WO2011030589A1 - 淡水製造方法及び淡水製造装置 - Google Patents
淡水製造方法及び淡水製造装置 Download PDFInfo
- Publication number
- WO2011030589A1 WO2011030589A1 PCT/JP2010/058518 JP2010058518W WO2011030589A1 WO 2011030589 A1 WO2011030589 A1 WO 2011030589A1 JP 2010058518 W JP2010058518 W JP 2010058518W WO 2011030589 A1 WO2011030589 A1 WO 2011030589A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- water
- supply water
- semipermeable membrane
- supply
- pressure
- Prior art date
Links
- 239000013505 freshwater Substances 0.000 title claims abstract description 57
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 41
- 239000012528 membrane Substances 0.000 claims abstract description 173
- 239000008400 supply water Substances 0.000 claims abstract description 162
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 147
- 238000011084 recovery Methods 0.000 claims abstract description 39
- 150000003839 salts Chemical class 0.000 claims description 18
- 238000000034 method Methods 0.000 claims description 15
- 230000008569 process Effects 0.000 claims description 8
- 239000012466 permeate Substances 0.000 claims description 5
- 239000003643 water by type Substances 0.000 abstract description 6
- 239000000126 substance Substances 0.000 description 22
- 239000013535 sea water Substances 0.000 description 14
- 239000007788 liquid Substances 0.000 description 11
- 238000000926 separation method Methods 0.000 description 11
- 238000010612 desalination reaction Methods 0.000 description 10
- 238000001223 reverse osmosis Methods 0.000 description 10
- 239000000463 material Substances 0.000 description 9
- -1 and further Substances 0.000 description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 6
- 239000002351 wastewater Substances 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 238000001914 filtration Methods 0.000 description 5
- 230000003472 neutralizing effect Effects 0.000 description 5
- 239000002455 scale inhibitor Substances 0.000 description 5
- 229920000388 Polyphosphate Polymers 0.000 description 4
- 239000005708 Sodium hypochlorite Substances 0.000 description 4
- 239000012530 fluid Substances 0.000 description 4
- 238000005374 membrane filtration Methods 0.000 description 4
- 238000001471 micro-filtration Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 230000003204 osmotic effect Effects 0.000 description 4
- 239000001205 polyphosphate Substances 0.000 description 4
- 235000011176 polyphosphates Nutrition 0.000 description 4
- 239000004576 sand Substances 0.000 description 4
- SUKJFIGYRHOWBL-UHFFFAOYSA-N sodium hypochlorite Chemical compound [Na+].Cl[O-] SUKJFIGYRHOWBL-UHFFFAOYSA-N 0.000 description 4
- 238000000108 ultra-filtration Methods 0.000 description 4
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 3
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 3
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 3
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 239000003899 bactericide agent Substances 0.000 description 3
- 239000000460 chlorine Substances 0.000 description 3
- 229910052801 chlorine Inorganic materials 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 3
- 239000003673 groundwater Substances 0.000 description 3
- 239000012510 hollow fiber Substances 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 239000010410 layer Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000001728 nano-filtration Methods 0.000 description 3
- 238000009287 sand filtration Methods 0.000 description 3
- 239000011734 sodium Substances 0.000 description 3
- 229910052708 sodium Inorganic materials 0.000 description 3
- GCLGEJMYGQKIIW-UHFFFAOYSA-H sodium hexametaphosphate Chemical compound [Na]OP1(=O)OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])O1 GCLGEJMYGQKIIW-UHFFFAOYSA-H 0.000 description 3
- 235000019982 sodium hexametaphosphate Nutrition 0.000 description 3
- 239000001577 tetrasodium phosphonato phosphate Substances 0.000 description 3
- 238000011144 upstream manufacturing Methods 0.000 description 3
- 241000894006 Bacteria Species 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- 239000003242 anti bacterial agent Substances 0.000 description 2
- 229920002301 cellulose acetate Polymers 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 239000012459 cleaning agent Substances 0.000 description 2
- 238000005345 coagulation Methods 0.000 description 2
- 230000015271 coagulation Effects 0.000 description 2
- 239000000645 desinfectant Substances 0.000 description 2
- 229910001039 duplex stainless steel Inorganic materials 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 238000006386 neutralization reaction Methods 0.000 description 2
- 239000005416 organic matter Substances 0.000 description 2
- 229920000620 organic polymer Polymers 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 238000010979 pH adjustment Methods 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 238000011085 pressure filtration Methods 0.000 description 2
- 239000010802 sludge Substances 0.000 description 2
- 238000000967 suction filtration Methods 0.000 description 2
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 1
- JLHMJWHSBYZWJJ-UHFFFAOYSA-N 1,2-thiazole 1-oxide Chemical class O=S1C=CC=N1 JLHMJWHSBYZWJJ-UHFFFAOYSA-N 0.000 description 1
- UUIVKBHZENILKB-UHFFFAOYSA-N 2,2-dibromo-2-cyanoacetamide Chemical compound NC(=O)C(Br)(Br)C#N UUIVKBHZENILKB-UHFFFAOYSA-N 0.000 description 1
- MOMKYJPSVWEWPM-UHFFFAOYSA-N 4-(chloromethyl)-2-(4-methylphenyl)-1,3-thiazole Chemical compound C1=CC(C)=CC=C1C1=NC(CCl)=CS1 MOMKYJPSVWEWPM-UHFFFAOYSA-N 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 229920001661 Chitosan Polymers 0.000 description 1
- QDHHCQZDFGDHMP-UHFFFAOYSA-N Chloramine Chemical class ClN QDHHCQZDFGDHMP-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 241000195493 Cryptophyta Species 0.000 description 1
- 229920002430 Fibre-reinforced plastic Polymers 0.000 description 1
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004734 Polyphenylene sulfide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- UIIMBOGNXHQVGW-DEQYMQKBSA-M Sodium bicarbonate-14C Chemical compound [Na+].O[14C]([O-])=O UIIMBOGNXHQVGW-DEQYMQKBSA-M 0.000 description 1
- DWAQJAXMDSEUJJ-UHFFFAOYSA-M Sodium bisulfite Chemical compound [Na+].OS([O-])=O DWAQJAXMDSEUJJ-UHFFFAOYSA-M 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 238000005273 aeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 239000000783 alginic acid Substances 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 229960001126 alginic acid Drugs 0.000 description 1
- 150000004781 alginic acids Chemical class 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 239000000908 ammonium hydroxide Substances 0.000 description 1
- 235000011114 ammonium hydroxide Nutrition 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- RHZUVFJBSILHOK-UHFFFAOYSA-N anthracen-1-ylmethanolate Chemical compound C1=CC=C2C=C3C(C[O-])=CC=CC3=CC2=C1 RHZUVFJBSILHOK-UHFFFAOYSA-N 0.000 description 1
- 239000003830 anthracite Substances 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 229910000963 austenitic stainless steel Inorganic materials 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000012267 brine Substances 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 239000000701 coagulant Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 235000019820 disodium diphosphate Nutrition 0.000 description 1
- GYQBBRRVRKFJRG-UHFFFAOYSA-L disodium pyrophosphate Chemical compound [Na+].[Na+].OP([O-])(=O)OP(O)([O-])=O GYQBBRRVRKFJRG-UHFFFAOYSA-L 0.000 description 1
- 229940038485 disodium pyrophosphate Drugs 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000011151 fibre-reinforced plastic Substances 0.000 description 1
- 239000000417 fungicide Substances 0.000 description 1
- 239000002223 garnet Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 150000002429 hydrazines Chemical class 0.000 description 1
- 235000011167 hydrochloric acid Nutrition 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 229910052816 inorganic phosphate Inorganic materials 0.000 description 1
- 239000003456 ion exchange resin Substances 0.000 description 1
- 229920003303 ion-exchange polymer Polymers 0.000 description 1
- 229920000831 ionic polymer Polymers 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000002346 layers by function Substances 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 229920005615 natural polymer Polymers 0.000 description 1
- 231100000989 no adverse effect Toxicity 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 description 1
- 125000004437 phosphorous atom Chemical group 0.000 description 1
- 229920000083 poly(allylamine) Polymers 0.000 description 1
- 229920001467 poly(styrenesulfonates) Polymers 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 239000004584 polyacrylic acid Substances 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000005518 polymer electrolyte Substances 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- 229920012287 polyphenylene sulfone Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 235000011118 potassium hydroxide Nutrition 0.000 description 1
- 159000000001 potassium salts Chemical class 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 239000008262 pumice Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 239000010865 sewage Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000015424 sodium Nutrition 0.000 description 1
- FQENQNTWSFEDLI-UHFFFAOYSA-J sodium diphosphate Chemical compound [Na+].[Na+].[Na+].[Na+].[O-]P([O-])(=O)OP([O-])([O-])=O FQENQNTWSFEDLI-UHFFFAOYSA-J 0.000 description 1
- 235000010267 sodium hydrogen sulphite Nutrition 0.000 description 1
- 235000019983 sodium metaphosphate Nutrition 0.000 description 1
- 235000019832 sodium triphosphate Nutrition 0.000 description 1
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 150000003457 sulfones Chemical class 0.000 description 1
- 229920001059 synthetic polymer Polymers 0.000 description 1
- 235000019818 tetrasodium diphosphate Nutrition 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/02—Reverse osmosis; Hyperfiltration ; Nanofiltration
- B01D61/06—Energy recovery
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/02—Reverse osmosis; Hyperfiltration ; Nanofiltration
- B01D61/025—Reverse osmosis; Hyperfiltration
- B01D61/026—Reverse osmosis; Hyperfiltration comprising multiple reverse osmosis steps
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/44—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/52—Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/66—Treatment of water, waste water, or sewage by neutralisation; pH adjustment
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/72—Treatment of water, waste water, or sewage by oxidation
- C02F1/76—Treatment of water, waste water, or sewage by oxidation with halogens or compounds of halogens
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2103/00—Nature of the water, waste water, sewage or sludge to be treated
- C02F2103/08—Seawater, e.g. for desalination
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2303/00—Specific treatment goals
- C02F2303/10—Energy recovery
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2303/00—Specific treatment goals
- C02F2303/18—Removal of treatment agents after treatment
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2303/00—Specific treatment goals
- C02F2303/18—Removal of treatment agents after treatment
- C02F2303/185—The treatment agent being halogen or a halogenated compound
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/02—Aerobic processes
- C02F3/12—Activated sludge processes
- C02F3/1236—Particular type of activated sludge installations
- C02F3/1268—Membrane bioreactor systems
- C02F3/1273—Submerged membrane bioreactors
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F5/00—Softening water; Preventing scale; Adding scale preventatives or scale removers to water, e.g. adding sequestering agents
- C02F5/08—Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/30—Wastewater or sewage treatment systems using renewable energies
Definitions
- the present invention relates to a fresh water production apparatus and method using a semipermeable membrane unit for producing fresh water from a plurality of types of raw water such as a combination of seawater and river water, ground water or wastewater treated water. More specifically, the present invention relates to an apparatus and method for effectively using the energy of concentrated water from a semipermeable membrane unit in an apparatus for producing fresh water from a plurality of types of raw water.
- Non-patent Document 1 a pressure exchange type has been developed, and due to its high energy recovery efficiency (about 95%), it is becoming the main role of an energy recovery device in a seawater desalination apparatus.
- the conventional energy exchange unit using a reversing pump or a Pelton turbine is optimally designed for the set flow rate, so that the recovery efficiency decreases when the amount of water fluctuates, but the pressure exchange type energy recovery unit Since pressure is exchanged between the same amount of water, there is an advantage that energy recovery efficiency can be maintained even when the amount of supplied water fluctuates.
- the flow of the conventional typical fresh water manufacturing apparatus provided with the pressure exchange type energy recovery unit is shown in FIG.
- a reverse osmosis membrane produces fresh water by applying a pressure capable of overcoming the osmotic pressure resulting from the difference in concentration of the membrane surface, which is the origin of its name, to allow the solvent water to permeate through the membrane.
- the effective pressure that works for membrane separation is the operating pressure minus the osmotic pressure based on the feedwater concentration, so the operating pressure is increased halfway and the fresh water is made more efficient against the concentrated high osmotic pressure at the later stage.
- Patent Document 1 Non-Patent Document 2
- the separation size is larger than a reverse osmosis membrane, and the method of processing permeated water twice using the nanofiltration membrane normally made unsuitable for seawater desalination is proposed (nonpatent literature 3). Furthermore, the process (FIG. 9) which mixes the concentrated waste water which reuses sewage with seawater, reduces an osmotic pressure, and performs a reverse osmosis membrane process (nonpatent literatures 4 and 5) is proposed.
- An object of the present invention is to effectively utilize the energy of concentrated water discharged from a semipermeable membrane unit in a fresh water production apparatus using a semipermeable membrane that uses a mixture of a plurality of types of supply water, and Another object of the present invention is to provide a fresh water production method and a fresh water production apparatus that are effectively applied with a pressure exchange type energy recovery unit capable of efficiently recovering energy even with supply water fluctuation at low cost.
- a fresh water production method for producing fresh water by permeating a plurality of types of supply water having different water qualities through a semi-permeable membrane, the plurality of types of supply water being supplied to a semi-permeable membrane unit having a semi-permeable membrane Part of the water (referred to as the first supply water) is pressurized using a pressure exchange type energy recovery unit that recovers the pressure energy of the concentrated water discharged from the semipermeable membrane unit, and the plurality of types of supply water
- the remaining portion (referred to as second supply water) is boosted by a high-pressure pump, and the first supply water and the second supply water that have been boosted are combined and supplied to the semipermeable membrane unit.
- the fresh water producing apparatus further comprising a high-pressure pump for boosting the second supply water in the second supply water line.
- a semipermeable membrane unit different from the semipermeable membrane unit is disposed in the first supply water line so that the concentrated water from the semipermeable membrane unit is used as the first supply water, or the semipermeable membrane unit.
- the supply water that passes through the pressure exchange type energy recovery unit is substantially different from the supply water that does not pass through the unit. Therefore, it is possible to reduce the demands on the pump and piping to reduce the cost, and to maintain high energy recovery efficiency stably against the amount of supplied water and water quality fluctuations. Furthermore, the effective use of the pressure energy of the concentrated water coming out of the semipermeable membrane unit can be promoted.
- FIG. 1 An example of the fresh water production apparatus of the present invention is shown in FIG.
- the fresh water producing apparatus shown in FIG. 1 processes a plurality of types of supply water having different water qualities, discharges permeate and concentrated water, and a part of the plurality of types of supply water (first A first supply water line that supplies the semipermeable membrane unit 9 to the semipermeable membrane unit 9 and a second supply water line that supplies the remainder (referred to as the second supply water) of the plurality of types of supply water to the semipermeable membrane unit 9.
- a pressure exchange type energy recovery unit 4 that recovers the pressure energy of the concentrated water discharged from the semipermeable membrane unit 9.
- the pressure exchange type energy recovery unit 4 is arranged so as to increase the pressure of the first supply water with the recovered pressure energy, and further, a high pressure pump 8 for increasing the pressure of the second supply water is provided in the second supply water line. I have.
- the treated water treated by the first pretreatment unit 3 is converted into a pressure exchange type energy recovery unit. 4 is supplied.
- the water boosted by the pressure exchange type energy recovery unit 4 is further boosted by the booster pump 5 to a pressure equivalent to the second supply water boosted by the high pressure pump 8.
- the second supply water is supplied from the second supply water tank 6 to the second pretreatment unit 11 by the second intake pump 7 and processed, and then the pressure is substantially increased to a pressure required for the membrane treatment by the high pressure pump 8. The pressure is increased to.
- the water pressurized by the high-pressure pump 8 is mixed with the water pressurized by the pressure exchange type energy recovery unit 4 and the booster pump 5 and supplied to the semipermeable membrane unit 9.
- the first supply water and the second supply water supplied by mixing are processed, and the permeated water and the concentrated water are discharged.
- the permeated water is taken out as production water 10.
- the concentrated water having pressure energy discharged from the semipermeable membrane unit 9 is supplied to the pressure exchange type energy recovery unit 4 to transmit the pressure energy to the first supply water, and then, as the concentrated drainage 16, it is taken out of the system. Discharged.
- raw water having different water quality such as salt concentration and temperature is used as the first supply water and the second supply water. Therefore, piping and equipment having different characteristics according to the water quality can be provided in the first supply water line and the second supply water line.
- the first intake pump 2, 1 Pretreatment unit 3, booster pump 5, pressure exchange type energy recovery unit 4, and a pipe (first supply water line) in which they are disposed are provided with excellent corrosion resistance against salt.
- the equipment and piping of the second supply water line having a low concentration one having inferior corrosion resistance than the first supply water line is installed.
- the high pressure pump 8 of the second supply water line, the second pretreatment unit 11 and the like can reduce the material requirement level, and thus the cost required for equipment and maintenance can be reduced.
- materials such as duplex stainless steel, duplex stainless steel, super austenitic stainless steel, ceramic, fiber reinforced plastics, etc. with excellent corrosion resistance are used. These materials are difficult in price. However, according to the present invention, the amount of these materials used can be minimized and the cost of the apparatus can be reduced.
- high-concentration raw water include water with a high salt concentration, such as seawater, seawater-derived treated water and concentrated water
- typical examples of low-concentration raw water include river water, groundwater, and wastewater treated water. Water with low salt concentration is mentioned.
- FIG. 2 shows another embodiment of the fresh water producing apparatus according to the present invention, and shows a case where a mixing adjustment function of feed water is added.
- a mixing adjustment function for example, as shown in FIG. Specifically, a pipe for flowing the low-concentration second feed water from the second feed water tank 6 to the first feed water tank 1 and a flow rate adjusting valve 13 for adjusting the flow rate in the pipe are provided. It is preferable that the second supply water can be supplied to the first supply water line in accordance with the flow rate fluctuation of the raw water.
- a flow of the raw water is provided by providing a pipe for flowing the high-concentration first feed water from the first feed water tank 1 to the second feed water line and a flow rate adjusting valve 12 for regulating the flow rate in the pipe.
- the first supply water may be supplied to the second supply water line.
- the high concentration first supply water flows to the low concentration second supply water line, deterioration of the equipment and piping designed as the low concentration second supply water line is allowed. Try to keep the flow rate within the specified range.
- the embodiment shown in FIG. 2 is the same as FIG. 1 except for the points described above.
- FIG. 3 shows still another embodiment of the fresh water producing apparatus according to the present invention, and shows a case where a temperature adjustment function for the feed water is added.
- the temperature of the first feed water having a low temperature may be raised to promote subsequent pressure loss reduction and pretreatment efficiency.
- the entire amount of the second supply water that has passed through the heat exchange unit 14 can be returned to the second supply water tank. If it is not desired to lower the temperature, a part or all of the second supply water passes through the drainage pipe 15 to the outside of the system. It can also be discharged.
- the embodiment shown in FIG. 3 is the same as FIG. 1 except for the points described above.
- the high salt concentration feed water is the feed water that is pressurized by the pressure exchange type energy recovery unit by pressure exchange (that is, the first feed water).
- the two types of supply water are mixed and then processed by the semipermeable membrane unit 9, and the permeated water (fresh water) and the concentrated water having pressure energy are discharged from the semipermeable membrane unit 9.
- the concentrated water discharged from the semipermeable membrane unit 9 has its pressure energy exchanged by the pressure exchange type energy recovery unit 4, but several percent of the concentrated water is likely to leak into the first supply water during this pressure exchange.
- high-concentration raw water is used as the first supply water, even if concentrated water derived from low-concentration raw water leaks into the first supply water, the possibility that the concentration of the first supply water will be even higher is small. The adverse effect due to the leakage of concentrated water is reduced, which is preferable.
- the total salt concentration of concentrated water from the semipermeable membrane unit is less than or equal to the total salt concentration of water boosted using the pressure exchange type energy recovery unit 4. It is preferable to make it.
- the total salt concentration in the present invention is represented by TDS (total evaporation residue), but can also be obtained as a sum of various ions and organic single components obtained by component analysis.
- the sum of the single components often includes a large measurement error, and is preferably represented by TDS.
- any one of the supply waters is subjected to a semipermeable membrane treatment in advance with another semipermeable membrane unit, and the concentrated water discharged from the semipermeable membrane treatment is mixed with the other supply water to It is also preferable that the semipermeable membrane unit 9 is mixed.
- the pressure level is different between the concentrated water obtained from the other semipermeable membrane unit and the other supply water. Therefore, without adjusting the pressure to adjust the pressure level, when mixing by merging the supply pipes (not shown), the flow rate balance fluctuates due to fluctuations in the pressure of each supply water, The problem arises that the mixing ratio varies.
- the concentrated water from the other semipermeable membrane unit is used as the second supply water, and after the second supply water has been pressurized by the high-pressure pump 8, the semipermeable membrane unit 9 is used. It is preferable to mix with the 1st feed water before supply to.
- a semipermeable membrane unit 17 is provided on the upstream side of the high-pressure pump 8 of the second supply water line of the apparatus as shown in FIG. 1, and the semipermeable membrane unit 17 is provided.
- the concentrated water from is preferably used as the second supply water of the semipermeable membrane unit 9.
- the pressure level of each of the supply water during mixing can be adjusted by the high-pressure pump 8 or the booster pump 5, and the first supply water and the second supply water having the same level of pressure (the above-described separate supply water).
- the concentrated water from the semipermeable membrane unit 17) can be merged and mixed. Further, the concentrated water (second supply water) of the other semipermeable membrane unit 17 is pressurized by the high-pressure pump 8 while maintaining the pressure, so that energy loss can be suppressed.
- first semipermeable membrane unit in which the energy recovery of the concentrated water is performed in the embodiment using the two semipermeable membrane units as described above is referred to as “first semipermeable membrane unit”.
- the provided semipermeable membrane unit may be referred to as a “second semipermeable membrane unit”.
- the semipermeable membrane unit 17 (second semipermeable membrane unit) is applied to the low concentration side line of the two types of supply water (that is, the low concentration raw water is the second Used as the supply water, the second supply water is supplied to the semipermeable membrane unit 17 through the second supply water tank 6, the second intake pump 7, the second pretreatment unit 11, and the second high pressure pump).
- the pressurization level of the supply water to the semipermeable membrane unit 17 may be smaller than the pressurization level of the supply water to the semipermeable membrane unit 9 (first semipermeable membrane unit). Therefore, the pressure of the concentrated water from the semipermeable membrane unit 17 is lower than the pressure level of the supply water to the first semipermeable membrane unit 9.
- the pressure of the concentrated water from the semipermeable membrane unit 17 is maintained as it is, and the pressure is increased to a higher pressure to obtain the pressurized level of the water supplied to the first semipermeable membrane unit 9.
- the high pressure energy possessed by the concentrated water from the semipermeable membrane unit 17 (second semipermeable membrane unit) can be effectively used without disappearing, and the effect of preventing pressure energy loss due to mixing with the first supply water is great. .
- the semipermeable membrane unit 17 (second semipermeable membrane unit) is applied to the high concentration side line of the two types of supply water (that is, the high concentration raw water is used as the second supply water).
- the second supply water is supplied to the semipermeable membrane unit 17 through the second supply water tank 6, the second intake pump 7, the second pretreatment unit 11, and the second high pressure pump).
- the pressure of the concentrated water from the semipermeable membrane unit 17 may be higher than the pressure level of the water supplied to the semipermeable membrane unit 9. In that case, it is necessary to eliminate a part of the pressure of the concentrated water from the semipermeable membrane unit 17 and to adjust the pressure level of the supply water to the semipermeable membrane unit 9. Therefore, the effect of preventing pressure energy loss is not so great.
- the semipermeable membrane unit (semipermeable membrane unit 9 or semipermeable membrane unit 17) applicable to the present invention is not particularly limited, but in order to facilitate handling, a hollow fiber membrane shape or a flat membrane shape semipermeable membrane is used. It is preferable to use a membrane in which a membrane is housed in a housing and is used as a fluid separation element (element), which is loaded in a pressure-resistant container.
- the fluid separation element is formed of a flat membrane-like semipermeable membrane, for example, the semipermeable membrane is wound in a cylindrical shape together with a flow path material (net) around a cylindrical central pipe having a large number of holes.
- reverse osmosis membrane element TM700 series and TM800 series manufactured by Toray Industries, Inc. can be mentioned.
- One of these fluid separation elements may constitute a semipermeable membrane unit, or a plurality of fluid separation elements may be connected in series or in parallel to constitute a semipermeable membrane unit.
- the semipermeable membrane As the material of the semipermeable membrane, polymer materials such as cellulose acetate polymer, polyamide, polyester, polyimide, and vinyl polymer can be used.
- the membrane structure has a dense layer on at least one side of the membrane, and on the asymmetric membrane having fine pores gradually increasing from the dense layer to the inside of the membrane or the other side, or on the dense layer of the asymmetric membrane. Either a composite film having a very thin functional layer formed of another material may be used.
- a scale inhibitor and acid / alkali are added to the feed water of each semipermeable membrane unit to prevent scale precipitation due to concentration and pH adjustment. It is possible. In addition, it is preferable to implement addition of a scale inhibitor upstream from pH adjustment so that the addition effect can be exhibited. It is also preferable to prevent an abrupt concentration or pH change in the vicinity of the addition port by providing an in-line mixer immediately after the chemical addition, or by directly contacting the addition port with the flow of the supply water.
- the scale inhibitor is a substance that forms a complex with a metal, a metal ion, or the like in a solution and solubilizes the metal or metal salt, and an organic or inorganic ionic polymer or monomer can be used.
- organic polymers synthetic polymers such as polyacrylic acid, sulfonated polystyrene, polyacrylamide, and polyallylamine, and natural polymers such as carboxymethylcellulose, chitosan, and alginic acid can be used, and ethylenediaminetetraacetic acid can be used as a monomer.
- polyphosphate etc. can be used as an inorganic type scale inhibitor.
- polyphosphate and ethylenediaminetetraacetic acid are particularly preferably used from the viewpoint of availability, ease of operation such as solubility, and cost.
- the polyphosphate refers to a polymerized inorganic phosphate material having two or more phosphorus atoms in a molecule typified by sodium hexametaphosphate and bonded with an alkali metal, an alkaline earth metal and a phosphate atom.
- Typical polyphosphates include tetrasodium pyrophosphate, disodium pyrophosphate, sodium tripolyphosphate, sodium tetrapolyphosphate, sodium heptapolyphosphate, sodium decapolyphosphate, sodium metaphosphate, sodium hexametaphosphate, and potassium salts thereof. Etc.
- sulfuric acid, sodium hydroxide, and calcium hydroxide are generally used as the acid and alkali.
- hydrochloric acid, oxalic acid, potassium hydroxide, sodium bicarbonate, ammonium hydroxide and the like can be used.
- the pretreatment units (the first pretreatment unit 3 and the second pretreatment unit 11) that can be installed for pretreatment of the supply water before the semipermeable membrane unit is supplied are the respective supply waters.
- a treatment unit that removes or sterilizes turbid components can be applied depending on the water quality and the like.
- sand filtration, microfiltration membranes, and ultrafiltration membranes are effective as pretreatment units when it is necessary to remove turbidity of the feed water.
- a bactericidal agent Chlorine is preferably used as the disinfectant, and for example, chlorine gas or sodium hypochlorite may be added to the feed water as free chlorine so as to be in the range of 1 to 5 mg / l.
- certain fungicides may not have chemical durability. In that case, add as much upstream as possible to the feed water, and further, supply water inlet of the semipermeable membrane unit.
- the disinfectant harmless in the vicinity of the side.
- its concentration is measured, and the addition amount of chlorine gas and sodium hypochlorite is controlled based on this measured value, or a reducing agent such as sodium bisulfite is added.
- the raw feed water contains bacteria, proteins, natural organic components, etc. in addition to turbidity, it is also effective to add a flocculant such as polyaluminum chloride, sulfate band, iron (III) chloride.
- a flocculant such as polyaluminum chloride, sulfate band, iron (III) chloride.
- the aggregated feed water is then subjected to sand filtration after the aggregates have been settled with a tilted plate, etc., or filtered through a microfiltration membrane or an ultrafiltration membrane in which multiple hollow fiber membranes are bundled
- sand filtration when sand filtration is used for pretreatment, it is possible to apply gravity filtration in which the water to be treated flows down naturally, or to apply pressure filtration with sand in a pressurized tank. Is also possible.
- sand to be filled single-component sand can be applied. For example, anthracite, silica sand, garnet, pumice, and the like can be combined to increase filtration efficiency.
- microfiltration membrane and ultrafiltration membrane there are no particular restrictions on the microfiltration membrane and ultrafiltration membrane, and flat membranes, hollow fiber membranes, tubular membranes, pleated types, and any other shapes can be used as appropriate.
- the material of the membrane is also particularly limited, and inorganic materials such as polyacrylonitrile, polyphenylene sulfone, polyphenylene sulfide sulfone, polyvinylidene fluoride, polypropylene, polyethylene, polysulfone, polyvinyl alcohol, cellulose acetate, and ceramics can be used.
- inorganic materials such as polyacrylonitrile, polyphenylene sulfone, polyphenylene sulfide sulfone, polyvinylidene fluoride, polypropylene, polyethylene, polysulfone, polyvinyl alcohol, cellulose acetate, and ceramics can be used.
- coagulation membrane filtration or membrane-utilized activated sludge method in which a microfiltration membrane or an ultrafiltration membrane is immersed in a coagulation sedimentation tank or a biological treatment tank and filtered, may be applied.
- MLR membrane-utilized activated sludge method
- the organic matter when the supply water contains a lot of soluble organic matter, the organic matter can be decomposed by adding chlorine gas or sodium hypochlorite. Removal is possible.
- a chelating agent such as an organic polymer electrolyte or sodium hexametaphosphate may be added, or exchanged with soluble ions using an ion exchange resin or the like.
- iron or manganese when iron or manganese is present in a soluble state, it is preferable to use an aeration oxidation filtration method, a catalytic oxidation filtration method, or the like.
- nanofiltration membrane for pretreatment for the purpose of removing specific ions and polymers in advance and operating the fresh water production apparatus of the present invention with high efficiency.
- FIG. 5 is a flow chart of a fresh water production system that can be suitably used in the present invention when two semipermeable membrane units are used as described above and polluted water is used as the second supply water.
- the second feed water is subjected to a membrane separation treatment by an immersion type membrane separation unit 19 using a coagulant and activated sludge together, and the membrane filtration water obtained is followed by a semipermeable membrane unit 17 (second To semi-permeable membrane unit).
- FIG. 6 is an aspect in which a semipermeable membrane unit 17 (second semipermeable membrane unit) is provided on the first supply water side, contrary to the case of FIG. 5, in the case where polluted water is used as the first supply water. It is a flowchart of the fresh water manufacturing system which can be used suitably.
- the first feed water is treated by the membrane separation unit 19 and then treated by the semipermeable membrane unit 17 (second semipermeable membrane unit). Note that this case differs from FIG. 5 in that a pressure exchange type energy recovery device is used to pressurize the concentrated water from the semipermeable membrane unit 17.
- FIG. 7 illustrates a case where chemical injection is added to the fresh water production apparatus shown in FIG.
- a bactericidal agent, an antibacterial agent, and a cleaning agent are injected into the first supply water by the first chemical liquid tank 27 and the supply pump 28.
- a bactericidal agent, an antibacterial agent and a cleaning agent are injected into the second supply water by the second chemical liquid tank 22 and the supply pump 23.
- These chemicals are not particularly limited, and acids, alkalis, sodium hypochlorite, chloramines, organic nitrogen sulfur compounds, organic nitrogen sulfur compounds, organic nitrogen sulfur compounds, isothiazolone compounds, hydrazine compounds, DBNPA Various chemicals can be used as needed.
- the first supply water to which the chemical has been added is treated by the semipermeable membrane unit 9 (first semipermeable membrane unit) and then discharged out of the system as concentrated water. Therefore, as necessary, the first neutralizing chemical tank 29 and the supply pump 30 generate the neutralizing agent into the concentrated drainage pipe and neutralize the concentrated wastewater.
- the second neutralization chemical liquid tank 24 and the supply pump 25 supply the semipermeable membrane unit 9 (first semipermeable membrane unit) via the high pressure pump 8 in the same manner.
- the neutralizing agent is injected into the concentrated water pipe of the semipermeable membrane unit 17 (second semipermeable membrane unit) to be neutralized. It is also possible to omit neutralization of concentrated water at this stage and neutralize collectively at the stage where the concentrated water is discharged from the semipermeable membrane unit 9.
- the present invention relates to a fresh water production apparatus and a fresh water production method using a pressure exchange type energy recovery apparatus for recovering energy of semipermeable membrane concentrated waste water, and more specifically, supply boosted by an energy recovery unit
- a pressure exchange type energy recovery apparatus for recovering energy of semipermeable membrane concentrated waste water
- supply boosted by an energy recovery unit By making the water and the supply water pressurized by the high pressure pump without passing through the energy recovery unit have different water qualities, it is possible to realize fresh water production at a low cost. For this reason, fresh water can be obtained at low cost from seawater, river water, groundwater, and wastewater treated water.
- Second supply water tank 2 First intake pump 3: First pretreatment unit 4: Pressure exchange type energy recovery unit 5: Booster pump (booster pump) 6: Second supply water tank 7: Second intake pump 8: High pressure pump 9: Semipermeable membrane unit (first semipermeable membrane unit) 10: Production water (fresh water) 11: second pretreatment unit 12: flow rate adjustment valve 13: flow rate adjustment valve 14: heat exchange unit 15: drainage pipe 16: concentrated drainage pipe 17: semipermeable membrane unit (second semipermeable membrane unit) 18: Second high pressure pump 19: Immersion type filtration separation unit 22: Second chemical liquid tank 23: Second chemical liquid supply pump 24: Second neutralizing chemical liquid tank 25: Second neutralizing chemical liquid supply pump 26: Drain valve 27: Second 1 chemical liquid tank 28: first chemical liquid supply pump 29: first neutralized chemical liquid tank 30: first neutralized chemical liquid supply pump 31: supply water mixing tank
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Water Supply & Treatment (AREA)
- Nanotechnology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Organic Chemistry (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
Description
(1) 水質の異なる複数種の供給水を、半透膜を透過させて淡水を製造する淡水製造方法であって、半透膜を備えた半透膜ユニットに供給される複数種の供給水のうちの一部(第1供給水という)は、前記半透膜ユニットから排出される濃縮水の圧力エネルギーを回収する圧力交換式エネルギー回収ユニットを利用して昇圧し、前記複数種の供給水のうちの残り(第2供給水という)は、高圧ポンプにより昇圧し、昇圧した前記第1供給水及び前記第2供給水を合わせて前記半透膜ユニットに供給する淡水製造方法。
(2) 前記第1供給水は、前記第2供給水よりも全塩濃度が高い、前記(1)記載の淡水製造方法。
(3) 前記第1供給水の昇圧前の圧力は、前記第2供給水の昇圧前の圧力よりも低い、前記(2)記載の淡水製造方法。
(4) 前記第1供給水または前記第2供給水は、前記半透膜ユニットとは異なる半透膜ユニットからの濃縮水である、前記(1)~(3)いずれかに記載に淡水製造方法。
(5) 水質の異なる複数種の供給水を合わせて処理し透過水と濃縮水とを排出する半透膜ユニットと、前記複数種の供給水のうちの一部(第1供給水という)を前記半透膜ユニットに供給する第1供給水ラインと、前記複数種の供給水のうちの残り(第2供給水という)を前記半透膜ユニットに供給する第2供給水ラインと、前記半透膜ユニットから排出される濃縮水の圧力エネルギーを回収する圧力交換式エネルギー回収ユニットとを備え、前記圧力交換式エネルギー回収ユニットは、回収した圧力エネルギーで前記第1供給水を昇圧するように配設されてなり、さらに、前記第2供給水ラインには、前記第2供給水を昇圧する高圧ポンプを備えている淡水製造装置。
(6) 前記半透膜ユニットとは異なる半透膜ユニットを、該半透膜ユニットからの濃縮水が前記第1供給水として使用されるように前記第1供給水ラインに、または、該半透膜ユニットからの濃縮水が前記第2供給水として使用されるように前記第2供給水ラインに、備えている、前記(5)記載の淡水製造装置。
2:第1取水ポンプ
3:第1前処理ユニット
4:圧力交換式エネルギー回収ユニット
5:昇圧ポンプ(ブースターポンプ)
6:第2供給水タンク
7:第2取水ポンプ
8:高圧ポンプ
9:半透膜ユニット(第1半透膜ユニット)
10:生産水(淡水)
11:第2前処理ユニット
12:流量調整バルブ
13:流量調整バルブ
14:熱交換ユニット
15:排水用配管
16:濃縮排水用配管
17:半透膜ユニット(第2半透膜ユニット)
18:第2高圧ポンプ
19:浸漬型ろ過分離ユニット
22:第2薬液タンク
23:第2薬液供給ポンプ
24:第2中和薬液タンク
25:第2中和薬液供給ポンプ
26:排水バルブ
27:第1薬液タンク
28:第1薬液供給ポンプ
29:第1中和薬液タンク
30:第1中和薬液供給ポンプ
31:供給水混合タンク
Claims (6)
- 水質の異なる複数種の供給水を、半透膜を透過させて淡水を製造する淡水製造方法であって、半透膜を備えた半透膜ユニットに供給される複数種の供給水のうちの一部(第1供給水という)は、前記半透膜ユニットから排出される濃縮水の圧力エネルギーを回収する圧力交換式エネルギー回収ユニットを利用して昇圧し、前記複数種の供給水のうちの残り(第2供給水という)は、高圧ポンプにより昇圧し、昇圧した前記第1供給水及び前記第2供給水を合わせて前記半透膜ユニットに供給する淡水製造方法。
- 前記第1供給水は、前記第2供給水よりも全塩濃度が高い、請求項1記載の淡水製造方法。
- 前記第1供給水の昇圧前の圧力は、前記第2供給水の昇圧前の圧力よりも低い、請求項2記載の淡水製造方法。
- 前記第1供給水または前記第2供給水は、前記半透膜ユニットとは異なる半透膜ユニットからの濃縮水である、請求項1~3いずれかに記載に淡水製造方法。
- 水質の異なる複数種の供給水を合わせて処理し透過水と濃縮水とを排出する半透膜ユニットと、前記複数種の供給水のうちの一部(第1供給水という)を前記半透膜ユニットに供給する第1供給水ラインと、前記複数種の供給水のうちの残り(第2供給水という)を前記半透膜ユニットに供給する第2供給水ラインと、前記半透膜ユニットから排出される濃縮水の圧力エネルギーを回収する圧力交換式エネルギー回収ユニットとを備え、前記圧力交換式エネルギー回収ユニットは、回収した圧力エネルギーで前記第1供給水を昇圧するように配設されてなり、さらに、前記第2供給水ラインには、前記第2供給水を昇圧する高圧ポンプを備えている淡水製造装置。
- 前記半透膜ユニットとは異なる半透膜ユニットを、該半透膜ユニットからの濃縮水が前記第1供給水として使用されるように前記第1供給水ラインに、または、該半透膜ユニットからの濃縮水が前記第2供給水として使用されるように前記第2供給水ラインに、備えている、請求項5記載の淡水製造装置。
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2010293661A AU2010293661B2 (en) | 2009-09-08 | 2010-05-20 | Fresh water production method and fresh water production device |
SG2012011730A SG178514A1 (en) | 2009-09-08 | 2010-05-20 | Fresh water production method and fresh water production device |
CN2010800399007A CN102482123A (zh) | 2009-09-08 | 2010-05-20 | 淡水制造方法及淡水制造装置 |
JP2010523212A JP5549591B2 (ja) | 2009-09-08 | 2010-05-20 | 淡水製造方法及び淡水製造装置 |
MX2012002889A MX2012002889A (es) | 2009-09-08 | 2010-05-20 | Metodo para producir agua pura y aparato para produccion de agua pura. |
EP10815187.9A EP2476651A4 (en) | 2009-09-08 | 2010-05-20 | METHOD FOR PRODUCING FRESHWATER AND DEVICE FOR PRODUCING FRESHWATER |
US13/394,681 US20120168378A1 (en) | 2009-09-08 | 2010-05-20 | Method for producing pure water and pure water production apparatus |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009206824 | 2009-09-08 | ||
JP2009-206824 | 2009-09-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011030589A1 true WO2011030589A1 (ja) | 2011-03-17 |
Family
ID=43732266
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/058518 WO2011030589A1 (ja) | 2009-09-08 | 2010-05-20 | 淡水製造方法及び淡水製造装置 |
Country Status (8)
Country | Link |
---|---|
US (1) | US20120168378A1 (ja) |
EP (1) | EP2476651A4 (ja) |
JP (1) | JP5549591B2 (ja) |
CN (1) | CN102482123A (ja) |
AU (1) | AU2010293661B2 (ja) |
MX (1) | MX2012002889A (ja) |
SG (1) | SG178514A1 (ja) |
WO (1) | WO2011030589A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013043155A (ja) * | 2011-08-26 | 2013-03-04 | Hitachi Plant Technologies Ltd | 海水淡水化システムおよび海水淡水化方法 |
WO2013058126A1 (ja) * | 2011-10-18 | 2013-04-25 | 株式会社神鋼環境ソリューション | 浄化水生成方法及び浄化水生成装置 |
JP5967337B1 (ja) * | 2015-03-31 | 2016-08-10 | 栗田工業株式会社 | 逆浸透膜処理システムの運転方法及び逆浸透膜処理システム |
WO2016158633A1 (ja) * | 2015-03-31 | 2016-10-06 | 栗田工業株式会社 | 逆浸透膜処理システムの運転方法及び逆浸透膜処理システム |
JP2016215179A (ja) * | 2015-05-26 | 2016-12-22 | 株式会社日立製作所 | 逆浸透膜を用いた脱塩システムおよびその運転方法 |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014128746A (ja) * | 2012-12-28 | 2014-07-10 | Hitachi Ltd | 海水淡水化装置、海水淡水化方法及び海水淡水化用凝集剤セット |
WO2015146639A1 (ja) * | 2014-03-27 | 2015-10-01 | 株式会社 荏原製作所 | エネルギー回収システム |
JP5910675B2 (ja) * | 2014-07-03 | 2016-04-27 | 栗田工業株式会社 | 純水製造装置及び純水製造方法 |
EP3009181A1 (en) * | 2014-09-29 | 2016-04-20 | Sulzer Management AG | Reverse osmosis system |
ES2631133B1 (es) * | 2016-02-25 | 2018-07-30 | Andres Garcia Martinez | Recuperador de energía por transferencia entre dos circuitos hidráulicos |
US10934627B2 (en) * | 2016-05-06 | 2021-03-02 | Malvi Technologies, Llc | Methods and systems for making hypochlorite solution from reverse osmosis brine |
KR101822188B1 (ko) * | 2016-05-26 | 2018-03-09 | 재단법인 제주테크노파크 | 고효율 저에너지 용암해수 담수화 시스템 및 담수화 방법 |
CN106396195A (zh) * | 2016-11-29 | 2017-02-15 | 长沙秋点兵信息科技有限公司 | 酸浸工艺提炼钴镍所产生废液的循环处理方法 |
WO2019036787A1 (pt) * | 2017-08-22 | 2019-02-28 | Allflow Equipamentos Industriais E Comercio Ltda. | Sistema de reaproveitamento de águas de rejeito oriundas de processo de filtragem por osmose reversa e método para o tratamento de águas de rejeito |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08108048A (ja) | 1994-10-12 | 1996-04-30 | Toray Ind Inc | 逆浸透分離装置及び逆浸透分離方法 |
JP2004081913A (ja) * | 2002-08-23 | 2004-03-18 | Hitachi Zosen Corp | 逆浸透法による海水淡水化方法 |
JP2004081903A (ja) * | 2002-08-23 | 2004-03-18 | Hitachi Zosen Corp | 淡水化方法 |
JP2008039024A (ja) * | 2006-08-04 | 2008-02-21 | Hitachi Plant Technologies Ltd | 圧力変換器 |
JP2008161797A (ja) * | 2006-12-28 | 2008-07-17 | Toray Ind Inc | 淡水製造装置の運転方法および淡水製造装置 |
WO2010061879A1 (ja) * | 2008-11-28 | 2010-06-03 | 株式会社神鋼環境ソリューション | 淡水生成方法、淡水生成装置、海水淡水化方法および海水淡水化装置 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6797173B1 (en) * | 1999-11-02 | 2004-09-28 | Eli Oklejas, Jr. | Method and apparatus for membrane recirculation and concentrate energy recovery in a reverse osmosis system |
JP2003200160A (ja) * | 2002-01-09 | 2003-07-15 | Toray Ind Inc | 造水方法および造水装置 |
US7144511B2 (en) * | 2002-05-02 | 2006-12-05 | City Of Long Beach | Two stage nanofiltration seawater desalination system |
KR101421461B1 (ko) * | 2006-05-12 | 2014-07-22 | 에너지 리커버리 인코포레이티드 | 하이브리드 알오/피알오 시스템 |
US20080105617A1 (en) * | 2006-06-14 | 2008-05-08 | Eli Oklejas | Two pass reverse osmosis system |
WO2009038758A1 (en) * | 2007-09-20 | 2009-03-26 | Verenium Corporation | Wastewater treatment system |
-
2010
- 2010-05-20 MX MX2012002889A patent/MX2012002889A/es not_active Application Discontinuation
- 2010-05-20 JP JP2010523212A patent/JP5549591B2/ja not_active Expired - Fee Related
- 2010-05-20 SG SG2012011730A patent/SG178514A1/en unknown
- 2010-05-20 CN CN2010800399007A patent/CN102482123A/zh active Pending
- 2010-05-20 WO PCT/JP2010/058518 patent/WO2011030589A1/ja active Application Filing
- 2010-05-20 AU AU2010293661A patent/AU2010293661B2/en not_active Ceased
- 2010-05-20 US US13/394,681 patent/US20120168378A1/en not_active Abandoned
- 2010-05-20 EP EP10815187.9A patent/EP2476651A4/en not_active Withdrawn
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08108048A (ja) | 1994-10-12 | 1996-04-30 | Toray Ind Inc | 逆浸透分離装置及び逆浸透分離方法 |
JP2004081913A (ja) * | 2002-08-23 | 2004-03-18 | Hitachi Zosen Corp | 逆浸透法による海水淡水化方法 |
JP2004081903A (ja) * | 2002-08-23 | 2004-03-18 | Hitachi Zosen Corp | 淡水化方法 |
JP2008039024A (ja) * | 2006-08-04 | 2008-02-21 | Hitachi Plant Technologies Ltd | 圧力変換器 |
JP2008161797A (ja) * | 2006-12-28 | 2008-07-17 | Toray Ind Inc | 淡水製造装置の運転方法および淡水製造装置 |
WO2010061879A1 (ja) * | 2008-11-28 | 2010-06-03 | 株式会社神鋼環境ソリューション | 淡水生成方法、淡水生成装置、海水淡水化方法および海水淡水化装置 |
Non-Patent Citations (5)
Title |
---|
"Four including Kobelco Eco-Solutions Co., Ltd., Model Project of METI, Demonstration Test in Shunan City", NIHON SUIDO SIMBUN, 2 July 2009 (2009-07-02), Retrieved from the Internet <URL:<URL: http://www.suido-gesuido.co.jp/blog/suido/2009/03/post 2780 .html>> |
"Regarding Adoption of ''Model Program to Discover Technology Seeds and Demonstrate Social Systems for a Low Carbon Society", 2 March 2009, TORAY INDUSTRIES INC. |
G. G. PIQUE: "Low Power Bill makes seawater affordable", DESALINATION & WATER REUSE, vol. 15, no. 3, 2005, pages 47 - 50 |
HIROYUKI YAMAMURA ET AL.: "Development of Energy Saving and Low Cost Type Reverse Osmosis Membrane Method Seawater Desalination Technology", MEMBRANE, vol. 23, no. 5, 1998, pages 245 - 250 |
R. C. CHENG: "A Novel Approach to Seawater Desalination Using Dual Dual-Staged Nanofiltration Process", AWWA ANNUAL CONFERENCE, June 2005 (2005-06-01) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10005688B2 (en) | 2011-08-26 | 2018-06-26 | Hitachi, Ltd. | Desalination system and desalination method |
US9988293B2 (en) | 2011-08-26 | 2018-06-05 | Hitachi, Ltd. | Desalination system and desalination method |
CN104326629A (zh) * | 2011-08-26 | 2015-02-04 | 株式会社日立制作所 | 海水淡化系统以及海水淡化方法 |
US9988294B2 (en) | 2011-08-26 | 2018-06-05 | Hitachi, Ltd. | Desalination system and desalination method |
CN104326629B (zh) * | 2011-08-26 | 2016-08-17 | 株式会社日立制作所 | 海水淡化系统以及海水淡化方法 |
US10071929B2 (en) | 2011-08-26 | 2018-09-11 | Hitachi, Ltd. | Desalination system and desalination method |
CN102951768A (zh) * | 2011-08-26 | 2013-03-06 | 株式会社日立工业设备技术 | 海水淡化系统以及海水淡化方法 |
JP2013043155A (ja) * | 2011-08-26 | 2013-03-04 | Hitachi Plant Technologies Ltd | 海水淡水化システムおよび海水淡水化方法 |
WO2013058126A1 (ja) * | 2011-10-18 | 2013-04-25 | 株式会社神鋼環境ソリューション | 浄化水生成方法及び浄化水生成装置 |
JP2013086020A (ja) * | 2011-10-18 | 2013-05-13 | Kobelco Eco-Solutions Co Ltd | 浄化水生成方法及び浄化水生成装置 |
JP5967337B1 (ja) * | 2015-03-31 | 2016-08-10 | 栗田工業株式会社 | 逆浸透膜処理システムの運転方法及び逆浸透膜処理システム |
CN107428566A (zh) * | 2015-03-31 | 2017-12-01 | 栗田工业株式会社 | 反渗透膜处理系统的运行方法以及反渗透膜处理系统 |
WO2016158633A1 (ja) * | 2015-03-31 | 2016-10-06 | 栗田工業株式会社 | 逆浸透膜処理システムの運転方法及び逆浸透膜処理システム |
EP3279151A4 (en) * | 2015-03-31 | 2018-12-12 | Kurita Water Industries Ltd. | Reverse osmosis membrane treatment system operation method and reverse osmosis membrane treatment system |
US10730771B2 (en) | 2015-03-31 | 2020-08-04 | Kurita Water Industries Ltd. | Method for operating reverse-osmosis membrane treatment system |
CN107428566B (zh) * | 2015-03-31 | 2021-06-15 | 栗田工业株式会社 | 反渗透膜处理系统的运行方法以及反渗透膜处理系统 |
JP2016215179A (ja) * | 2015-05-26 | 2016-12-22 | 株式会社日立製作所 | 逆浸透膜を用いた脱塩システムおよびその運転方法 |
Also Published As
Publication number | Publication date |
---|---|
AU2010293661A1 (en) | 2012-03-01 |
MX2012002889A (es) | 2012-04-02 |
JPWO2011030589A1 (ja) | 2013-02-04 |
SG178514A1 (en) | 2012-03-29 |
EP2476651A1 (en) | 2012-07-18 |
AU2010293661B2 (en) | 2015-08-27 |
EP2476651A4 (en) | 2014-07-02 |
US20120168378A1 (en) | 2012-07-05 |
CN102482123A (zh) | 2012-05-30 |
JP5549591B2 (ja) | 2014-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5549591B2 (ja) | 淡水製造方法及び淡水製造装置 | |
JP5691522B2 (ja) | 造水システムおよびその運転方法 | |
JP5549589B2 (ja) | 造水システム | |
JP5929195B2 (ja) | 淡水製造装置およびその運転方法 | |
US9309138B2 (en) | Fresh water production method | |
JP5488466B2 (ja) | 造水装置 | |
JP2008161797A (ja) | 淡水製造装置の運転方法および淡水製造装置 | |
WO2007129530A1 (ja) | 淡水製造方法 | |
JP5867082B2 (ja) | 淡水の製造方法 | |
WO2019087867A1 (ja) | 海水淡水化方法および海水淡水化システム | |
JP2007152265A (ja) | 淡水製造装置の運転方法および淡水製造装置 | |
WO2014115769A1 (ja) | 淡水製造装置の運転方法 | |
JP6447133B2 (ja) | 造水システムおよび造水方法 | |
JP5999087B2 (ja) | 水処理装置および水処理方法 | |
JP2011104504A (ja) | 水処理設備の洗浄方法 | |
JP2014140794A (ja) | 造水装置および造水方法 | |
JP2014221450A (ja) | 造水方法 | |
JP2015123430A (ja) | 造水方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080039900.7 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010523212 Country of ref document: JP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10815187 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: DZP2012000061 Country of ref document: DZ |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010815187 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010293661 Country of ref document: AU |
|
ENP | Entry into the national phase |
Ref document number: 2010293661 Country of ref document: AU Date of ref document: 20100520 Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13394681 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2012/002889 Country of ref document: MX |
|
WWE | Wipo information: entry into national phase |
Ref document number: 3076/CHENP/2012 Country of ref document: IN |