011114967A1 - 淡水の製造方法 - Google Patents
淡水の製造方法 Download PDFInfo
- Publication number
- WO2011114967A1 WO2011114967A1 PCT/JP2011/055538 JP2011055538W WO2011114967A1 WO 2011114967 A1 WO2011114967 A1 WO 2011114967A1 JP 2011055538 W JP2011055538 W JP 2011055538W WO 2011114967 A1 WO2011114967 A1 WO 2011114967A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- water
- semipermeable membrane
- fresh water
- membrane unit
- raw water
- Prior art date
Links
- 239000013505 freshwater Substances 0.000 title claims description 60
- 238000004519 manufacturing process Methods 0.000 title claims description 50
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 158
- 239000012528 membrane Substances 0.000 claims description 95
- 239000013535 sea water Substances 0.000 claims description 20
- 238000011084 recovery Methods 0.000 claims description 18
- 238000002156 mixing Methods 0.000 claims description 15
- 239000002351 wastewater Substances 0.000 claims description 11
- 239000003673 groundwater Substances 0.000 claims description 6
- 239000010865 sewage Substances 0.000 claims description 6
- 239000003643 water by type Substances 0.000 claims description 2
- 230000003204 osmotic effect Effects 0.000 description 10
- 230000035699 permeability Effects 0.000 description 8
- 238000001914 filtration Methods 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- 239000008400 supply water Substances 0.000 description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 230000007423 decrease Effects 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 239000002455 scale inhibitor Substances 0.000 description 5
- 238000000926 separation method Methods 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 229920000388 Polyphosphate Polymers 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 238000010612 desalination reaction Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 239000012530 fluid Substances 0.000 description 4
- 230000004907 flux Effects 0.000 description 4
- 239000012510 hollow fiber Substances 0.000 description 4
- 238000001471 micro-filtration Methods 0.000 description 4
- 239000001205 polyphosphate Substances 0.000 description 4
- 235000011176 polyphosphates Nutrition 0.000 description 4
- 238000001223 reverse osmosis Methods 0.000 description 4
- 239000004576 sand Substances 0.000 description 4
- 238000000108 ultra-filtration Methods 0.000 description 4
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 3
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 3
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 3
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 239000005708 Sodium hypochlorite Substances 0.000 description 3
- -1 and further Substances 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 239000000460 chlorine Substances 0.000 description 3
- 229910052801 chlorine Inorganic materials 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 239000010410 layer Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000009287 sand filtration Methods 0.000 description 3
- 239000011734 sodium Substances 0.000 description 3
- 229910052708 sodium Inorganic materials 0.000 description 3
- 235000019982 sodium hexametaphosphate Nutrition 0.000 description 3
- GCLGEJMYGQKIIW-UHFFFAOYSA-H sodium hexametaphosphate Chemical compound [Na]OP1(=O)OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])O1 GCLGEJMYGQKIIW-UHFFFAOYSA-H 0.000 description 3
- SUKJFIGYRHOWBL-UHFFFAOYSA-N sodium hypochlorite Chemical compound [Na+].Cl[O-] SUKJFIGYRHOWBL-UHFFFAOYSA-N 0.000 description 3
- 239000001577 tetrasodium phosphonato phosphate Substances 0.000 description 3
- 241000894006 Bacteria Species 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 229920002301 cellulose acetate Polymers 0.000 description 2
- 238000005345 coagulation Methods 0.000 description 2
- 230000015271 coagulation Effects 0.000 description 2
- 239000000645 desinfectant Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 2
- 238000005374 membrane filtration Methods 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 239000005416 organic matter Substances 0.000 description 2
- 229920000620 organic polymer Polymers 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 238000000967 suction filtration Methods 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 1
- MOMKYJPSVWEWPM-UHFFFAOYSA-N 4-(chloromethyl)-2-(4-methylphenyl)-1,3-thiazole Chemical compound C1=CC(C)=CC=C1C1=NC(CCl)=CS1 MOMKYJPSVWEWPM-UHFFFAOYSA-N 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 229920001661 Chitosan Polymers 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 241000195493 Cryptophyta Species 0.000 description 1
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004734 Polyphenylene sulfide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- UIIMBOGNXHQVGW-DEQYMQKBSA-M Sodium bicarbonate-14C Chemical compound [Na+].O[14C]([O-])=O UIIMBOGNXHQVGW-DEQYMQKBSA-M 0.000 description 1
- DWAQJAXMDSEUJJ-UHFFFAOYSA-M Sodium bisulfite Chemical compound [Na+].OS([O-])=O DWAQJAXMDSEUJJ-UHFFFAOYSA-M 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 238000005273 aeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 239000000783 alginic acid Substances 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 229960001126 alginic acid Drugs 0.000 description 1
- 150000004781 alginic acids Chemical class 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 239000000908 ammonium hydroxide Substances 0.000 description 1
- 235000011114 ammonium hydroxide Nutrition 0.000 description 1
- RHZUVFJBSILHOK-UHFFFAOYSA-N anthracen-1-ylmethanolate Chemical compound C1=CC=C2C=C3C(C[O-])=CC=CC3=CC2=C1 RHZUVFJBSILHOK-UHFFFAOYSA-N 0.000 description 1
- 239000003830 anthracite Substances 0.000 description 1
- 239000003899 bactericide agent Substances 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 235000019820 disodium diphosphate Nutrition 0.000 description 1
- GYQBBRRVRKFJRG-UHFFFAOYSA-L disodium pyrophosphate Chemical compound [Na+].[Na+].OP([O-])(=O)OP(O)([O-])=O GYQBBRRVRKFJRG-UHFFFAOYSA-L 0.000 description 1
- 229940038485 disodium pyrophosphate Drugs 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 239000000417 fungicide Substances 0.000 description 1
- 239000002223 garnet Substances 0.000 description 1
- 235000011167 hydrochloric acid Nutrition 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 229910052816 inorganic phosphate Inorganic materials 0.000 description 1
- 239000003456 ion exchange resin Substances 0.000 description 1
- 229920003303 ion-exchange polymer Polymers 0.000 description 1
- 229920000831 ionic polymer Polymers 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000002346 layers by function Substances 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000001728 nano-filtration Methods 0.000 description 1
- 229920005615 natural polymer Polymers 0.000 description 1
- 238000011017 operating method Methods 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- 238000010979 pH adjustment Methods 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 description 1
- 125000004437 phosphorous atom Chemical group 0.000 description 1
- 229920000083 poly(allylamine) Polymers 0.000 description 1
- 229920001467 poly(styrenesulfonates) Polymers 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 239000004584 polyacrylic acid Substances 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000005518 polymer electrolyte Substances 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- 229920012287 polyphenylene sulfone Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 235000011118 potassium hydroxide Nutrition 0.000 description 1
- 159000000001 potassium salts Chemical class 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000011085 pressure filtration Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 239000008262 pumice Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000010802 sludge Substances 0.000 description 1
- 235000015424 sodium Nutrition 0.000 description 1
- FQENQNTWSFEDLI-UHFFFAOYSA-J sodium diphosphate Chemical compound [Na+].[Na+].[Na+].[Na+].[O-]P([O-])(=O)OP([O-])([O-])=O FQENQNTWSFEDLI-UHFFFAOYSA-J 0.000 description 1
- 235000010267 sodium hydrogen sulphite Nutrition 0.000 description 1
- 235000019983 sodium metaphosphate Nutrition 0.000 description 1
- 235000019832 sodium triphosphate Nutrition 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 150000003457 sulfones Chemical class 0.000 description 1
- 229920001059 synthetic polymer Polymers 0.000 description 1
- 235000019818 tetrasodium diphosphate Nutrition 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/44—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/02—Reverse osmosis; Hyperfiltration ; Nanofiltration
- B01D61/025—Reverse osmosis; Hyperfiltration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/02—Reverse osmosis; Hyperfiltration ; Nanofiltration
- B01D61/06—Energy recovery
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/02—Reverse osmosis; Hyperfiltration ; Nanofiltration
- B01D61/12—Controlling or regulating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2311/00—Details relating to membrane separation process operations and control
- B01D2311/04—Specific process operations in the feed stream; Feed pretreatment
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/001—Processes for the treatment of water whereby the filtration technique is of importance
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/28—Treatment of water, waste water, or sewage by sorption
- C02F1/283—Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/42—Treatment of water, waste water, or sewage by ion-exchange
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/44—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
- C02F1/441—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/44—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
- C02F1/444—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/44—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
- C02F1/445—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by forward osmosis
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/66—Treatment of water, waste water, or sewage by neutralisation; pH adjustment
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/68—Treatment of water, waste water, or sewage by addition of specified substances, e.g. trace elements, for ameliorating potable water
- C02F1/683—Treatment of water, waste water, or sewage by addition of specified substances, e.g. trace elements, for ameliorating potable water by addition of complex-forming compounds
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/72—Treatment of water, waste water, or sewage by oxidation
- C02F1/76—Treatment of water, waste water, or sewage by oxidation with halogens or compounds of halogens
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2209/00—Controlling or monitoring parameters in water treatment
- C02F2209/03—Pressure
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2209/00—Controlling or monitoring parameters in water treatment
- C02F2209/40—Liquid flow rate
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2303/00—Specific treatment goals
- C02F2303/10—Energy recovery
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2303/00—Specific treatment goals
- C02F2303/18—Removal of treatment agents after treatment
- C02F2303/185—The treatment agent being halogen or a halogenated compound
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2303/00—Specific treatment goals
- C02F2303/20—Prevention of biofouling
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F5/00—Softening water; Preventing scale; Adding scale preventatives or scale removers to water, e.g. adding sequestering agents
- C02F5/08—Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/30—Wastewater or sewage treatment systems using renewable energies
Definitions
- the present invention relates to a fresh water production method and a fresh water production apparatus using a semipermeable membrane unit for producing fresh water from a plurality of types of raw water such as a combination of seawater and river water, ground water or wastewater treated water. More specifically, the present invention relates to a fresh water production method and a fresh water production apparatus using a semipermeable membrane unit capable of reducing facility costs and operation costs in a fresh water production apparatus for producing fresh water from a plurality of types of raw water.
- the number of semipermeable membrane units and the operating pressure of the semipermeable membrane units are controlled according to the concentration and temperature of raw water. Do the driving to do. Specifically, when the raw water concentration is increased, the operating pressure is increased to compensate for the increase in osmotic pressure, and when the raw water temperature is increased, the water permeability of the semipermeable membrane is increased. Maintain a predetermined production water volume.
- the production water quality also fluctuates. For example, when the raw water temperature rises and the operation pressure is lowered, the water quality is greatly lowered. Moreover, when recovering energy from concentrated wastewater, the appropriate pressure range of the energy recovery device is limited, and there is a problem that the energy recovery efficiency is reduced if it deviates from the design pressure point due to fluctuations in operating pressure.
- Patent Document 1 in order to maintain the production water quality and operating pressure within a certain range, as shown in Patent Document 1, when the raw water temperature is increased, the water permeability of the semipermeable membrane is increased. A method of reducing the number of operations and maintaining the operating pressure has been proposed and put into practical use. However, if the number of operations is reduced, the load per semipermeable membrane area increases and there is a problem that damage to the membrane tends to occur. ing. As a method for solving this, as shown in Patent Document 2, a method is proposed in which raw water and high-temperature raw water branched from the same raw water to a condenser of a power plant are appropriately mixed to keep the temperature constant. ing.
- Non-Patent Document 1 a fresh water production facility that purifies sewage wastewater and collects and reuses it with a semipermeable membrane has been put into practical use. Furthermore, a system has been proposed in which seawater and river water are used together (Non-Patent Document 2), or seawater and sewage wastewater are used together (Non-Patent Document 3) to reduce energy costs.
- the object of the present invention is to reduce the operation control range by keeping the operation control range small in a method for producing fresh water using a semipermeable membrane that uses a mixture of a plurality of types of raw water.
- An object of the present invention is to provide a low-cost fresh water production method capable of maintaining a stable production water quantity and production water quality while reducing the required specifications for the unit.
- the present invention relates to the following (1) to (7).
- (1) A method for producing fresh water by supplying raw water to a semipermeable membrane unit, wherein fresh water is obtained in accordance with changes in the fresh water flow rate of the semipermeable membrane unit and / or the operating pressure of the semipermeable membrane unit.
- the raw water and water having different concentrations are mixed and the mixing ratio is changed.
- the pressure load fluctuation to the high-pressure pump supplied to the semipermeable membrane unit can be suppressed, and the energy recovery efficiency can be maintained high, and the facility cost can be reduced and fresh water can be produced with small energy.
- FIG. 1 is a schematic flow diagram showing an embodiment of the method for producing fresh water according to the present invention.
- FIG. 2 is a schematic flow diagram showing another embodiment of the method for producing fresh water according to the present invention.
- FIG. 3 is a schematic flowchart showing still another embodiment of the method for producing fresh water according to the present invention.
- FIG. 4 is a schematic flowchart showing still another embodiment of the method for producing fresh water according to the present invention.
- FIG. 1 An example of a fresh water production apparatus to which the present invention is applicable is shown in FIG.
- the fresh water producing apparatus shown in FIG. 1 has a line capable of mixing and supplying the second raw water 1b to the first raw water 1a, and can mix the raw water 1b with the raw water 1a as necessary.
- the raw water is supplied to the pretreatment unit 4 through the raw water tank 2 by the raw water supply pump 3.
- the pretreated water is temporarily stored in the intermediate tank 6, and fresh water is obtained by the semipermeable membrane unit 8 by the high pressure pump 7.
- the obtained fresh water is stored in the fresh water tank 10.
- the concentrated water of the semipermeable membrane unit 8 is recovered by the energy recovery unit 9 and then discharged out of the system as the concentrated drainage 11.
- the valve 5a and the valve 5b are provided for adjusting the flow rates of the first raw water 1a and the second raw water 1b, respectively.
- the first raw water 1a and the second raw water 1b have different concentrations, and the concentration after mixing is adjusted according to the mixing ratio.
- the mixing ratio can be varied from 0 to 100% depending on the concentration and temperature. That is, the raw water 1a and the raw water 1b are usually supplied alone and can be mixed only when necessary.
- the mixed raw water is subjected to pretreatment and then divided into fresh water and concentrated water by the semipermeable membrane unit. It varies depending on the temperature and concentration of (mixed raw water pretreatment water).
- the permeation of solvent (water) and solute through the semipermeable membrane is generally expressed by the following equation.
- the osmotic pressure ⁇ increases as the semipermeable membrane feed water membrane surface concentration Cm increases.
- ⁇ Cm / Mw ⁇ R ⁇ (273.15 + T ).
- the viscosity ⁇ of water increases as the temperature decreases.
- the pure permeability coefficient Lp decreases, and in all cases, the water permeation flux Jv decreases.
- the solute permeation flux Js is increased, and the quality (permeate concentration) Cp of the production water is deteriorated.
- the operating pressure ⁇ P has been increased when the semipermeable membrane feed water concentration Cf increases or when the water temperature decreases. As a result, Jv was increased and Cp was decreased. Conversely, when the semipermeable membrane feed water concentration Cf drops or the water temperature rises, the operating pressure ⁇ P is reduced.
- the operating method of the present invention is characterized in that the operating pressure ⁇ P is not basically changed, and the semipermeable membrane feed water concentration Cf is changed by changing the mixing ratio of the raw water. That is, when the raw water temperature is lowered, the mixing ratio of the raw water is changed so that the semipermeable membrane feed water concentration Cf is lowered, and the osmotic pressure ⁇ is lowered to reduce the permeability due to the viscosity increase caused by the temperature drop. This is compensated by increasing the effective pressure ( ⁇ P ⁇ ) by reducing the osmotic pressure ⁇ , and the operating pressure ⁇ P is made constant and the production water quantity is made constant.
- the concentrated water of the semipermeable membrane unit has high-pressure energy that is close to ⁇ P to the extent that the flow pressure loss in the unit (usually about 0.1 to 0.5 MPa) decreases from the operating pressure ⁇ P.
- An apparatus for recovering pressure energy from here does not have a very wide pressure range with high efficiency. For example, even if the recovery efficiency is 80% at 5 MPa, the pressure is reduced to 50% at 3 MPa. Therefore, as described in Japanese Patent Application Laid-Open No. 2001-46842, there is also a technique for increasing the energy recovery efficiency by applying pressure to the permeation side of the semipermeable membrane unit to maintain the pressure on the supply water side high.
- the design pressure point of the high-pressure pump and the energy recovery unit which occupy a very large part of the equipment cost, can be narrowed, and the inverter that is the pressure control system of the high-pressure pump is not required. This makes it possible to significantly reduce the equipment cost.
- the first raw water and the second raw water are not particularly limited as long as the concentrations affecting the osmotic pressure are different.
- Water, ground water, sewage, waste water, and treated water thereof can be used.
- treated water include filtered water and concentrated water.
- the concentrated wastewater generated by the semipermeable membrane unit 8b is used as one of the raw water, it is effective because the concentrated wastewater that is normally discharged out of the system can be effectively used.
- the concentrated drainage can be either high-concentration raw water or low-concentration raw water.
- it is preferable that the difference in concentration is large from the viewpoint of reducing the pressure fluctuation which is the gist of the present invention.
- the temperature change in the sea near Japan is about 10-30 ° C
- the viscosity in winter (10 ° C) is about 1.6 times that in summer (30 ° C).
- an effective pressure of 8 bar is required to obtain the same amount of fresh water in winter if it can be operated at an effective pressure (operating pressure-osmotic pressure) of 5 bar in summer. become.
- the osmotic pressure is reduced so as to compensate for the increased 3 bar, fluctuations in the operating pressure can be suppressed.
- TDS Total Dissolved Solid
- the second raw water has a temperature different from that of the first raw water and is mixed so as to alleviate the temperature change. That is, for example, the cooling water of the power plant and the biologically treated sewage wastewater treated water are heated by biological treatment, so if mixed instead of river water as the second raw water, it compensates for the winter temperature drop, Mixing ratio can be reduced. Conversely, from the viewpoint of suppressing the temperature rise in summer, the temperature rise can be suppressed if the first raw water is seawater and the second raw water is groundwater or underground water.
- the present invention it is possible to keep the operating pressure of the semipermeable membrane unit constant, to suppress the load fluctuation to the high-pressure pump, and to suppress the pressure resistance against piping and the like.
- the pressure energy recovery device when pressure energy is recovered from the concentrated drainage of the semipermeable membrane unit using the energy recovery device, the pressure energy recovery device can also be operated near the optimum design pressure, contributing to energy saving. can do.
- a reverse pump, a turbine type, a turbocharger, a pressure exchange type etc. can be used, but the reverse pressure pump or Pelton turbine type with a narrow optimal pressure range is used.
- the present invention is particularly effective when the energy recovery apparatus is used.
- the semipermeable membrane unit applicable to the present invention is not particularly limited, but for easy handling, a hollow fiber membrane-like or flat membrane-like semipermeable membrane is housed in a casing to form a fluid separation element (element). It is preferable to use what was loaded in a pressure vessel.
- the fluid separation element is formed of a flat membrane-like semipermeable membrane, for example, the semipermeable membrane is wound in a cylindrical shape together with a flow path material (net) around a cylindrical central pipe having a large number of holes.
- TM700 series and TM800 series manufactured by Toray Industries, Inc. can be mentioned.
- One of these fluid separation elements may constitute a semipermeable membrane unit, or a plurality of fluid separation elements may be connected in series or in parallel to constitute a semipermeable membrane unit.
- the membrane structure has a dense layer on at least one side of the membrane, and on the asymmetric membrane having fine pores gradually increasing from the dense layer to the inside of the membrane or the other side, or on the dense layer of the asymmetric membrane.
- a composite film having a very thin functional layer formed of another material may be used.
- the feed water is concentrated. Therefore, scale inhibitors, acids and alkalis are added to the feed water of each semipermeable membrane unit to prevent scale precipitation due to concentration and to adjust pH. It is possible to In addition, it is preferable to implement scale inhibitor addition upstream from pH adjustment so that the addition effect can be exhibited. It is also preferable to prevent an abrupt concentration or pH change in the vicinity of the addition port by providing an in-line mixer immediately after the chemical addition, or by directly contacting the addition port with the flow of the supply water.
- the scale inhibitor is a substance that forms a complex with a metal, a metal ion, or the like in a solution and solubilizes the metal or metal salt, and an organic or inorganic ionic polymer or monomer can be used.
- organic polymers synthetic polymers such as polyacrylic acid, sulfonated polystyrene, polyacrylamide, and polyallylamine, and natural polymers such as carboxymethylcellulose, chitosan, and alginic acid can be used, and ethylenediaminetetraacetic acid can be used as a monomer.
- polyphosphate etc. can be used as an inorganic type scale inhibitor.
- polyphosphate and ethylenediaminetetraacetic acid are particularly preferably used from the viewpoints of availability, ease of operation such as solubility, and cost.
- the polyphosphate refers to a polymerized inorganic phosphate material having two or more phosphorus atoms in a molecule typified by sodium hexametaphosphate and bonded with an alkali metal, an alkaline earth metal and a phosphate atom.
- Typical polyphosphates include tetrasodium pyrophosphate, disodium pyrophosphate, sodium tripolyphosphate, sodium tetrapolyphosphate, sodium heptapolyphosphate, sodium decapolyphosphate, sodium metaphosphate, sodium hexametaphosphate, and potassium salts thereof. Etc.
- sulfuric acid, sodium hydroxide, and calcium hydroxide are generally used as the acid and alkali, but hydrochloric acid, oxalic acid, potassium hydroxide, sodium bicarbonate, ammonium hydroxide, and the like can also be used. However, it is better not to use calcium or magnesium in order to prevent an increase in scale components in seawater.
- a treatment unit in which turbid components are removed, sterilized, or the like is applied according to the quality of each supplied water. it can.
- sand filtration, microfiltration membrane, or ultrafiltration membrane is effective as the pretreatment unit 4 when it is necessary to remove turbidity of the feed water.
- a bactericidal agent Chlorine is preferably used as the disinfectant, and for example, chlorine gas or sodium hypochlorite may be added to the feed water as free chlorine so as to be in the range of 1 to 5 mg / l.
- certain fungicides may not have chemical durability. In that case, add as much upstream as possible to the feed water, and further, supply water inlet of the semipermeable membrane unit.
- the disinfectant harmless in the vicinity of the side.
- its concentration is measured, and the addition amount of chlorine gas and sodium hypochlorite is controlled based on this measured value, or a reducing agent such as sodium bisulfite is added.
- the raw feed water contains bacteria, proteins, natural organic components, etc. in addition to turbidity, it is also effective to add a flocculant such as polyaluminum chloride, sulfate band, iron (III) chloride.
- a flocculant such as polyaluminum chloride, sulfate band, iron (III) chloride.
- the agglomerated feed water is then subjected to sand filtration after settling on an inclined plate or the like, or by filtration through a microfiltration membrane or an ultrafiltration membrane in which a plurality of hollow fiber membranes are bundled.
- Supply water suitable for passing through the latter semipermeable membrane unit can be obtained.
- sand filtration when sand filtration is used for pretreatment, it is possible to apply gravity-type filtration that naturally flows down, or it is possible to apply pressure-type filtration in which sand is filled in a pressurized tank. .
- sand to be filled single-component sand can be applied.
- anthracite, silica sand, garnet, pumice, and the like can be combined to increase filtration efficiency.
- the microfiltration membrane and the ultrafiltration membrane are not particularly limited, and a flat membrane, a hollow fiber membrane, a tubular membrane, a pleat type, or any other shape can be used as appropriate.
- the material of the membrane is not particularly limited, and inorganic materials such as polyacrylonitrile, polyphenylene sulfone, polyphenylene sulfide sulfone, polyvinylidene fluoride, polypropylene, polyethylene, polysulfone, polyvinyl alcohol, cellulose acetate, and ceramics can be used. Moreover, even if it is a filtration system, any of the pressure filtration system which pressurizes and filters supply water, and the suction filtration system which sucks and filters the permeation
- coagulation membrane filtration or membrane-utilized activated sludge method in which a microfiltration membrane or an ultrafiltration membrane is immersed in a coagulation sedimentation tank or a biological treatment tank and filtered, may be applied.
- MLR membrane-utilized activated sludge method
- the organic matter when the supply water contains a lot of soluble organic matter, the organic matter can be decomposed by adding chlorine gas or sodium hypochlorite. Removal is possible.
- a chelating agent such as an organic polymer electrolyte or sodium hexametaphosphate may be added, or exchanged with soluble ions using an ion exchange resin or the like.
- iron or manganese when iron or manganese is present in a soluble state, it is preferable to use an aeration oxidation filtration method, a catalytic oxidation filtration method, or the like.
- a nanofiltration membrane can be used for pretreatment.
- the first raw water and the second raw water are treated by the pretreatment unit 4 after mixing, but the first raw water and the second raw water before mixing are independently suitable as shown in FIG. A pretreatment is also a preferred embodiment.
- Ehime Factory is fed to the first raw water tank 2a.
- the pretreatment unit 4a was a Toray hollow fiber membrane module HFU-2020 (effective membrane area 72 m 2 ) ⁇ 1 and filtered at a flow rate of 3 m 3 / h and stored in the intermediate tank 6.
- the supply valve 5b of the second raw water tank 2b is fully closed so that only the first raw water is supplied.
- Example> The fresh water obtained by the semipermeable membrane unit 8 was stored in the raw water tank 2b at a seawater temperature of 15 ° C., and the second raw water in the present invention was simulated.
- First raw water (pretreated seawater) 1.6 m 3 / h pretreated in the same manner as in the reference example and second raw water 0.4 m 3 / h were mixed (the concentration of the mixed raw water at this time was 2.7% by weight) ) And supplied to the semipermeable membrane unit 8 and operated in the same manner as in the reference example.
- the operating pressure was 61.3 bar and the permeated water TDS concentration was 53 mg / l. I was able to.
- An object of the present invention relates to a fresh water production method and a fresh water production apparatus using a semipermeable membrane using raw water such as seawater, river water, ground water, wastewater treatment water, and the like.
- raw water such as seawater, river water, ground water, wastewater treatment water, and the like.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Water Supply & Treatment (AREA)
- Nanotechnology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Organic Chemistry (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
Description
(1)原水を半透膜ユニットに供給して淡水を得る淡水の製造方法であって、半透膜ユニットの淡水流量および/または、半透膜ユニットの運転圧力の変化に応じて、原水と溶質濃度の異なる水を前記原水に混合供給する淡水の製造方法。
(2)溶質濃度が異なる少なくとも2種類の原水を混合した後に半透膜ユニットに供給して淡水を得る淡水の製造方法であって、半透膜ユニットの淡水流量および/または半透膜ユニットの運転圧力の変化に応じて、少なくとも2種類の原水の混合比率を制御する淡水の製造方法。
(3)半透膜ユニットの淡水流量および半透膜ユニットの運転圧力が所定の範囲内になるように少なくとも2種類の原水の混合比率を制御する(2)に記載の淡水の製造方法。
(4)少なくとも2種類の原水のうち、少なくとも1種類が海水、河川水、地下水、下水、廃水、またはそれらの処理水である(2)または(3)に記載の淡水の製造方法。
(5)処理水が、ろ過水もしくは濃縮水である(4)に記載の淡水の製造方法。
(6)前記半透膜ユニットの濃縮水が有する圧力エネルギーを水車式もしくは逆転ポンプ式のエネルギー回収装置を用いて回収する(1)~(5)のいずれか一項に記載の淡水の製造方法。
Jv=Lp(ΔP-π(Cm)) ・・・(1)
Js=P(Cm-Cp) ・・・(2)
(Cm-Cp)/(Cf-Cp)=exp(Jv/k) ・・・(3)
Cp=Js/Jv ・・・(4)
Lp=α×Lp25×μ25/μ ・・・(5)
P=β×P25×μ25/μ×(273.15+T)/(298.15) ・・・(6)
Cf :半透膜供給水濃度 [mg/l]
Cm :半透膜供給水膜面濃度 [mg/l]
Cp :透過水濃度 [mg/l]
Js :溶質透過流束 [kg/m2/s]
Jv :水の透過流束 [m3/m2/s]
k :物質移動係数 [m/s]
Lp :純水透過係数 [m3/m2/Pa/s]
Lp25 :25℃での純水透過係数 [m3/m2/Pa/s」
P :溶質透過係数 [m/s]
P25 :25℃での溶質透過係数 [m3/m2/Pa/s]
T :温度 [℃]
α :運転条件による変動係数 [-]
β :運転条件による変動係数 [-]
ΔP :運転圧力 [Pa]
μ :粘度 [Pa・s]
μ25 :25℃での粘度 [Pa・s]
π :浸透圧 [Pa]
また、図1では、第1原水と第2原水の混合後に前処理ユニット4によって処理しているが、図2のように混合前の第1原水と第2原水を独立してそれぞれに適した前処理を施すことも好ましい態様である。
図4にフローを示す淡水製造装置を用い、東レ(株)愛媛工場の近傍の海水(全溶質濃度3.4重量%、水温25℃、pH=8.0)を、第1原水タンク2aに貯留し、前処理ユニット4aとして、東レ製中空糸膜モジュールHFU-2020(有効膜面積72m2)×1本を用い、流量3m3/hでろ過し、中間タンク6に貯留した。このとき、第2原水タンク2bの供給バルブ5bは全閉し、第1原水のみが供給されるようにした。この中間タンク6から、2m3/hを、東レ製逆浸透膜エレメントTM810×6本を直列に構成した半透膜ユニット8に供給し、回収率40%で淡水製造したところ、淡水造水量は、0.8m3/h、運転圧力は60.3bar、透過水TDS濃度は115mg/lであった。
海水水温が15℃である以外は参考例と同じ条件で図4に示す淡水製造装置を運転したところ、運転圧力は、71.9bar、透過水TDS濃度は73mg/lであり、運転圧力が参考例よりも上昇した。
海水水温15℃において、半透膜ユニット8で得られた淡水を原水タンク2bに貯留し、本発明における第2原水を模擬した。参考例と同様に前処理した第1原水(前処理海水)1.6m3/hと第二の原水0.4m3/hを混合(このときの混合原水の濃度は、2.7重量%)し、半透膜ユニット8に供給し、参考例と同様に運転したところ、運転圧力は、61.3bar、透過水TDS濃度は53mg/lとなり、低温においても参考例と同じ圧力で運転することができた。
本出願は、2010年3月15日出願の日本特許出願2010-057113に基づくものであり、その内容はここに参照として取り込まれる。
2、2a、2b及び2c:原水タンク
3、3a、3b及び3c:原水供給ポンプ
4、4a、4b及び4c:前処理ユニット
5a及び5b:バルブ
6:中間タンク
7:高圧ポンプ
8:半透膜ユニット
9:エネルギー回収ユニット
10:淡水タンク
11:濃縮排水
Claims (6)
- 原水を半透膜ユニットに供給して淡水を得る淡水の製造方法であって、半透膜ユニットの淡水流量および/または、半透膜ユニットの運転圧力の変化に応じて、原水と溶質濃度の異なる水を前記原水に混合供給する淡水の製造方法。
- 溶質濃度が異なる少なくとも2種類の原水を混合した後に半透膜ユニットに供給して淡水を得る淡水の製造方法であって、半透膜ユニットの淡水流量および/または半透膜ユニットの運転圧力の変化に応じて、少なくとも2種類の原水の混合比率を制御する淡水の製造方法。
- 半透膜ユニットの淡水流量および半透膜ユニットの運転圧力が所定の範囲内になるように少なくとも2種類の原水の混合比率を制御する請求項2に記載の淡水の製造方法。
- 少なくとも2種類の原水のうち、少なくとも1種類が海水、河川水、地下水、下水、廃水、またはそれらの処理水である請求項2または3に記載の淡水の製造方法。
- 処理水が、ろ過水もしくは濃縮水である請求項4に記載の淡水の製造方法。
- 前記半透膜ユニットの濃縮水が有する圧力エネルギーを水車式もしくは逆転ポンプ式のエネルギー回収装置を用いて回収する請求項1~5のいずれか一項に記載の淡水の製造方法。
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011517134A JP5867082B2 (ja) | 2010-03-15 | 2011-03-09 | 淡水の製造方法 |
EP20110756156 EP2548847A1 (en) | 2010-03-15 | 2011-03-09 | Method for producing fresh water |
AU2011228323A AU2011228323A1 (en) | 2010-03-15 | 2011-03-09 | Method for producing fresh water |
CN201180014114.6A CN102791637B (zh) | 2010-03-15 | 2011-03-09 | 淡水制备方法 |
US13/634,681 US20130001163A1 (en) | 2010-03-15 | 2011-03-09 | Method for producing fresh water |
SG2012067666A SG184035A1 (en) | 2010-03-15 | 2011-03-09 | Method for producing fresh water |
MX2012010665A MX2012010665A (es) | 2010-03-15 | 2011-03-09 | Metodo para producir agua fresca. |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010057113 | 2010-03-15 | ||
JP2010-057113 | 2010-03-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011114967A1 true WO2011114967A1 (ja) | 2011-09-22 |
Family
ID=44649065
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/055538 WO2011114967A1 (ja) | 2010-03-15 | 2011-03-09 | 淡水の製造方法 |
Country Status (8)
Country | Link |
---|---|
US (1) | US20130001163A1 (ja) |
EP (1) | EP2548847A1 (ja) |
JP (1) | JP5867082B2 (ja) |
CN (1) | CN102791637B (ja) |
AU (1) | AU2011228323A1 (ja) |
MX (1) | MX2012010665A (ja) |
SG (1) | SG184035A1 (ja) |
WO (1) | WO2011114967A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014104450A (ja) * | 2012-11-29 | 2014-06-09 | Jfe Engineering Corp | 排水処理方法 |
WO2014115769A1 (ja) * | 2013-01-23 | 2014-07-31 | 東レ株式会社 | 淡水製造装置の運転方法 |
WO2016175153A1 (ja) * | 2015-04-27 | 2016-11-03 | 東レ株式会社 | 半透膜分離装置の運転方法 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20130014306A (ko) * | 2011-07-28 | 2013-02-07 | 코웨이 주식회사 | 연속 회분식 또는 회분식 여과 처리 장치 및 이의 운전방법 |
JP5751987B2 (ja) * | 2011-08-25 | 2015-07-22 | 富士電機株式会社 | スケール抑制方法及び地熱発電装置 |
WO2014141872A1 (ja) * | 2013-03-11 | 2014-09-18 | 株式会社 荏原製作所 | 海水淡水化システムおよびエネルギー回収装置 |
US10717048B1 (en) * | 2019-05-09 | 2020-07-21 | Hsiang-Shih Wang | Environmental water system |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04137795A (ja) | 1990-09-28 | 1992-05-12 | Nippon Mektron Ltd | レーザー半田付け方法とその装置 |
JP2001046842A (ja) | 1999-08-17 | 2001-02-20 | Japan Organo Co Ltd | 逆浸透膜方式海水淡水化装置における動力回収方法および装置 |
JP2001239134A (ja) | 2000-03-01 | 2001-09-04 | Toray Ind Inc | 逆浸透処理装置の運転方法とその制御装置および造水方法 |
JP2005224651A (ja) * | 2004-02-10 | 2005-08-25 | Toray Ind Inc | 淡水製造方法および淡水製造装置 |
JP2007152265A (ja) * | 2005-12-07 | 2007-06-21 | Toray Ind Inc | 淡水製造装置の運転方法および淡水製造装置 |
JP2008100219A (ja) * | 2006-09-22 | 2008-05-01 | Toray Ind Inc | 脱塩方法及び脱塩装置 |
JP2008126137A (ja) * | 2006-11-21 | 2008-06-05 | Meidensha Corp | 水処理設備の膜ろ過制御方式 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6946081B2 (en) * | 2001-12-31 | 2005-09-20 | Poseidon Resources Corporation | Desalination system |
CN1440933A (zh) * | 2002-02-26 | 2003-09-10 | 东丽株式会社 | 脱盐方法及脱盐设备 |
ES2353782B1 (es) * | 2008-05-27 | 2011-12-12 | Luis Sergio Marrera Martin | Planta desalinizadora con caudal fluctuante y recuperador de energía eléctrica variable. |
US8216473B2 (en) * | 2008-06-13 | 2012-07-10 | Solution Dynamics, Llc | Apparatus and methods for solution processing using reverse osmosis |
-
2011
- 2011-03-09 AU AU2011228323A patent/AU2011228323A1/en not_active Abandoned
- 2011-03-09 MX MX2012010665A patent/MX2012010665A/es not_active Application Discontinuation
- 2011-03-09 WO PCT/JP2011/055538 patent/WO2011114967A1/ja active Application Filing
- 2011-03-09 US US13/634,681 patent/US20130001163A1/en not_active Abandoned
- 2011-03-09 EP EP20110756156 patent/EP2548847A1/en not_active Withdrawn
- 2011-03-09 SG SG2012067666A patent/SG184035A1/en unknown
- 2011-03-09 JP JP2011517134A patent/JP5867082B2/ja not_active Expired - Fee Related
- 2011-03-09 CN CN201180014114.6A patent/CN102791637B/zh not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04137795A (ja) | 1990-09-28 | 1992-05-12 | Nippon Mektron Ltd | レーザー半田付け方法とその装置 |
JP2001046842A (ja) | 1999-08-17 | 2001-02-20 | Japan Organo Co Ltd | 逆浸透膜方式海水淡水化装置における動力回収方法および装置 |
JP2001239134A (ja) | 2000-03-01 | 2001-09-04 | Toray Ind Inc | 逆浸透処理装置の運転方法とその制御装置および造水方法 |
JP2005224651A (ja) * | 2004-02-10 | 2005-08-25 | Toray Ind Inc | 淡水製造方法および淡水製造装置 |
JP2007152265A (ja) * | 2005-12-07 | 2007-06-21 | Toray Ind Inc | 淡水製造装置の運転方法および淡水製造装置 |
JP2008100219A (ja) * | 2006-09-22 | 2008-05-01 | Toray Ind Inc | 脱塩方法及び脱塩装置 |
JP2008126137A (ja) * | 2006-11-21 | 2008-06-05 | Meidensha Corp | 水処理設備の膜ろ過制御方式 |
Non-Patent Citations (3)
Title |
---|
"model project of Ministry of Economy, Trade and Industry, demonstration trials in Shunan-shi", 5 March 2009, NIPPON SUIDO SHINBUN CO. |
A. J. VAN GOTTBERG ET AL.: "World's Largest Membrane-based Water Reuse Project", PROC. IDA WORLD CONGRESS, BAHAMA, 2003 |
J. S. S. CHIN ET AL.: "Increasing Water Resources through Desalination in Singapore: Planning for Sustainable Future", PROC. IDA WORLD CONGRESS, DUBAI, 2009 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014104450A (ja) * | 2012-11-29 | 2014-06-09 | Jfe Engineering Corp | 排水処理方法 |
WO2014115769A1 (ja) * | 2013-01-23 | 2014-07-31 | 東レ株式会社 | 淡水製造装置の運転方法 |
WO2016175153A1 (ja) * | 2015-04-27 | 2016-11-03 | 東レ株式会社 | 半透膜分離装置の運転方法 |
JPWO2016175153A1 (ja) * | 2015-04-27 | 2018-02-22 | 東レ株式会社 | 半透膜分離装置の運転方法 |
Also Published As
Publication number | Publication date |
---|---|
CN102791637B (zh) | 2015-12-09 |
JPWO2011114967A1 (ja) | 2013-06-27 |
SG184035A1 (en) | 2012-10-30 |
JP5867082B2 (ja) | 2016-02-24 |
CN102791637A (zh) | 2012-11-21 |
EP2548847A1 (en) | 2013-01-23 |
AU2011228323A1 (en) | 2012-10-04 |
US20130001163A1 (en) | 2013-01-03 |
MX2012010665A (es) | 2012-11-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5549591B2 (ja) | 淡水製造方法及び淡水製造装置 | |
Francis et al. | A comprehensive review of forward osmosis and niche applications | |
JP5929195B2 (ja) | 淡水製造装置およびその運転方法 | |
JP5286785B2 (ja) | 淡水製造方法 | |
JP5867082B2 (ja) | 淡水の製造方法 | |
US10071929B2 (en) | Desalination system and desalination method | |
JP5488466B2 (ja) | 造水装置 | |
PL173335B1 (pl) | Sposób wytwarzania roztworu wodnego o wysokim stężeniu NaCl | |
TW201121901A (en) | Method and apparatus for generating fresh water, and method and apparatus for desalinating sea water | |
WO2014115769A1 (ja) | 淡水製造装置の運転方法 | |
JP2007152265A (ja) | 淡水製造装置の運転方法および淡水製造装置 | |
Eyvaz et al. | Recent developments in forward osmosis membrane bioreactors: a comprehensive review | |
JP2006187719A (ja) | 淡水製造装置の運転方法および淡水製造装置 | |
JP6447133B2 (ja) | 造水システムおよび造水方法 | |
Hung et al. | Membrane processes and their potential applications for fresh water provision in Vietnam. | |
JP2014140794A (ja) | 造水装置および造水方法 | |
JP2014221450A (ja) | 造水方法 | |
JP2006075667A (ja) | 半透膜装置の運転方法および装置 | |
Hassan et al. | Utilizing hybrid RO-OARO systems as new methods for desalination process | |
JP2017074532A (ja) | 水処理装置および水処理方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201180014114.6 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011517134 Country of ref document: JP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11756156 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: DZP2012000614 Country of ref document: DZ |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011228323 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13634681 Country of ref document: US Ref document number: 2011756156 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 7968/CHENP/2012 Country of ref document: IN Ref document number: MX/A/2012/010665 Country of ref document: MX |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2011228323 Country of ref document: AU Date of ref document: 20110309 Kind code of ref document: A |