[go: up one dir, main page]

WO2011114967A1 - 淡水の製造方法 - Google Patents

淡水の製造方法 Download PDF

Info

Publication number
WO2011114967A1
WO2011114967A1 PCT/JP2011/055538 JP2011055538W WO2011114967A1 WO 2011114967 A1 WO2011114967 A1 WO 2011114967A1 JP 2011055538 W JP2011055538 W JP 2011055538W WO 2011114967 A1 WO2011114967 A1 WO 2011114967A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
semipermeable membrane
fresh water
membrane unit
raw water
Prior art date
Application number
PCT/JP2011/055538
Other languages
English (en)
French (fr)
Inventor
谷口 雅英
寛生 高畠
智宏 前田
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2011517134A priority Critical patent/JP5867082B2/ja
Priority to EP20110756156 priority patent/EP2548847A1/en
Priority to AU2011228323A priority patent/AU2011228323A1/en
Priority to CN201180014114.6A priority patent/CN102791637B/zh
Priority to US13/634,681 priority patent/US20130001163A1/en
Priority to SG2012067666A priority patent/SG184035A1/en
Priority to MX2012010665A priority patent/MX2012010665A/es
Publication of WO2011114967A1 publication Critical patent/WO2011114967A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/06Energy recovery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/12Controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/04Specific process operations in the feed stream; Feed pretreatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/445Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by forward osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/68Treatment of water, waste water, or sewage by addition of specified substances, e.g. trace elements, for ameliorating potable water
    • C02F1/683Treatment of water, waste water, or sewage by addition of specified substances, e.g. trace elements, for ameliorating potable water by addition of complex-forming compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/76Treatment of water, waste water, or sewage by oxidation with halogens or compounds of halogens
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/03Pressure
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/40Liquid flow rate
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/10Energy recovery
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/18Removal of treatment agents after treatment
    • C02F2303/185The treatment agent being halogen or a halogenated compound
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/20Prevention of biofouling
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F5/00Softening water; Preventing scale; Adding scale preventatives or scale removers to water, e.g. adding sequestering agents
    • C02F5/08Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies

Definitions

  • the present invention relates to a fresh water production method and a fresh water production apparatus using a semipermeable membrane unit for producing fresh water from a plurality of types of raw water such as a combination of seawater and river water, ground water or wastewater treated water. More specifically, the present invention relates to a fresh water production method and a fresh water production apparatus using a semipermeable membrane unit capable of reducing facility costs and operation costs in a fresh water production apparatus for producing fresh water from a plurality of types of raw water.
  • the number of semipermeable membrane units and the operating pressure of the semipermeable membrane units are controlled according to the concentration and temperature of raw water. Do the driving to do. Specifically, when the raw water concentration is increased, the operating pressure is increased to compensate for the increase in osmotic pressure, and when the raw water temperature is increased, the water permeability of the semipermeable membrane is increased. Maintain a predetermined production water volume.
  • the production water quality also fluctuates. For example, when the raw water temperature rises and the operation pressure is lowered, the water quality is greatly lowered. Moreover, when recovering energy from concentrated wastewater, the appropriate pressure range of the energy recovery device is limited, and there is a problem that the energy recovery efficiency is reduced if it deviates from the design pressure point due to fluctuations in operating pressure.
  • Patent Document 1 in order to maintain the production water quality and operating pressure within a certain range, as shown in Patent Document 1, when the raw water temperature is increased, the water permeability of the semipermeable membrane is increased. A method of reducing the number of operations and maintaining the operating pressure has been proposed and put into practical use. However, if the number of operations is reduced, the load per semipermeable membrane area increases and there is a problem that damage to the membrane tends to occur. ing. As a method for solving this, as shown in Patent Document 2, a method is proposed in which raw water and high-temperature raw water branched from the same raw water to a condenser of a power plant are appropriately mixed to keep the temperature constant. ing.
  • Non-Patent Document 1 a fresh water production facility that purifies sewage wastewater and collects and reuses it with a semipermeable membrane has been put into practical use. Furthermore, a system has been proposed in which seawater and river water are used together (Non-Patent Document 2), or seawater and sewage wastewater are used together (Non-Patent Document 3) to reduce energy costs.
  • the object of the present invention is to reduce the operation control range by keeping the operation control range small in a method for producing fresh water using a semipermeable membrane that uses a mixture of a plurality of types of raw water.
  • An object of the present invention is to provide a low-cost fresh water production method capable of maintaining a stable production water quantity and production water quality while reducing the required specifications for the unit.
  • the present invention relates to the following (1) to (7).
  • (1) A method for producing fresh water by supplying raw water to a semipermeable membrane unit, wherein fresh water is obtained in accordance with changes in the fresh water flow rate of the semipermeable membrane unit and / or the operating pressure of the semipermeable membrane unit.
  • the raw water and water having different concentrations are mixed and the mixing ratio is changed.
  • the pressure load fluctuation to the high-pressure pump supplied to the semipermeable membrane unit can be suppressed, and the energy recovery efficiency can be maintained high, and the facility cost can be reduced and fresh water can be produced with small energy.
  • FIG. 1 is a schematic flow diagram showing an embodiment of the method for producing fresh water according to the present invention.
  • FIG. 2 is a schematic flow diagram showing another embodiment of the method for producing fresh water according to the present invention.
  • FIG. 3 is a schematic flowchart showing still another embodiment of the method for producing fresh water according to the present invention.
  • FIG. 4 is a schematic flowchart showing still another embodiment of the method for producing fresh water according to the present invention.
  • FIG. 1 An example of a fresh water production apparatus to which the present invention is applicable is shown in FIG.
  • the fresh water producing apparatus shown in FIG. 1 has a line capable of mixing and supplying the second raw water 1b to the first raw water 1a, and can mix the raw water 1b with the raw water 1a as necessary.
  • the raw water is supplied to the pretreatment unit 4 through the raw water tank 2 by the raw water supply pump 3.
  • the pretreated water is temporarily stored in the intermediate tank 6, and fresh water is obtained by the semipermeable membrane unit 8 by the high pressure pump 7.
  • the obtained fresh water is stored in the fresh water tank 10.
  • the concentrated water of the semipermeable membrane unit 8 is recovered by the energy recovery unit 9 and then discharged out of the system as the concentrated drainage 11.
  • the valve 5a and the valve 5b are provided for adjusting the flow rates of the first raw water 1a and the second raw water 1b, respectively.
  • the first raw water 1a and the second raw water 1b have different concentrations, and the concentration after mixing is adjusted according to the mixing ratio.
  • the mixing ratio can be varied from 0 to 100% depending on the concentration and temperature. That is, the raw water 1a and the raw water 1b are usually supplied alone and can be mixed only when necessary.
  • the mixed raw water is subjected to pretreatment and then divided into fresh water and concentrated water by the semipermeable membrane unit. It varies depending on the temperature and concentration of (mixed raw water pretreatment water).
  • the permeation of solvent (water) and solute through the semipermeable membrane is generally expressed by the following equation.
  • the osmotic pressure ⁇ increases as the semipermeable membrane feed water membrane surface concentration Cm increases.
  • Cm / Mw ⁇ R ⁇ (273.15 + T ).
  • the viscosity ⁇ of water increases as the temperature decreases.
  • the pure permeability coefficient Lp decreases, and in all cases, the water permeation flux Jv decreases.
  • the solute permeation flux Js is increased, and the quality (permeate concentration) Cp of the production water is deteriorated.
  • the operating pressure ⁇ P has been increased when the semipermeable membrane feed water concentration Cf increases or when the water temperature decreases. As a result, Jv was increased and Cp was decreased. Conversely, when the semipermeable membrane feed water concentration Cf drops or the water temperature rises, the operating pressure ⁇ P is reduced.
  • the operating method of the present invention is characterized in that the operating pressure ⁇ P is not basically changed, and the semipermeable membrane feed water concentration Cf is changed by changing the mixing ratio of the raw water. That is, when the raw water temperature is lowered, the mixing ratio of the raw water is changed so that the semipermeable membrane feed water concentration Cf is lowered, and the osmotic pressure ⁇ is lowered to reduce the permeability due to the viscosity increase caused by the temperature drop. This is compensated by increasing the effective pressure ( ⁇ P ⁇ ) by reducing the osmotic pressure ⁇ , and the operating pressure ⁇ P is made constant and the production water quantity is made constant.
  • the concentrated water of the semipermeable membrane unit has high-pressure energy that is close to ⁇ P to the extent that the flow pressure loss in the unit (usually about 0.1 to 0.5 MPa) decreases from the operating pressure ⁇ P.
  • An apparatus for recovering pressure energy from here does not have a very wide pressure range with high efficiency. For example, even if the recovery efficiency is 80% at 5 MPa, the pressure is reduced to 50% at 3 MPa. Therefore, as described in Japanese Patent Application Laid-Open No. 2001-46842, there is also a technique for increasing the energy recovery efficiency by applying pressure to the permeation side of the semipermeable membrane unit to maintain the pressure on the supply water side high.
  • the design pressure point of the high-pressure pump and the energy recovery unit which occupy a very large part of the equipment cost, can be narrowed, and the inverter that is the pressure control system of the high-pressure pump is not required. This makes it possible to significantly reduce the equipment cost.
  • the first raw water and the second raw water are not particularly limited as long as the concentrations affecting the osmotic pressure are different.
  • Water, ground water, sewage, waste water, and treated water thereof can be used.
  • treated water include filtered water and concentrated water.
  • the concentrated wastewater generated by the semipermeable membrane unit 8b is used as one of the raw water, it is effective because the concentrated wastewater that is normally discharged out of the system can be effectively used.
  • the concentrated drainage can be either high-concentration raw water or low-concentration raw water.
  • it is preferable that the difference in concentration is large from the viewpoint of reducing the pressure fluctuation which is the gist of the present invention.
  • the temperature change in the sea near Japan is about 10-30 ° C
  • the viscosity in winter (10 ° C) is about 1.6 times that in summer (30 ° C).
  • an effective pressure of 8 bar is required to obtain the same amount of fresh water in winter if it can be operated at an effective pressure (operating pressure-osmotic pressure) of 5 bar in summer. become.
  • the osmotic pressure is reduced so as to compensate for the increased 3 bar, fluctuations in the operating pressure can be suppressed.
  • TDS Total Dissolved Solid
  • the second raw water has a temperature different from that of the first raw water and is mixed so as to alleviate the temperature change. That is, for example, the cooling water of the power plant and the biologically treated sewage wastewater treated water are heated by biological treatment, so if mixed instead of river water as the second raw water, it compensates for the winter temperature drop, Mixing ratio can be reduced. Conversely, from the viewpoint of suppressing the temperature rise in summer, the temperature rise can be suppressed if the first raw water is seawater and the second raw water is groundwater or underground water.
  • the present invention it is possible to keep the operating pressure of the semipermeable membrane unit constant, to suppress the load fluctuation to the high-pressure pump, and to suppress the pressure resistance against piping and the like.
  • the pressure energy recovery device when pressure energy is recovered from the concentrated drainage of the semipermeable membrane unit using the energy recovery device, the pressure energy recovery device can also be operated near the optimum design pressure, contributing to energy saving. can do.
  • a reverse pump, a turbine type, a turbocharger, a pressure exchange type etc. can be used, but the reverse pressure pump or Pelton turbine type with a narrow optimal pressure range is used.
  • the present invention is particularly effective when the energy recovery apparatus is used.
  • the semipermeable membrane unit applicable to the present invention is not particularly limited, but for easy handling, a hollow fiber membrane-like or flat membrane-like semipermeable membrane is housed in a casing to form a fluid separation element (element). It is preferable to use what was loaded in a pressure vessel.
  • the fluid separation element is formed of a flat membrane-like semipermeable membrane, for example, the semipermeable membrane is wound in a cylindrical shape together with a flow path material (net) around a cylindrical central pipe having a large number of holes.
  • TM700 series and TM800 series manufactured by Toray Industries, Inc. can be mentioned.
  • One of these fluid separation elements may constitute a semipermeable membrane unit, or a plurality of fluid separation elements may be connected in series or in parallel to constitute a semipermeable membrane unit.
  • the membrane structure has a dense layer on at least one side of the membrane, and on the asymmetric membrane having fine pores gradually increasing from the dense layer to the inside of the membrane or the other side, or on the dense layer of the asymmetric membrane.
  • a composite film having a very thin functional layer formed of another material may be used.
  • the feed water is concentrated. Therefore, scale inhibitors, acids and alkalis are added to the feed water of each semipermeable membrane unit to prevent scale precipitation due to concentration and to adjust pH. It is possible to In addition, it is preferable to implement scale inhibitor addition upstream from pH adjustment so that the addition effect can be exhibited. It is also preferable to prevent an abrupt concentration or pH change in the vicinity of the addition port by providing an in-line mixer immediately after the chemical addition, or by directly contacting the addition port with the flow of the supply water.
  • the scale inhibitor is a substance that forms a complex with a metal, a metal ion, or the like in a solution and solubilizes the metal or metal salt, and an organic or inorganic ionic polymer or monomer can be used.
  • organic polymers synthetic polymers such as polyacrylic acid, sulfonated polystyrene, polyacrylamide, and polyallylamine, and natural polymers such as carboxymethylcellulose, chitosan, and alginic acid can be used, and ethylenediaminetetraacetic acid can be used as a monomer.
  • polyphosphate etc. can be used as an inorganic type scale inhibitor.
  • polyphosphate and ethylenediaminetetraacetic acid are particularly preferably used from the viewpoints of availability, ease of operation such as solubility, and cost.
  • the polyphosphate refers to a polymerized inorganic phosphate material having two or more phosphorus atoms in a molecule typified by sodium hexametaphosphate and bonded with an alkali metal, an alkaline earth metal and a phosphate atom.
  • Typical polyphosphates include tetrasodium pyrophosphate, disodium pyrophosphate, sodium tripolyphosphate, sodium tetrapolyphosphate, sodium heptapolyphosphate, sodium decapolyphosphate, sodium metaphosphate, sodium hexametaphosphate, and potassium salts thereof. Etc.
  • sulfuric acid, sodium hydroxide, and calcium hydroxide are generally used as the acid and alkali, but hydrochloric acid, oxalic acid, potassium hydroxide, sodium bicarbonate, ammonium hydroxide, and the like can also be used. However, it is better not to use calcium or magnesium in order to prevent an increase in scale components in seawater.
  • a treatment unit in which turbid components are removed, sterilized, or the like is applied according to the quality of each supplied water. it can.
  • sand filtration, microfiltration membrane, or ultrafiltration membrane is effective as the pretreatment unit 4 when it is necessary to remove turbidity of the feed water.
  • a bactericidal agent Chlorine is preferably used as the disinfectant, and for example, chlorine gas or sodium hypochlorite may be added to the feed water as free chlorine so as to be in the range of 1 to 5 mg / l.
  • certain fungicides may not have chemical durability. In that case, add as much upstream as possible to the feed water, and further, supply water inlet of the semipermeable membrane unit.
  • the disinfectant harmless in the vicinity of the side.
  • its concentration is measured, and the addition amount of chlorine gas and sodium hypochlorite is controlled based on this measured value, or a reducing agent such as sodium bisulfite is added.
  • the raw feed water contains bacteria, proteins, natural organic components, etc. in addition to turbidity, it is also effective to add a flocculant such as polyaluminum chloride, sulfate band, iron (III) chloride.
  • a flocculant such as polyaluminum chloride, sulfate band, iron (III) chloride.
  • the agglomerated feed water is then subjected to sand filtration after settling on an inclined plate or the like, or by filtration through a microfiltration membrane or an ultrafiltration membrane in which a plurality of hollow fiber membranes are bundled.
  • Supply water suitable for passing through the latter semipermeable membrane unit can be obtained.
  • sand filtration when sand filtration is used for pretreatment, it is possible to apply gravity-type filtration that naturally flows down, or it is possible to apply pressure-type filtration in which sand is filled in a pressurized tank. .
  • sand to be filled single-component sand can be applied.
  • anthracite, silica sand, garnet, pumice, and the like can be combined to increase filtration efficiency.
  • the microfiltration membrane and the ultrafiltration membrane are not particularly limited, and a flat membrane, a hollow fiber membrane, a tubular membrane, a pleat type, or any other shape can be used as appropriate.
  • the material of the membrane is not particularly limited, and inorganic materials such as polyacrylonitrile, polyphenylene sulfone, polyphenylene sulfide sulfone, polyvinylidene fluoride, polypropylene, polyethylene, polysulfone, polyvinyl alcohol, cellulose acetate, and ceramics can be used. Moreover, even if it is a filtration system, any of the pressure filtration system which pressurizes and filters supply water, and the suction filtration system which sucks and filters the permeation
  • coagulation membrane filtration or membrane-utilized activated sludge method in which a microfiltration membrane or an ultrafiltration membrane is immersed in a coagulation sedimentation tank or a biological treatment tank and filtered, may be applied.
  • MLR membrane-utilized activated sludge method
  • the organic matter when the supply water contains a lot of soluble organic matter, the organic matter can be decomposed by adding chlorine gas or sodium hypochlorite. Removal is possible.
  • a chelating agent such as an organic polymer electrolyte or sodium hexametaphosphate may be added, or exchanged with soluble ions using an ion exchange resin or the like.
  • iron or manganese when iron or manganese is present in a soluble state, it is preferable to use an aeration oxidation filtration method, a catalytic oxidation filtration method, or the like.
  • a nanofiltration membrane can be used for pretreatment.
  • the first raw water and the second raw water are treated by the pretreatment unit 4 after mixing, but the first raw water and the second raw water before mixing are independently suitable as shown in FIG. A pretreatment is also a preferred embodiment.
  • Ehime Factory is fed to the first raw water tank 2a.
  • the pretreatment unit 4a was a Toray hollow fiber membrane module HFU-2020 (effective membrane area 72 m 2 ) ⁇ 1 and filtered at a flow rate of 3 m 3 / h and stored in the intermediate tank 6.
  • the supply valve 5b of the second raw water tank 2b is fully closed so that only the first raw water is supplied.
  • Example> The fresh water obtained by the semipermeable membrane unit 8 was stored in the raw water tank 2b at a seawater temperature of 15 ° C., and the second raw water in the present invention was simulated.
  • First raw water (pretreated seawater) 1.6 m 3 / h pretreated in the same manner as in the reference example and second raw water 0.4 m 3 / h were mixed (the concentration of the mixed raw water at this time was 2.7% by weight) ) And supplied to the semipermeable membrane unit 8 and operated in the same manner as in the reference example.
  • the operating pressure was 61.3 bar and the permeated water TDS concentration was 53 mg / l. I was able to.
  • An object of the present invention relates to a fresh water production method and a fresh water production apparatus using a semipermeable membrane using raw water such as seawater, river water, ground water, wastewater treatment water, and the like.
  • raw water such as seawater, river water, ground water, wastewater treatment water, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

 本発明は、原水を半透膜ユニットに供給して淡水を得る淡水の製造方法であって、半透膜ユニットの淡水流量および/または、半透膜ユニットの運転圧力の変化に応じて、原水と溶質濃度の異なる水を前記原水に混合供給する淡水の製造方法に関する。

Description

淡水の製造方法
 本発明は、海水と河川水、地下水又は廃水処理水との組合せのような複数種の原水から淡水を製造するための、半透膜ユニットを用いた淡水の製造方法及び淡水製造装置に関する。さらに詳しくは、複数種の原水から淡水を製造する淡水製造装置において、設備コストと運転コストを抑えることが可能な半透膜ユニットを用いた淡水の製造方法及び淡水製造装置に関する。
 近年深刻化してきている水環境の悪化に伴い、これまで以上に水処理技術が重要になってきており、分離膜利用の水処理技術が非常に幅広く適用されてきている。海水淡水化の水処理技術として、従来、水資源が極端に少なく、かつ、石油による熱資源が非常に豊富である中東地域では蒸発法を中心に実用化されてきていたが、熱源が豊富でない中東以外の地域では所要動力が小さい半透膜(とくに逆浸透膜)を用いた淡水化プロセスが採用され、カリブ海諸島や地中海エリアなどで多数のプラントが建設され実用運転されている。
 とくに、近年は、淡水化で生じた圧力エネルギーを持った濃縮排水からエネルギーを高効率で回収する技術も適用されるようになり、さらに省エネルギーで海水から淡水を製造することが可能となっている。
 逆浸透膜淡水化設備では、一般に必要とする生産水量を常時得ることを目的とするため、原水の濃度や温度に応じて、半透膜ユニットの稼働数や半透膜ユニットの運転圧力を制御する運転を行う。具体的には、原水濃度が上がった場合は、浸透圧の増加分を補うために運転圧力を上げ、原水温度が上がった場合は、半透膜の透水性が上がるので運転圧力を下げることによって、所定の生産水量を維持する。
 さらに、上記のように生産水量を維持しようとすると、生産水質も変動し、例えば、原水温度が上がり、運転圧力を下げると、水質が大きく低下する。また、濃縮排水からエネルギーを回収する場合、エネルギー回収装置の適正圧力範囲は限られており、運転圧力変動によって設計圧力ポイントからずれると、エネルギー回収効率が低下するという問題があった。
 そこで、生産水質や運転圧力をある範囲内に維持するために、特許文献1にしめすように、原水温度が上がった場合は、半透膜の水透過性が上がるために、半透膜ユニットの稼働数を減らし運転圧力を維持する方法が提案,実用化されているが、稼働数を減らすと、半透膜面積あたりの負荷が大きくなり、膜へのダメージが生じやすくなるという問題を有している。これを解決する方法としては、特許文献2に示すように、原水と、同一原水から発電プラントの復水器に分岐させた高温原水とを適宜混合して、温度を一定に保つ方法が提案されている。
 一方、海水を原水とした半透膜による淡水製造は、蒸発法に比べるとエネルギー的に優れているとはいえ、海水の高い浸透圧に起因する高圧力プロセスであるため、河川水を原水とする上水製造プロセスに比べて必要とするエネルギーは大きい。そのため、最近は、下廃水を浄化処理して半透膜で回収再利用する淡水製造設備が実用化されている(非特許文献1)。さらに、海水と河川水を併用(非特許文献2)したり、海水と下廃水を併用(非特許文献3)したりしてエネルギーコストを下げるシステムが提案されている。
日本国特開2001-239134号公報 日本国実開平4-137795号公報
A. J. von Gottbergら、"World’s Largest Membrane-based Water Reuse Project," Proc. IDA World Congress, Bahama, 2003. J. S. S. Chinら、"Increasing Water Resources through Desalination in Singapore: Planning for a Sustainable Future," Proc. IDA World Congress, Dubai,  2009. "神鋼環境ソら4者 経産省のモデル事業 周南市で実証実験"、[online]、平成21年3月5日、日本水道新聞、[平成21年7月2日検索]、インターネット<URL : http://www.suido-gesuido.co.jp/blog/suido/2009/03/post_2780.html>
 本発明の目的は、複数種類の原水を混合利用する半透膜を用いた淡水の製造方法において、運転制御範囲を小さく抑えることによって設備コスト、特に半透膜の高圧ポンプと濃縮水のエネルギー回収ユニットへの要求仕様を低減しながら、安定した生産水量と生産水質を維持可能な、低コストの淡水製造方法を提供することにある。
 前記目的を達成するために、本発明は以下の(1)~(7)に関する。
(1)原水を半透膜ユニットに供給して淡水を得る淡水の製造方法であって、半透膜ユニットの淡水流量および/または、半透膜ユニットの運転圧力の変化に応じて、原水と溶質濃度の異なる水を前記原水に混合供給する淡水の製造方法。
(2)溶質濃度が異なる少なくとも2種類の原水を混合した後に半透膜ユニットに供給して淡水を得る淡水の製造方法であって、半透膜ユニットの淡水流量および/または半透膜ユニットの運転圧力の変化に応じて、少なくとも2種類の原水の混合比率を制御する淡水の製造方法。
(3)半透膜ユニットの淡水流量および半透膜ユニットの運転圧力が所定の範囲内になるように少なくとも2種類の原水の混合比率を制御する(2)に記載の淡水の製造方法。
(4)少なくとも2種類の原水のうち、少なくとも1種類が海水、河川水、地下水、下水、廃水、またはそれらの処理水である(2)または(3)に記載の淡水の製造方法。
(5)処理水が、ろ過水もしくは濃縮水である(4)に記載の淡水の製造方法。
(6)前記半透膜ユニットの濃縮水が有する圧力エネルギーを水車式もしくは逆転ポンプ式のエネルギー回収装置を用いて回収する(1)~(5)のいずれか一項に記載の淡水の製造方法。
 本発明によると、複数種類の原水を混合利用する半透膜を用いた淡水の製造方法において、原水の濃度や温度に応じて、原水と濃度の異なる水を混合し、その混合比率を変化させることによって半透膜ユニットへ供給する高圧ポンプへの圧力負荷変動を抑えるとともに、エネルギー回収効率を高く維持することができ、設備コストを低減させるとともに小さなエネルギーで淡水を製造することが可能となる。
図1は、本発明に係る淡水の製造方法の一実施態様を示す概略フロー図である。 図2は、本発明に係る淡水の製造方法の別の一実施態様を示す概略フロー図である。 図3は、本発明に係る淡水の製造方法のさらに別の一実施態様を示す概略フロー図である。 図4は、本発明に係る淡水の製造方法のさらに別の一実施態様を示す概略フロー図である。
 以下、本発明の望ましい実施の形態を、図面を用いて説明する。ただし、本発明の範囲がこれらに限られるものではない。
 本発明を適用可能な淡水製造装置の一例を図1に示す。図1に示す淡水製造装置では、第1原水1aに対して、第2原水1bを混合供給できるラインを有し、必要に応じて原水1aに原水1bを混合できるようになっている。その後、原水タンク2を通して、原水供給ポンプ3で、前処理ユニット4に送られる。前処理水は中間タンク6にいったん貯留され、高圧ポンプ7にて半透膜ユニット8にて淡水を得る。得られた淡水は、淡水タンク10に貯留される。一方、半透膜ユニット8の濃縮水はエネルギー回収ユニット9にて動力回収された後、濃縮排水11として、系外に排出される。バルブ5aとバルブ5bは、それぞれ第1原水1aと第2原水1bの流量調節のために備えられている。
 つづいて、図1に示す淡水製造装置による本発明の適用について述べる。
 第1原水1aと第2原水1bは、それぞれの濃度が異なり、その混合比率によって混合後の濃度を調整する。なお、混合比率はその濃度や温度によって、0~100%まで変動させることが可能である。すなわち、原水1aと原水1bを通常は単独で供給し、必要なときだけ混合することも差し支えない。混合された原水は前処理を経た後、半透膜ユニットで淡水と濃縮水に分けられるが、半透膜ユニット8で膜を透過して淡水として得られる水量や水質は、半透膜供給水(混合原水の前処理水)の温度、濃度によって変化する。半透膜における溶媒(水)と溶質の透過は一般に次式で表現される。
    Jv=Lp(ΔP-π(Cm)) ・・・(1)
    Js=P(Cm-Cp) ・・・(2)
    (Cm-Cp)/(Cf-Cp)=exp(Jv/k) ・・・(3)
    Cp=Js/Jv ・・・(4)
    Lp=α×Lp25×μ25/μ ・・・(5)
    P=β×P25×μ25/μ×(273.15+T)/(298.15) ・・・(6)
  Cf   :半透膜供給水濃度         [mg/l]
  Cm   :半透膜供給水膜面濃度         [mg/l]
  Cp   :透過水濃度        [mg/l]
  Js   :溶質透過流束       [kg/m/s]
  Jv   :水の透過流束       [m/m/s]
  k    :物質移動係数       [m/s]
  Lp   :純水透過係数       [m/m/Pa/s]
  Lp25  :25℃での純水透過係数  [m/m/Pa/s」
  P    :溶質透過係数       [m/s]
  P25   :25℃での溶質透過係数  [m/m/Pa/s]
  T    :温度           [℃]
  α    :運転条件による変動係数  [-]
  β    :運転条件による変動係数  [-]
  ΔP   :運転圧力         [Pa]
  μ    :粘度            [Pa・s]
  μ25   :25℃での粘度      [Pa・s]
  π    :浸透圧          [Pa]
 (1)式において、半透膜供給水膜面濃度Cmが高くなるほど浸透圧πが上昇し、例えば、非イオン性物質の場合、理論的にはπ=Cm/Mw×R×(273.15+T)から算出することができる。(ここで、Mwは分子量、R=気体定数である。)また、低温になるほど水の粘度μが上がる。これらによって純粋透過係数Lpが低下し、いずれも、水の透過流束Jvが減少する。また、半透膜供給水濃度Cfが上がることによって、また、温度上昇によって溶質透過流束Jsが増大し、生産水の水質(透過水濃度)Cpが悪化する。
 従来、これらに対処するために、半透膜供給水濃度Cf上昇時や水温低下時には、運転圧力ΔPを大きくしていた。これによって、Jvを増加させ、Cpを低下させていた。逆に半透膜供給水濃度Cf低下時や水温上昇時には、運転圧力ΔPを小さくしていた。
 本発明の運転方法においては、運転圧力ΔPを基本的には変化させず、原水の混合比率を変えて半透膜供給水濃度Cfを変化させることを特徴としている。すなわち、原水温度が低下したときには、半透膜供給水濃度Cfが低下するように原水の混合比率を変え、浸透圧πを低下させて温度低下で生じた粘度上昇に起因する透水性低下を、浸透圧π低減による有効圧力(ΔP-π)増加で補い、運転圧力ΔPを一定とし、生産水量を一定にするものである。
 さらに、半透膜ユニットの濃縮水は、運転圧力ΔPからユニット内での流動圧損(通常0.1~0.5MPa程度)が低下した程度でほぼΔPに近い高圧エネルギーを有しているが、ここから圧力エネルギーを回収するための装置は、効率の高い圧力範囲がそれほど幅広くなく、例えば、5MPaで回収効率80%であっても、3MPaだと50%に低下してしまう。そのために、日本国特開2001-46842号公報に記載されているように、半透膜ユニットを透過側に圧力をかけて供給水側の圧力を高く維持し、エネルギー回収効率を高めるという技術も提案されているが、透過側に圧力をかけるという時点で、ある程度のエネルギーロスは避けられず、また透過側に耐圧性が必要となるという問題にもつながる。本発明の適用によってエネルギー回収圧力変動も小さくなり、常に安定した高いエネルギー回収効率を実現することが可能となる。
 なお、本発明の適用によって、設備コストの中で非常に大きな部分を占める高圧ポンプおよびエネルギー回収ユニットの設計圧力ポイントを狭めることができるとともに高圧ポンプの圧力制御システムであるインバーターを不要とすることが可能となり、設備コストを大幅に低減することが可能となる。
 本発明を適用するにあたって、第1原水および第2原水は、浸透圧に影響を与える濃度が異なれば特に制限はなく、たとえば、高濃度である海水や濃縮海水、海水よりも低濃度である河川水、地下水、下水、廃水、またそれらの処理水を用いることができる。処理水としては、ろ過水及び濃縮水が例示される。図3に例示するように、半透膜ユニット8bで生成した濃縮排水を原水の一つとして用いると、通常系外に排出される濃縮排水を有効活用することができるため、効果的である。この場合、濃縮排水が高濃度原水でも低濃度原水でも差し支えない。ただし、いずれの場合においても本発明の主旨である圧力変動を小さくするという観点から、濃度の差は大きい方が好ましい。
 具体的には、例えば日本近海における海水温度変化は10~30℃程度であり、冬季(10℃)の粘度は夏季(30℃)の約1.6倍であり、半透膜の特性や運転条件にもよるが、半透膜に特性変化がない場合、夏季に有効圧力(運転圧力-浸透圧)5barで運転可能であれば、冬季に同じ造水量を得るためには有効圧力が8bar必要になる。ここで、増加した3barを補うように浸透圧を低減させれば、運転圧力変動を抑えることができる。具体的には、たとえば、夏季に、TDS(Total Dissolved Solid,全蒸発残留物)濃度3.5wt%(浸透圧=約28bar)の海水を第1原水のみで運転し、冬季には第2原水としてTDS濃度0.2wt%の河川水を10%程度混合すれば、浸透圧は約25bar程度に低減され、冬季の3barの増加分を補うことができる。
 さらに、第2原水が第1原水と温度が異なり、温度変化を緩和するように混合されることも好ましい。すなわち、例えば、発電所の冷却水や生物処理された下廃水処理水は、生物処理によって温度が上がっているため、第2原水として河川水の代わりに混合すれば、冬季の温度低下を補い、混合率を低減することができる。逆に、夏期の温度上昇を抑制するという観点では、第1原水を海水とし、第2原水を地下水や伏流水とすれば、温度上昇を抑えることができる。
 以上のように、本発明の適用によって、半透膜ユニットの運転圧力を一定にし、高圧ポンプへの負荷変動を抑えることができると共に、配管その他に対する耐圧性も抑制することが可能となる。
 さらに、前述のように半透膜ユニットの濃縮排水からエネルギー回収装置を用いて、圧力エネルギーを回収する場合、圧力エネルギー回収装置も設計最適圧力の近傍で運転することが可能となり、省エネルギーにも貢献することができる。
 なお、ここで適用されるエネルギー回収装置としては、とくに制限はなく、逆転ポンプ、水車式、ターボチャージャー、圧力交換式などいずれも用いることができるが、最適圧力範囲が狭い逆転ポンプやペルトン水車式のエネルギー回収装置を使用すると、本発明が特に効果的である。
 本発明に適用可能な半透膜ユニットとしては、特に制約はないが、取扱いを容易にするため中空糸膜状や平膜状の半透膜を筐体に納めて流体分離素子(エレメント)としたものを耐圧容器に装填したものを用いることが好ましい。流体分離素子は、平膜状半透膜で形成する場合、例えば、多数の孔を穿設した筒状の中心パイプの周りに、半透膜を流路材(ネット)とともに円筒状に巻回したものが一般的であり、市販製品としては、東レ(株)製逆浸透膜エレメントTM700シリーズやTM800シリーズを挙げることができる。これらの流体分離素子は1本で半透膜ユニットを構成するものでも、また、複数本を直列あるいは並列に接続して半透膜ユニットを構成するものでもよい。
 半透膜の素材には酢酸セルロース系ポリマー、ポリアミド、ポリエステル、ポリイミド、ビニルポリマーなどの高分子素材を使用することができる。またその膜構造は、膜の少なくとも片面に緻密層を持ち、緻密層から膜内部あるいはもう片方の面に向けて徐々に大きな孔径の微細孔を有する非対称膜や、非対称膜の緻密層の上に別の素材で形成された非常に薄い機能層を有する複合膜のどちらでもよい。
 半透膜ユニットにおいては、供給水が濃縮されるため、濃縮によるスケール析出を防止したりpH調整のためにそれぞれの半透膜ユニットの供給水に対してスケール防止剤や酸・アルカリを添加したりすることが可能である。なお、スケール防止剤添加は、その添加効果を発揮できるように、pH調整よりも上流側で実施することが好ましい。また、薬品添加の直後にはインラインミキサーを設けたり、添加口を供給水の流れに直接接触したりするなどして添加口近傍での急激な濃度やpH変化を防止することも好ましい。
 スケール防止剤とは、溶液中の金属、金属イオンなどと錯体を形成し、金属あるいは金属塩を可溶化させるもので、有機や無機のイオン性ポリマーあるいはモノマーが使用できる。有機系のポリマーとしてはポリアクリル酸、スルホン化ポリスチレン、ポリアクリルアミド、ポリアリルアミンなどの合成ポリマーやカルボキシメチルセルロース、キトサン、アルギン酸などの天然高分子が、モノマーとしてはエチレンジアミン四酢酸などが使用できる。また、無機系のスケール防止剤としてはポリリン酸塩などが使用できる。これらのスケール防止剤の中では入手のしやすさ、溶解性など操作のしやすさ、価格の点から特にポリリン酸塩、エチレンジアミン四酢酸(EDTA)が好適に用いられる。ポリリン酸塩とはヘキサメタリン酸ナトリウムを代表とする分子内に2個以上のリン原子を有し、アルカリ金属、アルカリ土類金属とリン酸原子などにより結合した重合無機リン酸系物質をいう。代表的なポリリン酸塩としては、ピロリン酸4ナトリウム、ピロリン酸2ナトリウム、トリポリリン酸ナトリウム、テトラポリリン酸ナトリウム、ヘプタポリリン酸ナトリウム、デカポリリン酸ナトリウム、メタリン酸ナトリウム、ヘキサメタリン酸ナトリウム、およびこれらのカリウム塩などがあげられる。
 一方、酸やアルカリとしては、硫酸や水酸化ナトリウム、水酸化カルシウムが一般的に用いられるが、塩酸、シュウ酸、水酸化カリウム、重炭酸ナトリウム、水酸化アンモニウムなどを使用することもできる。但し、海水へのスケール成分の増加を防止するためには、カルシウムやマグネシウムは使用しない方がよい。
 本発明において、半透膜ユニット8供給前の原水の前処理ユニット4としては、それぞれの供給水の水質などに応じて、濁質成分の除去や殺菌などが行われる処理ユニットを適用することができる。
 例えば、供給水の濁質を除去する必要がある場合の前処理ユニット4としては、砂ろ過や精密ろ過膜、限外ろ過膜の適用が効果的である。このときバクテリアや藻類などの微生物が多い場合は、殺菌剤を添加することが好ましい。殺菌剤としては塩素を用いることが好ましく、たとえば塩素ガスや次亜塩素酸ナトリウムを遊離塩素として1~5mg/lの範囲内となるように供給水に添加するとよい。なお、半透膜の種類によっては特定の殺菌剤に化学的な耐久性がない場合があるので、その場合は、なるべく供給水の上流側で添加し、さらに、半透膜ユニットの供給水入口側近傍にて殺菌剤を無害化することが好ましい。例えば、遊離塩素の場合は、その濃度を測定し、この測定値に基づいて塩素ガスや次亜塩素酸ナトリウムの添加量を制御したり、亜硫酸水素ナトリウムなどの還元剤を添加したりするとよい。
 また、供給原水が、濁質以外にバクテリアやタンパク質、天然有機成分などを含有する場合は、ポリ塩化アルミニウム、硫酸バンド、塩化鉄(III)などの凝集剤を加えることも効果的である。凝集させた供給水は、その後に斜向板などで沈降させた上で砂ろ過を行ったり、複数本の中空糸膜を束ねた精密ろ過膜や限外ろ過膜によるろ過を行ったりすることによって後段の半透膜ユニットを通過させるのに適した供給水とすることができる。とくに、凝集剤の添加にあたっては、凝集しやすいようにpHを調整することが好ましい。
 ここで、前処理に砂ろ過を用いる場合は、自然に流下する方式の重力式ろ過を適用することもできれば、加圧タンクの中に砂を充填した加圧式ろ過を適用することも可能である。充填する砂も、単一成分の砂を適用することが可能であるが、例えば、アンスラサイト、珪砂、ガーネット、軽石など、を組み合わせて、ろ過効率を高めることが可能である。精密ろ過膜や限外ろ過膜についても、特に制約はなく、平膜、中空糸膜、管状型膜、プリーツ型、その他いかなる形状のものも適宜用いることができる。膜の素材についても、特に限定されず、ポリアクリロニトリル、ポリフェニレンスルフォン、ポリフェニレンスルフィドスルフォン、ポリフッ化ビニリデン、ポリプロピレン、ポリエチレン、ポリスルホン、ポリビニルアルコール、酢酸セルロースや、セラミック等の無機素材を用いることができる。また、ろ過方式にしても供給水を加圧してろ過する加圧ろ過方式や透過側を吸引してろ過する吸引ろ過方式のいずれも適用可能である。とくに、吸引ろ過方式の場合は、凝集沈殿槽や生物処理槽に精密ろ過膜や限外ろ過膜を浸漬してろ過する、いわゆる凝集膜ろ過や膜利用活性汚泥法(MBR)を適用することも好ましい。
 一方、供給水に溶解性の有機物が多く含まれている場合は、塩素ガスや次亜塩素酸ナトリウムの添加によってそれら有機物を分解することができるが、加圧浮上や活性炭ろ過を行うことによっても除去が可能である。また、溶解性の無機物が多く含まれている場合は、有機系高分子電解質やヘキサメタ燐酸ソーダなどのキレート剤を添加したり、イオン交換樹脂などを用いて溶解性イオンと交換したりするとよい。また、鉄やマンガンが可溶な状態で存在しているときは、曝気酸化ろ過法や接触酸化ろ過法などを用いることが好ましい。
 あらかじめ特定イオンや高分子などを除去し、本発明における淡水製造装置を高効率で運転することを目的として、前処理にナノろ過膜を用いることも可能である。
 また、図1では、第1原水と第2原水の混合後に前処理ユニット4によって処理しているが、図2のように混合前の第1原水と第2原水を独立してそれぞれに適した前処理を施すことも好ましい態様である。
<参考例>
 図4にフローを示す淡水製造装置を用い、東レ(株)愛媛工場の近傍の海水(全溶質濃度3.4重量%、水温25℃、pH=8.0)を、第1原水タンク2aに貯留し、前処理ユニット4aとして、東レ製中空糸膜モジュールHFU-2020(有効膜面積72m)×1本を用い、流量3m/hでろ過し、中間タンク6に貯留した。このとき、第2原水タンク2bの供給バルブ5bは全閉し、第1原水のみが供給されるようにした。この中間タンク6から、2m/hを、東レ製逆浸透膜エレメントTM810×6本を直列に構成した半透膜ユニット8に供給し、回収率40%で淡水製造したところ、淡水造水量は、0.8m/h、運転圧力は60.3bar、透過水TDS濃度は115mg/lであった。
<比較例>
 海水水温が15℃である以外は参考例と同じ条件で図4に示す淡水製造装置を運転したところ、運転圧力は、71.9bar、透過水TDS濃度は73mg/lであり、運転圧力が参考例よりも上昇した。
<実施例>
 海水水温15℃において、半透膜ユニット8で得られた淡水を原水タンク2bに貯留し、本発明における第2原水を模擬した。参考例と同様に前処理した第1原水(前処理海水)1.6m/hと第二の原水0.4m/hを混合(このときの混合原水の濃度は、2.7重量%)し、半透膜ユニット8に供給し、参考例と同様に運転したところ、運転圧力は、61.3bar、透過水TDS濃度は53mg/lとなり、低温においても参考例と同じ圧力で運転することができた。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは、当業者にとって明らかである。
 本出願は、2010年3月15日出願の日本特許出願2010-057113に基づくものであり、その内容はここに参照として取り込まれる。
 本発明の目的は、海水、河川水、地下水、排水処理水などの原水を利用する半透膜を用いた淡水の製造方法及び淡水製造装置に関するものであり、必要に応じて濃度の異なる水を混合することで運転制御範囲を小さく抑えることによって設備コスト、特に半透膜の高圧ポンプと濃縮水のエネルギー回収ユニットへの要求仕様を低減しながら、安定した生産水量と生産水質を維持可能な、低コストの淡水製造方法を提供することができる。
1a、1b及び1c:原水
2、2a、2b及び2c:原水タンク
3、3a、3b及び3c:原水供給ポンプ
4、4a、4b及び4c:前処理ユニット
5a及び5b:バルブ
6:中間タンク
7:高圧ポンプ
8:半透膜ユニット
9:エネルギー回収ユニット
10:淡水タンク
11:濃縮排水

Claims (6)

  1. 原水を半透膜ユニットに供給して淡水を得る淡水の製造方法であって、半透膜ユニットの淡水流量および/または、半透膜ユニットの運転圧力の変化に応じて、原水と溶質濃度の異なる水を前記原水に混合供給する淡水の製造方法。
  2. 溶質濃度が異なる少なくとも2種類の原水を混合した後に半透膜ユニットに供給して淡水を得る淡水の製造方法であって、半透膜ユニットの淡水流量および/または半透膜ユニットの運転圧力の変化に応じて、少なくとも2種類の原水の混合比率を制御する淡水の製造方法。
  3. 半透膜ユニットの淡水流量および半透膜ユニットの運転圧力が所定の範囲内になるように少なくとも2種類の原水の混合比率を制御する請求項2に記載の淡水の製造方法。
  4. 少なくとも2種類の原水のうち、少なくとも1種類が海水、河川水、地下水、下水、廃水、またはそれらの処理水である請求項2または3に記載の淡水の製造方法。
  5. 処理水が、ろ過水もしくは濃縮水である請求項4に記載の淡水の製造方法。
  6. 前記半透膜ユニットの濃縮水が有する圧力エネルギーを水車式もしくは逆転ポンプ式のエネルギー回収装置を用いて回収する請求項1~5のいずれか一項に記載の淡水の製造方法。
     
     
PCT/JP2011/055538 2010-03-15 2011-03-09 淡水の製造方法 WO2011114967A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2011517134A JP5867082B2 (ja) 2010-03-15 2011-03-09 淡水の製造方法
EP20110756156 EP2548847A1 (en) 2010-03-15 2011-03-09 Method for producing fresh water
AU2011228323A AU2011228323A1 (en) 2010-03-15 2011-03-09 Method for producing fresh water
CN201180014114.6A CN102791637B (zh) 2010-03-15 2011-03-09 淡水制备方法
US13/634,681 US20130001163A1 (en) 2010-03-15 2011-03-09 Method for producing fresh water
SG2012067666A SG184035A1 (en) 2010-03-15 2011-03-09 Method for producing fresh water
MX2012010665A MX2012010665A (es) 2010-03-15 2011-03-09 Metodo para producir agua fresca.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010057113 2010-03-15
JP2010-057113 2010-03-15

Publications (1)

Publication Number Publication Date
WO2011114967A1 true WO2011114967A1 (ja) 2011-09-22

Family

ID=44649065

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/055538 WO2011114967A1 (ja) 2010-03-15 2011-03-09 淡水の製造方法

Country Status (8)

Country Link
US (1) US20130001163A1 (ja)
EP (1) EP2548847A1 (ja)
JP (1) JP5867082B2 (ja)
CN (1) CN102791637B (ja)
AU (1) AU2011228323A1 (ja)
MX (1) MX2012010665A (ja)
SG (1) SG184035A1 (ja)
WO (1) WO2011114967A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014104450A (ja) * 2012-11-29 2014-06-09 Jfe Engineering Corp 排水処理方法
WO2014115769A1 (ja) * 2013-01-23 2014-07-31 東レ株式会社 淡水製造装置の運転方法
WO2016175153A1 (ja) * 2015-04-27 2016-11-03 東レ株式会社 半透膜分離装置の運転方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130014306A (ko) * 2011-07-28 2013-02-07 코웨이 주식회사 연속 회분식 또는 회분식 여과 처리 장치 및 이의 운전방법
JP5751987B2 (ja) * 2011-08-25 2015-07-22 富士電機株式会社 スケール抑制方法及び地熱発電装置
WO2014141872A1 (ja) * 2013-03-11 2014-09-18 株式会社 荏原製作所 海水淡水化システムおよびエネルギー回収装置
US10717048B1 (en) * 2019-05-09 2020-07-21 Hsiang-Shih Wang Environmental water system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04137795A (ja) 1990-09-28 1992-05-12 Nippon Mektron Ltd レーザー半田付け方法とその装置
JP2001046842A (ja) 1999-08-17 2001-02-20 Japan Organo Co Ltd 逆浸透膜方式海水淡水化装置における動力回収方法および装置
JP2001239134A (ja) 2000-03-01 2001-09-04 Toray Ind Inc 逆浸透処理装置の運転方法とその制御装置および造水方法
JP2005224651A (ja) * 2004-02-10 2005-08-25 Toray Ind Inc 淡水製造方法および淡水製造装置
JP2007152265A (ja) * 2005-12-07 2007-06-21 Toray Ind Inc 淡水製造装置の運転方法および淡水製造装置
JP2008100219A (ja) * 2006-09-22 2008-05-01 Toray Ind Inc 脱塩方法及び脱塩装置
JP2008126137A (ja) * 2006-11-21 2008-06-05 Meidensha Corp 水処理設備の膜ろ過制御方式

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6946081B2 (en) * 2001-12-31 2005-09-20 Poseidon Resources Corporation Desalination system
CN1440933A (zh) * 2002-02-26 2003-09-10 东丽株式会社 脱盐方法及脱盐设备
ES2353782B1 (es) * 2008-05-27 2011-12-12 Luis Sergio Marrera Martin Planta desalinizadora con caudal fluctuante y recuperador de energía eléctrica variable.
US8216473B2 (en) * 2008-06-13 2012-07-10 Solution Dynamics, Llc Apparatus and methods for solution processing using reverse osmosis

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04137795A (ja) 1990-09-28 1992-05-12 Nippon Mektron Ltd レーザー半田付け方法とその装置
JP2001046842A (ja) 1999-08-17 2001-02-20 Japan Organo Co Ltd 逆浸透膜方式海水淡水化装置における動力回収方法および装置
JP2001239134A (ja) 2000-03-01 2001-09-04 Toray Ind Inc 逆浸透処理装置の運転方法とその制御装置および造水方法
JP2005224651A (ja) * 2004-02-10 2005-08-25 Toray Ind Inc 淡水製造方法および淡水製造装置
JP2007152265A (ja) * 2005-12-07 2007-06-21 Toray Ind Inc 淡水製造装置の運転方法および淡水製造装置
JP2008100219A (ja) * 2006-09-22 2008-05-01 Toray Ind Inc 脱塩方法及び脱塩装置
JP2008126137A (ja) * 2006-11-21 2008-06-05 Meidensha Corp 水処理設備の膜ろ過制御方式

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"model project of Ministry of Economy, Trade and Industry, demonstration trials in Shunan-shi", 5 March 2009, NIPPON SUIDO SHINBUN CO.
A. J. VAN GOTTBERG ET AL.: "World's Largest Membrane-based Water Reuse Project", PROC. IDA WORLD CONGRESS, BAHAMA, 2003
J. S. S. CHIN ET AL.: "Increasing Water Resources through Desalination in Singapore: Planning for Sustainable Future", PROC. IDA WORLD CONGRESS, DUBAI, 2009

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014104450A (ja) * 2012-11-29 2014-06-09 Jfe Engineering Corp 排水処理方法
WO2014115769A1 (ja) * 2013-01-23 2014-07-31 東レ株式会社 淡水製造装置の運転方法
WO2016175153A1 (ja) * 2015-04-27 2016-11-03 東レ株式会社 半透膜分離装置の運転方法
JPWO2016175153A1 (ja) * 2015-04-27 2018-02-22 東レ株式会社 半透膜分離装置の運転方法

Also Published As

Publication number Publication date
CN102791637B (zh) 2015-12-09
JPWO2011114967A1 (ja) 2013-06-27
SG184035A1 (en) 2012-10-30
JP5867082B2 (ja) 2016-02-24
CN102791637A (zh) 2012-11-21
EP2548847A1 (en) 2013-01-23
AU2011228323A1 (en) 2012-10-04
US20130001163A1 (en) 2013-01-03
MX2012010665A (es) 2012-11-09

Similar Documents

Publication Publication Date Title
JP5549591B2 (ja) 淡水製造方法及び淡水製造装置
Francis et al. A comprehensive review of forward osmosis and niche applications
JP5929195B2 (ja) 淡水製造装置およびその運転方法
JP5286785B2 (ja) 淡水製造方法
JP5867082B2 (ja) 淡水の製造方法
US10071929B2 (en) Desalination system and desalination method
JP5488466B2 (ja) 造水装置
PL173335B1 (pl) Sposób wytwarzania roztworu wodnego o wysokim stężeniu NaCl
TW201121901A (en) Method and apparatus for generating fresh water, and method and apparatus for desalinating sea water
WO2014115769A1 (ja) 淡水製造装置の運転方法
JP2007152265A (ja) 淡水製造装置の運転方法および淡水製造装置
Eyvaz et al. Recent developments in forward osmosis membrane bioreactors: a comprehensive review
JP2006187719A (ja) 淡水製造装置の運転方法および淡水製造装置
JP6447133B2 (ja) 造水システムおよび造水方法
Hung et al. Membrane processes and their potential applications for fresh water provision in Vietnam.
JP2014140794A (ja) 造水装置および造水方法
JP2014221450A (ja) 造水方法
JP2006075667A (ja) 半透膜装置の運転方法および装置
Hassan et al. Utilizing hybrid RO-OARO systems as new methods for desalination process
JP2017074532A (ja) 水処理装置および水処理方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180014114.6

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2011517134

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11756156

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: DZP2012000614

Country of ref document: DZ

WWE Wipo information: entry into national phase

Ref document number: 2011228323

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 13634681

Country of ref document: US

Ref document number: 2011756156

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 7968/CHENP/2012

Country of ref document: IN

Ref document number: MX/A/2012/010665

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2011228323

Country of ref document: AU

Date of ref document: 20110309

Kind code of ref document: A