[go: up one dir, main page]

JP5488466B2 - 造水装置 - Google Patents

造水装置 Download PDF

Info

Publication number
JP5488466B2
JP5488466B2 JP2010522521A JP2010522521A JP5488466B2 JP 5488466 B2 JP5488466 B2 JP 5488466B2 JP 2010522521 A JP2010522521 A JP 2010522521A JP 2010522521 A JP2010522521 A JP 2010522521A JP 5488466 B2 JP5488466 B2 JP 5488466B2
Authority
JP
Japan
Prior art keywords
water
treated
flow rate
concentrated
storage tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010522521A
Other languages
English (en)
Other versions
JPWO2011021420A1 (ja
Inventor
啓伸 鈴木
祐之 田中
寛生 高畠
吉佑 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2010522521A priority Critical patent/JP5488466B2/ja
Publication of JPWO2011021420A1 publication Critical patent/JPWO2011021420A1/ja
Application granted granted Critical
Publication of JP5488466B2 publication Critical patent/JP5488466B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/12Controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/20Accessories; Auxiliary operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/22Controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • B01F23/45Mixing liquids with liquids; Emulsifying using flow mixing
    • B01F23/451Mixing liquids with liquids; Emulsifying using flow mixing by injecting one liquid into another
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • B01F23/49Mixing systems, i.e. flow charts or diagrams
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D11/00Control of flow ratio
    • G05D11/02Controlling ratio of two or more flows of fluid or fluent material
    • G05D11/03Controlling ratio of two or more flows of fluid or fluent material without auxiliary power
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2317/00Membrane module arrangements within a plant or an apparatus
    • B01D2317/02Elements in series
    • B01D2317/022Reject series
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2317/00Membrane module arrangements within a plant or an apparatus
    • B01D2317/04Elements in parallel
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/442Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by nanofiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/02Non-contaminated water, e.g. for industrial water supply
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/02Non-contaminated water, e.g. for industrial water supply
    • C02F2103/04Non-contaminated water, e.g. for industrial water supply for obtaining ultra-pure water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/08Multistage treatments, e.g. repetition of the same process step under different conditions

Landscapes

  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Description

本発明は、複合的な水処理技術を利用した造水システムにより、複数種の原水から淡水を製造する造水装置に関するものである。さらに詳しくは、上水道における浄水処理分野や、工業用水、食品・医療プロセス用水、半導体関連洗浄用水といった産業用水製造分野などの造水装置として適用可能であって、省エネルギーかつ効率的に淡水を生産できる造水装置に関するものである。
近年、水に関わる技術が数多く開発されているが、その中で膜分離法は、省エネルギー、省スペース、省力化および製品の品質向上等の特長を有するため、様々な分野での使用が拡大している。
水処理で用いられる分離膜は、ナノろ過膜(NF膜)/逆浸透膜(RO膜)と、精密ろ過膜(MF膜)/限外ろ過膜(UF膜)との2つに大別される。前者は海水やかん水からの脱塩用、イオン除去用などに用いられ、一方、後者は河川水や地下水、下水処理水から、工業用水や水道水を製造する浄水プロセスで用いられる。さらに、従来、活性汚泥法で処理されていた下水や産業廃水を、活性汚泥槽に直接浸漬させたMF膜/UF膜で処理する「膜分離活性汚泥法(Membrane Bioreacter;MBR)」と呼ばれる処理も活発に行なわれてきている。
水不足が叫ばれる昨今の状況から、これら膜を用いた水処理法は更なる技術開発を行なわれ、近年では、MF膜/UF膜を用いて海水あるいはかん水中の有機物や微粒子を除去、あるいは下水や産業廃水をMBRにて浄化といった前処理を行なった後に、RO膜で処理して効率的に淡水を生産する「統合的膜利用システム(Integrated Membrane System;IMS)」と呼ばれる手法を採用する造水施設が、水不足に苦しむ中東地域やアジア地域等にて多数建設されている。
現在、海水あるいはかん水から淡水を生産するシステムとしては、例えば、従前の浄水化技術である砂ろ過による前処理を実施した後、NF膜/RO膜で処理する技術の他に、前述のように海水あるいはかん水をMF膜/UF膜を用いて前処理した後にNF膜/RO膜で処理する方法が挙げられるが、このシステムでは前処理で海水中の塩分を除去することができないため、塩分除去はすべて後段のNF膜/RO膜での処理に依存することになる。そうすると、浸透圧より高い供給圧力を必要とするNF膜/RO膜による膜処理法では、NF膜/RO膜に原水を供給する際に「昇圧ポンプ」と呼ばれるポンプで加圧しなければならない。つまり、NF膜/RO膜に供給される原水の塩濃度が高いほど浸透圧が高くなるため、昇圧ポンプによってより高く加圧する必要性が出てくることになり、昇圧ポンプを稼動させるために多くのエネルギーが必要になってくる。
これらの問題を解決すべく、非特許文献1や非特許文献2に記載の下水の高度処理と海水淡水化を統合した膜処理システムが開発されている。
本技術によると、MBRで下水を処理した後、RO膜を用いて淡水を生産し、さらに、RO膜処理を実施した際に生じる濃縮水を海水に混合しているため、従来よりも効率的に淡水を生産できると共に、RO膜処理される海水中の塩濃度を低下させ、海水淡水化に使用されるRO膜処理の運転における昇圧ポンプの仕様を従来よりも低く抑えることができるようになり、より省エネルギーなシステムを実現したことになる。
本技術では、下水をMBR処理しRO膜処理する下水処理ラインから副生するRO膜濃縮水を、そのまま海水淡水化処理ラインでの供給水の海水に合流させることが想定されているので、非特許文献1や非特許文献2には、処理フロー図として、図1のようなものが示されている。図1は、非特許文献1および非特許文献2に記載された従来の下水−海水淡水化統合システムのフロー図である。図1において、被処理水A(下水)は前処理設備1(MBR)にて、有機物の分解や浮遊成分や微粒子などの分離除去が行なわれ、処理水が得られる。さらにこの処理水は、被処理水A処理ライン側の第1半透膜処理設備2(RO膜処理設備)によってRO膜処理され生産水(淡水)と濃縮水とが得られる。上記文献記載の技術では、ここで得られた濃縮水を被処理水B処理ラインに合流させ、被処理水B(海水)と混合させ、被処理水Bの浸透圧を低減させている。濃縮水が混合された被処理水Bは、第2半透膜処理設備3(RO膜処理設備)によってRO膜処理され生産水(淡水)と濃縮水とが得られる。その後、第1半透膜処理設備2および第2半透膜処理設備3にて得られた生産水(淡水)は合流し、淡水として様々な用途に利用される。
しかしながら、本技術において、原水として、下水や産業廃水、あるいは海水をMF膜/UF膜で前処理した前処理水を使用する場合、それらの処理水量が時間単位や日単位で変動することがある。図1の処理フローでは、第1半透膜処理設備2から流出した濃縮水の配管4と被処理水Bの配管5が合流しているのみで、濃縮水、被処理水Bのそれぞれの流量を制御していない。さらに、濃縮水と被処理水Bが合流した後に、2種類の水を混合させる手段を設けていない。
このような従来の処理フローにおいて、前述の処理水量が変動すると、下水処理ラインから副生するRO膜濃縮水と海水とが混合する際、混合比が変動し、その混合後に海水処理ライン側のRO膜へ供給される塩濃度(浸透圧)等の水質が変動する。供給水の塩濃度等の水質が変動すると、RO膜にかかる負荷が大きくなり、安定的な処理が行えなくなるとともに、膜寿命が短くなり易い。あるいは、第2半透膜処理設備の仕様によっては、第2半透膜処理設備3の運転を完全にもしくは一部を停機せざるを得ないといった問題点もある。さらには、非特許文献1や非特許文献2のフロー図では、合流後に積極的に混合する手段を設けていないので、混合された水は均一に混ざらずに濃度分極(浸透圧分極)が生じたままでRO膜に供給されることになり易く、この場合にもRO膜にかかる負荷が大きくなり、安定的な処理が行えなくなるとともに、膜寿命が短くなり易い。膜寿命が短くなると、メンテナンスやRO膜交換の頻度が上がるという問題が生じる。あるいは、上記と同様、第2半透膜処理設備3の仕様によっては、第2半透膜処理設備3の運転を完全にもしくは一部を停機せざるを得ないといった問題点もある。
ところで、原水を前処理してRO膜に供給する水処理システムにおいては、例えば、前処理として砂ろ過処理をした後、その処理水を前処理水槽に貯留し、供給ポンプおよび高圧ポンプを使用し、RO膜に原水を供給することや、インバーターで高圧ポンプの供給流量を制御することが知られている(特許文献1)。
また、RO膜を直列につなげて海水淡水化を行なう場合において、1段目RO膜で海水を処理した際に生じた濃縮水を2段目RO膜に供給する際に、その流量および操作圧力を調整する弁を設けることや、中継水槽を設置することが知られている(特許文献2)。
さらに、特許文献2と同様にRO膜を直列につなげて海水淡水化を行なう場合において、1段目RO膜を2本のRO膜エレメント2本から成るRO膜モジュールとして、各RO膜エレメントの処理水を混合後に2段目RO膜に供給する際、流量調整バルブで制御することが知られている(特許文献3)。
これらの手段を用いることによって後段のRO膜処理に供給される原水の流量を調整することは可能になる。
しかし、前述のような異なる原水を混合する造水システムにおいては、前段の処理から供給される原水量の変動が生じ、混合後の水質の変動や不均一が生じるため、単に調整弁で流量調整をしたり、水槽を設けたりするのみでは、前記した問題を解消することは難しい。
特開平9−29252号公報 特開2006−167533号公報 特開2004−97911号公報
"神鋼環境ソら4者 経産省のモデル事業 周南市で実証実験"、[online]、平成21年3月5日、日本水道新聞、[平成21年7月2日検索]、インターネット< http://www.suido-gesuido.co.jp/blog/suido/2009/03/post_2780.html> "「低炭素社会に向けた技術シーズ発掘・社会システム実証モデル事業」の採択について"、[online]、平成21年3月2日、東レ株式会社プレスリリース、[平成21年7月2日検索]、インターネット< http://www.toray.co.jp/news/water/nr090302.html>
本発明の目的は、複合的な水処理技術を利用して、複数種の原水から淡水を生産する装置にて、被処理水Aを第1半透膜処理設備で処理した際に生じる濃縮水と、被処理水Bとを混合して第2半透膜処理設備で処理する場合に、前記濃縮水と前記被処理水Bの流量比(混合比)を常に一定に保ち、前記第2半透膜処理設備の膜にかかる負荷を抑制し、膜寿命を悪化させないために有効な淡水生産用の造水装置を提供することにある。
前記課題を解決するために、本発明は次の構成をとる。
(1)少なくとも、被処理水Aを第1の半透膜処理設備で処理して淡水を生成する処理プロセスAと、前記第1の半透膜処理設備から流出する濃縮水と別途供給される被処理水Bとを混合し、第2の半透膜処理設備で処理して淡水を生成する処理プロセスBとを備えた造水装置において、前記第1の半透膜処理設備から流出する前記濃縮水と前記被処理水Bとを合流する前にそれぞれ貯留するための貯留槽Aと貯留槽Bが配設され、さらに、貯留槽A及びBから供給される前記濃縮水及び前記被処理水Bの流量を制御するための手段が配設されていることを特徴とする造水装置。
(2)前記被処理水Aの浸透圧が前記被処理水Bの浸透圧と同等以下であることを特徴とする(1)に記載の造水装置。
(3)前記貯留槽Bの上流側に前処理設備を備えていることを特徴とする(1)または(2)に記載の造水装置。
(4)前記濃縮水と前記被処理水Bとを貯留する貯留槽Cが配設され、さらに、前記貯留槽Cから前記第2の半透膜処理装置に供給される混合水の流量を制御するための手段が配設されていることを特徴とする(1)〜(3)のいずれかに記載の造水装置。
(5)前記濃縮水及び前記被処理水Bを混合する手段が配設されていることを特徴とする(1)〜(4)のいずれかに記載の造水装置。
(6)前記濃縮水の浸透圧が前記被処理水Bの浸透圧と同等以下であることを特徴とする(1)〜(5)のいずれかに記載の造水装置。
(7)貯留槽A及びBから供給される前記濃縮水及び前記被処理水Bの流量を制御する手段として、流量制御のために開度を調整できる電磁開閉弁、流量制御のために開度が制御されるインバーター制御式開閉弁、及び、流量制御のために供給量がインバーター制御されるポンプから選ばれる1以上が、前記濃縮水及び前記被処理水Bの供給配管途中に配設されていることを特徴とする(1)〜(6)のいずれかに記載の造水装置。
(8)前記濃縮水及び前記被処理水Bの供給配管途中に、さらに、ポンプ及び/又は開閉弁が配設されていることを特徴とする(7)に記載の造水装置。
(9)前記濃縮水及び前記被処理水Bを混合する手段として、撹拌手段を備えた前記貯留槽C、管内撹拌素子、及び、阻流板を設けた撹拌手段から選ばれる1以上が配設されていることを特徴とする(5)〜(8)のいずれかに記載の造水装置。
本発明によると、複合的な水処理技術を利用して、複数種の原水から淡水を生産する装置によって、第1の半透膜処理設備の濃縮水と別の被処理水Bとを混合して第2の半透膜処理設備で処理する場合に、濃縮水と被処理水Bの流量比(混合比)を一定に保つことが可能になり、前記第2の半透膜処理設備の処理媒体(半透膜)にかかる負荷変動を抑制し、膜寿命の悪化を防止することができ、安定的に淡水を生産することができるようになる。
従来の下水−海水淡水化統合システムを示すフロー図である。 本発明の造水システムの一実施態様を示すフロー図である。 本発明の造水システムの別の一実施態様を示すフロー図である。 本発明の造水システムのさらに別の一実施態様を示すフロー図である。 本発明の造水システムのさらに別の一実施態様を示すフロー図である。 本発明の造水システムのさらに別の一実施態様を示すフロー図である。 本発明の造水システムのさらに別の一実施態様を示すフロー図である。 本発明の造水システムのさらに別の一実施態様を示すフロー図である。
以下、本発明の望ましい実施の形態を、図面を用いて説明する。ただし、本発明の範囲がこれらに限られるものではない。
複数種の原水から淡水を製造する従来の造水システムとしては、図1に示すフロー図の下水−海水淡水化統合システム(非特許文献1および非特許文献2)がある。この従来の造水システムでは、万一、第1半透膜処理設備2の全体もしくは一部に何らかの問題が生じた場合や、薬品洗浄が必要となり、一部設備が停機して半透膜処理が不十分になった場合に、濃縮水の供給量が減少する。その結果、混合水の浸透圧が高くなり、それに伴って、第2半透膜処理設備3の運転時にかかるエネルギーも通常時より高くなり、下水−海水淡水化統合システムのメリットである低エネルギー運転の実現が難しくなる。また、浸透圧の高い混合水を第2半透膜処理設備3で処理する場合、第2半透膜処理設備3内の処理媒体(半透膜)への供給圧力を高くすることになるので、第2半透膜処理設備3内の処理媒体(半透膜)に負荷がかかり、処理媒体の寿命が通常よりも短くなり、メンテナンスや処理媒体交換の頻度が上がるという問題がある。あるいは、第2半透膜処理設備の仕様によっては、第2半透膜処理設備3の運転を完全にもしくは一部を停機せざるを得ないといった問題点もある。
さらに、被処理水Aが下水や産業廃水等のように流量変動する場合もある。被処理水Aの流量が増えた場合には、第1半透膜処理設備2で処理可能な流量を超えていれば、被処理水Aの一部を処理できなくなる。一方、被処理水Aの増加量が第1半透膜処理設備2で処理可能な流量内であれば、第1半透膜処理設備2から流出する濃縮水の流量が増加し、被処理水Bとの混合水の浸透圧をより低減化できるといったメリットはある反面、被処理水A由来の不純物により、第2半透膜処理設備3内の処理媒体(半透膜)が詰まり易くなるため、処理媒体の寿命が通常よりも短くなり、メンテナンスや処理媒体交換の頻度が上がるという問題点がある。逆に、被処理水Aの流量が減った場合には、第1半透膜処理設備2から流出する濃縮水の流量が減り、第1半透膜処理設備2の安定的な処理が妨げられると同時に、被処理水Bとの混合水の浸透圧を低減化することができず、第2半透膜処理設備3の運転時にかかるエネルギーも通常時より高くなり、下水−海水淡水化統合システムのメリットである低エネルギー運転の実現が難しくなったり、両方あるいは片方の処理設備の全体もしくは一部を停機せざるを得なくなったりするという問題点がある。
そこで、本発明者らは、この課題を解決するため、図2〜8に示すような造水装置を考案した。
図2は、第1半透膜処理装置2から流出する濃縮水と被処理水Bとを合流する前にそれぞれを貯留するための貯留槽A(7)と貯留槽B(8)を設け、貯留槽A、Bから供給される濃縮水及び被処理水Bの流量及び流量比を制御するための手段10〜13を設置した実施態様を示す。
図3は、被処理水Bが前処理設備14での処理によって生産された水であり、被処理水Bを貯留槽B(8)に貯留して、濃縮水との合流点へ被処理水Bを供給する実施態様を示す。
図4は、貯留槽B(8)に貯留された被処理水Bが、槽外に取り出し可能な配管15を備え、取り出し配管15から取り出された被処理水Bが前処理設備14の洗浄に使用される実施態様を示す。
図5は、貯留槽C(18)と、貯留槽C(18)から供給される混合水の流量を制御するための手段として、混合水の供給手段20と混合水の流量計21を設置した実施態様を示す。
図6は、濃縮水と被処理水Bを混合する手段として、貯留槽C(18)内に撹拌手段22を設置した実施態様を示す。
図7は、濃縮水と被処理水Bを混合する手段として、管内撹拌素子23を設置した実施態様を示す。
図8は、濃縮水と被処理水Bを混合する手段として、阻流板24を設置した実施態様を示す。
図2において、被処理水Aは、第1半透膜処理設備2に供給され、処理プロセスAが行われ、淡水と濃縮水が得られる。流出した濃縮水は濃縮水配管4を通って貯留槽A(7)に一旦貯留される。貯留槽A(7)に貯留された濃縮水は、濃縮水供給配管9を流れ、下記被処理水Bとの合流点に至る。一方、被処理水Bは、貯留槽B(8)に一旦貯留される。貯留された被処理水Bは、被処理水B供給配管5を流れ、上記濃縮水との合流点に至る。
それぞれの供給配管を流れる濃縮水及び被処理水Bは合流点にて混合され、その後、第2半透膜処理設備3で処理され、淡水と濃縮水とが得られる。淡水は、第1半透膜処理設備2からの淡水と共に、淡水として系外に取り出される。濃縮水は第2濃縮水配管6により系外に取り出される。
本発明では、それぞれの原水(被処理水A、被処理水B)の供給量が大きく変動する場合でも、濃縮水と被処理水Bとを混合する前にそれぞれを貯留するための貯留槽A(7)、貯留槽B(8)を設けており、さらに、それぞれ濃縮水供給配管9、被処理水B供給配管5の途中に貯留槽A(7)及び貯留槽B(8)から供給される濃縮水及び被処理水Bの流量を制御する手段を設けているため、濃縮水と被処理水Bとの混合水を常に一定の流量、さらには、それらの流量比も制御することで、常に一定の流量比(混合比)で第2半透膜処理設備3へと供給することが可能となり、第2半透膜処理設備3を低負荷で安定的に稼働させることができる。また、それらの流量の制御は、濃縮水流量計11及び被処理水B流量計13により行えばよい。
ここで設置される貯留槽A、Bは、貯留される水の水質や水量に応じた水槽であればよい。また、図示はしないが、所定水量を超えた時にオーバーフロー排水するためのオーバーフロー配管が設けられていてもよい。
この造水システムにおいて、被処理水Bに濃縮水を混合しても不都合を生じないためには、第1半透膜処理設備2で得られる濃縮水は、その浸透圧が被処理水Bの浸透圧と同等以下であって、被処理水Bに濃縮水を混合しても、混合後の浸透圧が被処理水Bの浸透圧と同等以下となることが好ましい。したがって、濃縮水の原水である被処理水Aの浸透圧も被処理水Bの浸透圧と同等以下であることが好ましい。
このような浸透圧の関係とするためには、被処理水Aとして浸透圧の低い原水を用い、被処理水Bとして浸透圧の高い原水を用いればよい。浸透圧の低い原水としては、塩分濃度が低い水を用い、浸透圧の高い原水としては、塩分濃度が高い水を用いることが好ましい。塩分濃度が低い水としては、一般的に、下水、産業廃水、河川水、あるいはこれらを前処理した後の処理水が挙げられる。また、塩分濃度が高い水としては、一般的に、海水、塩湖水、かん水、あるいはこれらを前処理した後の処理水が挙げられる。
特に下水や産業廃水等のように不純物を多く含む水を原水として用いる場合には、前処理設備によって不純物を除外した前処理水を被処理水Aや被処理水Bとして用いることが好ましい。ここで、前処理設備としては、活性汚泥処理設備や、活性汚泥処理とMF/UF膜あるいは砂ろ過との二段処理設備、MBR設備、MF/UF膜ろ過処理設備あるいは砂ろ過処理設備、などが使用できる。
また、上記した前処理設備を効率的に稼動させるためには、凝集剤やpH調整剤、次亜塩素酸ナトリウムのような酸化剤を添加しても構わない。また、前処理設備で膜を使用する場合、使用される膜についても特に限定されることはなく、平膜、中空糸膜、管状型膜、その他いかなる形状のものも適宜用いることができる。膜の素材については、特に限定しないが、ポリアクリロニトリル、ポリフェニレンスルフォン、ポリフェニレンスルフィドスルフォン、ポリフッ化ビニリデン、ポリプロピレン、ポリエチレン、ポリスルホン、ポリビニルアルコール、酢酸セルロースや、セラミック等の無機素材からなる群から選ばれる少なくとも1種を含んでいると好ましい。
上記のように、前記濃縮水の浸透圧が前記被処理水Bの浸透圧と同等以下となるように、原水を組合せれば、濃縮水を混合することによって被処理水Bの浸透圧を低下できるので、第2半透膜処理設備3に供給する混合水の昇圧水準を抑えることができ、第2半透膜処理設備で被処理水B単独を処理する時より低エネルギー化することが可能となる。
ここで、濃縮水及び被処理水Bをそれぞれ貯留槽A(7)及び貯留槽B(8)に貯留し、さらに、それぞれ濃縮水供給配管9、被処理水B供給配管5の途中に貯留槽A(7)及び貯留槽B(8)から供給される濃縮水及び被処理水Bの流量、さらには流量比を制御する手段を設ける必要性をさらに例を用いて述べる。
第1半透膜処理設備2の全体もしくは一部に何らかの問題が生じた場合や、薬品洗浄が必要となり、一部設備が停機して半透膜処理が不十分になった場合、被処理水Bと合流する濃縮水の供給量は低減することになる。すると、濃縮水と被処理水Bとの混合比を維持するために、混合水の第2半透膜処理設備3への供給量を低減せざるを得ず、第2半透膜処理設備3の淡水の生産量を低減せざるを得ないといったデメリットを生じるが、本発明では貯留槽A(7)に濃縮水を貯留しており、かつ流量を制御する手段(濃縮水供給手段10、濃縮水流量計11)を設けているため、常に流量変動なしで濃縮水を供給することが可能となる。また、被処理水Bを貯留槽B(8)に貯留しておけば、万一、貯留槽A(7)中の濃縮水の水位が低下し、濃縮水の供給量を低減させる必要が出てきた場合でも、被処理水B側の流量を制御する手段(被処理水B供給手段12、被処理水B流量計13)を調整することで、一定の流量で、さらには一定の流量比(混合比)、つまり一定の浸透圧に設定することが可能となり、第2半透膜処理設備3を低エネルギーで安定的に稼動させることが可能となる。
また、被処理水Aが下水や産業廃水等のような流量変動するものであれば、第1半透膜処理設備2からの濃縮水の流出量も変動する。この時、濃縮水の被処理水Bとの合流点への供給を、流量を制御する手段(濃縮水供給手段10、濃縮水流量計11)のみで行うと、濃縮水の流出量が必要とされる供給量よりも大きかった場合には濃縮水を系外に排出しなければいけないというデメリットが発生するが、本発明では貯留槽A(7)に濃縮水を貯留しており、かつ流量を制御する手段(濃縮水供給手段10、濃縮水流量計11)を設けているため、過多な濃縮水は一旦、貯留槽A(7)に貯留され、また、流量を制御する手段(濃縮水供給手段10、濃縮水流量計11)によって、常に流量変動なしで濃縮水を供給することが可能となる。また、被処理水Bを貯留槽B(8)に貯留しておけば、万一、濃縮水の供給量が一時的に変動せざるを得なくなった場合でも、被処理水B側の流量を制御する手段(被処理水B供給手段12、被処理水B流量計13)を調整することで、一定の流量比(混合比)、つまり一定の浸透圧に設定することが可能となり、第2半透膜処理設備3を低エネルギーで安定的に稼動させることが可能となる。
さらに、被処理水Aが一時的に水質悪化した場合、被処理水Aを処理する第1半透膜処理設備2の濃縮水も一時的に水質が悪化する。一時的に水質が悪化した濃縮水を被処理水Bと混合し、その混合水を第2半透膜処理設備3で処理すると、たとえ混合比が通常時と同じ程度であっても、混合水の水質が通常時より悪化しているため、第2半透膜処理設備3内の処理媒体(半透膜)が被処理水A由来の不純物により詰まりやすくなってしまい、処理媒体の寿命が通常よりも短くなり、メンテナンスや処理媒体交換の頻度が上がるというデメリットが生じる。水質悪化については、貯留槽の設置が逆になった場合、つまり濃縮水の供給を貯留槽A(7)と、流量を制御する手段(濃縮水供給手段10、濃縮水流量計11)とで行い、被処理水Bの供給を、流量を制御する手段(被処理水B供給手段12、被処理水B流量計13)のみで行った場合でも上記と同様なデメリットが生じる。しかし、濃縮水及び被処理水Bともに、貯留槽A(7)及び貯留槽B(8)に一旦貯留すれば、前述のような一時的な水質の悪化も低減化(平準化)することができ、被処理水Bとの流量比(混合比)に及ぼす影響も小さくすることが可能となる。
また、図3に示すように被処理水Bが前処理設備14で処理された水であった場合、被処理水Bの貯留を貯留槽B(8)にておこなうことが貯留槽設置のためのイニシャルコスト削減の観点からより好ましい形態であるが、貯留槽B(8)とは異なる別の貯留槽に一旦貯留した後に、貯留槽B(8)に貯留されてもよい。さらに、前処理設備14と貯留槽B(8)の間に複数の貯留槽を設けても構わない。
なお、貯留槽B(8)及び/または貯留槽B(8)とは異なる別の貯留槽に被処理水Bを槽外に取り出し可能な配管15を設けた場合(図4)、槽外に取り出された被処理水Bは第1半透膜処理設備2や第2半透膜処理設備3、前処理設備14の定期的な洗浄のための用水、場内用水、農業用水などの様々な用途に使用できるが、その用途は特に限定されるものではない。
より好ましい形態である前処理設備14で生産された被処理水Bを貯留槽B(8)に貯留した場合、被処理水Bが前処理設備14の定期的な洗浄に使用される等、貯留槽B(8)の水位が一時的に変動することがあり、濃縮水との合流点に供給される被処理水Bの流量も一時的に変動すると想定される。この時、濃縮水を貯留する貯留槽A(7)が設けられておらず、かつ第1半透膜処理設備2から流出する濃縮水の量が被処理水Bの供給量より大きいと、濃縮水は濃縮水配管4の途中に分岐管を設け、系外に排出する必要が出てくる。さらには、その排出のために流量制御をする必要性も出てくる。あるいは、第1半透膜処理設備の全部あるいは一部を停機させることも考えられる。しかし、濃縮水を貯留槽A(7)に貯留し、かつ流量を制御する手段(濃縮水供給手段10、濃縮水流量計11)を設ければ、被処理水Bの流量変動にあわせて濃縮水の供給量を変動させることが可能となり、濃縮水と被処理水Bの流量比(混合比)を一定に保つことが可能となる。
また、被処理水Bの流量が変化せずに、一時的に水質変動があった場合、濃縮水との混合水の水質を通常時に保つために、濃縮水の供給量を変動させる必要があるが、濃縮水を貯留槽A(7)に貯留しておかなければ、一時的な濃縮水の供給量変動に対応できないというデメリットが発生する。しかし、本発明では、濃縮水を貯留槽A(7)に貯留し、かつ流量を制御する手段(濃縮水供給手段10、濃縮水流量計11)を設けているため、一時的に水質変動した被処理水Bが貯留槽B(8)から濃縮水との合流点に供給された場合でも、混合水の水質が適正値になるように濃縮水の供給量を変動させることが可能になる。
一方、前処理設備14から得られた被処理水Bを一旦、貯留槽B(8)とは異なる別の貯留槽に貯留する場合、被処理水Bを貯留槽B(8)とは異なる別の貯留槽に一旦貯留した後に貯留槽B(8)に貯留することで、被処理水Bの供給側は、被処理水Bの一時的な流量変動あるいは水質(浸透圧)変動の影響を低減化(平準化)することが可能となり、濃縮水との流量比(混合比)を一定に保つことが可能となる。
ここで、貯留槽B(8)とは異なる別の貯留槽中の被処理水Bが前処理設備14の定期的な洗浄に使用される等、貯留槽B(8)とは異なる別の貯留槽の水位が一時的に変動する場合、貯留槽B(8)への被処理水Bの供給量が変動することになるが、被処理水Bは貯留槽B(8)に貯留されているため、濃縮水との混合に必要とされる供給量は変動することはなく、また、濃縮水は貯留槽A(7)に貯留されて、常に一定の供給量にすることができるため、濃縮水と被処理水Bは一定の流量比(混合比)を確保することが可能となる。
つまり、濃縮水側及び被処理水B側両方に貯留槽を設けないと、一方の水の供給量が変動した場合や水質変動があった場合に、混合水の混合比を一定に保つことができなくなったり、混合水の浸透圧が一定でも、水質が変動したりして、第2半透膜処理設備3に供給する混合水の流量や流量比(混合比)が一定にできず、安定運転が難しくなるというデメリットが生じることになるが、本発明の造水装置によれば、もう一方の水の供給量を柔軟に変動させることが可能であり、このようなデメリットを解消することが可能となる。
貯留槽A(7)、貯留槽B(8)から濃縮水、被処理水Bを取り出す配管9、5にそれぞれ設けられる濃縮水供給手段10、被処理水B供給手段12としては、任意の流量制御手段を採用すればよい。例えば、流量制御のために開度を調整できる電磁開閉弁、流量制御のために開度が制御されるインバーター制御式開閉弁、及び、流量制御のために供給量がインバーター制御されるポンプを設ければよい。電磁開閉弁あるいはインバーター制御式開閉弁については、流量を制御するために、バタフライ弁やコーン弁、ボール弁、スリーブ弁、多孔可変オリフィス弁等が好ましく使用される。一方、インバーター制御ポンプとしては、形式が特に限定されることはなく、遠心ポンプ、斜流ポンプ、軸流ポンプのいずれも好ましく使用される。また、ポンプによる流量の制御は、ポンプの運転台数や回転速度を所定水準とすることによって行なわれる。
これら流量制御手段として電磁開閉弁やインバーター制御式開閉弁などの送水機能の劣る手段を用いる場合には、規定の流量を確保するために、配管内の水流を補助的に制御するためのポンプを設けることが好ましい。また、流量制御手段としてインバーター制御されるポンプを設ける場合には、さらに開閉弁を併設することが好ましい。
これら流量制御手段により制御された濃縮水及び被処理水Bの流量を知るために、それら流量制御手段の近くの下流側もしくは上流側に流量計11、13を設置し、流量監視を行ない、所定水準の流量となるように上記流量制御手段を制御する。ここで使用される流量計としては、電磁流量計、超音波流量計、差圧式流量計、面積式流量計などのいかなる流量計も好ましく使用される。
また、濃縮水と被処理水Bとの合流方法が、図2に示されるような濃縮水及び被処理水Bの供給配管中での合流方法ではなく、図5に示されるような貯留槽C(18)に一旦貯留する方法がより好ましく用いられる。濃縮水と被処理水Bの混合を貯留槽C(18)で行うことで、万一、濃縮水供給手段10あるいは被処理水B供給手段12に不具合が起こり、濃縮水あるいは被処理水Bの流量が調整できなくなった場合でも、濃縮水及び被処理水Bは貯留槽C(18)内で一時的に滞留して、それぞれが混合するため、濃縮水と被処理水Bの混合比を一定にすることが可能となるといったメリットがある。さらに、貯留槽C(18)の混合水を第2半透膜処理設備3へと供給させる混合水供給手段20を併設することにより、第2半透膜処理装置3へと供給する混合水の流量を一定に制御することが可能となる。
さらに、例えば、被処理水Aが一時的に水質変動した場合、被処理水A由来の水を処理する第1半透膜処理設備2の濃縮水も一時的に水質変動をするが、貯留槽C(18)を設けていることにより、前述の貯留槽A(7)で影響が低減化(平準化)された濃縮水が、さらに貯留槽C(18)にて低減化(平準化)されることとなり、より被処理水Bとの流量比(混合比)に及ぼす影響も小さくすることが可能となる。これは、逆に被処理水Bが一時的に水質変動した場合でも、同様であり、貯留槽B(7)で影響が低減化(平準化)された被処理水Bが、さらに貯留槽C(18)にて低減化(平準化)されることとなり、より濃縮水との流量比(混合比)に及ぼす影響も小さくすることが可能となる。
ここで設置される貯留槽C(18)は、貯留される水の水質や水量に応じた適宜の水槽であればよい。また、図示はしないが、所定水量を超えた時にオーバーフロー排水するためのオーバーフロー配管が設けられていてもよい。
貯留槽C(18)から混合水を取り出す配管19に設けられる混合水供給手段20としては、濃縮水供給手段10、被処理水B供給手段12と同様に、任意の流量制御手段を採用すればよい。また、混合水供給手段20により制御された混合水の流量を計測するために、混合水供給手段20の下流側もしくは上流側に流量計21を設置し、流量監視を行ない、所定水準の流量となるように上記混合水供給手段20を制御する。ここで使用される流量計としては、電磁流量計、超音波流量計、差圧式流量計、面積式流量計などのいかなる流量計も好ましく使用される。
また、図6〜8には、濃縮水と被処理水Bとを積極的に混合するための混合手段が設けられているが、この混合手段としては、貯留槽C(18)に設置した撹拌手段(図6)、管内撹拌素子(図7)、及び、阻流板(図8)を設けた撹拌手段が例示され、これらの内のいずれかを設置することが好ましい。また、異なる混合手段を併用してもよい。図6〜8に示すような濃縮水と被処理水Bとを積極的に混合するための混合手段を設けた場合、貯留槽C(18)内での滞留による混合よりも効果的な混合を実現することが可能になり、第2半透膜処理設備3へ送液される混合水における濃縮水と被処理水Bの混合比を常に一定に保つことが可能になる。
図6に示す混合手段において、貯留槽C(18)に備えられる撹拌手段22としては、ポンプを利用した撹拌、貯留槽下部から気泡を送り込むことで生じる循環流による撹拌、プロペラや平羽根ディスクタービン、湾曲羽根による撹拌等の如何なる手段であっても構わない。
図7に示す管内撹拌素子23は、流体の流れにより配管内の流体の混合撹拌を生じさせる機能を有するものであり、管内混合素子やラインミキサーとも称され、管内に設置されて使用される。即ち、配管内に分割板や変位板等の混合エレメントが存在することにより流れが連続的に分割されたり、反転されたりすることで、混合や撹拌が生じる混合撹拌素子である。
また、図8に示す阻流板24としては、上下迂流式、水平迂流式及び両者の複合式がある。阻流板24を用いた撹拌では、水流自体のエネルギーを利用して撹拌を生じさせるので、流量が少なくなると極端に撹拌が不足する。そのため、この方式を用いて撹拌を行う場合にはあらかじめ定められた流量範囲内の流量を維持することが好ましい。また、流量変動がある条件下で使用する場合には、阻流板24の寸法や数を可変にし、流量変動しても一定水準の撹拌が維持できるようにすることが好ましい。
図7又は図8では、管内撹拌素子23又は阻流板24にて濃縮水及び被処理水Bが積極的に混合された後に、混合水は第2半透膜処理設備3に直接供給されているが、管内撹拌素子23又は阻流板24で混合された混合水を貯留槽C(18)で一旦貯留した後に第2半透膜処理設備3へと混合水供給手段20で供給することにより、第2半透膜処理装置3へと供給する水の流量を常に一定に保つことが可能になり、より好ましい形態となる。
濃縮水供給管9と被処理水B供給管5とが合流する合流点では、それぞれの水量の比が所定水準となるように制御される。その水量比の制御は、それぞれの供給水量が所定水準となるように制御することによって行えばよい。
このように流量さらには流量比を制御されて供給された濃縮水および被処理水Bは、合流後に均質化され均一な浸透圧となり、一定の水量で第2半透膜処理設備3へと供給され、処理されて淡水と濃縮水に分離される。
また、ここで、被処理水Aを処理する第1半透膜処理設備2、および、濃縮水混合被処理水Bを処理する第2半透膜処理設備3について説明する。半透膜とは、被処理液中の一部の成分を透過させない半透性の膜であり、例えば溶媒を透過させ溶質を透過させない半透膜が挙げられ、逆浸透膜とも言われる。水処理技術で使用される半透膜の一例としては、NF膜やRO膜が挙げられる。NF膜あるいはRO膜は、被処理水中に含まれる溶質を再生水として利用可能な濃度まで低減することができる性能を有していることが要求される。具体的には、塩分やミネラル成分等、多種のイオン、例えばカルシウムイオン、マグネシウムイオン、硫酸イオンのような二価イオンや、ナトリウムイオン、カリウムイオン、塩素イオンのような一価イオン、また、フミン酸(分子量M≧100,000)、フルボ酸(分子量M=100〜1,000)、アルコール、エーテル、糖類などをはじめとする溶解性有機物を阻止する性能を有することが求められる。NF膜とは、操作圧力が1.5MPa以下で、分画分子量200〜1,000で、塩化ナトリウム阻止率90%以下の逆浸透膜と定義されており、それよりも分画分子量の小さく、高い阻止性能を有するものをRO膜という。また、RO膜でもNF膜に近いものはルースRO膜とも呼ばれる。
NF膜やRO膜は、中空糸膜や平膜の形状があり、いずれも本発明において適用することができる。また、取り扱いを容易にするため中空糸膜や平膜を筐体に収めて流体分離素子(エレメント)としたものを用いることができる。この流体分離素子は、NF膜やRO膜として平膜状のものを用いる場合、例えば、多数の孔を穿設した筒状の中心パイプの周囲に、NF膜あるいはRO膜とトリコットなどの透過水流路材と、プラスチックネットなどの供給水流路材とを含む膜ユニットを巻回し、これらを円筒状の筐体に収めた構造とするのが好ましい。複数の流体分離素子を直列あるいは並列に接続して分離膜モジュールとすることも好ましい。この流体分離素子において、供給水は一方の端部からユニット内に供給され、他方の端部に到達するまでの間にNF膜あるいはRO膜を透過した透過水が、中心パイプへと流れ、他方の端部において中心パイプから取り出される。一方、NF膜あるいはRO膜を透過しなかった供給水は、他方の端部において濃縮水として取り出される。
これらNF膜あるいはRO膜の膜素材としては、酢酸セルロース、セルロース系のポリマー、ポリアミド、及びビニルポリマーなどの高分子材料を用いることができる。代表的なNF膜/RO膜としては、酢酸セルロース系またはポリアミド系の非対称膜、及び、ポリアミド系またはポリ尿素系の活性層を有する複合膜を挙げることができる。
本発明は、下水と海水のように浸透圧の異なる複数の原水から淡水を製造するための複合的造水システムに好適に適用することができる。
1:前処理設備
2:第1半透膜処理設備
3:第2半透膜処理設備
4:第1半透膜処理設備の濃縮水配管
5:被処理水B供給配管
6:第2半透膜処理設備の濃縮水配管
7:貯留槽A
8:貯留槽B
9:第1半透膜処理設備の濃縮水の供給配管
10:第1半透膜処理設備の濃縮水の供給手段
11:第1半透膜処理設備の濃縮水の流量計
12:被処理水Bの供給手段
13:被処理水Bの流量計
14:前処理設備
15:被処理水Bの取り出し配管
16:取り出した被処理水Bの供給手段
17:取り出した被処理水Bの流量計
18:貯留槽C
19:混合水の供給配管
20:混合水の供給手段
21:混合水の流量計
22:撹拌手段
23:管内撹拌素子
24:阻流板

Claims (9)

  1. 少なくとも、被処理水Aを第1の半透膜処理設備で処理して淡水を生成する処理プロセスAと、前記第1の半透膜処理設備から流出する濃縮水と別途供給される被処理水Bとを混合し、第2の半透膜処理設備で処理して淡水を生成する処理プロセスBとを備えた造水装置において、前記第1の半透膜処理設備から流出する前記濃縮水と前記被処理水Bとを合流する前にそれぞれを貯留するための貯留槽Aと貯留槽Bが配設され、さらに、貯留槽A及びBから供給される前記濃縮水及び前記被処理水Bの流量を制御するための手段が配設されていることを特徴とする造水装置。
  2. 前記被処理水Aの浸透圧が前記被処理水Bの浸透圧と同等以下であることを特徴とする請求項1に記載の造水装置。
  3. 前記貯留槽Bの上流側に前処理設備を備えていることを特徴とする請求項1または2に記載の造水装置。
  4. 前記濃縮水と前記被処理水Bとを貯留する貯留槽Cが配設され、さらに、前記貯留槽Cから前記第2の半透膜処理装置に供給される混合水の流量を制御するための手段が配設されていることを特徴とする請求項1〜3のいずれかに記載の造水装置。
  5. 前記濃縮水及び前記被処理水Bを混合する手段が配設されていることを特徴とする請求項1〜4のいずれかに記載の造水装置。
  6. 前記濃縮水の浸透圧が前記被処理水Bの浸透圧と同等以下であることを特徴とする請求項1〜5のいずれかに記載の造水装置。
  7. 貯留槽A及びBから供給される前記濃縮水及び前記被処理水Bの流量を制御する手段として、流量制御のために開度を調整できる電磁開閉弁、流量制御のために開度が制御されるインバーター制御式開閉弁、及び、流量制御のために供給量がインバーター制御されるポンプから選ばれる1以上が、前記濃縮水及び前記被処理水Bの供給配管途中に配設されていることを特徴とする請求項1〜6のいずれかに記載の造水装置。
  8. 前記濃縮水及び前記被処理水Bの供給配管途中に、さらに、ポンプ及び/又は開閉弁が配設されていることを特徴とする請求項7に記載の造水装置。
  9. 前記濃縮水及び前記被処理水Bを混合する手段として、撹拌手段を備えた前記貯留槽D、管内撹拌素子、及び、阻流板を設けた撹拌手段から選ばれる1以上が配設されていることを特徴とする請求項6〜8のいずれかに記載の造水装置。
JP2010522521A 2009-08-21 2010-05-25 造水装置 Expired - Fee Related JP5488466B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010522521A JP5488466B2 (ja) 2009-08-21 2010-05-25 造水装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009191820 2009-08-21
JP2009191820 2009-08-21
JP2010522521A JP5488466B2 (ja) 2009-08-21 2010-05-25 造水装置
PCT/JP2010/058800 WO2011021420A1 (ja) 2009-08-21 2010-05-25 造水装置

Publications (2)

Publication Number Publication Date
JPWO2011021420A1 JPWO2011021420A1 (ja) 2013-01-17
JP5488466B2 true JP5488466B2 (ja) 2014-05-14

Family

ID=43606878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010522521A Expired - Fee Related JP5488466B2 (ja) 2009-08-21 2010-05-25 造水装置

Country Status (8)

Country Link
US (1) US9126853B2 (ja)
EP (1) EP2468685A4 (ja)
JP (1) JP5488466B2 (ja)
CN (1) CN102471102B (ja)
AU (1) AU2010285918A1 (ja)
MX (1) MX2012001956A (ja)
SG (1) SG178303A1 (ja)
WO (1) WO2011021420A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2011291837B2 (en) * 2010-08-17 2015-05-14 Toray Industries, Inc. Fresh water producing apparatus and method for operating same
JP6051867B2 (ja) * 2011-08-24 2016-12-27 東レ株式会社 造水方法
JP5843522B2 (ja) * 2011-08-26 2016-01-13 株式会社日立製作所 海水淡水化方法
JP4941613B1 (ja) * 2011-12-26 2012-05-30 株式会社日立プラントテクノロジー 海水淡水化システム
CN104125931B (zh) * 2012-02-21 2016-06-08 东丽株式会社 水处理装置及水处理方法
JP4973822B1 (ja) * 2012-02-22 2012-07-11 株式会社日立プラントテクノロジー 海水淡水化システム
JP4973823B1 (ja) * 2012-02-22 2012-07-11 株式会社日立プラントテクノロジー 海水淡水化システム
JP2015160164A (ja) * 2014-02-26 2015-09-07 株式会社東芝 処理システムおよび処理方法
US20150291448A1 (en) * 2014-04-15 2015-10-15 Benjamin J. Koppenhoefer Reverse Osmosis System For Supplying Purified Water
JP6235409B2 (ja) * 2014-05-13 2017-11-22 積水化学工業株式会社 浄水システム
WO2023175545A1 (en) * 2022-03-16 2023-09-21 Seven Vibrations Limited System, method, and apparatus for enhancing a fluid

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2898075B2 (ja) 1990-09-28 1999-05-31 日本メクトロン株式会社 レーザー半田付け方法とその装置
US5207916A (en) * 1992-05-20 1993-05-04 Mesco, Inc. Reverse osmosis system
JPH08108048A (ja) * 1994-10-12 1996-04-30 Toray Ind Inc 逆浸透分離装置及び逆浸透分離方法
JPH0929252A (ja) 1995-07-24 1997-02-04 Nippon Steel Corp 逆浸透膜処理方法
CA2186963C (en) * 1996-10-01 1999-03-30 Riad A. Al-Samadi High water recovery membrane purification process
JP3862816B2 (ja) 1997-06-18 2006-12-27 日東電工株式会社 逆浸透膜分離方法
JP2001239134A (ja) 2000-03-01 2001-09-04 Toray Ind Inc 逆浸透処理装置の運転方法とその制御装置および造水方法
US6645383B1 (en) * 2000-08-25 2003-11-11 Usf Consumer & Commercial Watergroup, Inc. Process and apparatus for blending product liquid from different TFC membranes
JP2002205070A (ja) 2001-01-09 2002-07-23 Hitachi Ltd 海洋深層水からのミネラル水製造方法および製造システム
DE60141306D1 (de) 2001-12-20 2010-03-25 Mitsubishi Electric Corp Lasterfassungsvorrichtung und steuerverfahren dafür sowie aufzugsvorrichtung
JP2003251383A (ja) 2001-12-27 2003-09-09 Shinko Pantec Co Ltd 汚水処理方法及びその処理装置
US6946081B2 (en) * 2001-12-31 2005-09-20 Poseidon Resources Corporation Desalination system
JP3970612B2 (ja) 2002-01-08 2007-09-05 フジクリーン工業株式会社 浄化処理装置および浄化処理方法
AU2003203265B2 (en) * 2002-01-22 2007-10-18 Toray Industries, Inc. Method of generating fresh water and fresh-water generator
JP2003285058A (ja) 2002-03-27 2003-10-07 Mitsubishi Heavy Ind Ltd 塩分含有水淡水化システム
JP3826289B2 (ja) * 2002-08-23 2006-09-27 日立造船株式会社 淡水化方法
JP4332774B2 (ja) 2002-09-06 2009-09-16 東洋紡績株式会社 逆浸透膜による高濃度溶液の処理方法および処理装置
US20050067341A1 (en) * 2003-09-25 2005-03-31 Green Dennis H. Continuous production membrane water treatment plant and method for operating same
JP2005224651A (ja) * 2004-02-10 2005-08-25 Toray Ind Inc 淡水製造方法および淡水製造装置
JP2006167533A (ja) 2004-12-14 2006-06-29 Nippon Steel Corp 海水濃縮方法
US7501064B2 (en) * 2005-01-06 2009-03-10 Eet Integrated electro-pressure membrane deionization system
EP1855785A2 (en) 2005-03-11 2007-11-21 Uop Llc Membrane separation processes and systems for enhanced permeant recovery
EP1888209B1 (en) 2005-06-02 2012-08-29 Toray Membrane Europe AG Improved process for treating an aqueous medium using reverse osmosis and reverse osmosis system therefor
US20080314807A1 (en) * 2005-09-23 2008-12-25 Max Rudolf Junghanns Systems and Methods For Treating Water
JP2007152265A (ja) 2005-12-07 2007-06-21 Toray Ind Inc 淡水製造装置の運転方法および淡水製造装置
JP5254536B2 (ja) 2006-05-26 2013-08-07 日本錬水株式会社 排水処理方法、排水処理装置、および排水回収システム
GB0611710D0 (en) 2006-06-14 2006-07-26 Vws Westgarth Ltd Apparatus and method for treating injection fluid
JP2008086989A (ja) * 2006-06-28 2008-04-17 Sanyo Electric Co Ltd 水供給装置
CN2910907Y (zh) * 2006-06-30 2007-06-13 上海理日科技发展有限公司 能够全部回用浓水的水处理装置
US7744760B2 (en) 2006-09-20 2010-06-29 Siemens Water Technologies Corp. Method and apparatus for desalination
JP2008100219A (ja) 2006-09-22 2008-05-01 Toray Ind Inc 脱塩方法及び脱塩装置
JP2008126137A (ja) 2006-11-21 2008-06-05 Meidensha Corp 水処理設備の膜ろ過制御方式
JP2008161797A (ja) 2006-12-28 2008-07-17 Toray Ind Inc 淡水製造装置の運転方法および淡水製造装置
JP3957081B1 (ja) 2007-01-16 2007-08-08 株式会社神鋼環境ソリューション 飲料水製造用水処理システム及びその運転方法
US20090090676A1 (en) * 2007-10-03 2009-04-09 Thh, Inc. Method of Distributing Desalination Functions While Reducing the Environmental Impact of Industrial Cooling Water and the Introduction of Brine to Brackish or Saline Water Sources
US20090188867A1 (en) * 2008-01-30 2009-07-30 Dinh-Cuong Vuong Methods and systems for processing waste water
KR101024565B1 (ko) 2008-11-28 2011-03-31 가부시키가이샤 신꼬오 간쿄우 솔루션 담수 생성 방법 및 담수 생성 장치
US20100224558A1 (en) * 2009-03-09 2010-09-09 Jack Barker Water Filtration System
US8696908B2 (en) * 2009-05-13 2014-04-15 Poseidon Resources Ip Llc Desalination system and method of wastewater treatment
AU2010274473B2 (en) * 2009-07-21 2015-07-02 Toray Industries, Inc. Water producing system
JP2011056412A (ja) * 2009-09-10 2011-03-24 Toshiba Corp 膜ろ過システム
US20110315632A1 (en) * 2010-05-24 2011-12-29 Freije Iii William F Membrane filtration system

Also Published As

Publication number Publication date
AU2010285918A1 (en) 2012-02-16
JPWO2011021420A1 (ja) 2013-01-17
WO2011021420A1 (ja) 2011-02-24
US9126853B2 (en) 2015-09-08
EP2468685A4 (en) 2013-03-13
EP2468685A1 (en) 2012-06-27
CN102471102B (zh) 2014-05-28
MX2012001956A (es) 2012-04-10
CN102471102A (zh) 2012-05-23
SG178303A1 (en) 2012-03-29
US20120145610A1 (en) 2012-06-14

Similar Documents

Publication Publication Date Title
JP5488466B2 (ja) 造水装置
JP5549589B2 (ja) 造水システム
JP5691522B2 (ja) 造水システムおよびその運転方法
JP5549591B2 (ja) 淡水製造方法及び淡水製造装置
JP5929195B2 (ja) 淡水製造装置およびその運転方法
JP5867082B2 (ja) 淡水の製造方法
JPWO2014115769A1 (ja) 淡水製造装置の運転方法
JP5587223B2 (ja) 複合淡水化システム
EP3263531A1 (en) Method for operating a membrane bioreactor of a water treatment system and corresponding membrane bioreactor and water treatment system
JP2014140794A (ja) 造水装置および造水方法
JP2014221450A (ja) 造水方法
Hassan et al. Utilizing hybrid RO-OARO systems as new methods for desalination process
Gasia-Bruch et al. Dual membrane systems in seawater desalination: drivers for selection and field experiences
Klegraf et al. MARAPUR—a new process combination for the optimization of MBR

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140210

R151 Written notification of patent or utility model registration

Ref document number: 5488466

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees