WO2011030784A1 - 炭素繊維束及びその製造方法 - Google Patents
炭素繊維束及びその製造方法 Download PDFInfo
- Publication number
- WO2011030784A1 WO2011030784A1 PCT/JP2010/065399 JP2010065399W WO2011030784A1 WO 2011030784 A1 WO2011030784 A1 WO 2011030784A1 JP 2010065399 W JP2010065399 W JP 2010065399W WO 2011030784 A1 WO2011030784 A1 WO 2011030784A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- carbon fiber
- fiber bundle
- group
- polyolefin resin
- amino group
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F8/00—Chemical modification by after-treatment
- C08F8/30—Introducing nitrogen atoms or nitrogen-containing groups
- C08F8/32—Introducing nitrogen atoms or nitrogen-containing groups by reaction with amines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B15/00—Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00
- B29B15/08—Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00 of reinforcements or fillers
- B29B15/10—Coating or impregnating independently of the moulding or shaping step
- B29B15/12—Coating or impregnating independently of the moulding or shaping step of reinforcements of indefinite length
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B15/00—Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00
- B29B15/08—Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00 of reinforcements or fillers
- B29B15/10—Coating or impregnating independently of the moulding or shaping step
- B29B15/12—Coating or impregnating independently of the moulding or shaping step of reinforcements of indefinite length
- B29B15/14—Coating or impregnating independently of the moulding or shaping step of reinforcements of indefinite length of filaments or wires
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M15/00—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M15/00—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
- D06M15/19—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
- D06M15/21—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
- D06M15/227—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of hydrocarbons, or reaction products thereof, e.g. afterhalogenated or sulfochlorinated
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M15/00—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
- D06M15/19—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
- D06M15/21—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
- D06M15/263—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated carboxylic acids; Salts or esters thereof
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M15/00—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
- D06M15/19—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
- D06M15/21—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
- D06M15/263—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated carboxylic acids; Salts or esters thereof
- D06M15/267—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated carboxylic acids; Salts or esters thereof of unsaturated carboxylic esters having amino or quaternary ammonium groups
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M15/00—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
- D06M15/19—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
- D06M15/21—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
- D06M15/285—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated carboxylic acid amides or imides
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M15/00—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
- D06M15/19—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
- D06M15/21—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
- D06M15/356—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of other unsaturated compounds containing nitrogen, sulfur, silicon or phosphorus atoms
- D06M15/3562—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of other unsaturated compounds containing nitrogen, sulfur, silicon or phosphorus atoms containing nitrogen
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M7/00—Treating fibres, threads, yarns, fabrics, or fibrous goods made of other substances with subsequent freeing of the treated goods from the treating medium, e.g. swelling, e.g. polyolefins
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2023/00—Use of polyalkenes or derivatives thereof as moulding material
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M2101/00—Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
- D06M2101/40—Fibres of carbon
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/29—Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
- Y10T428/2913—Rod, strand, filament or fiber
- Y10T428/2918—Rod, strand, filament or fiber including free carbon or carbide or therewith [not as steel]
Definitions
- the present invention relates to a carbon fiber bundle used as a reinforcing material for thermoplastic resins and a method for producing the same, and particularly relates to a carbon fiber bundle suitable as a reinforcing material for polyolefin-based thermoplastic resins and a method for producing the same.
- the carbon fiber bundle is used as a reinforcing material such as a thermoplastic resin, and forms a plurality of single fibers made of carbon.
- a reinforcing material such as a thermoplastic resin
- carbon fiber bundles are generally provided in a form cut to a length of 5 to 15 mm.
- the shape stability of the carbon fiber bundle is required. It becomes important. If the shape of the carbon fiber bundle is not appropriate, it may cause ejection spots. Moreover, since a constant extrusion speed cannot be obtained, the carbon fiber bundle breaks, so-called strand breakage occurs, and the productivity of pellets may be greatly reduced.
- the carbon fiber bundle may be used as a sheet material impregnated with a thermoplastic resin, and the woven property of the carbon fiber bundle and the handleability of the woven fabric after weaving are important characteristics.
- carbon fiber bundles converged by sizing treatment are generally used for the purpose of improving the handleability of the carbon fiber bundles and the physical properties of the material containing the carbon fiber bundles.
- the sizing treatment is a treatment in which, for example, a sizing agent compatible with a matrix resin mainly composed of an epoxy resin is attached to the surface of the carbon fiber, for example, about 2 to 5% by mass.
- a sizing agent compatible with a matrix resin mainly composed of an epoxy resin is attached to the surface of the carbon fiber, for example, about 2 to 5% by mass.
- the thermoplastic resin used as the matrix resin polycarbonate resin, nylon resin, polyester resin, and the like are used.
- polyolefin resins are increasingly used from the viewpoint of recyclability and economy.
- polypropylene resin is a resin that has attracted attention in recent years.
- JP-A-6-107442 Japanese Patent Laid-Open No. 2-84566 JP 2006-124847 A
- Patent Document 2 describes a method of sizing carbon fibers with a sizing agent comprising an amino-modified polyolefin resin in addition to an acid-modified polyolefin resin.
- the amino-modified polyolefin resin described in this document may be one in which an acid-modified and amino-modified part coexist. In this case, the interaction between the acidic group and amino group in the molecule occurs, resulting in a failure in expressing the coupling effect between the carbon fiber and the matrix resin, which is the role of the sizing agent, and realizing good interfacial adhesion. I can't.
- Patent Document 2 a modified polyolefin resin dissolved in an organic solvent is attached to carbon fibers, and the modified polyolefin resin cannot be uniformly attached to the carbon fiber surface. This is because the organic solvent has a higher vapor pressure than water and is likely to volatilize. Further, since there is a risk of ignition at a high temperature, it is necessary to dry at a relatively low temperature. Furthermore, sufficient heat treatment was not performed on the modified polyolefin resin thus adhered, and good interfacial adhesion could not be realized.
- Patent Document 3 describes a method of sizing a carbon fiber using a sizing agent made of an acid-modified polyolefin resin, and then performing a heat treatment.
- the heat treatment is said to decompose and remove unsaturated carboxylic acid monomers and surfactants acting as adhesion inhibiting factors, and melt the modified polyolefin resin to uniformly apply it to the carbon fiber surface.
- the acid-modified polyolefin resin is carried out under conditions that do not cause thermal decomposition. Since the acid-modified polyolefin resin is a constituent component, heat treatment is necessary to eliminate the influence of the remaining unsaturated carboxylic acid monomer.
- the acid-modified polyolefin resin does not uniformly adhere to the surface of the carbon fiber because it is dried at a low temperature, and heat treatment is necessary to eliminate it.
- the polyolefin resin is used as a matrix resin, sufficient interfacial adhesion cannot be expressed only by uniformly attaching the sizing agent component. Further, this heat treatment also causes a problem that the wettability with the matrix resin is remarkably lowered by decomposing and removing the surfactant.
- the present invention has been made in view of the above circumstances, and provides a carbon fiber bundle that can exhibit good interfacial adhesion to polyolefin resins, particularly polypropylene resins, and is useful for reinforcing polyolefin resins, and a method for producing the same. For the purpose.
- One aspect of the present invention is a carbon fiber bundle in which an amino group-containing modified polyolefin resin is attached to a carbon fiber bundle, and the adhesion amount of the amino group-containing modified polyolefin resin is 0.2 to 5.0% by mass. It relates to a certain carbon fiber bundle.
- Another aspect of the present invention relates to a carbon fiber bundle obtained by attaching the amino group-containing modified polyolefin resin to the surface of the carbon fiber bundle and then performing a heat treatment at 200 to 300 ° C. for 5 seconds to 3 minutes.
- the adhesion amount of the amino group-containing modified polyolefin resin is 0.5 to 4.0% by mass, and after the amino group-containing modified polyolefin resin is adhered to the surface of the carbon fiber bundle,
- the present invention relates to a carbon fiber bundle that is heat-treated at 200 to 260 ° C. for 15 seconds to 3 minutes.
- carbon attached to the carbon fiber bundle of the amino group-containing modified polyolefin resin is obtained by bringing the carbon fiber bundle into contact with a sizing agent aqueous dispersion containing the amino group-containing modified polyolefin resin.
- Another aspect of the present invention relates to a carbon fiber bundle in which the amino group-containing modified polyolefin resin has an intrinsic viscosity measured in tetralin at 135 ° C. of 0.05 to 1.0 dL / g.
- the amino group-containing modified polyolefin resin is selected from the group consisting of ethylene-ethyl acrylate-maleic anhydride copolymer, maleic anhydride grafted polyethylene resin, and maleic anhydride grafted polypropylene resin.
- the present invention relates to a carbon fiber bundle which is a reaction product of one selected compound and a compound having two or more amino groups.
- the amino group-containing modified polyolefin resin has an amino group and 70 to 99.98 mol% of repeating units represented by the following general formula (I) in the molecule
- the present invention relates to a carbon fiber bundle which is a copolymer containing 0.02 to 30 mol% of repeating units represented by the general formula (II).
- R 1 and R 2 are each independently a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 3 to 8 carbon atoms, or an aryl group having 6 to 10 carbon atoms.
- a polyoxyalkylene group of formula 4 to 30 is shown.
- R 1 to R 5 may be the same or different for each repeating unit.
- Another aspect of the present invention relates to a method for producing a carbon fiber bundle, comprising attaching 0.2 to 5.0% by mass of an amino group-containing modified polyolefin resin on the surface of the carbon fiber bundle.
- a carbon fiber bundle further comprising heat-treating at 200 to 300 ° C. for 5 seconds to 3 minutes after attaching the amino group-containing modified polyolefin resin to the surface of the carbon fiber bundle. It relates to a manufacturing method.
- Another aspect of the present invention is a carbon fiber comprising attaching 0.5 to 4.0% by mass of an amino group-containing modified polyolefin resin and then heat-treating at 200 to 260 ° C. for 15 seconds to 3 minutes.
- the present invention relates to a method for manufacturing a bundle.
- the amino group-containing modified polyolefin resin is adhered to the carbon fiber bundle by bringing the carbon fiber bundle into contact with a sizing agent aqueous dispersion containing the amino group-containing modified polyolefin resin.
- the present invention relates to a method for producing a carbon fiber bundle.
- a carbon fiber bundle is brought into contact with the sizing agent aqueous dispersion, and the sizing agent aqueous dispersion is adhered to the surface of the carbon fiber bundle, subjected to a drying treatment, and then heat-treated. It is related with the manufacturing method of a carbon fiber bundle further including performing.
- Another aspect of the present invention relates to a method for producing a carbon fiber bundle in which the drying treatment is performed at 100 to 200 ° C.
- the carbon fiber bundle of the present invention can exhibit good interfacial adhesion with polyolefin resins, particularly polypropylene resins, and is useful for reinforcing polyolefin resins. Moreover, according to the method for producing a carbon fiber bundle of the present invention, good interfacial adhesiveness with a polyolefin resin, particularly a polypropylene resin, can be expressed, and a carbon fiber bundle useful for reinforcing the polyolefin resin can be obtained.
- the carbon fiber bundle of the present invention is formed by attaching an amino group-containing modified polyolefin resin to a carbon fiber bundle.
- the method for adhering the amino group-containing modified polyolefin resin will be described in detail later.
- the adhesion amount of the amino group-containing modified polyolefin resin is 0.2 to 5.0% by mass, preferably 0.4 to 4.0% by mass, and more preferably 0.5 to 4.0% by mass.
- the molecular layer covering the surface of the single fiber of the carbon fiber is preferably about 1 to 3 layers. If the adhesion amount is less than 0.2% by mass, the effect of attaching the amino group-containing modified polyolefin resin may be insufficient, and the process passability, handleability, and affinity with the sizing agent may decrease. is there.
- the adhesion amount exceeds 5% by mass
- the amino group-containing modified polyolefin resin is interposed between the single fibers, bridging occurs, and the movement between the single fibers is restricted by the pseudo-bonding between the single fibers, and the carbon fibers
- the spreadability of the bundle tends to decrease.
- the uniformity of the carbon fiber bundle may be impaired.
- the permeability of the sizing agent is hindered, making it difficult to obtain a uniform carbon fiber bundle, and there is a concern that the characteristics as the carbon fiber bundle may be deteriorated.
- the adhesion amount of the amino group-containing modified polyolefin resin can be adjusted, for example, by adjusting the solid content concentration of the sizing agent aqueous dispersion containing the amino group-containing modified polyolefin resin. Specifically, when the solid content concentration of the sizing agent aqueous dispersion is increased, the adhesion amount tends to increase.
- the adhesion amount of the amino group-containing modified polyolefin resin was measured according to the SACMA method SRM14-90, and the total amount of the sizing agent adhering to the carbon fiber bundle was measured from the mass difference before and after the pyrolysis treatment by the pyrolysis method. Calculated as the adhesion rate to the carbon fiber bundle before the pyrolysis treatment.
- the amino group-containing modified polyolefin resin (hereinafter sometimes abbreviated as “compound (a)”) is a compound in which the amino group in the molecule is carbon when the carbon fiber bundle is combined with a matrix resin such as a polyolefin resin. While enhancing the interaction with the surface of the fiber bundle, the skeleton polyolefin chain is a component that acts as a useful coupling agent that causes a strong bond with the matrix resin due to molecular entanglement.
- the main chain is formed of a carbon-carbon bond, and has an amino group at least at a part of the side chain or the terminal of the main chain.
- Such a compound (a) include (i) a reaction product of an acid-modified polyolefin resin (hereinafter sometimes abbreviated as “compound (b)”) and a compound having an amino group, (Ii) A reaction product of an epoxidized polyolefin resin (hereinafter sometimes abbreviated as “compound (c)”) and a compound having an amino group.
- the compound (a) is preferable because a reaction product of the compound (b) or the compound (c) and a compound having two or more amino groups has a primary amino group. It is preferable to have a primary amino group because the interaction on the surface of the matrix resin or the carbon fiber becomes good and a stronger bond is generated.
- the compound (b) is not particularly limited as long as it is acid-modified so as to have a functional group that reacts with an amino group.
- the polyolefin skeleton may be a single olefin such as ethylene, propylene, or butene, or may be a plurality of different olefins.
- Examples of the olefin include olefins having 2 to 8 carbon atoms. Examples of such a compound (b) include those exemplified below.
- R 3 and R 4 each independently represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
- the acid-modified polyolefin resin having a skeleton represented by the formula (I) and a skeleton represented by the formula (III) can be obtained, for example, by copolymerizing an olefin and maleic anhydride. Further, olefin and maleic acid may be copolymerized while dehydrating. In this case, it can be copolymerized with other unsaturated carboxylic acids.
- the unsaturated carboxylic acids include unsaturated carboxylic acids such as acrylic acid, methacrylic acid, fumaric acid, and itaconic acid; acrylic acid esters such as methyl acrylate, ethyl acrylate, and propyl acrylate; methacrylic acid such as methyl methacrylate, ethyl methacrylate, and propyl methacrylate.
- unsaturated carboxylic acid esters such as acid esters and unsaturated carboxylic acids such as vinyl acetate can be used.
- acid-modified polyolefin resin having a skeleton represented by formula (I) and a skeleton represented by formula (III) include ethylene-maleic anhydride copolymers, propylene-maleic anhydride copolymers, ethylene -Propylene-maleic anhydride copolymer, ethylene-ethyl acrylate-maleic anhydride copolymer, and ethylene-vinyl acetate-maleic anhydride copolymer.
- Examples of the acid-modified polyolefin resin having a skeleton represented by the formula (I) in the main chain and a group represented by the formula (IV) in the side chain include, for example, maleic acid and maleic anhydride, a polyolefin resin, An acid-modified polyolefin resin obtained by reacting with a radical initiator by melt kneading or the like.
- examples of the polyolefin resin include polyolefin resins obtained by polymerizing olefins such as ethylene, propylene, and butene alone or in the presence of a polymerization catalyst such as a so-called Ziegler-Natta catalyst.
- it is a polypropylene homopolymer.
- the radical initiator is not particularly limited, and examples thereof include butyl peroxide, dicumyl peroxide, and benzoyl peroxide.
- the amount of the radical initiator used may be about 0.01 to 1 part by mass with respect to 100 parts by mass of the polyolefin resin.
- the melt kneading temperature is generally about 160 to 270 ° C.
- Examples of the acid-modified polyolefin resin having a skeleton represented by the formula (I) in the main chain and a group represented by the formula (V) in the side chain include copolymerization of an olefin and an unsaturated carboxylic acid, It can be obtained by copolymerizing an olefin and an unsaturated carboxylic acid ester and then hydrolyzing it.
- Examples of the unsaturated carboxylic acid include acrylic acid, methacrylic acid, and fumaric acid.
- examples of unsaturated carboxylic acid esters include acrylic acid esters such as methyl acrylate, ethyl acrylate, and propyl acrylate; methacrylic acid esters such as methyl methacrylate, ethyl methacrylate, and propyl methacrylate; and vinyl acetate.
- the olefin illustrated previously is mentioned as an olefin which can be used here.
- Polymerization conditions and hydrolysis conditions are not particularly limited and may be carried out by known methods.
- the structural unit represented by the above general formula (I) is 70 to 99.98 mol%, and the above general formula (III) corresponding to each compound.
- Or (V) is preferably contained in an amount of 0.02 to 30 mol% of a structural unit derived from the compound for introducing the group.
- the compound (b-2) preferably contains 0.5 to 20% by mass of the group of the general formula (IV).
- a repeating unit other than the above general formula (I) or (III), or a side chain represented by the above general formula (IV) or (V) as long as the effects of the present invention are not impaired. Other side chains may be included.
- a commercially available product can be used.
- Yumex series (trade name, maleic anhydride grafted polyethylene, maleic anhydride grafted polypropylene) manufactured by Sanyo Chemical Industries, Ltd.
- Bondine series (trade name, ethylene-ethyl acrylate-maleic anhydride copolymer) manufactured by Atofina
- Lexpearl ET series (trade name, ethylene-ethyl acrylate-maleic anhydride copolymer) manufactured by Nippon Polyolefin Co., Ltd.
- Hostmont AR503, AR504 (trade name, maleic anhydride grafted polypropylene) manufactured by Clariant.
- the compound (c) those obtained by copolymerizing an olefin with an epoxy group-containing monomer such as glycidyl methacrylate, methyl glycidyl methacrylate, 3,4-epoxycyclohexylmethyl acrylate, and 3,4-epoxycyclohexylmethyl methacrylate are preferable.
- the polyolefin skeleton may be ethylene or an olefin such as propylene or butene alone or a copolymer thereof. Further, the copolymerization may be random copolymerization or block copolymerization.
- the mass molecular weight of the compound (b) and the compound (c) may be appropriately selected according to the purpose, but is usually 3000 to 600,000.
- the compound having an amino group to be reacted with the compound (b) or the compound (c) is preferably a compound having two or more amino groups, and specifically includes a diamine represented by the following general formula (VI). . H 2 N—R 6 —NH 2 (VI)
- R 6 represents an alkylene group having 1 to 12 carbon atoms (preferably an alkylene group having 1 to 8 carbon atoms), a cycloalkylene group having 5 to 17 carbon atoms (preferably a cycloalkylene having 6 to 10 carbon atoms). Group), an arylene group having 6 to 12 carbon atoms, an arylalkylene group having 7 to 12 carbon atoms (preferably an arylalkylene group having 8 to 10 carbon atoms), and a polyoxyalkylene group having 4 to 30 carbon atoms (preferably carbon 4 to 15 polyoxyalkylene groups).
- Examples of the alkylene group include a methylene group, an ethylene group, a propylene group, a tetramethylene group, and a hexamethylene group.
- Examples of the cycloalkylene group include a cyclohexylene group and a methylenecyclohexylmethylene group.
- Examples of the arylene group include a phenylene group and an oxydiphenylene group.
- Examples of the arylalkylene group include a xylylene group.
- Examples of the polyoxyalkylene group include a polyoxymethylene group, a polyoxyethylene group, and a polyoxypropylene group.
- diamines include ethylenediamine, 1,3-diaminopropane, 1,4-diaminobutane, 1,5-diaminopentane, hexamethylenediamine, 1,7-diaminoheptane, 1,8-diaminooctane.
- Linear or branched aliphatic such as 1,9-diaminononane, 1,10-diaminodecane, piperazinylaminoethane, 2,2,5-trimethylhexanediamine, and 2,2,4-trimethylhexanediamine Alkylene diamines; isophorone diamine, 1,3-bis (aminomethyl) cyclohexane, bis (4-aminocyclohexyl) methane, bisaminomethylhexahydro-4,7-methaneindane, 1,4-cyclohexanediamine, 1,3 -Cyclohexanediamine, 2-methylcyclohexanediamy Alicyclic diamines such as 4-methylcyclohexanediamine and bis (4-amino-3,5-dimethylcyclohexyl) methane; arylalkyldiamines such as m-xylylenediamine and p-xylylenediamine; p- Examples include
- aliphatic and cycloaliphatic diamines particularly preferred are aliphatic and cycloaliphatic diamines.
- the salt of the above diamine is used, and either a partially neutralized salt (mono salt) or a completely neutralized salt (di salt) of diamine may be used. High efficiency is preferable.
- the diamine is preferably used as a partially neutralized salt of an acid.
- an acid it is desirable to select an acid having an acid strength higher than that of a carboxylic acid.
- sulfonic acids such as sulfuric acid, benzenesulfonic acid, toluenesulfonic acid, and naphthalenesulfonic acid
- halogeno acids such as hydrochloric acid, hydrofluoric acid, hydrobromic acid, and hydroiodic acid
- nitric acid boric acid And phosphoric acid.
- hydrochloric acid and toluenesulfonic acid are preferred.
- the molar ratio of the diamine to the acid is used in the form of a salt corresponding to a neutralization degree of 50 to 100% in terms of an acid equivalent based on the total amino groups of the diamine. . If it is less than 50%, crosslinking or gelation tends to occur during the imidization reaction. On the other hand, if it exceeds 100%, a long time is required for the imidization reaction, which is economically disadvantageous.
- a preferred range is 50-80%.
- a diamine salt can be easily prepared by a neutralization reaction between a corresponding diamine and a corresponding acid.
- a diamine may be dropped into an acid alcohol solution, concentrated as necessary, and recrystallized with alcohol to be isolated and used as a raw material.
- DMI dimethyl-2-imidazolidinone
- DMSO dimethyl sulfoxide
- dimethyl sulfone dioxane
- 1,2-dimethoxyethane 1,2-dimethoxyethane
- hexamethylene phosphoric acid-triamide Alternatively, a partially neutralized salt of diamine and acid may be formed in an aprotic polar solvent such as tetramethylurea and used
- the compound (a) can be obtained, for example, by reacting the compound (b) or the compound (c) with the diamine by a conventional method.
- the reaction between the compound (b-1) or the compound (b-2) and the diamine is an imidation reaction
- the reaction between the compound (b-3) and the diamine is an acid amidation reaction.
- limiting in particular as the method of reaction For example, after making the said compound (b) and the said diamine salt react (imidation reaction or acid amidation reaction), it contacts with a base and deacidifies.
- the compound (a) can be produced efficiently.
- the imidation reaction or acid amidation reaction can be performed in a solvent-free molten state using a screw extruder or the like, but it is desirable to use an inert solvent for the purpose of uniforming the reaction.
- Solvents that can be used for such purposes include aromatic hydrocarbons such as benzene, toluene, xylene, cumene, cymene, ethyltoluene, propylbenzene, and diethylbenzene; methylcyclopentane, cyclohexane, ethylcyclopentane, methylcyclohexane, 1 Alicyclic hydrocarbons such as hexane, 1-dimethylcyclohexane and ethylcyclohexane; aliphatic hydrocarbons such as hexane, heptane, octane, decane, methylheptane, 3-ethylhexane and trimethylpentan
- reaction substrates having considerably different polarities are reacted with each other, and therefore it is generally preferable to use a nonpolar solvent and a polar solvent at the same time.
- the amount of the solvent to be used is not particularly limited and may be appropriately selected depending on the situation.
- the compound (b-1) to compound (b-3) used as a raw material that is, substituted or reacted with an amino group
- the compound may have a mass ratio of 0.3 to 20 times, preferably 1 to 10 times that of the compound having an unsubstituted succinic anhydride group or carboxyl group as a functional group.
- the imidation reaction or acid amidation reaction does not particularly require a catalyst, but when used, trimethylamine, triethylamine, tributylamine, N, N-dimethylaniline, N, N-diethylaniline, and 1,8-diazabicyclo ( Tertiary amines such as 5.4.0) undecene-7 are preferred.
- the ratio of the raw material compound (b) and the diamine salt varies depending on the type and situation of the raw material used and cannot be uniquely determined.
- the amount is 1.0 to 10 times, preferably 1.05 to 5.0 times, based on the unneutralized amino acid of the diamine, with respect to 1 mol of a substituted or unsubstituted succinic anhydride group or carboxyl group contained in the raw material. If it is less than 1.0 times, a succinic anhydride group or a carboxyl group that remains without being imidized or acid amidated even after the completion of the reaction tends to be present. As a result, the primary amino group regenerated in the deoxidation step, which is a subsequent step, reacts with the succinic anhydride group or carboxyl group to cause gelation by amide crosslinking, which may reverse the effect of the present invention. On the other hand, when the molar ratio exceeds 10 times, there is an advantage that the reaction of imidization or acid amidation proceeds rapidly, but it requires a large amount of reaction reagent, which is economically disadvantageous.
- the reaction temperature and reaction time vary depending on the solvent used and the presence or absence of a catalyst, but are usually 100 to 300 ° C., preferably 130 to 260 ° C., and 1 to 20 hours. If the reaction temperature is less than 100 ° C., the reaction may take a long time. If the reaction temperature exceeds 300 ° C., the reaction product is colored and the physical properties are deteriorated due to thermal decomposition of the raw material mixture.
- the order of charging the reaction raw materials is not particularly limited and can be carried out in various modes.
- the compound (b) as a raw material is uniformly dissolved in the solvent, and then the salt of the diamine and acid.
- the powder or solution is added gradually or vice versa.
- the charging during this time may be performed under heating and reflux of the solvent. Since the reaction proceeds with generation of water, the generated water azeotropes with the solvent used. Therefore, by removing this azeotropic water from the reaction system using a Dean-Stark water separator or the like, the reaction can proceed efficiently.
- Completion of the imidization reaction is that azeotropic water is no longer observed, and an increase in the absorption intensity of carbonyl of imide near 1700 cm ⁇ 1 is no longer observed by collecting a part of the reaction mixture and measuring the infrared absorption spectrum. This can be confirmed.
- completion of the acid amidation reaction means that azeotropic water is no longer observed, and that the absorption intensity of carbonyl of acid amide near 1650 cm ⁇ 1 is increased by sampling a reaction mixture and measuring an infrared absorption spectrum. It can be confirmed that it is no longer recognized.
- the reaction mixture thus obtained contains a salt of the compound (a) in which the primary amino group is bonded through an imide bond or an acid amide bond.
- the reaction mixture is used as it is or, if necessary, in a non-solvent such as methanol, isopropanol, isobutanol, and hexane to be pulverized, and then an aqueous base solution or, if necessary, a basic methanol / water mixed solution and It can be deoxidized by contact and converted to the free amine.
- bases used for deoxidation include sodium hydroxide, potassium hydroxide, lithium hydroxide, sodium carbonate, potassium carbonate, sodium bicarbonate, potassium bicarbonate, ammonia, methylamine, ethylamine, trimethylamine, and triethylamine. Any water-soluble base may be used. Of these, sodium hydroxide, sodium carbonate, and sodium bicarbonate are preferred for economic reasons.
- the compound (a) can be obtained.
- a compound (a) it can be obtained by reacting the above (b-1) with a diamine represented by the above general formula (VI).
- the repeating unit represented by the general formula (I) is preferably contained in an amount of 70 to 99.98 mol% and the repeating unit represented by the general formula (II) is preferably contained in an amount of 0.02 to 30 mol%. It is more preferable that the repeating unit represented by the general formula (I) is 75 to 99.70 mol% and the repeating unit represented by the general formula (II) is 0.30 to 25 mol%. More preferably, the repeating unit represented by the general formula (I) is contained in an amount of 80 to 99.50 mol% and the repeating unit represented by the general formula (II) is contained in an amount of 0.50 to 20 mol%.
- R 1 and R 2 are each independently a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 3 to 8 carbon atoms, or 6 to 10 carbon atoms.
- Examples of the alkyl group include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group, and a decyl group.
- Examples of the cycloalkyl group include a cyclohexyl group, a cyclooctyl group, and a cyclodecyl group.
- Examples of the aryl group include a phenyl group, a p-methylphenyl group, and an m-methylphenyl group.
- Examples of the alkoxy group include a methoxy group, an ethoxy group, a propoxy group, and a butoxy group.
- Examples of the alkoxycarbonyl group include a methoxycarbonyl group, an ethoxycarbonyl group, a propoxycarbonyl group, and a butoxycarbonyl group.
- Examples of the alkyl carboxyl group include a methyl carboxyl group, an ethyl carboxyl group, a propyl carboxyl group, and a butyl carboxyl group.
- R 3 and R 4 each independently represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
- alkyl group examples include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, and a hexyl group.
- R 5 is an alkylene group having 1 to 12 carbon atoms (preferably an alkylene group having 1 to 8 carbon atoms), a cycloalkylene group having 5 to 17 carbon atoms (preferably a cycloalkylene group having 6 to 10 carbon atoms), or 6 carbon atoms.
- Oxyalkylene group is an alkylene group having 1 to 12 carbon atoms (preferably an alkylene group having 1 to 8 carbon atoms), a cycloalkylene group having 5 to 17 carbon atoms (preferably a cycloalkylene group having 6 to 10 carbon atoms), or 6 carbon atoms.
- Examples of the alkylene group include a methylene group, an ethylene group, a propylene group, a tetramethylene group, and a hexamethylene group.
- Examples of the cycloalkylene group include a cyclohexylene group and a methylenecyclohexylmethylene group.
- Examples of the arylene group include a phenylene group and an oxydiphenylene group.
- Examples of the arylalkylene group include a xylylene group.
- Examples of the polyoxyalkylene group include a polyoxymethylene group, a polyoxyethylene group, and a polyoxypropylene group.
- R 1 to R 5 may be the same or different for each repeating unit.
- the content of the repeating unit represented by the general formula (II) is less than 0.02 mol%, the adhesion to the carbon fiber becomes insufficient, and when it exceeds 30 mol%, the affinity with the polyolefin is insufficient. It becomes.
- maleic anhydride is preferable.
- the above-described effects can be obtained without departing from the effect of the present invention. You may include repeating units other than the repeating unit represented by general formula (I), and the repeating unit represented by the said general formula (II).
- the molecular weight of the compound (a) is not particularly limited, but the intrinsic viscosity (measured in tetralin at 135 ° C.), which is a measure of the molecular weight, is preferably 0.05 to 1.0 dL / g.
- the intrinsic viscosity exceeds 1.0 dL / g, the number of polymer molecules per unit mass decreases, and the interfacial adhesion cannot be sufficiently increased.
- the intrinsic viscosity is less than 0.05 dL / g, the coupling effect in the interfacial phase between the carbon fiber and the resin is reduced, and sufficient adhesiveness cannot be obtained.
- the compound (a) preferably has an amino group content (mol%) of 0.02 to 30 mol%, more preferably 0.05 to 5.0 mol%.
- amino group content 0.02 to 30 mol%, more preferably 0.05 to 5.0 mol%.
- the amino group content is less than 0.02 mol%, the interaction between the carbon fiber bundle and the single fiber surface is insufficient, and high interfacial adhesion is difficult to obtain.
- the amino group content exceeds 30 mol%, the affinity with the matrix resin, particularly the polyolefin resin becomes insufficient, and as a result, the entanglement with the molecule becomes insufficient and it becomes difficult to increase the interfacial adhesion. .
- the amino group content can be measured as follows based on the method described in Macromolecules, Vol. 26, 2087-2088, (1993). First, 1.0 g of amino group-containing modified polyolefin (compound (a)), 50 mL of p-xylene, 10 mL of pyridine and 5 mL of benzoyl chloride are added to a 200 mL two-necked eggplant flask and heated at 140 ° C. for 6 hours in a nitrogen atmosphere. Stir to obtain a polymer solution. Next, the obtained polymer solution is added to 1 L of methanol and sufficiently stirred, and the precipitated solid part (polymer) is collected by filtration.
- the polymer thus obtained is press-molded at 190 ° C., and then the infrared absorption spectrum is measured.
- the ratio of absorbance between the absorption (1645 cm ⁇ 1 ) of the carbonyl group (C ⁇ O) generated by the reaction of the amino group and benzoyl chloride and the absorption band specific to the polyolefin is used.
- a calibration curve is prepared from an infrared absorption spectrum of a blend of polyolefin powder and various amounts of 1-butyl (2-methylpropyl) benzamide (190 ° C., press-molded product), and this calibration curve is used.
- poly-N-vinylacetamide or the like can also be used as the compound (a).
- poly-N-vinylacetamide may be a copolymer with ethylene, propylene, or butene, and the copolymer may be either a random copolymer or a block copolymer.
- the carbon fiber bundle used in the present invention is not particularly limited, but a single unit having a plurality of ridges on the surface where the height difference between the highest part and the lowest part is 40 nm or more in a region of circumferential length 2 ⁇ m ⁇ fiber axis direction length 1 ⁇ m.
- a combination of a plurality of fibers is preferred.
- the difference in height between the highest part and the lowest part in a region having a circumferential length of 2 ⁇ m and a fiber axis direction length of 1 ⁇ m is preferably 10% or less of the diameter of the single fiber.
- the depth of the wrinkles present on the surface of the single fiber of the carbon fiber bundle is defined by the difference in height between the highest part and the lowest part in the region of circumferential length 2 ⁇ m ⁇ fiber axis direction length 1 ⁇ m.
- the wrinkle on the surface of a single fiber refers to the form of irregularities having a length of 1 ⁇ m or more in a certain direction.
- the direction is not particularly limited, and the direction may be parallel to, perpendicular to, or at a certain angle to the fiber axis direction. Due to a general method for producing carbon fiber bundles, wrinkles that are substantially parallel to the fiber axis direction exist on the surface of ordinary carbon fibers.
- the height difference can be estimated based on the surface shape obtained by scanning the surface of a single fiber using a scanning atomic force microscope (AFM).
- AFM scanning atomic force microscope
- the ratio of the major axis to the minor axis (major axis / minor axis) of the cross section is preferably 1.03 to 2.0, particularly preferably 1.05 to 1.7. If the major axis / minor axis is smaller than 1.03, the sizing agent will strongly bond the single fibers to each other after sizing, and the dispersion to the single fibers during mixing and impregnation with the resin will deteriorate, resulting in uniform dispersion. The product may not be obtained.
- the major axis / minor axis is larger than 2.0, the carbon fiber bundle is easily bonded due to weak adhesion between single fibers, and the stability of the cutting process of a predetermined length, or the shape stability of the carbon fiber bundle after cutting. May get worse.
- Examples of the carbon fiber bundle having a plurality of such single fibers include TR50S, TR30S, TRH50, TR40, and MR60H (trade name) manufactured by Mitsubishi Rayon Co., Ltd.
- a single fiber which comprises a carbon fiber bundle it is obtained by fiberizing and carbonizing the acrylonitrile polymer, the pitch obtained from petroleum, and coal.
- the carbon fiber bundle before sizing treatment with a sizing agent as described later is a carbon fiber bundle after carbonization treatment, one obtained by introducing an oxygen-containing functional group on the surface by electrolytic oxidation treatment, and pre-sizing treatment as will be described in detail later. It can also be used.
- the carbon fiber bundle may be in a continuous fiber state or may be cut into a predetermined length.
- the basis weight is preferably 0.2 to 15 g / m, more preferably 0.4 to 10 g / m, and particularly preferably 0.8 to 8 g / m. is there.
- the basis weight of the carbon fiber bundle is less than 0.2 g / m, it is economically disadvantageous.
- the basis weight exceeds 15 g / m, it is difficult to completely penetrate the carbon fiber bundle of the sizing agent aqueous dispersion, and it may be difficult to produce a carbon fiber bundle having a stable shape.
- carbon fiber-containing resin pellets are manufactured using the carbon fiber bundle of the present invention (pellet manufacturing process)
- the resin impregnation in the carbon fiber bundle in the resin impregnation tank is not uniform and is not impregnated. May occur.
- the basis weight is preferably 0.4 to 15 g / m, more preferably 0.6 to 10 g / m, and particularly preferably 0. .8 to 8 g / m. If the basis weight of the carbon fiber bundle is less than 0.4 g / m, it is economically disadvantageous, and the carbon fiber bundle introduction process passability in the pellet manufacturing process may be further deteriorated. On the other hand, when the basis weight exceeds 15 g / m, it is difficult to completely penetrate the carbon fiber bundle of the sizing agent aqueous dispersion, and it may be difficult to produce a carbon fiber bundle having a stable shape.
- the cutting length (the length of the carbon fiber bundle) is preferably 2 to 30 mm, more preferably 4 to 24 mm, and particularly preferably 6 to 20 mm.
- the cutting length can be adjusted by adjusting the tooth tip interval of the apparatus to be used.
- the carbon fiber bundle can be opened as much as possible, and the sizing agent aqueous dispersion can be uniformly adhered to the inside of the carbon fiber bundle. is important. Therefore, using a guide roll, a comb guide, a spreader bar, or the like, the carbon fiber bundle can be controlled so that the width / thickness of the carbon fiber bundle is increased, and the carbon fiber bundle can be run without substantial twist. preferable.
- the carbon fiber bundle cut to a predetermined length is liable to be longitudinally cracked along the fiber orientation direction when the width is wide, and it tends to be difficult to maintain the form during use after production or after production. . This is particularly noticeable in thick carbon fiber bundles. Therefore, it is preferable to control the width of the carbon fiber bundle by adjusting the width of the guide attached to the rotary cutter so that the ratio (width / thickness) of the width and thickness of the carbon fiber bundle is 3 to 10. If the width / thickness is 3 or more, the occurrence of miscuts in the cutting process with a rotary cutter can be suppressed.
- the carbon fiber bundle is preferably cut into the wet carbon fiber bundle after the sizing agent aqueous dispersion is adhered to the carbon fiber bundle.
- This utilizes the convergence effect due to the surface tension of the sizing agent aqueous dispersion and the prevention of fiber cracking by absorbing the impact shearing force at the time of cutting in a wet and flexible state.
- the moisture content of the carbon fiber bundle is 20 to 60% by mass, particularly 25 to 50% by mass. If the water content is less than 20% by mass, there is a risk that fiber breakage and fluff are likely to occur during cutting.
- the surface of the single fiber is excessively attached to the surface of the single fiber, so that the single fiber converges in a round shape due to the surface tension of the water, resulting in miscutting and clogging of the blade. There is a risk of increasing the frequency.
- disconnection in order to adjust a moisture content as needed, you may perform an additional process using water or a sizing agent aqueous dispersion before cutting
- Examples of the method for drying the carbon fiber bundle after cutting include a hot air drying method.
- the hot air drying method it is preferable to perform drying while transporting in a vibrated state in order to improve moisture evaporation efficiency and prevent adhesion between the carbon fiber bundles. If the vibration during drying is too strong, fiber cracking is likely to occur, and the ratio of the width and thickness of the carbon fiber bundle (width / thickness) is less than 3. On the other hand, if the vibration is too weak, pseudo-bonding between the fibers occurs, resulting in a dumpling shape. Therefore, it is necessary to set an appropriate vibration condition.
- auxiliary means such as infrared radiation can be used in combination.
- the carbon fiber bundle of the present invention can be obtained by attaching 0.2 to 5.0% by mass of the compound (a) on the surface of the carbon fiber bundle described above.
- the compound (a) is preferably attached to the carbon fiber bundle and then subjected to heat treatment at 200 to 300 ° C. for 5 seconds to 3 minutes.
- the compound (a) adhering to the surface of the carbon fiber bundle is subjected to mild thermal decomposition and is more firmly bonded to the surface of the carbon fiber bundle.
- the coupling action between the carbon fiber bundle by the compound (a) and the matrix resin is improved, and the carbon fiber bundle can be made excellent in interfacial adhesion to the matrix resin, particularly the olefin resin.
- the heat treatment time is preferably 5 seconds to 3 minutes.
- the heat treatment time is less than 5 seconds, the above-described thermal decomposition may be insufficient, and the effect of improving the coupling action may not be sufficiently obtained.
- the heat treatment time exceeds 3 minutes, the degree of thermal decomposition becomes excessive, the molecular weight is lowered, and the decomposition and scattering of the deposits become remarkable, which may cause a reduction in the coupling action.
- More preferable heat treatment conditions are 200 to 300 ° C. for 5 seconds to 3 minutes, more preferably 200 to 260 ° C. for 15 seconds to 3 minutes, and particularly preferably 220 to 240 ° C. for 20 to 40 seconds.
- a hot air dryer When the heat treatment is performed, a hot air dryer, a panel heater dryer, a muffle furnace, a roll dryer, or the like can be used.
- the carbon fiber bundle can be continuously passed through the dryer, or the carbon fiber bundle is wrapped around a tubular one, and these are batch processed with a hot air dryer or a panel dryer. You can also.
- a preferred heat treatment method is a continuous treatment capable of uniform heat treatment.
- the atmosphere for the heat treatment is not particularly limited, and the heat treatment can be performed in air, nitrogen, or an inert gas.
- a sizing agent aqueous dispersion is prepared by dissolving or dispersing the compound (a) alone or with the other sizing agent as a sizing agent. And the method (sizing process) which adheres the said sizing agent aqueous dispersion to a carbon fiber bundle is preferable.
- the adhesion amount of the compound (a) can be adjusted by adjusting the solid content concentration of the sizing agent aqueous dispersion as described above.
- drying treatment is performed, and further heat treatment is performed.
- the drying treatment the water in the sizing agent aqueous dispersion adhering to the carbon fiber bundle can be evaporated before the heat treatment, and the thermal decomposition product of the compound (a) can be suppressed from scattering together with the water. Therefore, by applying a drying treatment before the heat treatment, the compound (a) can be adhered to the surface of the carbon fiber bundle more firmly and stably.
- the drying process may be any method as long as the water in the sizing agent aqueous dispersion adhering to the carbon fiber bundle can be evaporated before the heat treatment, but the drying process can also be performed at 100 to 200 ° C.
- the concentration of the sizing agent aqueous dispersion is not particularly limited, but is preferably diluted with water so that the concentration of the sizing agent is 5 to 60% by mass.
- the sizing agent aqueous dispersion may contain an olefinic thermoplastic elastomer resin as an auxiliary component.
- the olefin-based thermoplastic elastomer resin imparts sufficient convergence and drape to the carbon fiber bundle. Moreover, sufficient affinity with matrix resin, such as polyolefin resin, can be ensured.
- the olefin thermoplastic elastomer resin include hydrogenated styrene thermoplastic elastomer and ethylene propylene diene monomer copolymer.
- the olefinic thermoplastic elastomer preferably has a Vicat softening point of 120 ° C. or less, more preferably 110 ° C. or less, and particularly preferably 90 ° C. or less, measured according to ASTM D1525-70. This is because the sizing agent aqueous dispersion is attached to the surface of the single fiber of the carbon fiber bundle and then the water is evaporated (drying process) at 100 to 200 ° C., while the olefinic thermoplastic elastomer resin is used. This is because the convergence of the carbon fiber bundle after drying becomes better when the is sufficiently softened.
- the minimum content is determined independently in order to effectively express the role. These are preferably in a mass ratio (compound (a) / olefin-based thermoplastic elastomer) of 15/1 to 1/1.
- an aqueous emulsion in which a sizing agent is dispersed in water from the viewpoint of safety and economy in consideration of industrial production.
- a surfactant is used as an emulsifier for the purpose of uniformly dispersing the constituent components in water.
- the emulsifier is not particularly limited, and anionic, cationic, and nonionic emulsifiers can be used. Among these, anionic or nonionic emulsifiers are preferable from the viewpoint of emulsification performance and low cost.
- a nonionic emulsifier is particularly preferred from the viewpoint of the stability of the silane coupling agent in water and the physical properties of the molded product.
- Nonionic emulsifiers include polyethylene glycol type (higher alcohol ethylene oxide adduct, alkylphenol ethylene oxide adduct, fatty acid ethylene oxide adduct, polypropylene glycol ethylene oxide adduct, etc.), and polyhydric alcohol type (glycerin fatty acid ester, sorbitol). Emulsifiers such as fatty acid esters and fatty acid alkanolamides).
- the HLB of the nonionic emulsifier is usually 8-20. If a nonionic emulsifier having an HLB outside this range is used, a stable aqueous emulsion may not be obtained.
- anionic emulsifiers carboxylate type (potassium oleate, sodium oleate, etc.), sulfonate type (sodium dodecylbenzenesulfonate, ammonium dodecylbenzenesulfonate, sodium dioctylsulfosuccinate, etc.), and sulfate ester type (Sodium lauryl sulfate, ammonium lauryl sulfate, etc.).
- Examples of the emulsification method include a method using a batch equipped with a stirring blade, a method using a ball mill, a method using a shaker, and a method using a high shear emulsifier such as a Gaurin homogenizer.
- the emulsifier is not particularly limited as long as it can emulsify the sizing agent, but it is usually added in an amount of about 5 to 30% by mass.
- silane coupling agents can be used in aqueous emulsions with dispersed sizing agents.
- An agent may be included.
- you may contain a lubrication agent and a smoothing agent.
- silane coupling agent a silane coupling agent having any one of an epoxy group, a vinyl group, an amino group, a methacryl group, an acrylic group, and a linear alkyl group in the molecule can be used.
- a silane coupling agent may be used individually by 1 type, and 2 or more types can also be mixed and used for it.
- silane coupling agents epoxy silanes, amino silanes, and linear alkyl silanes having an epoxy group, an amino group, and a linear alkyl group in the molecule are particularly preferable.
- epoxy group of the epoxy silane-based silane coupling agent a glycidyl group, an alicyclic epoxy group, or the like is suitable.
- a silane coupling agent A-186, A-187, AZ manufactured by Nihon Unicar Co., Ltd. Specific examples include -6137, AZ-6165 (trade name) and the like.
- aminosilane-based silane coupling agents include those having primary amines, secondary amines, or both. A-1100, A-1110, A-1120, Y-9669, and A- 1160 (above, product name) and the like are specifically mentioned.
- Examples of the straight chain aralkyl group of the straight chain alkylsilane-based silane coupling agent include those having a hexyl group, an octyl group, and a decyl group.
- Examples of such a silane coupling agent include AZ-6171 manufactured by Nippon Unicar Company, Ltd. Specific examples include AZ-6177 (above, trade name) and KBM-3103C (trade name) manufactured by Shin-Etsu Silicone Co., Ltd.
- the addition amount of the silane coupling agent is preferably 5% by mass or less, more preferably 4% by mass or less, with respect to 100% by mass of the total amount of components other than water (total solid content) of the aqueous emulsion in which the sizing agent is dispersed. is there.
- the addition amount exceeds 5% by mass, the crosslinking of the silane coupling agent proceeds, the carbon fiber bundle becomes hard and brittle, and vertical cracks are likely to occur. In addition, it may cause a decrease in interfacial adhesion.
- Examples of the method of sizing using the sizing agent aqueous dispersion include a method of bringing a carbon fiber bundle into contact with the sizing agent aqueous dispersion. Specifically, after a part of the roll is dipped in the sizing agent aqueous dispersion and the surface is transferred, a touch roll method in which a carbon fiber bundle made of a single fiber is brought into contact with this roll to attach the sizing agent aqueous dispersion, In addition, a dipping method in which a carbon fiber bundle composed of single fibers is directly immersed in a sizing agent aqueous dispersion and then passed through a nip roll as necessary to control the amount of the sizing agent aqueous dispersion attached.
- a method in which a carbon fiber bundle is brought into contact with a plurality of touch rolls and a sizing agent aqueous dispersion is attached in a plurality of stages is particularly suitable from the viewpoint of controlling the amount of sizing agent attached and controlling the bundle width. .
- After the sizing treatment it is preferable to sequentially perform the drying treatment and the heat treatment as described above.
- the carbon fiber bundle may be presized with a presizing agent before the sizing treatment.
- the presizing process in this invention is a process which makes a presizing agent adhere to a carbon fiber bundle.
- a presizing agent made of an epoxy resin can be used as the presizing agent.
- a presizing agent is suitable because it is excellent in affinity with carbon fiber single fibers and handleability, and can converge the single fibers in a small amount.
- the carbon fiber bundle that has been presized with such a presizing agent has excellent process passability such that the carbon fiber bundle is not wound around the roller in the subsequent sizing process.
- wettability with the sizing agent is improved by the presizing agent treatment, and the sizing agent can be uniformly attached.
- an aqueous presizing agent solution in which a water-soluble or water-dispersible epoxy resin is dissolved or dispersed in water is usually used. It does not specifically limit as a water-soluble or water-dispersible epoxy resin, A well-known thing can be used. Also, a modified epoxy resin can be used as long as it can be used in an aqueous system. These epoxy resins may be used individually by 1 type, and 2 or more types can also be mixed and used for them. Moreover, from the viewpoint of the permeability in the above-described sizing process, it is more preferable to use a combination of a liquid and a solid epoxy resin at room temperature.
- water-soluble epoxy resins include those having glycidyl groups at both ends of the ethylene glycol chain, and those having ethylene oxide added to both ends of bisphenols such as A-type, F-type, and S-type and having glycidyl groups at both ends. Etc. Moreover, what has an alicyclic epoxy group can also be used instead of a glycidyl group.
- water-dispersible epoxy resins include bisphenol A type epoxy resins, bisphenol F type epoxy resins, bisphenol S type epoxy resins, phenol novolac type epoxy resins, cresol novolac type epoxy resins, biphenyl type epoxy resins, naphthalene skeleton type epoxy resins, Aliphatic epoxy resin, dicyclopentadiene type epoxy resin (for example, HP7200 (trade name) manufactured by Dainippon Ink & Chemicals, Inc.), glycidylamine type epoxy resin, and DPP novolac type epoxy resin (for example, Epicoat manufactured by Japan Epoxy Resin Co., Ltd.) 157S65 (trade name)).
- what has an alicyclic epoxy group can also be used instead of a glycidyl group.
- a presizing agent made of a water-dispersible epoxy resin it is preferable to perform a presizing treatment using an aqueous emulsion to which an emulsifier is further added.
- the emulsifier is not particularly limited, and anionic, cationic, and nonionic emulsifiers can be used. Of these, anionic or nonionic emulsifiers are preferred because of their good emulsification performance and low cost. In addition, a nonionic emulsifier is particularly preferable because it does not inhibit the stability of the sizing agent.
- the adhesion amount of the presizing agent that adheres to the carbon fiber bundle by the presizing treatment is preferably 0.1 to 2.0 mass%, more preferably 0.2 to 1.2 mass% with respect to the entire carbon fiber bundle.
- the molecular layer of the presizing agent covering the single fiber surface of the carbon fiber is preferably about 1 to 3 layers.
- the adhesion amount is less than 0.1% by mass, the effect of adhering the presizing agent is not expressed, and a carbon fiber bundle excellent in process passability, handling property, and affinity with the sizing agent may not be obtained. is there.
- the adhesion amount exceeds 2.0% by mass
- bridging occurs due to the presence of a presizing agent between the single fibers, and the movement between the single fibers is restrained by the pseudo-bonding between the single fibers, so that the carbon fibers
- the spreadability of the bundle tends to decrease.
- the uniformity of the carbon fiber bundle may be impaired.
- the properties of the carbon fiber bundle may be deteriorated, for example, the permeability of the sizing agent to be deposited in the subsequent sizing process is hindered and it becomes difficult to obtain a uniform carbon fiber bundle.
- a carbon fiber bundle in which 0.2 to 5.0% by mass of an amino group-containing modified polyolefin resin (compound (a)) is attached to the carbon fiber bundle is obtained.
- the amino group in the molecule enhances the interaction with the surface of the carbon fiber bundle, while the skeleton polyolefin chain is entangled with the matrix resin such as a polyolefin resin, particularly a polypropylene resin. It is a component that acts as an effective coupling agent that causes binding.
- the carbon fiber bundle of the present invention in which the compound (a) adheres to the surface of the carbon fiber bundle in an amount of 0.2 to 5% by mass can exhibit good interfacial adhesion with a matrix resin such as a polyolefin resin, and can be combined. Is suitable.
- the carbon fiber bundle obtained by adhering 0.2 to 5% by mass of the compound (a) to the surface of the carbon fiber bundle, followed by heat treatment at 200 to 300 ° C. for 5 seconds to 3 minutes is combined with the matrix resin. If it becomes, the thermoplastic resin composition excellent in bending strength, impact strength, and a bending elastic modulus will be obtained.
- the thermoplastic resin composition can be obtained by kneading the carbon fiber bundle of the present invention in a thermoplastic resin serving as a matrix resin.
- a thermoplastic resin serving as a matrix resin.
- the carbon fiber bundle is kneaded with the thermoplastic resin, it is preferable to feed the carbon fiber bundle continuously or cut into a predetermined length to the extruder and knead it with the thermoplastic resin to form a pellet.
- the thermoplastic resin composition can provide a molded article (carbon fiber reinforced composite molded article) having an arbitrary shape by molding by a known molding method such as an injection molding method.
- the amount of the carbon fiber bundle of the present invention is preferably 3 to 60% by mass, more preferably 5 to 50% by mass in 100% by mass of the thermoplastic resin composition. And blended into the thermoplastic resin. If the blending amount of the carbon fiber bundle is less than 3% by mass, the effect of improving the mechanical properties of the molded product may be insufficient. In addition, when the blending amount of the carbon fiber bundle exceeds 60% by mass, a further significant improvement effect cannot be obtained, the process stability at the time of producing the pellet is lowered, and the pellet has spots and the like. There is a risk that quality stability will deteriorate.
- polyolefin resins such as polypropylene and polyethylene are optimal. Besides these resins, polycarbonate resins, ABS resins, AS resins, polyoxymethylene resins, nylon resins, polyphenylene sulfide resins, polyethersulfin resins, polyetherimide resins, polyester resins, and alloy resins thereof can be used. At least one selected from the group may be used. In particular, when a polyolefin resin is used as the matrix resin, a small amount of various modified polyolefin resins may be added for the purpose of further improving mechanical properties. A thermosetting resin may be used in combination as the matrix resin.
- the modified polyolefin-based resin an acid-modified polyolefin obtained by blending a polyolefin with a radical initiator and an unsaturated carboxylic acid and / or an anhydride thereof, and melt-kneading can be used.
- the polyolefin is preferably polypropylene.
- unsaturated carboxylic acid maleic acid is preferred.
- the content of unsaturated carboxylic acid and / or anhydride thereof is preferably 0.1 to 10% by weight.
- thermoplastic resin composition thus obtained contains the carbon fiber bundle of the present invention, it is excellent in bending strength, impact strength, and bending elastic modulus.
- the depth of the wrinkle present on the surface of the single fiber of the carbon fiber bundle is the highest in the region of circumferential length 2 ⁇ m ⁇ length in the fiber axis direction 1 ⁇ m. It is defined by the height difference between the part and the lowest part.
- the height difference was measured based on the surface shape obtained by scanning the surface of a single fiber using a scanning atomic force microscope (AFM). Specifically, it is as follows. Several single fibers of a carbon fiber bundle were put on a sample stage, both ends were fixed, and dotite was further coated around to make a measurement sample.
- the amount of sizing agent attached to the carbon fiber bundle was measured from the difference in mass before and after the pyrolysis process by pyrolysis, and pyrolysis was performed.
- the adhesion amount was determined from the following formula (1).
- the adhesion amount of the compound (a) is the total mass of the compound (a) based on the solid components in the sizing agent aqueous dispersion. Calculated using the ratio.
- Adhesion amount (%) 100 ⁇ (W1-W2) / W1 (1)
- the intrinsic viscosity [ ⁇ ] of the amino group-containing modified polyolefin resin was measured using an automatic viscometer (“VNR-53 type” manufactured by Kogai Co., Ltd.).
- VNR-53 type manufactured by Kogai Co., Ltd.
- BHT 2,6-di-t-butyl-4-methylphenol
- Measurement was performed under conditions of a concentration of 0.8 to 1.6 g / L.
- the amino group content of the amino group-containing modified polyolefin resin was measured in accordance with the method described in Macromolecules, Vol. 26, pages 2087-2088 (1993). First, 1.0 g of amino group-containing modified polyolefin, 50 mL of p-xylene, 10 mL of pyridine, and 5 mL of benzoyl chloride are added to a 200 mL two-necked eggplant flask, and heated and stirred at 140 ° C. for 6 hours in a nitrogen atmosphere to obtain a polymer solution. Obtained. Next, the obtained polymer solution was added to 1 L of methanol and sufficiently stirred, and the precipitated solid part (polymer) was collected by filtration.
- the polymer thus obtained was press-molded at 190 ° C., and the infrared absorption spectrum was measured.
- the ratio of absorbance between the absorption (1645 cm ⁇ 1 ) of the carbonyl group (C ⁇ O) produced by the reaction of the amino group and benzoyl chloride and the absorption band specific to the polyolefin was used.
- a calibration curve was prepared from an infrared absorption spectrum of a blend of polyolefin powder and various amounts of 1-butyl (2-methylpropyl) benzamide (190 ° C., press-molded product), and this calibration curve was used.
- a sizing agent aqueous dispersion was prepared as follows. First, the amino group-containing modified polyolefin resin, which is the main component of the sizing agent, is pulverized into a powder having a particle size of 20 ⁇ m or less, and this powder and a nonionic surfactant (“Pluronic F108 (trade name)” manufactured by Asahi Denka Co., Ltd.) Were mixed at a mass ratio (powder / surfactant) of 80/20 to obtain a sizing agent.
- a nonionic surfactant (“Pluronic F108 (trade name)” manufactured by Asahi Denka Co., Ltd.)
- the sizing agent was dispersed in water with a homomixer having a high shear stirring blade so that the concentration was 35% by mass. Subsequently, the mixture was passed three times through an ultra-high pressure homogenizer (manufactured by Mizuho Kogyo Co., Ltd., “Microfluidizer M-110-E / H”) to obtain a stable water emulsion (aqueous sizing agent dispersion). The concentration of the sizing agent in the obtained sizing agent aqueous dispersion was 34% by mass, and the average particle size was 0.2 ⁇ m.
- ⁇ Physical properties of carbon fiber bundle a carbon fiber bundle made of polyacrylic fibers (manufactured by Mitsubishi Rayon Co., Ltd., “TR50S-15L”, “TR50S-50L” and “TR40-12L”, all pretreated untreated products) was used. . Table 1 shows the physical properties of each carbon fiber bundle.
- Carbon fiber bundle (CF-1)) “TR50S-15L” was used as the carbon fiber bundle.
- a sizing agent aqueous dispersion prepared by using the compound (a-1) as the amino group-containing modified polyolefin resin was diluted to a concentration of 2.0% by mass.
- the carbon fiber bundle was immersed in an immersion tank having a free roller filled with the diluted liquid. Thereafter, it was hot-air dried at 150 ° C. for 1 minute and then wound on a bobbin to obtain a carbon fiber bundle (CF-1).
- Table 2 shows the amount of the sizing agent attached to the obtained carbon fiber bundle (CF-1).
- Carbon fiber bundle (CF-2) Carbon fiber bundle (CF-2)
- the carbon fiber bundle (CF-1) was taken out from the carbon fiber bundle wound around the bobbin, and heat-treated at 230 ° C. for 25 seconds in a muffle furnace. It was wound around a bobbin again to obtain a carbon fiber bundle (CF-2). The atmosphere of the heat treatment was performed in air. Table 2 shows the amount of the sizing agent attached to the obtained carbon fiber bundle (CF-2).
- maleic anhydride-modified polypropylene resin (“H-1100P” manufactured by Toyo Kasei Co., Ltd., intrinsic viscosity [ ⁇ ] measured in tetralin at 135 ° C .: 0.58 dl / g, maleic anhydride
- a sizing agent aqueous dispersion (concentration: 2.8% by mass) was prepared in the same manner as the preparation method of the sizing agent aqueous dispersion described above, except that the acid content was 5.6% by mass.
- a carbon fiber bundle (CF-3) was obtained in the same manner as the production of the carbon fiber bundle (CF-1) except that the carbon fiber bundle (CF-1) was immersed in a dipping tank having a free roller filled with the sizing agent aqueous dispersion. .
- Table 2 shows the amount of the sizing agent attached to the obtained carbon fiber bundle (CF-3).
- Carbon fiber bundle (CF-4) In the production of the carbon fiber bundle (CF-3), the carbon fiber bundle (CF-3) was taken out from the carbon fiber bundle wound around the bobbin, and heat-treated at 230 ° C. for 25 seconds in a muffle furnace. It was again wound on a bobbin to obtain a carbon fiber bundle (CF-4). The atmosphere of the heat treatment was performed in air. The amount of sizing agent deposited on the obtained carbon fiber bundle (CF-4) is shown in Table 2 (0.8 wt%).
- Carbon fiber bundle (CF-5) A carbon fiber bundle (CF-) was used except that it was immersed in an immersion tank having a free roller filled with an aqueous dispersion (concentration: 1.2% by mass) of urethane resin (manufactured by DIC, “Hydran HW-930”). In the same manner as in 1), a carbon fiber bundle (CF-5) was obtained. Table 2 shows the amount of the sizing agent attached to the obtained carbon fiber bundle (CF-5).
- Carbon fiber-containing pellets were produced as follows using the carbon fiber bundles of the types and blending amounts shown in Table 3 and the matrix resin.
- each matrix resin shown in Table 3 is as follows.
- MPP-1 Maleic anhydride-modified polypropylene (Toyo Kasei Co., Ltd., “H-1100P”, intrinsic viscosity [ ⁇ ] measured in tetralin at 135 ° C .: 0.58 dl / g, maleic anhydride content: 5.6 wt% ).
- PP-1, PP-2, and MPP-1 were mixed in the blending amounts shown in Table 3, melted at 280 ° C., and supplied from the extruder to the impregnation tank in the die.
- a carbon fiber bundle having a blending amount shown in Table 3 was preheated through a preheating portion having a heat temperature of 200 ° C., and then led to an impregnation tank to which the above molten resin heated to 280 ° C. was supplied.
- the carbon fiber bundle is fed into the die by adjusting the supply speed to 10 m / min, impregnated with molten resin in an impregnation tank, pulled out from the die, cooled, cut by a pelletizer, and carbon having a length of 8 mm and a diameter of 2.2 mm. Fiber-containing pellets were obtained.
- Examples 5 to 21 and Comparative Examples 4 to 5> (Manufacture of carbon fiber bundles) Carbon fiber bundles of the types shown in Tables 4 and 5 were used.
- a sizing agent aqueous dispersion prepared using the amino group-containing modified polyolefin resin (sizing agent main component) shown in Tables 4 and 5 is filled with a solution diluted to a concentration of 2.0% by mass. After immersing the carbon fiber bundle in an immersion tank having a free roller, it was hot-air dried at 150 ° C. for 1 minute. Next, heat treatment was performed under the heat treatment conditions (treatment temperature and treatment time) shown in Tables 4 and 5 to produce carbon fiber bundles. The heat treatment was carried out in a muffle furnace and in air. In the case where heat treatment was not performed, “none” was indicated in the table. The adhesion amount of the sizing agent of the obtained carbon fiber bundle is shown in Tables 4 and 5.
- Examples 22 to 23> Manufacture of carbon fiber bundles (CF-6) and (CF-7)
- a pre-sizing treatment was performed with an aqueous dispersion type pre-sizing agent composed of an epoxy compound, and after drying, it was wound on a bobbin to obtain a pre-sized carbon fiber bundle.
- a presizing agent a main agent (a mixture of “Epicoat 828” (trade name) manufactured by Japan Epoxy Resin Co., Ltd.
- the pre-sized carbon fiber bundle was alternately passed through a fiber opening bar and a carbon fiber width regulating bar a plurality of times to obtain a predetermined carbon fiber width.
- a sizing agent aqueous dispersion prepared using the compound (a-1) as the amino group-containing modified polyolefin resin is filled in a tank filled with a solution diluted to a concentration of 5.0% by mass. After a part was immersed and transferred to the surface of the touch roll, a sizing agent aqueous dispersion was adhered to the touch roll surface by bringing a carbon fiber bundle having a predetermined carbon fiber width into contact therewith. At that time, two touch rolls were used to carry out the two surfaces of the carbon fiber bundle.
- the carbon fiber bundle is cut into a predetermined length (6 mm) using a rotary cutter, and finally, the carbon fiber bundle is continuously put into a floor vibration type hot air drying furnace set at 150 ° C. and dried. (CF-6) was obtained.
- Table 6 shows the amount of the sizing agent attached to the obtained carbon fiber bundle (CF-6).
- the carbon fiber bundle (CF-6) was heat-treated at 230 ° C. for 25 seconds in air in a muffle furnace to obtain a carbon fiber bundle (CF-7).
- Table 6 shows the adhesion amount of the sizing agent of the obtained carbon fiber bundle (CF-7).
- Carbon fiber-containing pellets were produced in the same manner as in Examples 1 to 4 and Comparative Examples 1 to 3, except that the types and blending ratios of the matrix resin and the carbon fiber bundle were changed as shown in Table 7. Further, 100 parts by mass of the obtained carbon fiber-containing pellets and 100 parts by mass of PP-1 as a diluted resin were mixed to obtain a carbon fiber reinforced polypropylene resin blend having a carbon fiber content of 20% by mass. For the obtained carbon fiber reinforced polypropylene resin blend, test pieces were prepared in the same manner as in Examples 1 to 4 and Comparative Examples 1 to 3, and the mechanical performance was evaluated. The results are shown in Table 7.
- Carbon fiber-containing pellets were produced in the same manner as in Examples 1 to 4 and Comparative Examples 1 to 3, except that the types and blending ratios of the matrix resin and the carbon fiber bundle were changed as shown in Table 7. Further, 100 parts by mass of the obtained carbon fiber-containing pellets and 100 parts by mass of PP-1 as a diluted resin were mixed to obtain a carbon fiber reinforced polypropylene resin blend having a carbon fiber content of 20% by mass. For the obtained carbon fiber reinforced polypropylene resin blend, test pieces were prepared in the same manner as in Examples 1 to 4 and Comparative Examples 1 to 3, and the mechanical performance was evaluated. The results are shown in Table 7.
- the carbon fiber-containing pellets containing the carbon fiber bundles of the examples had mechanical performance (tensile fracture stress, bending strength, bending elastic modulus, and Charpy compared to the comparative examples).
- the impact strength was excellent, and the balance of these properties was also good.
- the carbon fiber bundle of the present invention is excellent in affinity with the matrix resin.
- the carbon fiber bundle of the present invention can exhibit good interfacial adhesion with polyolefin resins, particularly polypropylene resins, it is useful for reinforcing polyolefin resins. Moreover, according to the method for producing a carbon fiber bundle of the present invention, good interfacial adhesiveness with a polyolefin resin, particularly a polypropylene resin can be expressed, so that a carbon fiber bundle useful for reinforcing the polyolefin resin can be obtained.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Textile Engineering (AREA)
- Mechanical Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
- Reinforced Plastic Materials (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Chemical Or Physical Treatment Of Fibers (AREA)
Abstract
Description
本願は、2009年9月9日に日本に出願された特願2009-207631号に基づき優先権を主張し、その内容をここに援用する。
熱可塑性樹脂の補強材として用いられる場合、一般に、炭素繊維束は、長さ5~15mmに切断された形態で供される。この炭素繊維束と熱可塑性樹脂とを混練したペレットを製造するに当たっては、炭素繊維束が定量的に押出機内に供されることが必要であるが、そのためには炭素繊維束の形態安定性が重要となる。炭素繊維束の形態が適切でないと、吐出斑の原因となり得ることがある。また、一定の押出速度が得られなくなるため、炭素繊維束が破断する、いわゆるストランド切れが発生し、ペレットの生産性が大幅に低下する恐れがあった。
さらに、炭素繊維束を織物にして熱可塑性樹脂を含浸させたシート材料として使用する場合もあり、炭素繊維束の製織性や製織後の織布の取り扱い性なども重要な特性となっている。
ここで、マトリックス樹脂として用いられる熱可塑性樹脂としては、ポリカーボネート樹脂、ナイロン樹脂、及びポリエステル樹脂などが用いられる。また、最近、リサイクル性及び経済性の面からポリオレフィン系樹脂が用いられる場合が増えている。特にポリプロピレン樹脂は、近年注目されている樹脂である。
また、特許文献1に開示されるように、酸変性ポリプロピレンを必須成分とするサイジング剤で炭素繊維やガラス繊維などをサイジング処理する方法が知られている。
また、ポリオレフィン系樹脂とシランカップリング剤より構成されるサイジング剤で炭素繊維をサイジング処理する場合、炭素繊維はガラス繊維に比べて表面に存在する水酸基がそれほど多くないため、界面接着性を向上させる効果が得られにくかった。
また、特許文献1に記載されているように、酸変性ポリプロピレンを必須成分とするサイジング剤でサイジング処理する方法は、ポリオレフィン系樹脂との比較的良好な界面接着性を実現するものの、炭素繊維をサイジング処理する場合におけるその効果は、必ずしも十分ではなかった。
本発明の別の側面としては、前記アミノ基含有変性ポリオレフィン樹脂を炭素繊維束の表面に付着させた後、200~300℃で5秒間~3分間熱処理を施してなる炭素繊維束に関する。
本発明の別の側面としては、アミノ基含有変性ポリオレフィン樹脂の付着量が0.5~4.0質量%であり、前記アミノ基含有変性ポリオレフィン樹脂を炭素繊維束の表面に付着させた後、200~260℃で15秒間~3分間熱処理を施してなる炭素繊維束に関する。
本発明の別の側面としては、前記アミノ基含有変性ポリオレフィン樹脂の炭素繊維束への付着が、アミノ基含有変性ポリオレフィン樹脂を含むサイジング剤水分散液に炭素繊維束を接触させることによりなされる炭素繊維束に関する。
本発明の別の側面としては、前記アミノ基含有変性ポリオレフィン樹脂の、135℃のテトラリン中で測定した極限粘度が0.05~1.0dL/gである炭素繊維束に関する。
本発明の別の側面としては、前記アミノ基含有変性ポリオレフィン樹脂が、エチレン-エチルアクリレート-無水マレイン酸共重合体、無水マレイン酸グラフトポリエチレン系樹脂、及び無水マレイン酸グラフトポリプロピレン系樹脂からなる群より選ばれた1種の化合物と、2つ以上のアミノ基を有する化合物との反応物である炭素繊維束に関する。
本発明の別の側面としては、前記アミノ基含有変性ポリオレフィン樹脂が、アミノ基を有し、かつ分子内に下記一般式(I)で表わされる反復単位を70~99.98モル%と、下記一般式(II)で表わされる反復単位を0.02~30モル%含有する共重合体である炭素繊維束に関する。
本発明のまた別の側面としては、前記アミノ基含有変性ポリオレフィン樹脂を炭素繊維束の表面に付着させた後、200~300℃で5秒間~3分間熱処理をすることを更に含む炭素繊維束の製造方法に関する。
本発明のまた別の側面としては、アミノ基含有変性ポリオレフィン樹脂を0.5~4.0質量%付着させること、及びその後200~260℃で15秒間~3分間熱処理をすることを含む炭素繊維束の製造方法に関する。
本発明のまた別の側面としては、前記アミノ基含有変性ポリオレフィン樹脂の炭素繊維束への付着は、アミノ基含有変性ポリオレフィン樹脂を含むサイジング剤水分散液に炭素繊維束を接触させることによりなされる炭素繊維束の製造方法に関する。
本発明のまた別の側面としては、前記サイジング剤水分散液に炭素繊維束を接触させて、サイジング剤水分散液を炭素繊維束の表面に付着させること、乾燥処理をすること、及びその後熱処理をすることを更に含む、炭素繊維束の製造方法に関する。
本発明のまた別の側面としては、前記乾燥処理を100~200℃で施す炭素繊維束の製造方法に関する。
また、本発明の炭素繊維束の製造方法によれば、ポリオレフィン系樹脂、特にポリプロピレン樹脂との良好な界面接着性を発現でき、ポリオレフィン系樹脂の強化に有用な炭素繊維束が得られる。
本発明の炭素繊維束は、アミノ基含有変性ポリオレフィン樹脂が炭素繊維束に付着してなる。
アミノ基含有変性ポリオレフィン樹脂の付着方法としては詳しくは後述するが、サイジング剤としてアミノ基含有変性ポリオレフィン樹脂を含むサイジング剤水分散液を用い、前記サイジング剤水分散液を炭素繊維束に付着させる方法(以下、この方法を「サイジング処理」という。)が好ましい。
なお、アミノ基含有変性ポリオレフィン樹脂の付着量は、SACMA法のSRM14-90に準拠し、熱分解法により熱分解処理前後における質量差から炭素繊維束に付着したサイジング剤合計の量を測定し、熱分解処理前の炭素繊維束に対する付着率として算出する。具体的には下記式(1)により求めることができる。ただし、サイジング剤として、アミノ基含有変性ポリオレフィン樹脂とそれ以外の成分とを併用した場合、アミノ基含有変性ポリオレフィン樹脂の付着量は、サイジング剤水分散液中の固形成分を総体として、アミノ基含有変性ポリオレフィン樹脂の含有質量比を用いて算出する。
付着量(%)=100×(W1-W2)/W1 ・・・(1)
W1:熱分解処理前の炭素繊維の質量
W2:熱分解処理後の炭素繊維の質量
アミノ基含有変性ポリオレフィン樹脂(以下、「化合物(a)」という略す場合がある。)は、炭素繊維束とポリオレフィン系樹脂等のマトリクス樹脂との複合化の際に、分子中のアミノ基が炭素繊維束表面との相互作用を増強させる一方、骨格のポリオレフィン鎖が分子の絡み合いによりマトリックス樹脂と強固な結合を生じさせる、有用なカップリング剤として働く成分である。
化合物(a)は、主鎖が炭素-炭素結合で形成され、側鎖又は主鎖の末端の少なくとも一部にアミノ基を有する。
特に、化合物(a)としては、化合物(b)又は化合物(c)と、2つ以上のアミノ基を有する化合物との反応物が、1級アミノ基を有することから好適である。1級アミノ基を有すれば、マトリックス樹脂や炭素繊維表面での相互作用が良好となり、より強固な結合を生じさせるので好ましい。
このような化合物(b)としては、例えば以下に例示するものが挙げられる。
上記一般式(I)及び下記一般式(III)で表される骨格を有する酸変性ポリオレフィン樹脂
式(I)で表される骨格及び式(III)で表される骨格を有する酸変性ポリオレフィン樹脂としては、具体的にエチレン-無水マレイン酸共重合体、プロピレン-無水マレイン酸共重合体、エチレン-プロピレン-無水マレイン酸共重合体、エチレン-エチルアクリレート-無水マレイン酸共重合体、及びエチレン-酢酸ビニル-無水マレイン酸共重合体等を挙げることができる。
上記一般式(I)で表される骨格を主鎖に有し、下記一般式(IV)で表される基を側鎖に有する酸変性ポリオレフィン樹脂
ここで、ポリオレフィン樹脂としては、エチレンあるいはプロピレン、ブテンなどのオレフィンの単独あるいは複数を、いわゆるチィーグラー・ナッタ触媒等の重合触媒の存在下、重合させて得られるポリオレフィン樹脂が挙げられる。好ましくは、ポリプロピレン単独重合体である。
ラジカル開始剤としては特に制限はなく、例えばブチルペルオキシド、ジクミルペルオキシド、及びベンゾイルペルオキシドなどが挙げられる。ラジカル開始剤の使用量は、ポリオレフィン樹脂100質量部に対して、0.01~1質量部程度使用すればよい。
また、溶融混練温度は一般に160~270℃程度である。
上記一般式(I)で表される骨格を主鎖に有し、下記一般式(V)で表される基を側鎖に有する酸変性ポリオレフィン樹脂
不飽和カルボン酸としては、アクリル酸、メタクリル酸、及びフマル酸などが挙げられる。一方、不飽和カルボン酸エステルとしては、メチルアクリレート、エチルアクリレート、及びプロピルアクリレートといったアクリル酸エステル;メチルメタクリレート、エチルメタクリレート、及びプロピルメタクリレートといったメタクリル酸エステル;さらには酢酸ビニル等が挙げられる。
また、ここで使用できるオレフィンとしては、先に例示したオレフィンが挙げられる。重合条件、及び加水分解条件は特に制限なく、公知の方法で行えばよい。
各化合物において、構成単位や基の含有量がそれぞれ上記の下限値未満であると、炭素繊維との接着性が不十分となり、それぞれ上記の上限値を超えると、ポリオレフィンとの親和性が不十分となる。
化合物(b)においては、本発明の効果を損なわない範囲内で、上記一般式(I)又は(III)以外の反復単位や、上記一般式(IV)又は(V)で表される側鎖以外の側鎖を含んでもよい。
ポリオレフィン骨格としては、エチレンあるいはプロピレン、ブテンなどのオレフィンの単独でもよく、これらの共重合でもよい。さらに共重合は、ランダム共重合でもよく、ブロック共重合でもよい。
化合物(b)、及び化合物(c)の質量分子量は、目的に応じて適宜選択すればよいが、通常、3000~60万である。
H2N-R6-NH2 ・・・(VI)
アルキレン基としては、メチレン基、エチレン基、プロピレン基、テトラメチレン基、及びヘキサメチレン基などが挙げられる。
シクロアルキレン基としては、シクロヘキシレン基、及びメチレンシクロヘキシルメチレン基などが挙げられる。
アリーレン基としては、フェニレン基、及びオキシジフェニレン基などが挙げられる。
アリールアルキレン基としては、キシリレン基などが挙げられる。
ポリオキシアルキレン基としては、ポリオキシメチレン基、ポリオキシエチレン基、及びポリオキシプロピレン基などが挙げられる。
ジアミン化合物の塩を製造するに当たっては、上記ジアミンと上記酸のモル比は、ジアミンの全アミノ基を基準にして酸の当量で50~100%の中和度に相当する塩の形で用いられる。50%未満であるとイミド化反応時に架橋やゲル化が起こりやすくなる。又100%を超えるとイミド化反応に長時間を要し経済的に不利となる。好ましい範囲は50~80%である。
化合物(b-1)又は化合物(b-2)と上記ジアミンとの反応は、イミド化反応であり、化合物(b-3)と上記ジアミンとの反応は、酸アミド化反応である。
反応の方法としては特に制限はないが、例えば上記化合物(b)と、上記ジアミンの塩とを反応(イミド化反応又は酸アミド化反応)させた後、塩基と接触させて脱酸することにより、化合物(a)を効率よく製造できる。
溶媒の使用量は、特に制限はなく状況に応じて適宜選定すればよいが、通常は原料として使用する化合物(b-1)~化合物(b-3)(即ち、アミノ基と反応する置換若しくは非置換無水コハク酸基又はカルボキシル基を官能基として有する化合物)に対し、質量比で0.3~20倍、好ましくは1倍~10倍の範囲で定めればよい。0.3倍より少ない場合は、希釈効果が不十分となるため反応混合物が高粘度になり、取り扱い上、困難をきたす場合がある。一方、20倍よりも多くしても、使用量に相当する効果の向上は特に認められず、経済的に不利となる。
また、イミド化反応又は酸アミド化反応では、原料の化合物(b)と、ジアミンの塩との使用比率は、使用する原料の種類や状況により異なり、一義的に定めることはできないが、通常は原料中に含まれる置換若しくは非置換無水コハク酸基又はカルボキシル基1モルに対し、ジアミンの未中和アミノ基準で1.0~10倍、好ましく1.05~5.0倍である。1.0倍未満であると反応完結後もイミド化又は酸アミド化されずに残る無水コハク酸基又はカルボキシル基が存在しやすくなる。その結果、後工程である脱酸工程で再生される第一級アミノ基と該無水コハク酸基又はカルボキシル基が反応してアミド架橋によりゲル化を起こし、本発明の効果を覆す恐れがある。一方、モル比が10倍を超えるとイミド化や酸アミド化の反応自体は速く進行する利点はあるが、反応試薬を多量に要するため、経済的に不利となる。
反応は、水の生成を伴いながら進行するので、生成した水が用いた溶媒と共に共沸してくる。従って、この共沸する水をディーン・スターク分水器などにより反応系外へ除去することにより、効率的に反応を進行させることができる。
イミド化反応の完結は、共沸水がもはや認められなくなること、及び反応混合物を一部採取して赤外吸収スペクトルの測定により1700cm-1付近のイミドのカルボニルの吸収強度の増大がもはや認められなくなったことで確認できる。
一方、酸アミド化反応の完結は、共沸水がもはや認められなくなること、及び反応混合物を一部採取して赤外吸収スペクトルの測定により1650cm-1付近の酸アミドのカルボニルの吸収強度の増大がもはや認められなくなったことで確認できる。
脱酸に用いられる塩基の具体例を挙げれば、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、炭酸ナトリウム、炭酸カリウム、重炭酸ナトリウム、重炭酸カリウム、アンモニア、メチルアミン、エチルアミン、トリメチルアミン、及びトリエチルアミンなど水溶性塩基であればよい。そのうち、経済的な理由から、水酸化ナトリウム、炭酸ナトリウム、及び重炭酸ナトリウムが好ましい。
アルキル基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、及びデシル基などが挙げられる。
シクロアルキル基としては、シクロヘキシル基、シクロオクチル基、及びシクロデシル基などが挙げられる。
アリール基としては、フェニル基、p-メチルフェニル基、及びm-メチルフェニル基などが挙げられる。
アルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、及びブトキシ基などが挙げられる。
アルコキシカルボニル基としては、メトキシカルボニル基、エトキシカルボニル基、プロポキシカルボニル基、及びブトキシカルボニル基などが挙げられる。
アルキルカルボキシル基としては、メチルカルボキシル基、エチルカルボキシル基、プロピルカルボキシル基、及びブチルカルボキシル基などが挙げられる。
アルキル基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、及びヘキシル基などが挙げられる。
アルキレン基としては、メチレン基、エチレン基、プロピレン基、テトラメチレン基、及びヘキサメチレン基などが挙げられる。
シクロアルキレン基としては、シクロヘキシレン基、及びメチレンシクロヘキシルメチレン基などが挙げられる。
アリーレン基としては、フェニレン基、及びオキシジフェニレン基などが挙げられる。
アリールアルキレン基としては、キシリレン基などが挙げられる。
ポリオキシアルキレン基としては、ポリオキシメチレン基、ポリオキシエチレン基、及びポリオキシプロピレン基などが挙げられる。
なお、R1~R5は、それぞれ反復単位ごとに同一でもよいし、異なってもよい。
上記一般式(II)の骨格を導入するための化合物としては、無水マレイン酸が好ましい。
上記一般式(I)で表される反復単位と、上記一般式(II)で表される反復単位とで構成される化合物(a)においては、本発明の効果を損なわない範囲内で、上記一般式(I)で表される反復単位や、上記一般式(II)で表される反復単位以外の反復単位を含んでもよい。
極限粘度が1.0dL/gを超えると、単位質量あたりのポリマーの分子数が減少し、界面接着性を十分に強くすることができなくなる。一方、極限粘度が0.05dL/g未満であると、炭素繊維と樹脂の界面相におけるカップリング効果が小さくなり、十分な接着性を得ることができなくなる。
アミノ基含有率が0.02mol%未満であると、炭素繊維束の単繊維表面との相互作用が不十分であり、高い界面接着性が得られにくくなる。アミノ基含有率が30mol%を超えると、マトリックス樹脂、特にポリオレフィン系樹脂との親和性が不十分となり、その結果、分子との絡み合いが不十分となり、界面接着性を強くすることが困難となる。
まず、アミノ基含有変性ポリオレフィン(化合物(a))1.0g、p-キシレン50mL、ピリジン10mL、ベンゾイルクロライド5mLを、200mLの二口ナスフラスコに加え、窒素雰囲気下、140℃で6時間、加熱攪拌し、ポリマー溶液を得る。
次いで、得られたポリマー溶液を1Lのメタノールに加え十分に攪拌し、析出した固体部(ポリマー)を濾過回収する。更に、これをメタノールで数回洗浄した後、80℃で6時間真空乾燥する。こうして得られたポリマーを190℃でプレス成形した後、赤外吸収スペクトルを測定する。
アミノ基の定量には、アミノ基とベンゾイルクロライドの反応で生成したカルボニル基(C=O)の吸収(1645cm-1)と、ポリオレフィンに特有な吸収バンドとの吸光度の比を用いる。定量に際しては、ポリオレフインパウダーと種々量の1-ブチル(2-メチルプロピル)ベンズアミドのブレンド物(190℃、プレス成形品)の赤外吸収スペクトルより検量線を作成し、この検量線を使用する。
本発明に用いる炭素繊維束としては特に限定されないが、円周長さ2μm×繊維軸方向長さ1μmの領域での最高部と最低部の高低差が40nm以上となる皺を表面に複数有する単繊維を複数本まとめたものが好ましい。通常は、平均直径5~8μm程度の単繊維が1000~50000本程度まとまった形態をなしている。
円周長さ2μm×繊維軸方向長さ1μmの領域での最高部と最低部の高低差は、単繊維の直径の10%以下であることが好ましい。
なお、炭素繊維束を構成する単繊維としては、アクリロニトリル重合体や、石油、及び石炭から得られるピッチ等を繊維化し炭素化することで得られるものである。後述するようなサイジング剤でサイジング処理される前の炭素繊維束は、炭素化処理後のもの、電解酸化処理して表面に酸素含有官能基を導入したものや、詳しくは後述するがプレサイジング処理された状態のものも使用できる。
ロータリーカッター方式での切断に際しては、炭素繊維束の厚みが厚くなり過ぎると切り損じを生じたり、ロータに炭素繊維束が巻き付いて操作不能になったり、切断後の形状不良が生じたりするので、炭素繊維束厚みは薄い方が有利である。また、炭素繊維束の目付けが1.5g/mを超える太目付けの炭素繊維束の場合、炭素繊維束をできるだけ開繊させ、炭素繊維束内部までサイジング剤水分散液を均一に付着させることが重要である。従って、ガイドロール、コームガイド、又はスプレッダーバー等を用いて、炭素繊維束の幅/厚みが大きくなるように制御しながら、かつ炭素繊維束には実質的に撚りの無いように走行させることが好ましい。
本発明の炭素繊維束は、上述した炭素繊維束の表面に、化合物(a)を0.2~5.0質量%付着させることで得られる。
本発明においては、化合物(a)を炭素繊維束に付着させた後、200~300℃で5秒間~3分間熱処理を施すことが好ましい。熱処理を施すことにより、炭素繊維束の表面に付着した化合物(a)が穏やかな熱分解を受け、より強固に炭素繊維束の表面に結合するようになる。その結果、化合物(a)による炭素繊維束とマトリックス樹脂とのカップリング作用が向上し、マトリックス樹脂、特にオレフィン系樹脂との界面接着性により優れた炭素繊維束とすることができる。
より好ましい熱処理条件は、200~300℃で5秒間~3分間であり、更に好ましくは200~260℃で15秒間~3分間であり、特に好ましくは220~240℃で20~40秒間である。
熱処理の雰囲気は特に制限はなく、空気中、窒素中、あるいは不活性ガス中で処理することができる。
化合物(a)の付着量は、上述したように、サイジング剤水分散液の固形分濃度を調整することにより、調節できる。
また、サイジング剤水分散液には、補助成分としてオレフィン系熱可塑性エラストマー樹脂を含有させてもよい。オレフィン系熱可塑性エラストマー樹脂は、炭素繊維束に十分な収束性とドレープ性を付与するものである。またポリオレフィン系樹脂等のマトリックス樹脂との十分な親和性を確保することができる。
オレフィン系熱可塑性エラストマー樹脂としては、水添スチレン系熱可塑性エラストマー、及びエチレンプロピレンジエンモノマー共重合体などが挙げられる。
化合物(a)とオレフィン系熱可塑性エラストマーは、上述のような重要な役割を担っていることから、その役割の効果的発現させるために、それぞれ独立して最低の含有量が決定される。これらは質量比(化合物(a)/オレフィン系熱可塑性エラストマー)で15/1~1/1であることが好ましい。
乳化剤としては特に限定されるものではなく、アニオン系、カチオン系、及びノニオン系乳化剤等を用いることができる。中でも、アニオン系又はノニオン系乳化剤が、乳化性能及び低価格の点から好ましい。また、後述するように、水性エマルジョンにシランカップリング剤を添加する場合、シランカップリング剤の水中での安定性、さらには成形品の物性安定性の点からノニオン系乳化剤が特に好ましい。
また、前記乳化剤は、サイジング剤を乳化できれば特に制限はないが、通常5~30質量%程度添加すればよい。
シランカップリング剤としては、分子中にエポキシ基、ビニル基、アミノ基、メタクリル基、アクリル基、及び直鎖アルキル基のいずれか1つを有するシランカップリング剤などが使用できる。シランカップリング剤は1種を単独で用いてもよいし、2種以上を混合して用いることもできる。シランカップリング剤の中でも、特に、分子中にエポキシ基、アミノ基、直鎖アルキル基を有するエポキシシラン系、アミノシラン系、及び直鎖アルキルシラン系が好適である。
アミノシラン系シランカップリング剤としては、1級アミン、2級アミン或いはその双方を有するものが挙げられ、日本ユニカー社製のA-1100、A-1110、A-1120、Y-9669、及びA―1160(以上、商品名)等が具体的に挙げられる。
直鎖アルキルシラン系シランカップリング剤の直鎖アラルキル基としては、ヘキシル基、オクチル基、及びデシル基を有するものが挙げられ、かかるシランカップリング剤としては、日本ユニカー社製のAZ-6171、AZ―6177(以上、商品名)、及び信越シリコーン(株)製KBM-3103C(商品名)等が具体的に挙げられる。
なお、タッチロール方式の場合、炭素繊維束を複数のタッチロールに接触させ、複数段階でサイジング剤水分散液を付着させる方式が、サイジング剤の付着量や束幅制御の観点から特に好適である。
サイジング処理の後は、上述したように乾燥処理及び熱処理を順次行うのが好ましい。
なお、本発明におけるプレサイジング処理とは、炭素繊維束にプレサイジング剤を付着させる処理のことである。このプレサイジング処理により、炭素繊維束の収束性を高めると同時に、炭素繊維束と前述したサイジング剤との親和性を高めることが可能となる。
水溶性又は水分散性のエポキシ樹脂としては特に限定されるものではなく、公知のものを用いることができる。また、水系で使用できるものであれば、変性エポキシ樹脂を用いることもできる。これらエポキシ樹脂は1種を単独で用いてもよいし、2種以上を混合して用いることもできる。また、前述したサイジング処理の工程における通過性等の観点から、エポキシ樹脂は、室温で液状のものと固状のものとを併用することがより好ましい。
水分散性のエポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、ナフタレン骨格型エポキシ樹脂、脂肪族系エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂(例えば大日本インキ化学工業社製のHP7200(商品名))、グリシジルアミン型エポキシ樹脂、及びDPPノボラック型エポキシ樹脂(例えばジャパンエポキシレジン社製のエピコート157S65(商品名))等が挙げられる。また、グリシジル基の代わりに、脂環式エポキシ基を有するものを用いることもできる。
化合物(a)は、その分子中のアミノ基が炭素繊維束表面との相互作用を増強する一方、骨格のポリオレフィン鎖が分子の絡み合いにより、ポリオレフィン系樹脂等のマトリックス樹脂、特にポリプロピレン樹脂と強固な結合を生じさせる、有効なカップリング剤として働く成分である。従って化合物(a)が炭素繊維束の表面に0.2~5質量%付着した本発明の炭素繊維束は、ポリオレフィン系樹脂等のマトリックス樹脂との良好な界面接着性を発現でき、複合化に適している。
特に、化合物(a)を炭素繊維束の表面に0.2~5質量%付着させ、その後に200~300℃で5秒間~3分間熱処理を施すことで得られる炭素繊維束をマトリックス樹脂と複合化すれば、曲げ強度、衝撃強度、及び曲げ弾性率により優れた熱可塑性樹脂組成物が得られる。
熱可塑性樹脂組成物は、マトリックス樹脂となる熱可塑性樹脂に、本発明の炭素繊維束を混練することにより得られる。炭素繊維束を熱可塑性樹脂に混練するに際しては、連続あるいは所定の長さに切断された状態の炭素繊維束を押出機に供給し、熱可塑性樹脂と混練してペレットとすることが好ましい。
また、熱可塑性樹脂組成物は、射出成形法等の公知の成形法により成形することにより、任意の形状の成形品(炭素繊維強化複合成形品)を提供できる。
不飽和カルボン酸としては、マレイン酸が好ましい。また、不飽和カルボン酸及び/又はその無水物の含有量は、0.1~10重量%が好ましい。
なお、本実施例における各種特性の測定及び評価は、以下の方法により行った。
炭素繊維束の単繊維表面に存在する皺の深さは、円周長さ2μm×繊維軸方向長さ1μmの領域での最高部と最低部の高低差によって規定される。高低差は、走査型原子間力顕微鏡(AFM)を用いて単繊維の表面を走査して得られる表面形状を基に測定した。具体的には以下の通りである。
炭素繊維束の単繊維を数本試料台上にのせ、両端を固定し、さらに周囲にドータイトを塗り測定サンプルとした。原子間力顕微鏡(セイコーインスツルメンツ社製、「SPI3700/SPA-300(商品名)」)により、シリコンナイトライド製のカンチレバーを使用して、AFMモードにて単繊維の円周方向に2~7μmの範囲を、繊維軸方向長さ1μmに渡り少しずつずらしながら繰り返し走査した。得られた測定画像を二次元フーリエ変換にて低周波成分をカットした後、逆変換を行った。そうして得られた単繊維の曲率を除去した断面の平面画像より、円周長さ2μm×繊維軸方向長さ1μmの領域での最高部と最低部の高低差を読み取って評価した。
内径1mmの塩化ビニル樹脂製のチューブ内に測定用の炭素繊維束を通した後、これをナイフで輪切りにして試料とした。
ついで、試料を断面が上を向くようにしてSEM試料台に接着し、さらにAuを約10nmの厚さにスパッタリングしてから、走査型電子顕微鏡(PHILIPS社製、「XL20(商品名)」)により、加速電圧7.00kV、作動距離31mmの条件で断面を観察し、単繊維断面の長径及び短径を測定することで評価した。
JIS R7608に準拠して測定した。
JIS R7604に準拠して、メチルエチルケトンによるソックスレー抽出法によりプレサイジング処理後の炭素繊維束のプレサイジング剤付着量を測定した。
SACMA法のSRM14-90に準拠し、熱分解法により、熱分解処理前後における質量差から炭素繊維束に付着したサイジング剤合計の量を測定し、熱分解処理前の炭素繊維束に対する付着率として、下記式(1)より付着量を求めた。
ただし、サイジング剤として、化合物(a)とそれ以外の成分とを併用した場合、化合物(a)の付着量は、サイジング剤水分散液中の固形成分を総体として、化合物(a)の含有質量比を用いて算出した。また、サイジング処理の前にプレサイジング処理を行った場合は、プレサイジング剤の付着量に対する増加分をサイジング剤合計の量として算出し、下記式(1)より付着量を求めた。
付着量(%)=100×(W1-W2)/W1 ・・・(1)
W1:熱分解処理前の炭素繊維の質量
W2:熱分解処理後の炭素繊維の質量
所定の長さに切断された炭素繊維束を、110℃で1時間乾燥させ、その乾燥前後の質量変化分を含水量とした。
アミノ基含有変性ポリオレフィン樹脂の極限粘度[η]は、自動粘度計((株)離合社製、「VNR-53型」)を用いて測定した。溶媒には、酸化防止剤として2,6-ジ-t-ブチル-4-メチルフェノール(以下、BHT)を1g/L添加したテトラリンを用い、ウベローデ型毛管粘度計で、測定温度135℃、試料濃度0.8~1.6g/Lの条件で測定を行った。
アミノ基含有変性ポリオレフィン樹脂のアミノ基含有率は、Macromolecules、第26巻、2087-2088頁、(1993年)に記載された方法に準拠して測定した。
まず、アミノ基含有変性ポリオレフィン1.0g、p-キシレン50mL、ピリジン10mL、ベンゾイルクロライド5mLを、200mLの二口ナスフラスコに加え、窒素雰囲気下、140℃で6時間、加熱攪拌し、ポリマー溶液を得た。
次いで、得られたポリマー溶液を1Lのメタノールに加え十分に攪拌し、析出した固体部(ポリマー)を濾過回収した。更に、これをメタノールで数回洗浄した後、80℃で6時間真空乾燥した。こうして得られたポリマーを190℃でプレス成形した後、赤外吸収スペクトルを測定した。
アミノ基の定量には、アミノ基とベンゾイルクロライドの反応で生成したカルボニル基(C=O)の吸収(1645cm-1)と、ポリオレフィンに特有な吸収バンドとの吸光度の比を用いた。定量に際しては、ポリオレフインパウダーと種々量の1-ブチル(2-メチルプロピル)ベンズアミドのブレンド物(190℃、プレス成形品)の赤外吸収スペクトルより検量線を作成し、この検量線を使用した。
JISK 7210に準拠し、温度230℃、荷重2.16kgの条件で測定した。
JIS K 7161に従って測定した。
JIS K 7171に従って測定した。
JIS K 7111従って測定した。
(化合物(a-1))
エチレンジアミンのp-トルエンスルホン酸部分中和塩の調製;
温度計、攪拌機、滴下ロート、及び還流冷却器を備えた内容積5Lのセパラブルフラスコに、メタノール1.5Lとp-トルエンスルホン酸・1水和物475g(2.5モル)を仕込み溶解した。氷浴で冷却しながら、エチレンジアミン750g(12.5モル)をメタノール1.5Lに溶解した液を、温度を10~20℃に保つような速度で滴下した。滴下終了後、70℃に加熱し、次いで減圧にして、メタノール及び未反応のエチレンジアミンを留去したところ、663gの白色固体が析出した。
得られた白色固体を取り出し、トルエン1.5Lでスラリー状にして濾過し、更に0.5Lのトルエンで2回洗浄し、得られた白色粉末を減圧乾燥した。収量は540gであった。この白色粉末を、ブロモフェノールブルーを指示薬として0.5規定の塩酸で滴下したところ、4.21×10-3eq/gであり、エチレンジアミンのp-トルエンスルホン酸の一中和塩であることが確認された。
温度計、攪拌機、滴下ロート、及びディーン・スターク分水器を備えた内容積5Lのセパラブルフラスコに、p-キシレン3L、エチレン-エチルアクリレート-無水マレイン酸(質量比:67.8/29.1/3.1)共重合体(質量平均分子量:Mw=50000、数平均分子量:20000)500gを仕込み、オイルバスを用い、加熱して140℃、p-キシレン還流下で溶解した。
ついで、先に調製したエチレンジアミンのp-トルエンスルホン酸部分中和塩75.0gを含む、1,3-ジメチル-2-イミダゾリジノン(DMI)の溶液390gを3時間かけて徐々に滴下した。この間、反応混合物はp-キシレン還流下の温度に保持され、イミド化の結果、生成し共沸してくる水をディーン・スターク分水器で系外へ除去した。
上記ジアミンの部分中和塩の滴下開始より10時間反応を続けた後、冷却し、反応混合物を25Lのメタノール中へ投入し、生成物を沈殿物として回収した。この沈殿物を、炭酸カリウム30gを含む水/メタノール(容積比1/1)溶液に一夜浸漬した後、濾別し、水及びメタノールで十分洗浄後、乾燥し、化合物(a-1)を得た。収量は500gであった。
こうして得られた化合物(a-1)の一部を190℃でプレス成形し、これの赤外吸収スペクトルを測定したところ、3400cm-1にアミノ基の吸収が、1775cm-1及び1695cm-1にはイミド環に基づく吸収が観測され、目的のアミノ基含有変性ポリオレフィン樹脂が得られていることが確認された。
また、得られた化合物(a-1)の極限粘度(135℃のテトラリン中で測定)は0.3dL/gであった。また、アミノ基含有率は、1.0mol%であった。
温度計、撹拌機、滴下ロ-ト、及びディーン・スターク分水器を備えた内容量5Lのセパラブルフラスコに、p-キシレン3L、無水マレイン酸グラフトポリエチレン(三洋化成工業社製、商品名;ユーメックス2000、無水マレイン酸含率5.2質量%、質量平均分子量16000、数平均分子量4000)500gを仕込み、オイルバスを用い、加熱して140℃、p-キシレン還流下で溶解した。
ついで、化合物(a-1)の製造で調製したエチレンジアミンのp-トルエンスルホン酸部分中和塩75.0g含むDMIの溶液390gを3時間かけて徐々に滴下した。
この間、反応混合物はp-キシレン還流下の温度に保持され、イミド化の結果、生成し共沸してくる水をディーン・スターク分水器で系外へ除去した。上記ジアミンの部分中和塩の滴下開始より10時間反応を続けた後、冷却し、反応混合物を25Lのメタノール中へ投入し、生成物を沈殿物として回収した。この沈殿物を、炭酸カリウム30gを含む水/メタノール(容積比1/1)溶液に一夜浸漬した後、濾別し、水及びメタノールで十分洗浄後、乾燥し、化合物(a-2)を得た。収量は500gであった。
こうして得られた化合物(a-2)の一部を190℃でプレス成形し、これの赤外吸収スペクトルを測定したところ、3400cm-1にアミノ基の吸収が、1775cm-1及び1695cm-1にイミド環に基づく吸収が観測され、目的のアミノ基含有変性ポリオレフィン樹脂が得られていることが確認された。
また、得られた化合物(a-2)の極限粘度(135℃のテトラリン中で測定)は0.24dL/gであった。また、アミノ基含有率は、1.5mol%であった。
温度計、攪拌機、滴下ロート、及びディーン・スターク分水器を備えた内容積5Lのセパラブルフラスコに、p-キシレン3L、無水マレイン酸グラフトポリプロピレン(三洋化成工業社製、商品名;ユーメックス1001、無水マレイン酸含率2.5質量%、質量平均分子量15000、数平均分子量5500))500gを仕込み、オイルバスを用い、加熱して140℃、p-キシレン還流下で溶解した。
ついで、化合物(a-1)の製造で調製したエチレンジアミンのp-トルエンスルホン酸部分中和塩75.0gを含むDMIの溶液390gを3時間かけて徐々に滴下した。
この間、反応混合物はp-キシレン還流下の温度に保持され、イミド化の結果、生成し共沸してくる水をディーン・スターク分水器で系外へ除去した。上記ジアミンの部分中和塩の滴下開始より10時間反応を続けた後、冷却し、反応混合物を25Lのメタノール中へ投入し、生成物を沈殿物として回収した。この沈殿物を、炭酸カリウム30gを含む水/メタノール(容積比1/1)溶液に一夜浸漬した後、濾別し、水及びメタノールで十分洗浄後、乾燥し、化合物(a-3)を得た。収量は500gであった。
こうして得られた化合物(a-3)の一部を190℃でプレス成形し、これの赤外吸収スペクトルを測定したところ、3400cm-1にアミノ基の吸収が、1775cm-1及び1695cm-1にイミド環に基づく吸収が観測され、目的のアミノ基含有変性ポリオレフィン樹脂が得られていることが確認された。
また、得られた化合物(a-3)の極限粘度(135℃のテトラリン中で測定)は0.33dL/gであった。また、アミノ基含有率は、0.95mol%であった。
先に得られた各アミノ基含有変性ポリオレフィン樹脂(化合物(a-1)~(a-3))を用い、以下のようにしてサイジング剤水分散液を調製した。
まず、サイジング剤主成分であるアミノ基含有変性ポリオレフィン樹脂を粒子径20μm以下の粉体に粉砕し、この粉体とノニオン系界面活性剤(旭電化社製、「プルロニックF108(商品名)」)を、質量比(粉体/界面活性剤)80/20で混合し、サイジング剤とした。前記サイジング剤を濃度が35質量%となるように、高せん断攪拌翼を有するホモミキサーにより水中に分散させた。引き続き、超高圧ホモジナイザー(みづほ工業(株)製、「マイクロフルイダイザー M-110-E/H」)に3回通過させ、安定な水乳化物(サイジング剤水分散液)を得た。
得られたサイジング剤水分散液中のサイジング剤の濃度は34質量%、平均粒子径は、0.2μmであった。
炭素繊維束として、ポリアクリル繊維を原料とする炭素繊維束(三菱レイヨン社製、「TR50S-15L」、「TR50S-50L」及び「TR40-12L」、いずれもプレサイジング未処理品)を用いた。各炭素繊維束の物性を表1に示す。
(炭素繊維束(CF-1))
炭素繊維束として「TR50S-15L」を用いた。
アミノ基含有変性ポリオレフィン樹脂として化合物(a-1)を用いて調製したサイジング剤水分散液を、濃度が2.0質量%になるように希釈した。この希釈した液で満たしてある、フリーローラーを有する浸漬槽内に、炭素繊維束を浸漬させた。その後、150℃で1分間熱風乾燥処理してからボビンに巻き取り、炭素繊維束(CF-1)を得た。得られた炭素繊維束(CF-1)のサイジング剤の付着量を表2に示す。
先の炭素繊維束(CF-1)の製造において、ボビン巻きしてある炭素繊維束から、炭素繊維束(CF-1)を引き取り、マッフル炉にて230℃で25秒間熱処理を行った後、再度ボビンに巻き取り、炭素繊維束(CF-2)を得た。熱処理の雰囲気は、空気中で実施した。得られた炭素繊維束(CF-2)のサイジング剤の付着量を表2に示す。
化合物(a-1)の代わりに、無水マレイン酸変性ポリプロピレン樹脂(東洋化成社製、「H-1100P」、135℃のテトラリン中で測定した極限粘度[η]:0.58dl/g、無水マレイン酸含量:5.6質量%)を用いた以外は、先に示したサイジング剤水分散液の調製方法と同様にして、サイジング剤水分散液(濃度2.8質量%)を調製した。前記サイジング剤水分散液で満たしてあるフリーローラーを有する浸漬槽内に浸漬させた以外は、炭素繊維束(CF-1)の製造と同様にして、炭素繊維束(CF-3)を得た。得られた炭素繊維束(CF-3)のサイジング剤の付着量を表2に示す。
先の炭素繊維束(CF-3)の製造において、ボビン巻きしてある炭素繊維束から、炭素繊維束(CF-3)を引き取り、マッフル炉にて230℃で25秒間熱処理を行った後、再度ボビンに巻き取り、炭素繊維束(CF-4)を得た。熱処理の雰囲気は、空気中で実施した。得られた炭素繊維束(CF-4)のサイジング剤の付着量を表2に示す(0.8wt%だった)。
ウレタン樹脂(DIC社製、「ハイドランHW-930」)の水分散液(濃度1.2質量%)で満たしてあるフリーローラーを有する浸漬槽内に浸漬させた以外は、炭素繊維束(CF-1)の製造と同様にして、炭素繊維束(CF-5)を得た。得られた炭素繊維束(CF-5)のサイジング剤の付着量を表2に示す。
表3に示す種類と配合量の炭素繊維束、及びマトリックス樹脂を用い、以下のようにして炭素繊維含有ペレットを製造した。
なお、表3に示す各マトリックス樹脂は、以下の通りである。
PP-1:ポリプロピレン単独重合体(プライムポリマー社製、「J-3000GV」、MFR=30g/10分)、
PP-2:ポリプロピレン単独重合体(プライムポリマー社製、「H-50000」、MFR=500g/10分)、
MPP-1:無水マレイン酸変性ポリプロピレン(東洋化成社製、「H-1100P」、135℃のテトラリン中で測定した極限粘度[η]:0.58dl/g、無水マレイン酸含量:5.6wt%)。
まず、表3に示す配合量にてPP-1、PP-2、及びMPP-1を混合し、280℃で溶融して押出機からダイ内の含浸槽へ供給した。
別途、表3に示す配合量の炭素繊維束を熱温度200℃の予熱部を通して余熱した後、280℃に加熱した上記の溶融された樹脂が供給されている含浸槽へ導いた。供給速度を10m/分に調整して炭素繊維束をダイ内に送り込み、含浸槽で溶融樹脂を含浸させ、ダイから引き出して冷却し、ペレタイザーで切断して長さ8mm、直径2.2mmの炭素繊維含有ペレットを得た。
得られた炭素繊維含有ペレット100質量部と、希釈樹脂として表3に示す量のPP-1とを混合し、炭素繊維強化ポリプロピレン樹脂ブレンドを製造した。
得られた炭素繊維強化ポリプロピレン樹脂ブレンドを用いて射出成形し、前記評価項目の測定規格用の試験片を作製した。前記試験片の機械的性能(引張破壊応力、曲げ強さ、曲げ弾性率、及びシャルピー衝撃強さ)を評価した。結果を表3に示す。
(炭素繊維束の製造)
表4、5に示す種類の炭素繊維束を用いた。
表4、5に示す種類のアミノ基含有変性ポリオレフィン樹脂(サイジング剤主成分)を用いて調製したサイジング剤水分散液を、濃度が2.0質量%になるように希釈した液で満たしてあるフリーローラーを有する浸漬槽内に、炭素繊維束を浸漬させた後、150℃で1分間熱風乾燥処理した。
ついで、表4、5に示す熱処理条件(処理温度及び処理時間)にて熱処理を施し、炭素繊維束を製造した。なお、熱処理はマッフル炉内にて行い、空気中で実施した。また、熱処理を施していない場合は、表中に「なし」と表記した。
得られた炭素繊維束のサイジング剤の付着量を表4、5に示す。
マトリックス樹脂、及び炭素繊維束(CF)の配合比をPP-1/PP-2/MPP-1/CF=28/28/4/40とした以外は、実施例1~4、及び比較例1~3と同様にして炭素繊維含有ペレットを製造した。
さらに、得られた炭素繊維含有ペレット100質量部と、希釈樹脂として100質量部のPP-1とを混合し、炭素繊維量20質量%の炭素繊維強化ポリプロピレン樹脂ブレンドとした。
得られた炭素繊維強化ポリプロピレン樹脂ブレンドについて、実施例1~4、及び比較例1~3と同様にして試験片を作製し、機械的性能を評価した。結果を表4、5に示す。
(炭素繊維束(CF-6)、(CF-7)の製造)
炭素繊維束として「TR50S-15L」を用い、エポキシ化合物からなる水分散タイプのプレサイジング剤によりプレサイジング処理を行い、乾燥後、ボビンに巻取り、プレサイジング処理した炭素繊維束を得た。
プレサイジング剤としては、主剤(ジャパンエポキシレジン社製の「エピコート828」(商品名)50質量部と、ジャパンエポキシレジン社製の「エピコート1001」(商品名)30質量部の混合物)と、乳化剤(旭電化社製の「プルロニックF88」(商品名)20質量部)を併用し、付着量が0.4質量%になるように条件を調整した。
別途、アミノ基含有変性ポリオレフィン樹脂として化合物(a-1)を用いて調製したサイジング剤水分散液を、濃度が5.0質量%になるように希釈した液で満たしてある槽にタッチロールの一部を浸漬し、タッチロール表面に転写した後、前記タッチロール表面に、所定の炭素繊維幅とした炭素繊維束を接触させることによりサイジング剤水分散液を付着させた。その際、タッチロールを2個使用して、炭素繊維束の表裏2面に対して実施した。
ついで、ロータリーカッターを用いて炭素繊維束を所定長さ(6mm)に切断し、最後に、150℃に設定された床振動式熱風乾燥炉に連続的に投入し乾燥させることにより、炭素繊維束(CF-6)を得た。得られた炭素繊維束(CF-6)のサイジング剤の付着量を表6に示す。
マトリックス樹脂、及び炭素繊維束の種類と配合比を表7に示すように変更した以外は、実施例1~4、及び比較例1~3と同様にして炭素繊維含有ペレットを製造した。
さらに、得られた炭素繊維含有ペレット100質量部と、希釈樹脂として100質量部のPP-1とを混合し、炭素繊維量20質量%の炭素繊維強化ポリプロピレン樹脂ブレンドとした。
得られた炭素繊維強化ポリプロピレン樹脂ブレンドについて、実施例1~4、及び比較例1~3と同様にして試験片を作製し、機械的性能を評価した。結果を表7に示す。
(炭素繊維束(CF-8)の製造)
サイジング剤水分散液として、ウレタン樹脂(DIC社製、「ハイドランHW-930」)の水分散液(濃度4.0質量%)を用いた以外は、炭素繊維束(CF-6)と同様にして炭素繊維束(CF-8)を得た。得られた炭素繊維束(CF-8)のサイジング剤の付着量を表6に示す。
マトリックス樹脂、及び炭素繊維束の種類と配合比を表7に示すように変更した以外は、実施例1~4、及び比較例1~3と同様にして炭素繊維含有ペレットを製造した。
さらに、得られた炭素繊維含有ペレット100質量部と、希釈樹脂として100質量部のPP-1とを混合し、炭素繊維量20質量%の炭素繊維強化ポリプロピレン樹脂ブレンドとした。
得られた炭素繊維強化ポリプロピレン樹脂ブレンドについて、実施例1~4、及び比較例1~3と同様にして試験片を作製し、機械的性能を評価した。結果を表7に示す。
本発明の炭素繊維束は、マトリックス樹脂との親和性に優れている。
また、本発明の炭素繊維束の製造方法によれば、ポリオレフィン系樹脂、特にポリプロピレン樹脂との良好な界面接着性を発現できるため、ポリオレフィン系樹脂の強化に有用な炭素繊維束が得られる。
Claims (13)
- アミノ基含有変性ポリオレフィン樹脂が炭素繊維束に付着した炭素繊維束であって、
前記アミノ基含有変性ポリオレフィン樹脂の付着量が0.2~5.0質量%である、炭素繊維束。 - 前記アミノ基含有変性ポリオレフィン樹脂を炭素繊維束の表面に付着させた後、200~300℃で5秒間~3分間熱処理を施してなる、請求項1に記載の炭素繊維束。
- アミノ基含有変性ポリオレフィン樹脂の付着量が0.5~4.0質量%であり、前記アミノ基含有変性ポリオレフィン樹脂を炭素繊維束の表面に付着させた後、200~260℃で15秒間~3分間熱処理を施してなる、請求項2に記載の炭素繊維束。
- 前記アミノ基含有変性ポリオレフィン樹脂の炭素繊維束への付着は、アミノ基含有変性ポリオレフィン樹脂を含むサイジング剤水分散液に炭素繊維束を接触させることによりなされる、請求項1~3のいずれか1項に記載の炭素繊維束。
- 前記アミノ基含有変性ポリオレフィン樹脂の、135℃のテトラリン中で測定した極限粘度が0.05~1.0dL/gである、請求項1~4のいずれか1項に記載の炭素繊維束。
- 前記アミノ基含有変性ポリオレフィン樹脂が、エチレン-エチルアクリレート-無水マレイン酸共重合体、無水マレイン酸グラフトポリエチレン系樹脂、及び無水マレイン酸グラフトポリプロピレン系樹脂からなる群より選ばれた1種の化合物と、2つ以上のアミノ基を有する化合物との反応物である、請求項1~5のいずれか1項に記載の炭素繊維束。
- 前記アミノ基含有変性ポリオレフィン樹脂が、アミノ基を有し、かつ分子内に下記一般式(I)で表わされる反復単位を70~99.98モル%と、下記一般式(II)で表わされる反復単位を0.02~30モル%含有する共重合体である、請求項1~6のいずれか1項に記載の炭素繊維束。
- 炭素繊維束の表面に、アミノ基含有変性ポリオレフィン樹脂を0.2~5.0質量%付着させることを含む、炭素繊維束の製造方法。
- 前記アミノ基含有変性ポリオレフィン樹脂を炭素繊維束の表面に付着させた後、200~300℃で5秒間~3分間熱処理をすることを更に含む、請求項8に記載の炭素繊維束の製造方法。
- アミノ基含有変性ポリオレフィン樹脂を0.5~4.0質量%付着させること、及びその後200~260℃で15秒間~3分間熱処理をすることを含む、請求項8又は9に記載の炭素繊維束の製造方法。
- 前記アミノ基含有変性ポリオレフィン樹脂を炭素繊維束へ付着させることにおいて、アミノ基含有変性ポリオレフィン樹脂を含むサイジング剤水分散液に炭素繊維束を接触させることを含む、請求項8~10に記載の炭素繊維束の製造方法。
- 前記サイジング剤水分散液に炭素繊維束を接触させて、サイジング剤水分散液を炭素繊維束の表面に付着させること、乾燥処理をすること、及びその後熱処理をすることを更に含む、請求項11に記載の炭素繊維束の製造方法。
- 前記乾燥処理を100~200℃で施す、請求項12に記載の炭素繊維束の製造方法。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201080039839.6A CN102597360B (zh) | 2009-09-09 | 2010-09-08 | 碳纤维束及其制造方法 |
US13/394,634 US20120208019A1 (en) | 2009-09-09 | 2010-09-08 | Carbon fiber bundle and method for producing same |
CA2773466A CA2773466C (en) | 2009-09-09 | 2010-09-08 | Carbon fiber bundle and method for producing same |
EP10815379.2A EP2476799B1 (en) | 2009-09-09 | 2010-09-08 | Carbon fiber bundle and method for producing same |
JP2011530851A JP5889634B2 (ja) | 2009-09-09 | 2010-09-08 | 炭素繊維束の製造方法 |
KR1020127007385A KR101345010B1 (ko) | 2009-09-09 | 2010-09-08 | 탄소 섬유 다발 및 그 제조 방법 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009-207631 | 2009-09-09 | ||
JP2009207631 | 2009-09-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011030784A1 true WO2011030784A1 (ja) | 2011-03-17 |
Family
ID=43732453
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/065399 WO2011030784A1 (ja) | 2009-09-09 | 2010-09-08 | 炭素繊維束及びその製造方法 |
Country Status (8)
Country | Link |
---|---|
US (1) | US20120208019A1 (ja) |
EP (1) | EP2476799B1 (ja) |
JP (3) | JP5889634B2 (ja) |
KR (1) | KR101345010B1 (ja) |
CN (1) | CN102597360B (ja) |
CA (1) | CA2773466C (ja) |
TW (2) | TWI426165B (ja) |
WO (1) | WO2011030784A1 (ja) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2345689A1 (en) * | 2008-09-30 | 2011-07-20 | Mitsui Chemicals, Inc. | Fiber-reinforced resin composition and molded object thereof |
JP2011214175A (ja) * | 2010-03-31 | 2011-10-27 | Sanyo Chem Ind Ltd | 繊維用集束剤 |
JP2011214176A (ja) * | 2010-03-31 | 2011-10-27 | Sanyo Chem Ind Ltd | 繊維用集束剤 |
WO2014038574A1 (ja) * | 2012-09-06 | 2014-03-13 | 三菱レイヨン株式会社 | 樹脂強化用炭素繊維束およびその製造方法、並びに炭素繊維強化熱可塑性樹脂組成物およびその成形品 |
JP2014196591A (ja) * | 2009-09-09 | 2014-10-16 | 三菱レイヨン株式会社 | 炭素繊維束及びその製造方法 |
JP2015048549A (ja) * | 2013-09-02 | 2015-03-16 | 東レ株式会社 | 炭素繊維束の製造方法 |
WO2016114352A1 (ja) * | 2015-01-16 | 2016-07-21 | 三井化学株式会社 | 強化繊維束及びそれを用いた炭素繊維強化熱可塑性樹脂成形体、並びに強化繊維束の製造方法 |
WO2017056958A1 (ja) * | 2015-09-30 | 2017-04-06 | ダイセルポリマー株式会社 | プロピレン系樹脂付着繊維束 |
JPWO2016009858A1 (ja) * | 2014-07-16 | 2017-04-27 | Jsr株式会社 | 成形体の製造方法 |
JPWO2017038528A1 (ja) * | 2015-09-02 | 2017-09-07 | Jsr株式会社 | 組成物及び成形体 |
JP7592501B2 (ja) | 2021-01-19 | 2024-12-02 | 日本ポリプロ株式会社 | 繊維強化ポリプロピレン系樹脂組成物 |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ITRM20110520A1 (it) * | 2011-10-04 | 2013-04-05 | Agenzia Naz Per Le Nuove Tecn Ologie L Ener | Metodo per la realizzazione di filati di fibre di carbonio di riciclo. |
CN103275282B (zh) * | 2013-06-04 | 2015-05-13 | 南昌航空大学 | 丙烯酸类聚合物接枝碳纤维多尺度增强体的制备方法 |
JP6657571B2 (ja) * | 2014-03-05 | 2020-03-04 | 三菱ケミカル株式会社 | 樹脂強化用炭素繊維束、並びに、樹脂強化用炭素繊維束、炭素繊維強化熱可塑性樹脂組成物及び成形体の製造方法 |
CN104195824B (zh) * | 2014-09-15 | 2016-04-27 | 哈尔滨工业大学 | 一种碳纤维表面改性方法 |
US10336869B2 (en) | 2014-11-13 | 2019-07-02 | Mitsui Chemicals, Inc. | Carbon fiber-reinforced resin composition and shaped product obtained therefrom |
KR101688903B1 (ko) * | 2015-09-25 | 2016-12-22 | 재단법인 한국탄소융합기술원 | 방열성이 우수한 탄소섬유 및 이의 제조방법 |
CN111394836A (zh) * | 2015-10-21 | 2020-07-10 | 三菱化学株式会社 | 碳纤维束用切断刀、以及碳纤维束用旋转刀具 |
EP3395551B1 (en) | 2015-12-24 | 2022-04-13 | Mitsubishi Chemical Corporation | Fiber-reinforced resin material molding, method for manufacturing fiber-reinforced resin material molding, and method for manufacturing fiber-reinforced resin material |
CN107700213B (zh) * | 2017-08-29 | 2020-08-11 | 广东工业大学 | 一种碳纤维上浆剂及其制备方法以及一种碳纤维增强聚丙烯复合材料及其制备方法 |
CN109722743B (zh) * | 2017-10-27 | 2022-02-11 | 中国石油化工股份有限公司 | 一种聚烯烃树脂基复合材料用碳纤维及其制备方法 |
CN111630380A (zh) * | 2018-01-23 | 2020-09-04 | Tdk株式会社 | 气体检测片及具备气体检测片的电化学元件 |
CN108864695A (zh) * | 2018-07-18 | 2018-11-23 | 安徽旭升新材料有限公司 | 一种热塑性碳纤维复合材料的制备方法 |
CN109334040B (zh) * | 2018-08-31 | 2020-11-06 | 惠州富盛绝缘材料有限公司 | 一种纤维管的制管方法 |
CN111088699B (zh) * | 2018-10-23 | 2023-01-24 | 中国石油化工股份有限公司 | 针对聚丙烯/碳纤维界面的上浆剂及其制备方法和应用 |
US11024501B2 (en) | 2018-12-29 | 2021-06-01 | Cree, Inc. | Carrier-assisted method for parting crystalline material along laser damage region |
US10576585B1 (en) | 2018-12-29 | 2020-03-03 | Cree, Inc. | Laser-assisted method for parting crystalline material |
US10562130B1 (en) | 2018-12-29 | 2020-02-18 | Cree, Inc. | Laser-assisted method for parting crystalline material |
US10611052B1 (en) | 2019-05-17 | 2020-04-07 | Cree, Inc. | Silicon carbide wafers with relaxed positive bow and related methods |
TWI767811B (zh) * | 2021-07-30 | 2022-06-11 | 臺灣塑膠工業股份有限公司 | 碳纖維束的處理方法 |
CN115506151B (zh) * | 2022-10-31 | 2024-01-16 | 东华大学 | 一种水性上浆剂及其制备方法和一种针对碳纤维/聚丙烯纤维混合毡的上浆方法 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0284566A (ja) | 1988-08-30 | 1990-03-26 | Tonen Corp | 炭素繊維用サイジング剤 |
JPH03181528A (ja) * | 1989-12-08 | 1991-08-07 | Polyplastics Co | 長繊維強化成形用ポリオレフィン樹脂組成物およびその製造法 |
JPH06107442A (ja) | 1991-12-17 | 1994-04-19 | Sanyo Chem Ind Ltd | 無機繊維用集束剤 |
JP2003253563A (ja) * | 2001-12-27 | 2003-09-10 | Asahi Fiber Glass Co Ltd | ガラス繊維用集束剤、オレフィン樹脂強化用ガラス繊維、および繊維強化成形用オレフィン樹脂組成物の製造方法 |
JP2004263359A (ja) * | 2003-01-07 | 2004-09-24 | Mitsubishi Rayon Co Ltd | 炭素繊維束及びチョップド炭素繊維束及びその製造方法、並びに炭素繊維強化熱可塑性樹脂組成物及びその成形品 |
WO2005073291A1 (ja) * | 2004-02-02 | 2005-08-11 | Idemitsu Kosan Co., Ltd. | ポリオレフィン系炭素繊維強化樹脂組成物及びそれからなる成形品 |
JP2006124847A (ja) | 2004-10-26 | 2006-05-18 | Toho Tenax Co Ltd | 熱可塑性樹脂強化用炭素繊維ストランドの製造方法 |
JP2009197359A (ja) * | 2008-02-21 | 2009-09-03 | Toray Ind Inc | 強化繊維、および繊維強化複合材料 |
JP2009207631A (ja) | 2008-03-03 | 2009-09-17 | Namco Bandai Games Inc | ゲームコントローラケース |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58204043A (ja) * | 1982-05-24 | 1983-11-28 | Mitsubishi Rayon Co Ltd | 強化ポリオレフイン系樹脂組成物 |
FR2660304B1 (fr) * | 1990-04-02 | 1993-09-03 | Europ Propulsion | Procede de realisation d'un materiau composite thermostructural a interphase carbone entre fibres de renfort et matrice. |
JP2914469B2 (ja) * | 1993-04-28 | 1999-06-28 | 東邦レーヨン株式会社 | 炭素繊維チョップドストランドの製造方法 |
US5912301A (en) * | 1995-02-24 | 1999-06-15 | Kanegafuchi Kagaku Kogyo Kabushiki Kaisha | Graft-modified polyolefin resins and resin compositions containing the same |
JP3575864B2 (ja) * | 1995-03-15 | 2004-10-13 | 東燃ゼネラル石油株式会社 | 熱可塑性樹脂組成物 |
JP2001234067A (ja) * | 2000-02-24 | 2001-08-28 | Bridgestone Corp | 樹脂ホイール用繊維強化熱可塑性樹脂組成物及び樹脂ホイール |
US6906011B2 (en) * | 2001-11-09 | 2005-06-14 | Chevron Oronite Company Llc | Polymeric dispersants prepared from copolymers of low molecular weight polyisobutene and unsaturated acidic reagent |
JP2003328271A (ja) * | 2002-05-08 | 2003-11-19 | Toho Tenax Co Ltd | 炭素繊維ストランド、及び炭素繊維強化樹脂 |
JP2004149978A (ja) * | 2002-10-31 | 2004-05-27 | Toho Tenax Co Ltd | 炭素繊維ストランドの製造方法 |
JP4390443B2 (ja) * | 2002-11-28 | 2009-12-24 | 日本エイアンドエル株式会社 | 繊維収束用水性組成物および炭素繊維ストランド |
US7585558B2 (en) * | 2003-01-30 | 2009-09-08 | Toho Tenax Co., Ltd. | Carbon fiber-reinforced resin composite materials |
JP2005048343A (ja) | 2003-07-31 | 2005-02-24 | Mitsubishi Rayon Co Ltd | 炭素繊維束及びその製造方法、並びに熱可塑性樹脂組成物及びその成形品 |
JP2005048342A (ja) * | 2003-07-31 | 2005-02-24 | Mitsubishi Rayon Co Ltd | 炭素繊維束及びその製造方法、並びに熱可塑性樹脂組成物及びその成形品 |
EP2458084B1 (en) * | 2003-07-31 | 2013-05-08 | Mitsubishi Rayon Co., Ltd. | Carbon fiber bundle, method for producing the same, and thermoplastic resin composition and molded article thereof |
JP2005048344A (ja) * | 2003-07-31 | 2005-02-24 | Mitsubishi Rayon Co Ltd | 炭素繊維束、並びに熱可塑性樹脂組成物及びその成形品 |
JP2005226193A (ja) | 2004-02-13 | 2005-08-25 | Mitsubishi Rayon Co Ltd | 強化繊維用サイジング剤、炭素繊維束、熱可塑性樹脂組成物及びその成形品 |
US20090062426A1 (en) * | 2005-03-25 | 2009-03-05 | Teijin Techno Products Limited | Carbon Fiber Strand for Reinforcing Thermoplastic Resins and Method of Producing the Same |
CN101981818B (zh) * | 2008-08-08 | 2013-09-25 | Sk普兰尼特有限公司 | 终端和智能卡之间的接口系统、终端和智能卡之间的接口方法以及应用于该接口系统的智能卡 |
TWI426165B (zh) * | 2009-09-09 | 2014-02-11 | Mitsubishi Rayon Co | 碳纖維束及其製造方法 |
-
2010
- 2010-09-08 TW TW099130379A patent/TWI426165B/zh active
- 2010-09-08 EP EP10815379.2A patent/EP2476799B1/en active Active
- 2010-09-08 US US13/394,634 patent/US20120208019A1/en not_active Abandoned
- 2010-09-08 KR KR1020127007385A patent/KR101345010B1/ko active IP Right Grant
- 2010-09-08 WO PCT/JP2010/065399 patent/WO2011030784A1/ja active Application Filing
- 2010-09-08 JP JP2011530851A patent/JP5889634B2/ja active Active
- 2010-09-08 TW TW102133971A patent/TWI463053B/zh active
- 2010-09-08 CN CN201080039839.6A patent/CN102597360B/zh active Active
- 2010-09-08 CA CA2773466A patent/CA2773466C/en active Active
-
2014
- 2014-06-06 JP JP2014118211A patent/JP5984876B2/ja active Active
- 2014-06-06 JP JP2014118210A patent/JP5984875B2/ja active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0284566A (ja) | 1988-08-30 | 1990-03-26 | Tonen Corp | 炭素繊維用サイジング剤 |
JPH03181528A (ja) * | 1989-12-08 | 1991-08-07 | Polyplastics Co | 長繊維強化成形用ポリオレフィン樹脂組成物およびその製造法 |
JPH06107442A (ja) | 1991-12-17 | 1994-04-19 | Sanyo Chem Ind Ltd | 無機繊維用集束剤 |
JP2003253563A (ja) * | 2001-12-27 | 2003-09-10 | Asahi Fiber Glass Co Ltd | ガラス繊維用集束剤、オレフィン樹脂強化用ガラス繊維、および繊維強化成形用オレフィン樹脂組成物の製造方法 |
JP2004263359A (ja) * | 2003-01-07 | 2004-09-24 | Mitsubishi Rayon Co Ltd | 炭素繊維束及びチョップド炭素繊維束及びその製造方法、並びに炭素繊維強化熱可塑性樹脂組成物及びその成形品 |
WO2005073291A1 (ja) * | 2004-02-02 | 2005-08-11 | Idemitsu Kosan Co., Ltd. | ポリオレフィン系炭素繊維強化樹脂組成物及びそれからなる成形品 |
JP2006124847A (ja) | 2004-10-26 | 2006-05-18 | Toho Tenax Co Ltd | 熱可塑性樹脂強化用炭素繊維ストランドの製造方法 |
JP2009197359A (ja) * | 2008-02-21 | 2009-09-03 | Toray Ind Inc | 強化繊維、および繊維強化複合材料 |
JP2009207631A (ja) | 2008-03-03 | 2009-09-17 | Namco Bandai Games Inc | ゲームコントローラケース |
Non-Patent Citations (1)
Title |
---|
MACROMOLECULES, vol. 26, 1993, pages 2087 - 2088 |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2345689A4 (en) * | 2008-09-30 | 2012-08-29 | Mitsui Chemicals Inc | FIBER REINFORCED RESIN COMPOSITION AND MOLDED OBJECT MANUFACTURED THEREFROM |
US8420728B2 (en) | 2008-09-30 | 2013-04-16 | Mitsui Chemicals, Inc. | Fiber-reinforced resin composition and molded body thereof |
EP2345689A1 (en) * | 2008-09-30 | 2011-07-20 | Mitsui Chemicals, Inc. | Fiber-reinforced resin composition and molded object thereof |
JP2014196591A (ja) * | 2009-09-09 | 2014-10-16 | 三菱レイヨン株式会社 | 炭素繊維束及びその製造方法 |
JP2011214175A (ja) * | 2010-03-31 | 2011-10-27 | Sanyo Chem Ind Ltd | 繊維用集束剤 |
JP2011214176A (ja) * | 2010-03-31 | 2011-10-27 | Sanyo Chem Ind Ltd | 繊維用集束剤 |
US9777127B2 (en) | 2012-09-06 | 2017-10-03 | Mitsubishi Chemical Corporation | Carbon fiber bundle for resin reinforcement purposes and method for producing same, and carbon-fiber-reinforced thermoplastic resin composition and molded product thereof |
WO2014038574A1 (ja) * | 2012-09-06 | 2014-03-13 | 三菱レイヨン株式会社 | 樹脂強化用炭素繊維束およびその製造方法、並びに炭素繊維強化熱可塑性樹脂組成物およびその成形品 |
KR101669377B1 (ko) * | 2012-09-06 | 2016-10-25 | 미쯔비시 레이온 가부시끼가이샤 | 수지 강화용 탄소 섬유속 및 그의 제조 방법, 및 탄소 섬유 강화 열가소성 수지 조성물 및 그의 성형품 |
JP2015048549A (ja) * | 2013-09-02 | 2015-03-16 | 東レ株式会社 | 炭素繊維束の製造方法 |
US10174453B2 (en) | 2014-07-16 | 2019-01-08 | Jsr Corporation | Sizing agent, composition, and formed article |
JPWO2016009858A1 (ja) * | 2014-07-16 | 2017-04-27 | Jsr株式会社 | 成形体の製造方法 |
WO2016114352A1 (ja) * | 2015-01-16 | 2016-07-21 | 三井化学株式会社 | 強化繊維束及びそれを用いた炭素繊維強化熱可塑性樹脂成形体、並びに強化繊維束の製造方法 |
JPWO2017038528A1 (ja) * | 2015-09-02 | 2017-09-07 | Jsr株式会社 | 組成物及び成形体 |
WO2017056958A1 (ja) * | 2015-09-30 | 2017-04-06 | ダイセルポリマー株式会社 | プロピレン系樹脂付着繊維束 |
JP7592501B2 (ja) | 2021-01-19 | 2024-12-02 | 日本ポリプロ株式会社 | 繊維強化ポリプロピレン系樹脂組成物 |
Also Published As
Publication number | Publication date |
---|---|
CA2773466A1 (en) | 2011-03-17 |
KR20120074282A (ko) | 2012-07-05 |
KR101345010B1 (ko) | 2013-12-24 |
JP2014156688A (ja) | 2014-08-28 |
TWI426165B (zh) | 2014-02-11 |
EP2476799A1 (en) | 2012-07-18 |
US20120208019A1 (en) | 2012-08-16 |
CN102597360B (zh) | 2014-12-03 |
JP5889634B2 (ja) | 2016-03-22 |
CA2773466C (en) | 2014-03-11 |
TW201114975A (en) | 2011-05-01 |
TW201402904A (zh) | 2014-01-16 |
JP5984875B2 (ja) | 2016-09-06 |
CN102597360A (zh) | 2012-07-18 |
EP2476799A4 (en) | 2017-05-17 |
JPWO2011030784A1 (ja) | 2013-02-07 |
TWI463053B (zh) | 2014-12-01 |
JP2014196591A (ja) | 2014-10-16 |
EP2476799B1 (en) | 2020-01-01 |
JP5984876B2 (ja) | 2016-09-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5984876B2 (ja) | 炭素繊維束及びその製造方法 | |
JP5650117B2 (ja) | 炭素繊維強化樹脂組成物 | |
KR101669377B1 (ko) | 수지 강화용 탄소 섬유속 및 그의 제조 방법, 및 탄소 섬유 강화 열가소성 수지 조성물 및 그의 성형품 | |
KR101840965B1 (ko) | 수지 강화용 탄소섬유속, 및 수지 강화용 탄소섬유속, 탄소섬유 강화 열가소성 수지 조성물 및 성형체의 제조 방법 | |
JP5600741B2 (ja) | 炭素繊維束及びその製造方法、ならびにそれからの成形品 | |
JP5924848B1 (ja) | 強化繊維用サイジング剤の水性液、強化繊維及び繊維強化複合材料 | |
EP3652248B1 (en) | High strength polyvinylidene fluoride based sized reinforcing fibers | |
JP2005048344A (ja) | 炭素繊維束、並びに熱可塑性樹脂組成物及びその成形品 | |
Ismail et al. | Silica-filled polypropylene composites: The effect of ethylene diamine dilaurate and maleic anhydride grafted polypropylene on mechanical properties, water absorption, morphology, and thermal properties |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080039839.6 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10815379 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2773466 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011530851 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1201000971 Country of ref document: TH |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2286/CHENP/2012 Country of ref document: IN Ref document number: 2010815379 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20127007385 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13394634 Country of ref document: US |