WO2010040285A1 - Titanium-containing active material for negative electrodes and its production method and titanium-containing power lithium battery - Google Patents
Titanium-containing active material for negative electrodes and its production method and titanium-containing power lithium battery Download PDFInfo
- Publication number
- WO2010040285A1 WO2010040285A1 PCT/CN2009/070353 CN2009070353W WO2010040285A1 WO 2010040285 A1 WO2010040285 A1 WO 2010040285A1 CN 2009070353 W CN2009070353 W CN 2009070353W WO 2010040285 A1 WO2010040285 A1 WO 2010040285A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lithium
- titanium
- oxide
- active material
- negative electrode
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/485—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the surface of the lithium titanate negative electrode can make the battery charge up to 20,000 times.
- the spinel structure is conducive to the insertion and removal of lithium ions.
- the platform is located near 1.5V (vs. Li/Li ⁇ ), which is not easy to cause lithium metal to precipitate, can perform large current charge and discharge, solve the dendrite problem, and the battery unit can avoid thermal runaway.
- the solid electrolyte interface SEI does not form at the interface between Li 4 Ti 5 0 12 and the electrolyte.
- the binder composition has a mass ratio of 85 to 95%: 3 to 10%: 2 to 10%.
- Active cathode material LiFeP0 4 or Li 2 FeSi0 4
- Mn active cathode material LiMnP0 4 , LiCo x Ni y Mn (1 . x . y) 0 2 (0 ⁇ 1,0 ⁇ y ⁇ l), Li[Li x Mn (2 . x) ]0 4 (0 ⁇ x ⁇ l/3) , Li[M x Mn (2 . x) ]0 4 (0 ⁇ 1, M is a 3d transition metal element) , Li 2 MnSi0 4 .
- Lithium carbonate 4.95mol of titanium dioxide, O.lmol of nano-sized alumina powder, 2mol of acetylene black, rotating at 100 r/min, grinding and dispersing for 24 hours to prepare a composite lithium titanate precursor mixture; dispersing the composite lithium titanate precursor mixture In ethanol, the ratio of solid to organic solvent is 1.0:1 to 350. Spray drying under C conditions to obtain a dispersed powder;
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
A titanium-containing active material for negative electrodes and its production method, and a titanium-containing power lithium battery. The titanium-containing active material for negative electrodes has a general formula of Li4Ti5O12/Mx, wherein Li4Ti5O12 is spinel lithium titanate, M is a doping substance selected from a metal element, metal compound, non-metal substance or non-metal compound, and 0<x≤10; an element or ion of said doping substance enters into the lattice matrix of Li4Ti5O12 or combines with Li4Ti5O12. The production method for the titanium-containing active material includes the following steps: a mixture of a composite lithium titanate precursor is produced and heat treated after spray drying. The titanium-containing power lithium battery uses Li4Ti5O12/Mx as an active material for negative electrodes.
Description
说明书 钛系负极活性物质及其制备方法、 钛系锂离子动力电池 钛系负极活性物质及其制备方法、 钛系锂离子动力电池 Titanium-based anode active material and preparation method thereof, titanium-based lithium ion power battery, titanium-based anode active material, preparation method thereof, and titanium-based lithium ion power battery
[1] 技术领域 [1] Technical field
[2] 本发明涉及一种动力电池用的锂离子电池负极材料及其制备方法, 以及使用该 负极材料的锂离子动力电池, 特别是一种钛系负极材料及其制备方法, 以及使 用该钛系负极材料的锂离子动力电池。 [2] The present invention relates to a lithium ion battery anode material for a power battery, a preparation method thereof, and a lithium ion power battery using the anode material, in particular, a titanium anode material, a preparation method thereof, and the use of the titanium A lithium ion power battery that is a negative electrode material.
[3] 背景技术 [3] Background Art
[4] 随着全球经济的稳步发展, 汽车的产量急剧增加。 燃油汽车所排放的废气造成 大气环境污染, 空气中的污染物 63% [4] With the steady development of the global economy, the production of automobiles has increased dramatically. The exhaust gas emitted by the fuel car causes atmospheric pollution, and the pollutants in the air are 63%.
来自于汽车尾气。 环境问题, 特别是空气质量的日趋恶化, 已引起世界各国, 尤其是发达国家的普遍关注。 上世纪 70 From the car exhaust. Environmental issues, especially the deteriorating air quality, have caused widespread concern in countries around the world, especially in developed countries. Last century 70
年代全球三次石油危机爆发后, 各跨国汽车公司先后开始研发各种类型的电动 汽车。 进入 90 After the outbreak of three global oil crises in the world, various multinational auto companies began to develop various types of electric vehicles. Enter 90
年代, 随着全球能源危机的不断加深, 石油资源的日趋枯竭以及大气污染、 全 球气温上升的危害加剧, 以美欧为主的一些西方国家开始制订并逐步执行严厉 的汽车尾气排放标准。 各国政府及汽车企业普遍认识到节能和减排是未来汽车 技术发展的主攻方向, 开发无排放或低排放、 低油耗的清洁汽车势在必行, 电 动汽车的开发和应用将是解决这两个技术难点的最佳途径, 低能耗、 无污染的 绿色汽车开始成为人们关注的热点。 In the era, with the deepening of the global energy crisis, the depletion of oil resources and the increase of air pollution and rising global temperatures, some western countries, mainly in the United States and Europe, began to formulate and gradually implement strict standards for vehicle exhaust emissions. Governments and auto companies generally recognize that energy conservation and emission reduction are the main directions for future automotive technology development. It is imperative to develop clean vehicles with no emissions or low emissions and low fuel consumption. The development and application of electric vehicles will solve these two problems. The best way to technical difficulties, low-energy, pollution-free green cars have begun to become a hot spot of concern.
[5] 目前使用和开发的电动汽车用动力电池主要有: 铅酸电池、 镍镉电池、 镍氢电 池、 锂离子电池和燃料电池。 锂离子电池是一种在 20世纪 90 [5] Currently used and developed power batteries for electric vehicles mainly include: lead-acid batteries, nickel-cadmium batteries, nickel-hydrogen batteries, lithium-ion batteries and fuel cells. Lithium-ion battery is a kind in the 20th century 90
年代初发展起来的、 迄今为止最先进的可充电电池。 锂离子电池具有工作电压 高, 为 3.6V, 能量密度高, 分别是 Cd/Ni和 MH/Ni电池的 3倍和 1.5 The most advanced rechargeable battery ever developed in the early years. Lithium-ion batteries have a high operating voltage of 3.6V and high energy density, which is 3 times and 1.5 times that of Cd/Ni and MH/Ni batteries, respectively.
倍, 自放电小, 小于 8%/月, 寿命长及无记忆效应, 对环境友好的优点, 最有可 能达到电动车的要求。 自 1991年索尼公司将锂离子电池技术推向市场至今, 电 极材料的进步一直在推动该项技术的不断发展, 先进电极材料成为目前锂离子
电池更新换代的核心技术。 现有技术的锂离子电池作为动力电池用于电动车, 存在如下不足: (1) 快充问题十分突出, 汽车在正常行驶吋, 现有锂离子电池 的放电倍率完全能满足, 但在制动过程中, 制动过程短暂, 一般不超过 10s , 电机需求较大的瞬间电流, 以有效制动和回收能量, 理论上汽车有 50〜60 %的制动能量可回收, 而实际回收的制动能量<20%, 现有锂离子电池的放电倍 率, 尤其是充电倍率难以达到电动汽车快充快放的基本要求。 (2) 安全性是车 载锂离子电池走向实用的关键因素, 安全问题制约动力电池的发展, 现有技术 锂离子电池用正负极材料安全性低, 主要有以下四个原因: a.传统锂离子充电电 池正极材料为 LiCo02、 石墨为负极材料, 正极材料在 150 Times, self-discharge is small, less than 8% / month, long life and no memory effect, the advantages of environmental friendliness, most likely to meet the requirements of electric vehicles. Since Sony introduced lithium-ion battery technology to the market in 1991, advances in electrode materials have been driving the continuous development of this technology. Advanced electrode materials have become the current lithium ion. The core technology of battery replacement. The lithium-ion battery of the prior art is used as a power battery for an electric vehicle, and has the following disadvantages: (1) The problem of fast charging is very prominent. After the vehicle is running normally, the discharge rate of the existing lithium ion battery can be fully satisfied, but in the braking In the process, the braking process is short, generally not more than 10s, and the motor needs a large instantaneous current to effectively brake and recover energy. In theory, the vehicle has 50~60% of braking energy that can be recovered, and the actual recovered braking. Energy <20%, the discharge rate of existing lithium-ion batteries, especially the charging rate is difficult to meet the basic requirements of electric vehicles fast charge and fast release. (2) Safety is a key factor for the practical use of lithium-ion batteries in vehicles. Safety issues restrict the development of power batteries. The safety of positive and negative materials for lithium-ion batteries in the prior art is low, mainly for the following four reasons: a. Traditional lithium The anode material of the ion-charged battery is LiCo0 2 , the graphite is the anode material, and the cathode material is 150.
^左右会分解析出氧气, 并与电解液发生反应, 导致异常发热现象; b.锂离子在 碳基材料的嵌入电位接近金属锂的还原电位; c.不能进行大倍率充放电; d.电压 曲线上没有充电结束指示, 不适合于电动车用动力电池。 ^The left and right will resolve the oxygen and react with the electrolyte, resulting in abnormal heating; b. The insertion potential of lithium ion in the carbon-based material is close to the reduction potential of the metal lithium; c. The large-rate charge and discharge cannot be performed; d. There is no charging end indication on the curve, which is not suitable for power batteries for electric vehicles.
作为锂离子电池用负极材料, 非碳负极材料因为具有高的能量密度和安全性能 日益受到研究者重视。 非碳材料钛酸锂 Li4Ti5012具有尖晶石结构, 空间群 Fd3m , 用作负极材料吋, 充放电过程中体积和结构变化小 (石墨的体积膨胀率通常 为 9%左右, 充放电吋温度的反复变化, 容易导致光滑表面受损, 使用寿命一般 4 00 As a negative electrode material for lithium ion batteries, non-carbon negative electrode materials have received increasing attention from researchers because of their high energy density and safety performance. Non-carbon material Lithium titanate Li 4 Ti 5 0 12 has a spinel structure, space group Fd3m, used as a negative electrode material, and has small volume and structure changes during charge and discharge (the volume expansion ratio of graphite is usually about 9%, charge) Repeated changes in the temperature of the discharge 容易, easily lead to damage to the smooth surface, the service life is generally 4 00
个充电周期左右) , 是零应变材料, 因而具有优良的循环性能, 钛酸锂负极凹 凸不平的表面可使电池充电次数最高达到 2万次, 其尖晶石结构利于锂离子的嵌 脱, 电压平台位于 1.5V(vs.Li/Li÷) 附近, 不易引起金属锂析出, 能够进行大电流 充放电, 解决了枝晶问题, 电池单元能够避免热失控现象。 与通常的石墨不同 , Li4Ti5012与电解液之间的界面上不会形成固态电解质界面 SEI It is a zero-strain material, so it has excellent cycle performance. The surface of the lithium titanate negative electrode can make the battery charge up to 20,000 times. The spinel structure is conducive to the insertion and removal of lithium ions. The platform is located near 1.5V (vs. Li/Li÷), which is not easy to cause lithium metal to precipitate, can perform large current charge and discharge, solve the dendrite problem, and the battery unit can avoid thermal runaway. Unlike ordinary graphite, the solid electrolyte interface SEI does not form at the interface between Li 4 Ti 5 0 12 and the electrolyte.
薄膜, 因此, 内阻不会增加。 此外钛酸锂具有明显的充放电平台, 充放电结束 吋有明显的电压突变, 具有良好的耐过充性能和耐过放性能。 由于内阻较低, 可以与不同的电解液搭配, 因此低温下的放电特性优异。 尖晶石型钛酸锂适合 于电动车用动力电源, 其理论嵌锂容量为 175mAh/g The film, therefore, does not increase internal resistance. In addition, lithium titanate has obvious charging and discharging platform, and has obvious voltage mutation at the end of charge and discharge, and has good overcharge resistance and over-discharge resistance. Since the internal resistance is low, it can be combined with different electrolytes, so the discharge characteristics at low temperatures are excellent. Spinel lithium titanate is suitable for power supply for electric vehicles, and its theoretical lithium insertion capacity is 175mAh/g.
, 实际比容量在 120~130mAh/g之间。 钛酸锂用作负极材料存在如下不足: 1 The actual specific capacity is between 120~130mAh/g. Lithium titanate is used as a negative electrode material as follows: 1
、 容量低、 堆积密度低、 压实密度低、 体积比容量低; 2
、 大倍率性能尚需提升; 3、 产品一致性差和电池加工性能差; 4 、 易吸水, 电池易气胀。 , low capacity, low bulk density, low compaction density, low volumetric capacity; 2 , large rate performance needs to be improved; 3, poor product consistency and poor battery processing; 4, easy to absorb water, battery is easy to expand.
[7] 发明内容 [7] Summary of the invention
[8] 本发明的目的是提供一种钛系负极活性物质及其制备方法、 钛系锂离子动力电 池, 要解决的技术问题是提高锂离子动力电池的倍率性能、 安全性能、 循环寿 命和环保性能。 [8] An object of the present invention is to provide a titanium-based anode active material, a preparation method thereof, and a titanium-based lithium ion power battery, and the technical problem to be solved is to improve the rate performance, safety performance, cycle life and environmental protection of a lithium ion power battery. performance.
[9] 本发明釆用以下技术方案: [9] The present invention uses the following technical solutions:
一种钛系负极活性物质, 所述钛系负极活性物质的通式为 Li4Ti5012/Mx, 其中: 0
A titanium-based negative electrode active material having a general formula of Li 4 Ti 5 0 12 /M x , wherein: 0
为尖晶石钛酸锂, M为惨杂物质金属单质、 金属化合物、 非金属单质或非金属化 合物, 所述惨杂物质所含元素或离子进入 ^15012晶格点阵或与之复合; 钛系负 极活性物质 Li4Ti5012/Mx的平均粒径为 0.1~30μηι; 所述金属单质为 Al、 Mg、 Cu、 Ag、 Is a spinel lithium titanate, M is a miscellaneous substance metal element, a metal compound, a non-metal elemental or a non-metal compound, and the element or ion contained in the catastrophic substance enters the lattice of the ^1 5 0 12 lattice or The titanium-based negative electrode active material Li 4 Ti 5 0 12 /M x has an average particle diameter of 0.1 to 30 μm ; the metal element is Al, Mg, Cu, Ag,
Ni、 Cos Mn、 Cd、 Pb、 Bis Sn或 Ge, 金属化合物为氧化铝、 氧化镁、 氧化锆、 氧化铜、 氧化亚铜、 氧化银, 氧化钴, 二氧化锰、 三氧化二锰、 氧化铅、 氧化 锡、 氟化铝、 氟化锂或氟化镁, 非金属单质为硼、 碳、 硅、 磷或碘, 非金属化 合物为呋哺树脂、 脲醛树脂、 密胺树脂、 酚醛树脂、 环氧树脂、 聚乙烯醇、 聚 甲基丙烯酸甲酯、 聚四氟乙烯、 聚丙烯腈、 丁苯橡胶, 纤维素、 葡萄糖、 煤沥 青或石油沥青的一种以上。 Ni, Cos Mn, Cd, Pb, Bis Sn or Ge, metal compounds are alumina, magnesia, zirconia, copper oxide, cuprous oxide, silver oxide, cobalt oxide, manganese dioxide, dimanganese trioxide, lead oxide , tin oxide, aluminum fluoride, lithium fluoride or magnesium fluoride, non-metal element is boron, carbon, silicon, phosphorus or iodine, non-metallic compounds are furfural resin, urea-formaldehyde resin, melamine resin, phenolic resin, epoxy Resin, polyvinyl alcohol, polymethyl methacrylate, polytetrafluoroethylene, polyacrylonitrile, styrene butadiene rubber, cellulose, glucose, coal tar pitch or petroleum pitch.
[10] 本发明的 Li4Ti5012/Mx基体外包覆有纳米包覆材料的包覆层, 纳米包覆材料是纳 米二氧化钛、 氧化铝、 氧化镁、 氧化锆、 氧化亚铜、 氧化银、 氧化锡、 乙炔黑 或纳米碳材料, 包覆层的厚度在 5~50nm之间。 [10] The Li 4 Ti 5 0 12 /M x substrate of the present invention is coated with a coating layer of a nano-cladding material, and the nano-cladding material is nano titanium dioxide, aluminum oxide, magnesium oxide, zirconium oxide, cuprous oxide, Silver oxide, tin oxide, acetylene black or nano-carbon material, the thickness of the coating layer is between 5 and 50 nm.
[11] 一种钛系负极活性物质制备方法, 包括以下步骤: 一、 按无机锂盐中的锂: 二 氧化钛: 惨杂改性剂摩尔比 1.9~2.1: 4.9-5.1: 大于 0~10 [11] A method for preparing a titanium-based anode active material, comprising the following steps: 1. Lithium in an inorganic lithium salt: Titanium dioxide: molar modifier molar ratio 1.9~2.1: 4.9-5.1: greater than 0~10
混合制得复合钛酸锂前驱混合物; 所述无机锂盐是 Mixing a composite lithium titanate precursor mixture; the inorganic lithium salt is
氢氧化锂、 碳酸锂、 醋酸锂、 氯化锂、 硫酸锂、 硝酸锂、 碘化锂、 叔丁醇锂、 苯甲酸锂、 甲酸锂、 氟化锂、 铬酸锂、 四水柠檬酸锂、 四氯铝酸锂、 溴化锂、 四氟硼酸锂或草酸锂
, 惨杂改性剂为金属单质、 金属化合物、 非金属单质或非金属化合物, 所述金 属单质为 Al、 Mgs Cu、 Ag、 Ni、 Cos Mn、 Cd、 Pb、 Bi、 Sn或 Ge, 金属化合物 为氧化铝、 氧化镁、 氧化锆、 氧化铜、 氧化亚铜、 氧化银, 氧化钴, 二氧化锰 、 三氧化二锰、 氧化铅、 氧化锡、 氟化铝、 氟化锂或氟化镁, 非金属单质为硼 、 碳、 硅、 磷或碘, 非金属化合物为呋哺树脂、 脲醛树脂、 密胺树脂、 酚醛树 脂、 环氧树脂、 聚乙烯醇、 聚甲基丙烯酸甲酯、 聚四氟乙烯、 聚丙烯腈、 丁苯 橡胶, 纤维素、 葡萄糖、 煤沥青或石油沥青的一种以上; 二、 将混合物按质量 比 1~1.5: 1分散于有机溶剂中, 在 100~350°C条件下喷雾干燥制粒, 得到 分散粉体; 三、 将分散粉体以 l~15°C/min的升温速度, 在 500~950°C 的温度范围内热处理 4~40小吋, 自然冷却至 150°C Lithium hydroxide, lithium carbonate, lithium acetate, lithium chloride, lithium sulfate, lithium nitrate, lithium iodide, lithium t-butoxide, lithium benzoate, lithium formate, lithium fluoride, lithium chromate, lithium citrate tetrahydrate, Lithium tetrachloroaluminate, lithium bromide, lithium tetrafluoroborate or lithium oxalate The miscellaneous modifier is a metal element, a metal compound, a non-metal elemental or a non-metal compound, and the metal element is Al, Mgs Cu, Ag, Ni, Cos Mn, Cd, Pb, Bi, Sn or Ge, a metal compound Alumina, magnesia, zirconia, copper oxide, cuprous oxide, silver oxide, cobalt oxide, manganese dioxide, dimanganese trioxide, lead oxide, tin oxide, aluminum fluoride, lithium fluoride or magnesium fluoride, Non-metallic elements are boron, carbon, silicon, phosphorus or iodine. Non-metallic compounds are furfural resin, urea-formaldehyde resin, melamine resin, phenolic resin, epoxy resin, polyvinyl alcohol, polymethyl methacrylate, polytetrafluoroethylene. Ethylene, polyacrylonitrile, styrene butadiene rubber, cellulose, glucose, coal tar pitch or petroleum asphalt; 2. Disperse the mixture in an organic solvent at a mass ratio of 1 to 1.5:1, at 100 to 350 ° C Spray-drying and granulating to obtain a dispersed powder; 3. Dissolving the dispersed powder at a temperature rising rate of l~15 ° C / min, heat-treating 4 to 40 hours in a temperature range of 500 to 950 ° C, and naturally cooling to 150 °C
以下得到钛系负极活性物质。 The titanium-based negative electrode active material is obtained below.
[12] 本发明的方法按无机锂盐中的锂: 二氧化钛: 惨杂改性剂: 纳米包覆材料摩尔 比 1.9 2.1: 4.9-5.1: 大于 0~10 [12] The method of the present invention is based on lithium in an inorganic lithium salt: Titanium dioxide: miscellaneous modifier: nano-cladding material molar ratio 1.9 2.1: 4.9-5.1: greater than 0~10
: 大于 0~4.0混合制得复合钛酸锂前驱混合物; 纳米包覆材料是纳米二氧化钛、 氧化铝、 氧化镁、 氧化锆、 氧化亚铜、 氧化银、 氧化锡、 乙炔黑或纳米碳材料 : Composite lithium titanate precursor mixture prepared by mixing more than 0~4.0; nano-cladding material is nano titanium dioxide, aluminum oxide, magnesium oxide, zirconium oxide, cuprous oxide, silver oxide, tin oxide, acetylene black or nano carbon material
[13] 本发明的方法冷却后进行粉碎和筛分, 得到粒度为 0.1~30μηι [13] The method of the present invention is cooled and sieved and sieved to obtain a particle size of 0.1 to 30 μm.
的钛系负极活性物质。 Titanium-based negative electrode active material.
[14] 本发明的方法混合釆用用高速搅拌或球磨的方法, 转速 100~500r/min [14] The method of the present invention uses a high-speed stirring or ball milling method, and the rotation speed is 100~500r/min.
, 研磨分散 2~40小吋。 , grinding and dispersion 2~40 hours.
[15] 本发明的方法有机溶剂是乙醇或丙酮。 [15] Process of the Invention The organic solvent is ethanol or acetone.
[16] 本发明的方法热处理期间通入氩气或氮气。 [16] The process of the invention is conducted with argon or nitrogen during the heat treatment.
[17] 一种钛系锂离子动力电池, 具有正极和负极, 所述负极为 Li4Ti5012/Mx、 导电剂 和溶于 N- 甲基吡咯垸酮的粘结剂组成, 质量比为 85〜95%: 3〜10%: 2〜10%, 其中: 0
[17] A titanium-based lithium ion power battery having a positive electrode and a negative electrode, the negative electrode being composed of Li 4 Ti 5 0 12 /M x , a conductive agent, and a binder dissolved in N-methylpyrrolidone, quality The ratio is 85~95%: 3~10%: 2~10%, where: 0
为尖晶石钛酸锂, M为惨杂物质金属单质、 金属化合物、 非金属单质或非金属化 合物, 所述惨杂物质所含元素或离子进入 Li4Ti5012
晶格点阵或与之复合, 平均粒径为 0.1~30μηι; 所述金属单质为 Is a spinel lithium titanate, M is a heterogeneous metal element, a metal compound, a non-metal elemental or a non-metal compound, and the elements or ions contained in the catastrophic substance enter Li 4 Ti 5 0 12 Lattice lattice or composite with it, the average particle size is 0.1~30μηι ; the metal element is
Al、 Mgs Cu、 Ag、 Ni、 Cos Mn、 Cd、 Pb、 Bi、 Sn或 Ge, 金属化合物为氧化铝 、 氧化镁、 氧化锆、 氧化铜、 氧化亚铜、 氧化银, 氧化钴, 二氧化锰、 三氧化 二锰、 氧化铅、 氧化锡、 氟化铝、 氟化锂或氟化镁, 非金属单质为硼、 碳、 硅 、 磷或碘, 非金属化合物为呋哺树脂、 脲醛树脂、 密胺树脂、 酚醛树脂、 环氧 树脂、 聚乙烯醇、 聚甲基丙烯酸甲酯、 聚四氟乙烯、 聚丙烯腈、 丁苯橡胶, 纤 维素、 葡萄糖、 煤沥青或石油沥青的一种以上。 Al, Mgs Cu, Ag, Ni, Cos Mn, Cd, Pb, Bi, Sn or Ge, metal compounds are alumina, magnesia, zirconia, copper oxide, cuprous oxide, silver oxide, cobalt oxide, manganese dioxide , manganese trioxide, lead oxide, tin oxide, aluminum fluoride, lithium fluoride or magnesium fluoride, non-metal element is boron, carbon, silicon, phosphorus or iodine, non-metallic compounds are furfural resin, urea-formaldehyde resin, dense More than one type of amine resin, phenolic resin, epoxy resin, polyvinyl alcohol, polymethyl methacrylate, polytetrafluoroethylene, polyacrylonitrile, styrene butadiene rubber, cellulose, glucose, coal tar pitch or petroleum pitch.
[18] 本发明电池的 Li4Ti5012/Mx基体外包覆有纳米包覆材料的包覆层, 纳米包覆材料 是纳米二氧化钛、 氧化铝、 氧化镁、 氧化锆、 氧化亚铜、 氧化银、 氧化锡、 乙 炔黑或纳米碳材料, 包覆层的厚度在 5~50nm之间。 [18] The Li 4 Ti 5 0 12 /M x substrate of the battery of the invention is coated with a coating layer of a nano-cladding material, and the nano-cladding material is nano titanium dioxide, aluminum oxide, magnesium oxide, zirconium oxide, cuprous oxide. , silver oxide, tin oxide, acetylene black or nano-carbon material, the thickness of the coating layer is between 5 and 50 nm.
[19] 本发明电池的正极为铁系或锰系活性物质、 导电剂和溶于 N-甲基吡咯垸酮的粘 结剂组成, 质量比为 85〜95%: 3〜10%: 2〜10%。 [19] The positive electrode of the battery of the invention is composed of an iron-based or manganese-based active material, a conductive agent and a binder dissolved in N-methylpyrrolidone, and the mass ratio is 85 to 95%: 3 to 10%: 2~ 10%.
[20] 本发明电池的铁系活性物质是 1^^04或^2 ^04, 锰系活性物质是 LiMnP04 、 LiCoxNiyMn(1.x.y)0 2 ) 其中 0≤χ<1、 0<y<l , Li[LixMn(2.x)]04 ) 其中 0≤ [20] The iron-based active material of the battery of the present invention is 1^^0 4 or ^ 2 ^ 0 4 , and the manganese-based active material is LiMnP0 4 , LiCo x Ni y Mn (1 . x . y) 0 2 ) wherein 0 ≤ χ<1, 0<y<l, Li[Li x Mn (2 . x) ]0 4 ) where 0≤
χ<1/3 , Li[MxMn(2.x)]04 ) 其中 0<χ<1, M是 3d过渡金属元素, Li2MnSi04。 χ<1/3 , Li[M x Mn (2 . x) ]0 4 ) where 0<χ<1, M is a 3d transition metal element, Li 2 MnSi0 4 .
[21] 本发明电池的铁系和锰系活性活性物质平均粒径为 0.1~30μηι。 [21] The iron-based and manganese-based active material of the battery of the present invention has an average particle diameter of 0.1 to 30 μm.
[22] 本发明与现有技术相比, 惨杂物质的元素或离子进入 Li4Ti5012晶格点阵、 复合 或表面惨杂, 钛系负极活性物质具有容量高、 堆积密度高、 压实密度高、 体积 比容量高、 大倍率性能好、 产品一致性好、 电池加工性能好和电池不易气胀的 性能, 且成本低廉, 负极含有钛系活性物质的钛系锂离子动力电池, 电池具有 较高的安全性能、 倍率性能、 循环性能, 釆用本发明制作电池方法简单, 成本 低廉; 电池对环境友好、 无泄露、 储存寿命长、 易于小型化、 使用温度范围广 泛, 可作为各类动力电池。 [22] Compared with the prior art, the elements or ions of the impurity substance enter the lattice, complex or surface of the Li 4 Ti 5 0 12 lattice, and the titanium-based anode active material has high capacity and high bulk density. Titanium-based lithium ion power battery with high compaction density, high volume ratio, high rate performance, good product consistency, good battery processing performance and battery swellability, and low cost, the negative electrode contains titanium active material. The battery has high safety performance, rate performance, cycle performance, and the method for manufacturing the battery of the invention is simple and low-cost; the battery is environmentally friendly, has no leakage, has long storage life, is easy to be miniaturized, and has a wide temperature range, and can be used as each Power battery.
[23] 附图说明 [23] BRIEF DESCRIPTION OF THE DRAWINGS
[24] 图 1是本发明实施例 1制得的负极活性物质的 SEM图。 BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is an SEM image of a negative electrode active material obtained in Example 1 of the present invention.
[25] 图 2是本发明实施例 1的电池单体的放电曲线图。 Fig. 2 is a graph showing the discharge of a battery cell of Example 1 of the present invention.
[26] 图 3是本发明实施例 1的电池单体的循环曲线图。 Fig. 3 is a cycle diagram of a battery cell of Embodiment 1 of the present invention.
[27] 图 4是对比例 1的磷酸铁锂 /MCMB动力电池的放电曲线图。
[28] 图 5是对比例 1的磷酸铁锂 /MCMB动力电池的循环性能图。 4 is a discharge graph of the lithium iron phosphate/MCMB power battery of Comparative Example 1. 5 is a cycle performance diagram of the lithium iron phosphate/MCMB power battery of Comparative Example 1.
[29] 图 6是实施例 1制得的负极活性物质的 TEM图。 Fig. 6 is a TEM image of the negative electrode active material obtained in Example 1.
[30] 图 7是实施例 1制得的负极活性物质的 XRD衍射图。 Fig. 7 is an XRD diffraction pattern of the negative electrode active material obtained in Example 1.
[31] 图 8是对比例 1钛酸锂基体的 XRD衍射图。 Figure 8 is an XRD diffraction pattern of a lithium titanate substrate of Comparative Example 1.
[32] 具体实施方式 [32] Specific implementation
[33] 下面结合附图和实施例对本发明作进一步详细说明。 本发明的钛系负极活性物 质, 通式为 Li4Ti5012/Mx, 其中: 0<x≤10, Li4Ti5012为尖晶石钛酸锂, The invention will be further described in detail below with reference to the drawings and embodiments. The titanium-based negative electrode active material of the present invention has a general formula of Li 4 Ti 5 0 12 /M x , wherein: 0<x≤10, and Li 4 Ti 5 0 12 is a spinel lithium titanate.
M为惨杂物质金属单质 Al、 Mgs Cu、 Ag、 Ni、 Co、 Mn、 Cd、 Pb、 Bi、 Sn或 Ge M is a monolithic metal elemental Al, Mgs Cu, Ag, Ni, Co, Mn, Cd, Pb, Bi, Sn or Ge
, 金属化合物氧化铝、 氧化镁、 氧化锆、 氧化铜、 氧化亚铜、 氧化银, 氧化钴 , 二氧化锰、 三氧化二锰、 氧化铅、 氧化锡、 氟化铝、 氟化锂或氟化镁, 非金 属单质硼、 碳、 硅、 磷或碘, 非金属化合物呋哺树脂、 脲醛树脂、 密胺树脂、 酚醛树脂、 环氧树脂、 聚乙烯醇、 聚甲基丙烯酸甲酯、 聚四氟乙烯、 聚丙烯腈 、 丁苯橡胶, 纤维素、 葡萄糖、 煤沥青或石油沥青的一种以上, 其所含元素或 离子进入 41¾012晶格点阵或与之复合, 平均粒径为 0.1~30μηι。 Li4Ti5012/Mx 基体外还可包覆有纳米包覆材料的包覆层, 纳米包覆材料是纳米二氧化钛、 氧 化铝、 氧化镁、 氧化锆、 氧化亚铜、 氧化银、 氧化锡、 乙炔黑或纳米碳材料, 包覆层的厚度在 5~50nm之间。 , metal compound alumina, magnesia, zirconia, copper oxide, cuprous oxide, silver oxide, cobalt oxide, manganese dioxide, dimanganese trioxide, lead oxide, tin oxide, aluminum fluoride, lithium fluoride or fluorination Magnesium, non-metallic elemental boron, carbon, silicon, phosphorus or iodine, non-metallic compound furfural resin, urea-formaldehyde resin, melamine resin, phenolic resin, epoxy resin, polyvinyl alcohol, polymethyl methacrylate, polytetrafluoroethylene Ethylene, polyacrylonitrile, styrene butadiene rubber, cellulose, glucose, coal tar pitch or petroleum pitch. The element or ion contained in it is or complexed with a lattice of 4 13⁄40 12 lattice, and the average particle size is 0.1~ 30μηι. The Li4Ti 5 0 12 /M x substrate may also be coated with a cladding layer of nano-cladding material, such as nano titanium dioxide, aluminum oxide, magnesium oxide, zirconium oxide, cuprous oxide, silver oxide, tin oxide, For acetylene black or nano-carbon materials, the thickness of the coating layer is between 5 and 50 nm.
[34] 尖晶石钛酸锂 Li4Ti5012是一种金属锂和低电位过渡金属钛的复合氧化物, 属于 AB2X4系列, 其晶体结构与尖晶石 LiMn204相似, 可写为 Li[Li1/ 3Ti5/ 3]04 , 空间群为 Fd3m,具有锂离子的三维扩散通道。 其中, 02-位于 32e, 构成 FCC 点阵, 部分 Li+位于四面体 8a位置, 剩余的 Li+和 Ή4+以 1 : 5 [34] Spinel lithium titanate Li 4 Ti 5 0 12 is a composite oxide of metallic lithium and low-potential transition metal titanium, belonging to the AB 2 X 4 series, whose crystal structure is similar to that of spinel LiMn 2 0 4 It can be written as Li[Li 1/ 3 Ti 5/ 3 ]0 4 , and the space group is Fd3m, which has a three-dimensional diffusion channel of lithium ions. Wherein, 02- is located at 32e, which constitutes the FCC lattice, part of Li+ is located at the tetrahedron 8a, and the remaining Li+ and Ή4+ are 1:5.
的比例随机分布在八面体 16d位置。 因此, 可根据结构将其描述为 Li8a[Li1/3Ti5/3]16d The proportions are randomly distributed in the 16d position of the octahedron. Therefore, it can be described as Li 8a [Li 1/3 Ti 5/3 ] 16d according to the structure.
[0 4]32e [0 4] 32e
。 尖晶石型钛酸锂在充放电过程中, 没有体积应变, 具有较长的使用寿命, 这 是因为其放电电位 1.55V(vs.Li/Li+)平坦, 与电解液无反应。 . Spinel-type lithium titanate has no volume strain during charging and discharging, and has a long service life because its discharge potential is 1.55 V (vs. Li/Li+) flat and does not react with the electrolyte.
[35] 本发明的钛系负极活性物质制备方法, 包括以下步骤: [35] A method for preparing a titanium-based negative electrode active material of the present invention, comprising the steps of:
[36] 一、 按无机锂盐中的锂: 二氧化钛: 惨杂改性剂摩尔比 1.9~2.1: 4.9-5.1: 大于 0~10混合后, 用高速搅拌或球磨的方法, 转速 100~500
r/min, 研磨分散 2~40小吋制得复合钛酸锂前驱混合物, 即!^!!^^与^^的混合 物, 无机锂盐是氢氧化锂、 碳酸锂、 醋酸锂、 氯化锂、 硫酸锂、 硝酸锂、 碘化 锂、 叔丁醇锂、 苯甲酸锂、 甲酸锂、 氟化锂、 铬酸锂、 四水柠檬酸锂、 四氯铝 酸锂、 溴化锂、 四氟硼酸锂或草酸锂, 惨杂改性剂为金属单质 Al、 Mg、 Cu、 Ag 、 Ni、 Cos Mn、 Cd、 Pb、 Bi、 Sn、 [36] First, according to lithium in inorganic lithium salt: Titanium dioxide: Miscellaneous modifier molar ratio 1.9~2.1: 4.9-5.1: After mixing more than 0~10, use high-speed stirring or ball milling method, speed 100~500 r/min, grinding and dispersing 2~40 hours to produce a composite lithium titanate precursor mixture, ie! ^! ! a mixture of ^^ and ^^, the inorganic lithium salt is lithium hydroxide, lithium carbonate, lithium acetate, lithium chloride, lithium sulfate, lithium nitrate, lithium iodide, lithium t-butoxide, lithium benzoate, lithium formate, fluorination Lithium, lithium chromate, lithium citrate tetrahydrate, lithium tetrachloroaluminate, lithium bromide, lithium tetrafluoroborate or lithium oxalate, miscellaneous modifiers are metal elements Al, Mg, Cu, Ag, Ni, Cos Mn, Cd , Pb, Bi, Sn,
Ge, 金属化合物氧化铝、 氧化镁、 氧化锆、 氧化铜、 氧化亚铜、 氧化银, 氧化 钴, 二氧化锰、 三氧化二锰、 氧化铅、 氧化锡、 氟化铝、 氟化锂, 氟化镁、 非 金属单质硼、 碳、 硅、 磷、 碘和非金属化合物呋哺树脂、 脲醛树脂、 密胺树脂 、 酚醛树脂、 环氧树脂、 聚乙烯醇、 聚甲基丙烯酸甲酯、 聚四氟乙烯、 聚丙烯 腈、 丁苯橡胶, 纤维素、 葡萄糖、 煤沥青或石油沥青的一种以上, 釆用南京大 学仪器厂的 QM-1SP4 Ge, metal compound alumina, magnesia, zirconia, copper oxide, cuprous oxide, silver oxide, cobalt oxide, manganese dioxide, dimanganese trioxide, lead oxide, tin oxide, aluminum fluoride, lithium fluoride, fluorine Magnesium, non-metallic elemental boron, carbon, silicon, phosphorus, iodine and non-metallic compounds furfural resin, urea-formaldehyde resin, melamine resin, phenolic resin, epoxy resin, polyvinyl alcohol, polymethyl methacrylate, polytetra More than one type of vinyl fluoride, polyacrylonitrile, styrene butadiene rubber, cellulose, glucose, coal tar pitch or petroleum asphalt, used by QM-1SP4 of Nanjing University Instrument Factory
行星式球磨机, 同吋可加入与锂: 二氧化钛: 惨杂改性剂物质的量之比大于 0-4.0 Planetary ball mill, the same can be added with lithium: Titanium dioxide: the ratio of the amount of miscellaneous modifier substances is greater than 0-4.0
的纳米包覆材料, 纳米包覆材料是纳米二氧化钛、 氧化铝、 氧化镁、 氧化锆、 氧化亚铜、 氧化银、 氧化锡、 乙炔黑或纳米碳材料; 二、 将上述混合物分散于 有机溶剂乙醇或丙酮中, 固体与有机溶剂的质量比比为 1~1.5: 1 Nano-clad material, nano-cladding material is nano-titanium dioxide, aluminum oxide, magnesium oxide, zirconium oxide, cuprous oxide, silver oxide, tin oxide, acetylene black or nano carbon material; 2. Dispersing the above mixture in organic solvent ethanol Or acetone, the mass ratio of solid to organic solvent is 1~1.5: 1
, 釆用喷雾干燥的方法制得分散粉体, , using a spray drying method to obtain a dispersed powder,
在无锡市大峰干燥设备有限公司 DFZR型离心式喷雾造粒干燥机中, 在 100-350°C 条件下喷雾干燥制粒, 得到分散粉体; 三、 将分散粉体以 l~15°C/min 的升温速度, 在 500~950°C的温度范围内热处理 4~40 In the DFZR centrifugal spray granulation dryer of Wuxi Dafeng Drying Equipment Co., Ltd., spray-drying and granulating at 100-350 °C to obtain a dispersed powder; 3. Dispersing the powder at l~15 °C/ Temperature rise rate of min, heat treatment 4~40 in the temperature range of 500~950 °C
小吋, 期间通入氩气或氮气作保护气体, 使惨杂改性剂所含的元素或离子进入 Li4Ti5012晶格点阵、 复合, 自然冷却至 150°C After the enthalpy, argon or nitrogen is used as a shielding gas, so that the elements or ions contained in the catastrophic modifier enter the Li 4 Ti 5 0 12 lattice lattice, compound, and naturally cool to 150 ° C.
以下; 四、 进行粉碎和筛分, 得到粒度为 0.1~30μηι的钛系负极活性物质。 如以 C uO、 Mgs Al、 F、 C为惨杂改性剂, 最终得到组成表达式为 Li4Ti5012/CuOai ( x=0.1 ) 、 Li4Ti5012/Ala2 (x=0.2) 、 Li4Ti5012/Mgo.3 (χ=0·3) 、 Li4Ti5O12/F005 (x=0.05) 、 Li4Ti5O12/C10 (x=10) 的钛系负极活性材料。 Hereinafter, the pulverization and sieving are carried out to obtain a titanium-based negative electrode active material having a particle size of 0.1 to 30 μm. For example, C uO, Mgs Al, F, C are miscellaneous modifiers, and finally the composition expression is Li 4 Ti 5 0 12 /CuO ai ( x=0.1 ) , Li 4 Ti 5 0 12 /Al a2 (x =0.2) , Li 4 Ti 5 0 12 /Mgo.3 (χ=0·3) , Li 4 Ti 5 O 12 /F 005 (x=0.05) , Li 4 Ti 5 O 12 /C 10 (x=10 Titanium-based anode active material.
釆用北京中科科仪技术发展有限责任公司的 KYKY-2800B型扫描电镜对用本发 明的方法制备的材料粒子的表面形貌进行观察, 釆用荷兰 PANalytical
公司的 X'Pert PRO衍射仪和日本 JEOL 2010型透射电镜 表面Use the KYKY-2800B scanning electron microscope of Beijing Zhongke Science and Technology Development Co., Ltd. to observe the surface morphology of the material particles prepared by the method of the invention, and use the Dutch PANalytical The company's X'Pert PRO diffractometer and Japan JEOL 2010 transmission electron microscope
获知惨杂元素或离子进入 Li4Ti5012晶格点阵和 /或复合。 It is known that miscellaneous elements or ions enter the Li 4 Ti 5 0 12 lattice lattice and/or complex.
[38] 本发明的钛系负极活性物质, 在制备过程中, 惨入惨杂物质, 惨杂物质主要是 取代 Lip^ 3Ti5/ 3]04中的六配位 16d [38] The titanium-based negative electrode active material of the present invention is miserable in the preparation process, and the miscellaneous substance mainly replaces the six-coordinated 16d in Lip^ 3 Ti 5/ 3 ]0 4
位点的一部分物质或起分散包覆作用, 在尖晶石钛酸锂 Li4Ti5012基体的 XRD 图中未发现惨杂物的衍射峰, 说明惨杂原子进入了钛酸锂 ^15012晶格中, 在惨 杂物质的元素或离子进入 Li4Ti5012 A part of the material of the site or dispersion coating, no diffraction peak of the disinquisite in the XRD pattern of the spinel lithium titanate Li 4 Ti 5 0 12 matrix, indicating that the miscellaneous atoms entered the lithium titanate ^1 In the 5 0 12 lattice, elements or ions in the impurity matter enter Li 4 Ti 5 0 12
晶格点阵、 复合或表面包覆的作用下, 材料的容量高、 一致性好、 稳定性好、 加工性能好, 极片的压实密度高, 用该材料作为负极活性物质制作的电池的倍 率性能好、 能量密度高、 功率密度高、 高低温性能好、 安全性能好。 Under the action of lattice lattice, composite or surface coating, the material has high capacity, good consistency, good stability, good processing performance, high compaction density of the pole piece, and the battery made of the material as the negative electrode active material. Good rate performance, high energy density, high power density, good high and low temperature performance, and good safety performance.
[39] 本发明的钛系锂离子动力电池, 负极为 Li4Ti5012/Mx、 导电剂和溶于 N-甲基吡咯 垸酮的粘结剂组成, 质量比为 85〜95 %: 3〜 10%: 2〜 10%, 其中: 0<x≤ 10。 正极为铁系或锰系活性物质、 导电剂和溶于 N-甲基吡咯垸酮的 [39] The titanium-based lithium ion power battery of the present invention, the negative electrode is composed of Li 4 Ti 5 0 12 /M x , a conductive agent and a binder dissolved in N-methylpyrrolidone, and the mass ratio is 85 to 95%. : 3~ 10%: 2~ 10%, where: 0<x≤ 10. The positive electrode is an iron-based or manganese-based active material, a conductive agent, and is dissolved in N-methylpyrrolidone.
粘结剂组成, 质量比为 85〜 95 %: 3〜 10 %: 2〜 10 %。 Fe The binder composition has a mass ratio of 85 to 95%: 3 to 10%: 2 to 10%. Fe
系活性正极材料: LiFeP04或 Li2FeSi04, Mn系活性正极材料: LiMnP04、 LiCox NiyMn(1.x.y)0 2 (0< χ<1 , 0< y<l) , Li[LixMn(2.x)]04 (0≤ x<l/3) 、 Li[MxMn(2.x) ]04 (0<χ<1, M是 3d过渡金属元素) 、 Li2MnSi04。 Active cathode material: LiFeP0 4 or Li 2 FeSi0 4 , Mn active cathode material: LiMnP0 4 , LiCo x Ni y Mn (1 . x . y) 0 2 (0<χ<1,0<y<l), Li[Li x Mn (2 . x) ]0 4 (0≤ x<l/3) , Li[M x Mn (2 . x) ]0 4 (0<χ<1, M is a 3d transition metal element) , Li 2 MnSi0 4 .
Fe系和 Mn系活性正极材料平均粒径为 0.1~30μηι The average particle size of the Fe-based and Mn-based active cathode materials is 0.1~30μηι
。 导电剂是乙炔黑、 导电石墨、 碳纳米管或纳米碳纤维导电物质的一种以上, 粘结剂是聚偏氟乙烯 PVDF或聚四氟乙烯。 电解液为含有电解质 LiPF6、 LiC104 或 LiAsF6l mol/L有机溶剂, 有机溶剂为碳酸乙烯酯 EC . The conductive agent is one or more of conductive materials of acetylene black, conductive graphite, carbon nanotubes or nano carbon fibers, and the binder is polyvinylidene fluoride PVDF or polytetrafluoroethylene. The electrolyte is an electrolyte containing LiPF 6 , LiC10 4 or LiAsF 6 l mol/L, and the organic solvent is ethylene carbonate EC
、 碳酸丙烯酯 PC、 碳酸二甲酯 DMC、 碳酸二乙酯 DEC , propylene carbonate PC, dimethyl carbonate DMC, diethyl carbonate DEC
、 二甲醚 DME和碳酸甲乙酯 EMC中的一种以上 , dimethyl ether DME and methyl ethyl carbonate one or more of EMC
的混合有机溶剂。 釆用铜箔和铝箔分别为负极和正极的集流体, Mixed organic solvents. Copper foil and aluminum foil are the current collectors of the negative electrode and the positive electrode, respectively.
聚丙烯膜、 聚乙烯膜或丙烯与乙烯的共聚物膜为隔膜, 塑料、 金属或者合金为 电池外壳。 The polypropylene film, the polyethylene film or the copolymer film of propylene and ethylene is a separator, and the plastic, metal or alloy is a battery case.
[40] 本发明的钛系锂离子动力电池的制作方法: 将 Li4Ti5012/Mx、 导电剂和溶于 N-甲 基吡咯垸酮的粘结剂放到广州红运机械厂生产的 DLH2动力混合机中, 以 150
转 /分钟搅拌 12小吋获得所需的负极浆料, 将负极浆料放到拉浆机上, 涂敷在 20μ m的铜箔上, 在 130°C烘烤 6小吋, 在 lOMPa [40] The method for producing a titanium-based lithium ion power battery of the present invention: Li 4 Ti 5 0 12 /M x , a conductive agent and a binder dissolved in N-methylpyrrolidone are placed in Guangzhou Hongyun Machinery Factory In the DLH2 power mixer, to 150 After stirring for 12 minutes, the desired negative electrode slurry was obtained. The negative electrode slurry was placed on a slurry machine, coated on a 20 μm copper foil, and baked at 130 ° C for 6 hours, at 10 MPa.
的压力下辊压, 按照 270mmx42.5mm的尺寸剪切, 制作成面密度为 230g /cm2 , 压实密度为 2.1g /cm3的负极极片。 将平均粒径为 2μηι的 LiFeP04 The roll was pressed under pressure and cut to a size of 270 mm x 42.5 mm to prepare a negative electrode tab having an areal density of 230 g / cm 2 and a compact density of 2.1 g / cm 3 . LiFeP0 4 having an average particle diameter of 2 μm
、 导电剂和溶于 N-甲基吡咯垸酮的粘结剂放到广州红运机械厂生产的 DLH2 动力混合机中, 以 100 The conductive agent and the binder dissolved in N-methylpyrrolidone were placed in the DLH2 power mixer produced by Guangzhou Hongyun Machinery Factory.
转 /分钟搅拌速度搅拌 12小吋。 将正极浆料放到拉浆机上, 涂敷在 20μηι的铝箔上 , 在 150°C烘烤 6小吋, 在 25MPa的压力下辊压, 按照 320mmx41.5mm的尺寸剪切 , 制作成面密度为 210g /cm2 Stir at a stirring speed of 12 minutes. The positive electrode slurry was placed on a slurry machine, coated on an aluminum foil of 20 μm, baked at 150 ° C for 6 hours, rolled at a pressure of 25 MPa, and sheared at a size of 320 mm x 41.5 mm to prepare an areal density. 210g /cm 2
的正极极片。 将正极极片、 隔膜和负极极片按照顺序叠加在一起, 在邵阳市达 力电源实业有限公司的 423048 Positive pole piece. The positive electrode piece, the separator and the negative electrode piece are stacked in order, in 423048 of Shaoyang Dali Power Industry Co., Ltd.
型卷绕机上卷绕, 热压后装入外壳中。 把电池单体放到上海医用设备制造厂生 产 DZF-6050中空烘烤箱中, 在 80 The winder is wound on a winder and placed in a casing after hot pressing. Put the battery unit in the DZF-6050 hollow baking box produced by Shanghai Medical Equipment Factory, at 80
°C下真空烘烤 24小吋, 再把电池单体转移到注液间, 注入 l mol/L LiPF6 的电解液, 密封之后即制作成电池单体。 After baking at room temperature for 24 hours, the battery cells were transferred to the injection chamber, and the electrolyte of 1 mol/L LiPF 6 was injected. After sealing, the battery cells were fabricated.
根据所需要的电压和电流, 将电池单体, 釆取并联和串联相结合的方式组装成 动力电池。 According to the required voltage and current, the battery cells are assembled into a power battery by combining parallel and series.
[41] 将制备好的电池单体, 放置 12小吋后, 放到电池化成柜上, 充电电流倍率 1.0C , 充到 3.0V [41] Place the prepared battery cell for 12 hours, put it on the battery into a cabinet, charge current 1.0C, charge to 3.0V
, 进行恒压充电至电流为 0.01C, 然后以 1.0C放电倍率恒流放电, 放电截止电压 为 1.0V, 重复充放电 2次。 用广州擎天实业有限公司 BS-8303Q电池测试系统测试 电池单体的内阻、 容量、 幵路电池数据, 同吋测试电池单体的充放电曲线和循 环性能。 测试条件如下: 充电电流倍率 1.0C , 充到 3.0V The constant voltage is charged until the current is 0.01 C, and then the constant current discharge is performed at a discharge rate of 1.0 C, and the discharge cutoff voltage is 1.0 V, and the charge and discharge are repeated twice. Test the internal resistance, capacity, and battery data of the battery cells with the BS-8303Q battery test system of Guangzhou Qingtian Industrial Co., Ltd., and test the charge and discharge curves and cycle performance of the battery cells. The test conditions are as follows: Charging current multiplier 1.0C, charged to 3.0V
, 进行恒压充电至电流为 0.01C, 以 1.0C , perform constant voltage charging until the current is 0.01C, to 1.0C
放电倍率恒流放电, 放电截止电压为 1.0V。 The discharge rate is constant current discharge, and the discharge cutoff voltage is 1.0V.
[42] 实施例 1 : 将 2mol碳酸锂、 5mol二氧化钛、 O.lmol [42] Example 1 : 2 mol of lithium carbonate, 5 mol of titanium dioxide, 0.1 mol of
的纳米级氧化铜粉末, 纳米碳 4mol, 转速 300 r/min Nano-sized copper oxide powder, nano carbon 4mol, rotation speed 300 r/min
, 研磨分散 16小吋制得复合钛酸锂前驱混合物; 将复合钛酸锂前驱混合物分散
于乙醇中, 固体与有机溶剂的比例比为 1.5: 1, 以 150 , a composite lithium titanate precursor mixture prepared by grinding and dispersing 16 hours; dispersing the composite lithium titanate precursor mixture In ethanol, the ratio of solid to organic solvent is 1.5: 1, to 150
°C条件下喷雾干燥得到分散粉体; 将分散粉体以 5°C/min Spray drying to obtain a dispersed powder at °C; dispersing the powder at 5 ° C / min
的升温速度, 在 700°C的温度范围内热处理 24小吋, 期间通入氮气, 自然冷却至 1 50°C以下; 进行粉碎和筛分, 得到平均粒度为 ΙΟμηι的 I^TisC CuC^ (x=0.l) 负极活性物质。 如图 1所示, 钛酸锂材料具有球形和类球形的微观特征, 表面光 滑, 如图 6所示, 纳米包覆层的厚度约 8nm, 包覆层均匀一致, 如图 7所示, XRD图表明, 图谱中未出现包含铜元素的杂峰, 说明惨杂物质进入了尖晶石型 钛酸锂的晶格, 包覆层为无定形的碳且含碳量较低, 在 XRD图谱上显示不明显 The heating rate is heat-treated at a temperature of 700 ° C for 24 hours, during which nitrogen gas is introduced and naturally cooled to below 150 ° C; pulverization and sieving are carried out to obtain I^TisC CuC^ (x) having an average particle size of ΙΟμηι =0.l) Negative active material. As shown in Fig. 1, the lithium titanate material has spherical and spheroidal microscopic features, and the surface is smooth. As shown in Fig. 6, the thickness of the nano-cladding layer is about 8 nm, and the coating layer is uniform, as shown in Fig. 7, XRD. The figure shows that there is no peak containing copper in the spectrum, indicating that the impurity enters the crystal lattice of the spinel lithium titanate, the coating is amorphous carbon and the carbon content is low, on the XRD pattern. Display is not obvious
[43] 将上述所得负极活性材料、 导电剂乙炔黑和粘结剂 PVDF, 按质量比为 90 [43] The negative electrode active material, the conductive agent acetylene black and the binder PVDF obtained above are in a mass ratio of 90
%: 5%: 5%制作负极极片。 将 LiFeP04、 导电剂乙炔黑和粘结剂 PVDF, 按质 量比为 90 %: 5 %: 5 %: 5%: 5% of the negative electrode pieces. LiFeP0 4 , conductive agent acetylene black and binder PVDF, by mass ratio of 90%: 5 %: 5
%制作正极极片。 将正极极片、 Celgard2400型聚丙烯隔膜和负极极片按照顺序 叠加在一起, 卷绕、 热压后装入塑料外壳中, 烘烤后注入 1 mol/L电解质为 LiPF6 , 溶剂 EC+DMC体积比 1 : 1的电解液, 密封之后即制备成动力电池单体。 % Make a positive pole piece. The positive electrode tab, the Celg a rd2400 polypropylene separator and the negative electrode tab are stacked in this order, wound, hot pressed, and then placed in a plastic case. After baking, a 1 mol/L electrolyte is injected into LiPF 6 , solvent EC+ The electrolyte with a DMC volume ratio of 1:1 is prepared as a power battery cell after sealing.
[44] 将制备好的动力电池单体, 化成后进行测试, 测试结果如表 1。 如图 2 [44] The prepared power battery cells were tested and formed. The test results are shown in Table 1. Figure 2
所示, 5C Shown, 5C
放电倍率放电容量为 2.0Ah, 放电倍率 30C的条件下容量仍为 l.lAh, 如图 3所示 , 10C放电倍率条件下, 电池的循环性能非常理想, 2000周的容量保持率为 98.1 The discharge capacity of the discharge rate is 2.0Ah, and the capacity is still l.lAh under the condition of discharge rate of 30C. As shown in Fig. 3, under the condition of 10C discharge rate, the cycle performance of the battery is very good, and the capacity retention rate of 2000 weeks is 98.1.
%。 %.
[45] 实施例 2 [45] Example 2
: 将 2.1mol碳酸锂、 5.1mol二氧化钛、 O.lmol的纳米级氧化铝粉末, 转速 200 r/min : 2.1 mol of lithium carbonate, 5.1 mol of titanium dioxide, 0.1 mol of nano-sized alumina powder, rotating speed 200 r/min
, 研磨分散 24小吋制得复合钛酸锂前驱混合物; 将复合钛酸锂前驱混合物分散 于乙醇中, 固体与有机溶剂的比例比为 1.5 : 1, 以 250 °C , grinding and dispersing 24 hours to prepare a composite lithium titanate precursor mixture; dispersing the composite lithium titanate precursor mixture in ethanol, the ratio of solid to organic solvent is 1.5: 1, to 250 ° C
条件下喷雾干燥得到分散粉体; 将分散粉体以 10°C /min的升温速度, 在 400°C 的温度范围内热处理 40小吋, 期间通入氮气, 自然冷却至 150°C以下; 进行粉碎 和筛分, 得到平均粒度为 Ιμηι的 Li4Ti5012/ (A1203) o.i (x=0.l) 负极活性物质。
[46] 将上述所得负极活性材料、 导电剂乙炔黑和粘结剂 PVDF Under the condition of spray drying to obtain a dispersed powder; the dispersion powder is heat-treated at a temperature rising rate of 10 ° C / min, in a temperature range of 400 ° C for 40 hours, during which nitrogen is introduced, and naturally cooled to below 150 ° C; The mixture was pulverized and sieved to obtain a Li 4 Ti 5 0 12 /(A1 2 0 3 ) oi (x = 0.1) negative electrode active material having an average particle size of Ιμηι. [46] The negative active material obtained above, the conductive agent acetylene black and the binder PVDF
, 按质量比为 85%: 10%: 5%制作负极极片。 将 LiFeP04 , The negative electrode piece is made according to the mass ratio of 85%: 10%: 5%. LiFeP0 4
、 导电剂乙炔黑和粘结剂 PVDF, 按质量比为 90 , conductive agent acetylene black and binder PVDF, by mass ratio of 90
%: 4%: 6%制作正极极片。 将正极极片、 Celgard2400型聚丙烯隔膜和负极极 片按照顺序叠加在一起, 卷绕、 热压后装入塑料外壳中, 烘烤后注入 l mol/L 电解质为 LiPF6, 溶剂 EC+DMC体积比 1 : 1的电解液, 密封之后即制备成动力电 池单体。 %: 4%: 6% of the positive electrode pieces. The positive electrode tab, the Celg a rd2400 polypropylene separator and the negative electrode tab are stacked in this order, wound and hot pressed, and then placed in a plastic outer casing. After baking, a l mol/L electrolyte is injected into LiPF 6 , solvent EC+ The electrolyte with a DMC volume ratio of 1:1 is prepared as a power battery cell after sealing.
[47] 将制备好的动力电池单体, 化成后进行测试, 测试结果如表 1 。 [47] The prepared power battery cells were tested and formed. The test results are shown in Table 1.
[48] 实施例 3, 将 2.0mol [48] Example 3, 2.0 mol
碳酸锂、 4.95mol二氧化钛、 O.lmol的纳米级氧化铝粉末、 2mol乙炔黑, 转速 100 r/min, 研磨分散 24小吋制得复合钛酸锂前驱混合物; 将复合钛酸锂前驱混合物 分散于乙醇中, 固体与有机溶剂的比例比为 1.0: 1, 以 350。C条件下喷雾干燥得 到分散粉体; 将分散粉体以 Lithium carbonate, 4.95mol of titanium dioxide, O.lmol of nano-sized alumina powder, 2mol of acetylene black, rotating at 100 r/min, grinding and dispersing for 24 hours to prepare a composite lithium titanate precursor mixture; dispersing the composite lithium titanate precursor mixture In ethanol, the ratio of solid to organic solvent is 1.0:1 to 350. Spray drying under C conditions to obtain a dispersed powder;
15°C/min的升温速度, 在 950°C的温度范围内热处理 4小吋, 期间通入氮气, 自然 冷却至 150°C以下; 进行粉碎和筛分, 得到粒度为 Ιμηι的 Li4Ti5012/ (Α1203) 0.ι (x=0.l) 负极活性物质。 The heating rate of 15 ° C / min, heat treatment 4 吋 in the temperature range of 950 ° C, during the passage of nitrogen, naturally cooled to below 150 ° C; pulverization and sieving, to obtain Li4Ti 5 0 12 with a particle size of Ιμηι / (Α1 2 0 3 ) 0 .ι (x=0.l) Negative active material.
[49] 将上述所得负极活性材料、 导电剂乙炔黑和粘结剂 PVDF, 按质量比为 95%: 3 %: 2%制作负极极片。 将 LiFeP04 [49] The negative electrode active material, the conductive agent acetylene black, and the binder PVDF obtained above were prepared to have a negative electrode tab at a mass ratio of 95%: 3 %: 2%. LiFeP0 4
、 导电剂乙炔黑和粘结剂 PVDF, 按质量比为 95%: 3 , conductive agent acetylene black and binder PVDF, by mass ratio of 95%: 3
%: 2%制作正极极片。 将正极极片、 Celgard2400型聚丙烯隔膜和负极极片按照 顺序叠加在一起, 卷绕、 热压后装入塑料外壳中, 烘烤后注入 lmol/L电解质为 Li PF6, 溶剂 EC+DMC体积比 1 : 1的电解液, 密封之后即制备成动力电池单体。 %: 2% to make a positive electrode piece. The positive electrode tab, the Celg a rd2400 polypropylene separator and the negative electrode tab are stacked in this order, wound, hot pressed, and then placed in a plastic case. After baking, a lmol/L electrolyte is injected into Li PF 6 , solvent EC+ The electrolyte with a DMC volume ratio of 1:1 is prepared as a power battery cell after sealing.
[50] 将制备好的动力电池单体, 化成后进行测试, 测试结果如表 1。 [50] The prepared power battery cells were tested and formed. The test results are shown in Table 1.
[51] 实施例 4, 将 1.9mol碳酸锂、 4.9mol二氧化钛、 O.lmol [51] Example 4, 1.9 mol of lithium carbonate, 4.9 mol of titanium dioxide, 0.1 mol of
的纳米级氧化锆粉末, 0.4mol纳米碳, 转速 500r/min Nano-sized zirconia powder, 0.4 mol nano-carbon, speed 500 r/min
, 研磨分散 2小吋制得复合钛酸锂前驱混合物; 将复合钛酸锂前驱混合物分散于 乙醇中, 固体与有机溶剂的体积比为 1.2: 1, 以 350 , grinding and dispersing 2 hours to prepare a composite lithium titanate precursor mixture; dispersing the composite lithium titanate precursor mixture in ethanol, the volume ratio of solid to organic solvent is 1.2: 1, to 350
^:条件下喷雾干燥得到分散粉体; 将分散粉体以 10°C
/min的升温速度, 在 700°C的温度范围内热处理 24小吋, 期间通入氮气, 自然冷 却至 150°C以下; 进行粉碎和筛分, 得到粒度为 Ιμηι的 Li4Ti5012/ (Zr02) 0.ι ^: spray drying to obtain a dispersed powder; dispersing the powder at 10 ° C The heating rate of /min is heat-treated at a temperature of 700 ° C for 24 hours, during which nitrogen gas is introduced and naturally cooled to below 150 ° C; pulverization and sieving are carried out to obtain Li4Ti 5 0 12 / (Zr0) having a particle size of Ιμηι 2 ) 0 .
(x=0.l) 负极活性物质。 (x = 0.1) A negative active material.
[52] 将上述所得负极活性材料、 导电剂乙炔黑和粘结剂 PVDF, 按质量比为 85 [52] The negative electrode active material, the conductive agent acetylene black and the binder PVDF obtained above are in a mass ratio of 85
%: 5 %: 10%制作负极极片。 将 LiFeP04 %: 5 %: 10% to make a negative pole piece. LiFeP0 4
、 导电剂乙炔黑和粘结剂 PVDF, 按质量比为 90 , conductive agent acetylene black and binder PVDF, by mass ratio of 90
%: 5%: 5%制作正极极片。 将正极极片、 Celgard2400型聚丙烯隔膜和负极极 片按照顺序叠加在一起, 卷绕、 热压后装入塑料外壳中, 烘烤后注入 lmol/L电解 质为 LiPF6, 溶剂 EC+DMC体积比 1 : 1的电解液, 密封之后即 %: 5%: 5% of the positive electrode pieces. The positive electrode tab, the Celg a rd2400 polypropylene separator and the negative electrode tab are stacked in this order, wound, hot pressed, and then placed in a plastic outer casing. After baking, a lmol/L electrolyte is injected into LiPF 6 , solvent EC + DMC An electrolyte with a volume ratio of 1:1, after sealing
制备成动力电池单体。 Prepared into a power battery unit.
[53] 将制备好的动力电池单体, 化成后进行测试, 测试结果如表 1 。 [53] The prepared power battery cells were tested and tested. The test results are shown in Table 1.
[54] 实施例 5, 将 2.0mol碳酸锂、 5mol二氧化钛、 O.lmol [54] Example 5, 2.0 mol of lithium carbonate, 5 mol of titanium dioxide, 0.1 mol of
的纳米级氟化铝粉末, 转速 lOOr/min, 研磨分散 40小吋制得复合钛酸锂前驱混合 物; 将复合钛酸锂前驱混合物分散于乙醇中, 固体与有机溶剂的比例比为 1.3 : 1, 以 100 °C条件下喷雾干燥得到分散粉体; 将分散粉体以 8°C /min The nano-scale aluminum fluoride powder, rotating at a speed of lOOr/min, grinding and dispersing for 40 hours to prepare a composite lithium titanate precursor mixture; dispersing the composite lithium titanate precursor mixture in ethanol, the ratio of solid to organic solvent is 1.3:1 , spray drying at 100 ° C to obtain a dispersed powder; the dispersed powder at 8 ° C / min
的升温速度, 在 600°C的温度范围内热处理 30小吋, 期间通入氩气, 自然冷却至 1 50°C以下; 进行粉碎和筛分, 得到粒度为 Ιμηι的 Li4Ti5012/ (A1F3) αι The heating rate is heat-treated in a temperature range of 600 ° C for 30 hours, during which argon gas is introduced and naturally cooled to below 150 ° C; pulverization and sieving are carried out to obtain Li 4 Ti 5 0 12 / with a particle size of Ιμηι / (A1F 3 ) αι
(x=0.l) 负极活性物质。 (x = 0.1) A negative active material.
[55] 将上述所得负极活性材料、 导电剂乙炔黑和粘结剂 PVDF, 按质量比为 85%: 5 %: 10%制作负极极片。 将 LiFeP04、 导电剂乙炔黑和粘结剂 PVDF, 按质量比 为 95 [55] The negative electrode active material, the conductive agent acetylene black, and the binder PVDF obtained above were produced in a mass ratio of 85%: 5 %: 10% to prepare a negative electrode tab. LiFeP0 4 , conductive agent acetylene black and binder PVDF, by mass ratio of 95
%: 3%: 2%制作正极极片。 将正极极片、 Celgard2400型聚丙烯隔膜和负极极 片按照顺序叠加在一起, 卷绕、 热压后装入塑料外壳中, 烘烤后注入 l mol/L 电解质为 LiPF6, 溶剂 EC+DMC体积比 1 : 1的电解液, 密封之后即 %: 3%: 2% to make a positive electrode piece. The positive electrode tab, the Celg a rd2400 polypropylene separator and the negative electrode tab are stacked in this order, wound and hot pressed, and then placed in a plastic outer casing. After baking, a l mol/L electrolyte is injected into LiPF 6 , solvent EC+ DMC volume ratio of 1: 1 electrolyte, after sealing
制备成动力电池单体。 Prepared into a power battery unit.
[56] 将制备好的动力电池单体, 化成后进行测试, 测试结果如表 1 。 [56] The prepared power battery cells were tested and formed. The test results are shown in Table 1.
[57] 实例 6, 将 2.0mol [57] Example 6, will be 2.0mol
碳酸锂、 5mol二氧化钛、 lOmol的纳米级氧化铝粉末, 转速 lOOr/min, 研磨分散 4
0小吋制得复合钛酸锂前驱混合物; 将复合钛酸锂前驱混合物分散于乙醇中, 固 体与有机溶剂的比例比为 1.5 : 1, 以 100 Lithium carbonate, 5 mol of titanium dioxide, lOmol of nano-sized alumina powder, rotating speed lOOr/min, grinding dispersion 4 0:1,100. The ratio of the ratio of the solid to the organic solvent is 1. 5: 1, to 100, the ratio of the ratio of the solid to the organic solvent is 1.
°C条件下喷雾干燥得到分散粉体; 将分散粉体以 8°C /min Spray-dried at °C to obtain a dispersed powder; the dispersed powder was 8 ° C / min
的升温速度, 在 600°C的温度范围内热处理 30小吋, 期间通入氩气, 自然冷却至 1 50°C以下; 进行粉碎和筛分, 得到粒度为 Ιμηι的 Li4Ti5012/ (A1203) 10 The heating rate is heat-treated in a temperature range of 600 ° C for 30 hours, during which argon gas is introduced and naturally cooled to below 150 ° C; pulverization and sieving are carried out to obtain Li 4 Ti 5 0 12 / with a particle size of Ιμηι / (A1 2 0 3 ) 10
(x=10) 负极活性物质。 (x=10) Negative electrode active material.
[58] 将上述所得负极活性材料、 导电剂乙炔黑和粘结剂 PVDF [58] The negative active material obtained above, the conductive agent acetylene black and the binder PVDF
, 按质量比为 85%: 5 %: 10%制作负极极片。 将 LiFeP04 , The negative electrode piece is made by mass ratio of 85%: 5 %: 10%. LiFeP0 4
、 导电剂乙炔黑和粘结剂 PVDF, 按质量比为 85 %: 10 , conductive agent acetylene black and binder PVDF, by mass ratio of 85 %: 10
%: 5%制作正极极片。 将正极极片、 Celgard2400型聚丙烯隔膜和负极极片按照 顺序叠加在一起, 卷绕、 热压后装入塑料外壳中, 烘烤后注入 l mol/L %: 5% of the positive electrode pieces. The positive electrode tab, the Celg a rd 2400 polypropylene separator and the negative electrode tab are stacked in this order, wound, hot pressed, and then placed in a plastic case, and then baked and then injected with 1 mol/L.
电解质为 LiPF6, 溶剂 EC+DMC体积比 1 : 1 The electrolyte is LiPF 6 and the solvent EC + DMC volume ratio is 1: 1
的电解液, 密封之后即制备成动力电池单体。 The electrolyte is prepared as a power battery unit after sealing.
[59] 将制备好的动力电池单体, 化成后进行测试, 测试结果如表 1 。 [59] The prepared power battery cells were tested and formed. The test results are shown in Table 1.
[60] 实施例 7, 将 2.0mol [60] Example 7, 2.0 mol
碳酸锂、 5mol二氧化钛、 O.lmol的纳米级氟化铝粉末, 转速 lOOr/min, 研磨分散 Lithium carbonate, 5 mol of titanium dioxide, 0.1 mol of nano-scale aluminum fluoride powder, rotating speed lOOr/min, grinding dispersion
40小吋制得复合钛酸锂前驱混合物; 将复合钛酸锂前驱混合物分散于乙醇中, 固体与有机溶剂的比例比为 1.3 : 1, 以 100 The ratio of the ratio of the solid to the organic solvent is 1. 3: 1, to 100, the composite of the lithium titanate precursor mixture;
°C条件下喷雾干燥得到分散粉体; 将分散粉体以 1 °C /min的升温速度, 在 500 °C的温度范围内热处理 30小吋, 期间通入氩气, 自然冷却至 150 Spray-drying at °C to obtain a dispersed powder; the dispersed powder was heat-treated at a heating rate of 1 °C /min for 30 hours at a temperature of 500 °C, during which argon gas was introduced and naturally cooled to 150 °C.
°C以下; 进行粉碎和筛分, 得到粒度为 Ιμηι的 Li4Ti5012/ (A1F3) 0, Below C °; pulverization and sieving to obtain Li 4 Ti 5 0 12 / (A1F 3 ) 0 having a particle size of Ιμηι,
(x=0.l) 负极活性物质。 (x = 0.1) A negative active material.
[61] 将上述所得负极活性材料、 导电剂乙炔黑和粘结剂 PVDF, 按质量比为 85 [61] The negative electrode active material, the conductive agent acetylene black and the binder PVDF obtained above are in a mass ratio of 85
%: 5%: 10%制作负极极片。 将 LiFeP04 %: 5%: 10% to make a negative pole piece. LiFeP0 4
、 导电剂乙炔黑和粘结剂 PVDF, 按质量比为 85%: 5%: 10%制作正极极片。 将正极极片、 Celgard2400型聚丙烯隔膜和负极极片按照顺序叠加在一起, 卷绕 、 热压后装入塑料外壳中, 烘烤后注入 lmol/L电解质为 LiPF6, 溶剂 EC+DMC体 积比 1 : 1的电解液, 密封之后即制备成动力电池单体。
[62] 将制备好的动力电池单体, 化成后进行测试, 测试结果如表 1 。 The conductive agent acetylene black and the binder PVDF were prepared to have a positive electrode tab at a mass ratio of 85%: 5%: 10%. The positive electrode tab, the Celg a rd2400 polypropylene separator and the negative electrode tab are stacked in this order, wound, hot pressed, and then placed in a plastic outer casing. After baking, a lmol/L electrolyte is injected into LiPF 6 , solvent EC + DMC The electrolyte with a volume ratio of 1:1 is prepared as a power battery unit after sealing. [62] The prepared power battery cells were tested and formed. The test results are shown in Table 1.
[63] 对比例 1, 将 2.0mol碳酸锂、 5mol二氧化钛, 转速 300r/min, 研磨分散 24 [63] Comparative Example 1, 2.0 mol of lithium carbonate, 5 mol of titanium dioxide, rotating at 300 r/min, grinding and dispersing 24
小吋制得复合钛酸锂前驱混合物; 将复合钛酸锂前驱混合物分散于乙醇中, 固 体与有机溶剂的比例比为 1.5 : 1, 以 O. The ratio of the solid to the organic solvent is 1. 5: 1, by the ratio of the ratio of the solid to the organic solvent.
150°C条件下喷雾干燥得到分散粉体; 将分散粉体以 10°C Spray drying at 150 ° C to obtain a dispersed powder; dispersing the powder at 10 ° C
/min的升温速度, 在 700°C的温度范围内热处理 30小吋, 期间通入氮气, 自然冷 却至 150°C以下; 进行粉碎和筛分, 得到粒度为 Ιμηι的 4 012负极活性物质。 如 图 8所示, 图谱中除了尖晶石型钛酸锂的衍射峰外, 无其他的衍射杂峰, 且衍射 峰的强度较高。 The heating rate of /min was heat-treated at a temperature of 700 ° C for 30 hours, during which nitrogen gas was introduced, and it was naturally cooled to 150 ° C or less; pulverization and sieving were carried out to obtain a 40 12 negative electrode active material having a particle size of Ιμηι. As shown in Fig. 8, in addition to the diffraction peak of the spinel type lithium titanate, there are no other diffraction peaks, and the intensity of the diffraction peak is high.
[64] 将上述所得负极活性材料、 导电剂乙炔黑和粘结剂 PVDF, 按质量比为 85 [64] The negative electrode active material, the conductive agent acetylene black and the binder PVDF obtained above are in a mass ratio of 85
%: 5%: 10%制作负极极片。 将 LiFeP04 %: 5%: 10% to make a negative pole piece. LiFeP0 4
、 导电剂乙炔黑和粘结剂 PVDF, 按质量比为 95%: 3%: 2%制作正极极片。 将 正极极片、 Celgard2400型聚丙烯隔膜和负极极片按照顺序叠加在一起, 卷绕、 热压后装入塑料外壳中, 烘烤后注入 1 mol/L电解质为 LiPF6 The conductive agent acetylene black and the binder PVDF were prepared in a mass ratio of 95%: 3%: 2% to prepare a positive electrode tab. The positive electrode tab, the Celg a rd 2400 polypropylene separator and the negative electrode tab are stacked in this order, wound, hot pressed and placed in a plastic case, and then baked to inject 1 mol/L electrolyte into LiPF 6
, 溶剂 EC+DMC体积比 1 : 1的电解液, 密封之后即制备成动力电池单体。 Solvent EC+DMC The electrolyte solution with a volume ratio of 1:1 is prepared as a power battery unit after sealing.
[65] 将制备好的动力电池单体, 化成后进行测试, 测试结果如表 1 [65] After the prepared power battery unit is formed into a test, the test results are shown in Table 1.
。 循环性能如图 5所示, 1500周的容量保持率为 92%。 . The cycle performance is shown in Figure 5, with a capacity retention rate of 92% for 1500 weeks.
[66] 对比例 2, 以目前商业化的磷酸铁锂作为正极活性物质, MCMB [66] Comparative Example 2, using commercially available lithium iron phosphate as a positive electrode active material, MCMB
为负极活性物质, 按照成熟的工艺装配成磷酸铁锂 /MCMB锂离子动力电池, 测 试条件: 在上、 下限电压为 2.5-4.1V, 以 0.1C的电流充放电 3次。 不同倍率的放 电曲线如图 4所示, 0.2C放电倍率条件下, 放电容量为 487mAh As a negative active material, it is assembled into a lithium iron phosphate/MCMB lithium ion power battery according to a mature process. Test conditions: The upper and lower limit voltages are 2.5-4.1V, and the current is charged and discharged 3 times with a current of 0.1C. The discharge curves of different magnifications are shown in Fig. 4. Under the condition of 0.2C discharge rate, the discharge capacity is 487mAh.
, 50C的放电倍率约为 360mAh。 The discharge rate of 50C is about 360mAh.
[67] 将制备好的动力电池单体, 化成后进行测试, 测试结果如表 1, 循环性能如图 5 所示, 500周的容量保持率为 88%。 [67] The prepared power battery cells were tested and formed. The test results are shown in Table 1. The cycle performance is shown in Figure 5. The 500-week capacity retention rate is 88%.
[70] 从表 1 [70] From Table 1
可以看出, 釆用惨杂改性制备的钛酸锂, 较釆用未惨杂改性制备的钛酸锂的对 比例, 电池的倍率性能有显著提高, 惨杂改性制备的钛酸锂是优良的活性物质 材料。 It can be seen that the lithium titanate prepared by the miscellaneous modification is significantly improved in the rate performance of the battery compared with the comparative example of the lithium titanate prepared by the unmodified modification, and the lithium titanate prepared by the miscellaneous modification is prepared. It is an excellent active material.
[71] 在实施例中, 无机锂盐仅列举了碳酸锂, 碳酸锂与是 [71] In the examples, the inorganic lithium salt only lists lithium carbonate, lithium carbonate and
氢氧化锂、 碳酸锂、 醋酸锂、 氯化锂、 硫酸锂、 硝酸锂、 碘化锂、 叔丁醇锂、 苯甲酸锂、 甲酸锂、 氟化锂、 铬酸锂、 四水柠檬酸锂、 四氯铝酸锂、 溴化锂、 四氟硼酸锂和草酸锂是含锂化合物, 在获得 Lithium hydroxide, lithium carbonate, lithium acetate, lithium chloride, lithium sulfate, lithium nitrate, lithium iodide, lithium t-butoxide, lithium benzoate, lithium formate, lithium fluoride, lithium chromate, lithium citrate tetrahydrate, Lithium tetrachloroaluminate, lithium bromide, lithium tetrafluoroborate and lithium oxalate are lithium-containing compounds obtained in
复合钛酸锂前驱混合物的工艺中具有加热分解与二氧化钛反应的性质 , 因此氢氧化锂、 碳酸锂、 醋酸锂、 氯化锂、 硫酸锂、 硝酸锂、 碘化锂、 叔丁 醇锂、 苯甲酸锂、 甲酸锂、 氟化锂、 铬酸锂、 四水柠檬酸锂、 四氯铝酸锂、 溴 化锂、 四氟硼酸锂和草酸锂均适用本发明的方法。 The composite lithium titanate precursor mixture has the property of thermal decomposition and titanium dioxide reaction, so lithium hydroxide, lithium carbonate, lithium acetate, lithium chloride, lithium sulfate, lithium nitrate, lithium iodide, lithium t-butoxide, benzoic acid Lithium, lithium formate, lithium fluoride, lithium chromate, lithium citrate tetrahydrate, lithium tetrachloroaluminate, lithium bromide, lithium tetrafluoroborate and lithium oxalate are all suitable for use in the process of the invention.
[72] 在实施例中,
惨杂改性剂仅列举了氧化铝、 氧化锆、 氧化铜和氟化铝, 氧化铝、 氧化锆、 氧 化铜、 氟化铝与金属单质 Al、 Mgs Cu、 Ag、 Ni、 Cos Mn、 Cd、 Pb、 Bi、 Sn、[72] In an embodiment, The miscellaneous modifiers only list alumina, zirconia, copper oxide and aluminum fluoride, aluminum oxide, zirconium oxide, copper oxide, aluminum fluoride and metal elemental Al, Mgs Cu, Ag, Ni, Cos Mn, Cd, Pb, Bi, Sn,
Ge, 金属化合物氧化镁、 氧化亚铜、 氧化银, 氧化钴, 二氧化锰、 三氧化二锰 、 氧化铅、 氧化锡、 氟化锂, 氟化镁、 非金属单质硼、 碳、 硅、 磷、 碘和非金 属化合物呋哺树脂、 脲醛树脂、 密胺树脂、 酚醛树脂、 环氧树脂、 聚乙烯醇、 聚甲基丙烯酸甲酯、 聚四氟乙烯、 聚丙烯腈、 丁苯橡胶, 纤维素、 葡萄糖、 煤 沥青或石油沥青, 都为含碳化合物, 在获得 Ge, metal compound magnesium oxide, cuprous oxide, silver oxide, cobalt oxide, manganese dioxide, manganese trioxide, lead oxide, tin oxide, lithium fluoride, magnesium fluoride, non-metallic elemental boron, carbon, silicon, phosphorus , iodine and non-metallic compounds furfural resin, urea-formaldehyde resin, melamine resin, phenolic resin, epoxy resin, polyvinyl alcohol, polymethyl methacrylate, polytetrafluoroethylene, polyacrylonitrile, styrene butadiene rubber, cellulose , glucose, coal tar pitch or petroleum bitumen, all of which are carbon-containing compounds,
复合钛酸锂前驱混合物的工艺中分解成无定形碳, 其所含元素或离子进入 Li4Ti5 012晶格点阵或与之复合, 均可以提高材料的电化学性能, 因此 The composite lithium titanate precursor mixture is decomposed into amorphous carbon in the process, and the elements or ions contained therein enter or merge with the Li 4 Ti 5 0 12 lattice lattice, thereby improving the electrochemical performance of the material.
金属单质 Al、 Mgs Cu、 Ag、 Ni、 Cos Mn、 Cd、 Pb、 Bi、 Sn、 Ge, 金属化合物 氧化镁、 氧化亚铜、 氧化银, 氧化钴, 二氧化锰、 三氧化二锰、 氧化铅、 氧化 锡、 氟化锂, 氟化镁、 非金属单质硼、 碳、 硅、 磷、 碘和非金属化合物呋哺树 脂、 脲醛树脂、 密胺树脂、 酚醛树脂、 环氧树脂、 聚乙烯醇、 聚甲基丙烯酸甲 酯、 聚四氟乙烯、 聚丙烯腈、 丁苯橡胶, 纤维素、 葡萄糖、 煤沥青或石油沥青 , 均适用本发明的方法。 Metal elemental Al, Mgs Cu, Ag, Ni, Cos Mn, Cd, Pb, Bi, Sn, Ge, metal compound magnesium oxide, cuprous oxide, silver oxide, cobalt oxide, manganese dioxide, dimanganese trioxide, lead oxide , tin oxide, lithium fluoride, magnesium fluoride, non-metallic elemental boron, carbon, silicon, phosphorus, iodine and non-metallic compounds furfural resin, urea-formaldehyde resin, melamine resin, phenolic resin, epoxy resin, polyvinyl alcohol, The method of the present invention is applicable to polymethyl methacrylate, polytetrafluoroethylene, polyacrylonitrile, styrene butadiene rubber, cellulose, glucose, coal tar pitch or petroleum pitch.
[73] 在实施例中, 纳米包覆材料仅列举了乙炔黑、 纳米碳, 乙炔黑、 纳米碳与纳米 二氧化钛、 氧化铝、 氧化镁、 氧化锆是离子导体, 形成包覆层后可以增加材料 的电导率, 提高倍率性能。 氧化亚铜、 氧化银、 氧化锡 [73] In the embodiment, the nano-cladding material only lists acetylene black, nano carbon, acetylene black, nano carbon and nano titanium dioxide, aluminum oxide, magnesium oxide, and zirconium oxide are ionic conductors, and the material can be added after forming a coating layer. The conductivity, improve the rate performance. Cuprous oxide, silver oxide, tin oxide
形成包覆层可以改变钛酸锂的电极电位, 因此 Forming a cladding layer can change the electrode potential of lithium titanate, thus
纳米二氧化钛、 氧化铝、 氧化镁、 氧化锆、 氧化亚铜、 氧化银、 氧化锡, 均适用本发明。 The present invention is applicable to nano titanium dioxide, aluminum oxide, magnesium oxide, zirconium oxide, cuprous oxide, silver oxide, and tin oxide.
[74] 本发明的钛系锂离子动力电池具有下一代锂离子电池必要特性, 充电次数更多 和充电过程更快, 将钛酸锂作为锂离子电池的负极材料吋, 可改善体系的快速 充放电和循环性能, 充放电曲线明显的充放电标志, 安全性能得到改善, 适合 作为电动车的动力电源。 [74] The titanium-based lithium ion power battery of the present invention has the necessary characteristics of a next-generation lithium ion battery, and has a higher number of times of charging and a faster charging process, and lithium titanate is used as a negative electrode material of a lithium ion battery to improve the rapid charging of the system. Discharge and cycle performance, obvious charge and discharge curve of charge and discharge curve, improved safety performance, suitable for power supply of electric vehicles.
[75] 本发明的电池具有较高的安全性能、 良好的倍率性能、 长的循环寿命和较高的 重量比能量, 并且制造简单, 成本低廉, 可以取代目前广泛使用的铅酸蓄电池 。 高能量、 高功率, 具有良好的倍率性能和循环性能的动力电源, 以取代传统
的铅酸蓄电池。 同吋, 本发明涉及的新型电池对环境友好, 是一种绿色环保电 池。 而且, 本发明的电池具有无泄露、 储存寿命长、 易于小型化等优点, 且使 用温度范围广泛。
[75] The battery of the invention has high safety performance, good rate performance, long cycle life and high weight ratio energy, and is simple in manufacture and low in cost, and can replace the lead-acid battery which is widely used at present. High-energy, high-power, power supply with good rate performance and cycle performance to replace the traditional Lead acid battery. At the same time, the novel battery of the present invention is environmentally friendly and is a green battery. Moreover, the battery of the present invention has advantages such as no leakage, long storage life, and ease of miniaturization, and has a wide temperature range of use.
Claims
[1] 一种钛系负极活性物质, 其特征在于: 所述钛系负极活性物质的通式为 L [1] A titanium-based negative electrode active material, wherein the titanium-based negative electrode active material has a general formula of L
Ti5012/MX ) 其中: 0<x≤10, Li4Ti5012为尖晶石钛酸锂, M Ti 5 0 12 /M X ) wherein: 0<x≤10, Li 4 Ti 5 0 12 is spinel lithium titanate, M
为惨杂物质金属单质、 金属化合物、 非金属单质或非金属化合物, 所述惨 杂物质所含元素或离子进入 ^15012晶格点阵或与之复合; 钛系负极活性 物质 Li4Ti5012/Mx It is a monolithic metal element, a metal compound, a non-metal elemental substance or a non-metal compound, and the element or ion contained in the impurity substance enters or is complexed with the lattice of the ^1 5 0 12 lattice; the titanium-based negative electrode active material Li4Ti 5 0 12 /M x
的平均粒径为 0.1~30μηι; 所述金属单质为 Al、 Mg、 Cu、 Ag、 Ni、 Co、 Mn 、 Cd、 Pb、 Bi、 Sn或 Ge, 金属化合物为氧化铝、 氧化镁、 氧化锆、 氧化铜 The average particle diameter is 0.1~30μηι; the metal element is Al, Mg, Cu, Ag, Ni, Co, Mn, Cd, Pb, Bi, Sn or Ge, and the metal compound is alumina, magnesia, zirconia, Copper oxide
、 氧化亚铜、 氧化银, 氧化钴, 二氧化锰、 三氧化二锰、 氧化铅、 氧化锡 、 氟化铝、 氟化锂或氟化镁, 非金属单质为硼、 碳、 硅、 磷或碘, 非金属 化合物为呋哺树脂、 脲醛树脂、 密胺树脂、 酚醛树脂、 环氧树脂、 聚乙烯 醇、 聚甲基丙烯酸甲酯、 聚四氟乙烯、 聚丙烯腈、 丁苯橡胶, 纤维素、 葡 萄糖、 煤沥青或石油沥青的一种以上。 , cuprous oxide, silver oxide, cobalt oxide, manganese dioxide, dimanganese trioxide, lead oxide, tin oxide, aluminum fluoride, lithium fluoride or magnesium fluoride, non-metal elements are boron, carbon, silicon, phosphorus or Iodine, non-metallic compounds are furfural resin, urea-formaldehyde resin, melamine resin, phenolic resin, epoxy resin, polyvinyl alcohol, polymethyl methacrylate, polytetrafluoroethylene, polyacrylonitrile, styrene butadiene rubber, cellulose , more than one type of glucose, coal tar pitch or petroleum pitch.
[2] 根据权利要求 1所述的钛系负极活性物质, 其特征在于: 所述 Li4Ti5012/Mx 基体外包覆有纳米包覆材料的包覆层, 纳米包覆材料是纳米二氧化钛、 氧 化铝、 氧化镁、 氧化锆、 氧化亚铜、 氧化银、 氧化锡、 乙炔黑或纳米碳材 料, 包覆层的厚度在 5~50nm之间。 [2] The titanium-based negative electrode active material according to claim 1, wherein the Li4Ti 5 0 12 /M x substrate is coated with a coating layer of a nano-cladding material, and the nano-cladding material is nano-titanium dioxide. Alumina, magnesia, zirconia, cuprous oxide, silver oxide, tin oxide, acetylene black or nano-carbon material, the thickness of the coating layer is between 5 and 50 nm.
[3] 一种钛系负极活性物质制备方法, 包括以下步骤: 一、 按无机锂盐中的锂 [3] A method for preparing a titanium-based anode active material, comprising the following steps: 1. According to lithium in an inorganic lithium salt
: 二氧化钛: 惨杂改性剂摩尔比 1.9~2.1: 4.9-5.1: 大于 0~10 混合制得复合钛酸锂前驱混合物; 所述无机锂盐是 : Titanium dioxide: molar modifier molar ratio 1.9~2.1: 4.9-5.1: greater than 0~10 mixed lithium titanate precursor mixture; the inorganic lithium salt is
氢氧化锂、 碳酸锂、 醋酸锂、 氯化锂、 硫酸锂、 硝酸锂、 碘化锂、 叔丁醇 锂、 苯甲酸锂、 甲酸锂、 氟化锂、 铬酸锂、 四水柠檬酸锂、 四氯铝酸锂、 溴化锂、 四氟硼酸锂或草酸锂 Lithium hydroxide, lithium carbonate, lithium acetate, lithium chloride, lithium sulfate, lithium nitrate, lithium iodide, lithium t-butoxide, lithium benzoate, lithium formate, lithium fluoride, lithium chromate, lithium citrate tetrahydrate, Lithium tetrachloroaluminate, lithium bromide, lithium tetrafluoroborate or lithium oxalate
, 惨杂改性剂为金属单质、 金属化合物、 非金属单质或非金属化合物, 所 述金属单质为 Al、 Mg、 Cu、 Ag、 Ni、 Co、 Mn、 Cd、 Pb、 Bi、 Sn或 Ge The miscellaneous modifier is a metal element, a metal compound, a non-metal elemental or a non-metal compound, and the metal element is Al, Mg, Cu, Ag, Ni, Co, Mn, Cd, Pb, Bi, Sn or Ge.
, 金属化合物为氧化铝、 氧化镁、 氧化锆、 氧化铜、 氧化亚铜、 氧化银, 氧化钴, 二氧化锰、 三氧化二锰、 氧化铅、 氧化锡、 氟化铝、 氟化锂或氟
化镁, 非金属单质为硼、 碳、 硅、 磷或碘, 非金属化合物为呋哺树脂、 脲 醛树脂、 密胺树脂、 酚醛树脂、 环氧树脂、 聚乙烯醇、 聚甲基丙烯酸甲酯 、 聚四氟乙烯、 聚丙烯腈、 丁苯橡胶, 纤维素、 葡萄糖、 煤沥青或石油沥 青的一种以上; 二、 将混合物按质量比 1~1.5: 1分散于有机溶剂中, 在 100~350°C条件下喷雾干燥制粒, 得到分散粉体; 三、 将分散粉体以 l~15°C/min的升温速度, 在 500~950°C的温度范围内热处理 4~40 小吋, 自然冷却至 150°C以下得到钛系负极活性物质。 The metal compound is alumina, magnesia, zirconia, copper oxide, cuprous oxide, silver oxide, cobalt oxide, manganese dioxide, dimanganese trioxide, lead oxide, tin oxide, aluminum fluoride, lithium fluoride or fluorine. Magnesium, non-metal element is boron, carbon, silicon, phosphorus or iodine. Non-metallic compounds are furfural resin, urea-formaldehyde resin, melamine resin, phenolic resin, epoxy resin, polyvinyl alcohol, polymethyl methacrylate, More than one type of polytetrafluoroethylene, polyacrylonitrile, styrene butadiene rubber, cellulose, glucose, coal tar pitch or petroleum pitch; 2. Disperse the mixture in an organic solvent at a mass ratio of 1 to 1.5:1, at 100~350 Spray drying granulation at °C to obtain a dispersed powder; 3. Dissolving the dispersed powder at a temperature rising rate of l~15 °C/min, heat-treating 4~40 hours in a temperature range of 500-950 °C, natural The titanium-based negative electrode active material was obtained by cooling to 150 ° C or lower.
[4] 根据权利要求 3 [4] according to claim 3
所述的钛系负极活性物质制备方法, 其特征在于: 所述按无机锂盐中的锂 : 二氧化钛: 惨杂改性剂: 纳米包覆材料摩尔比 1.9~2.1: 4.9-5.1: 大于 0-10: 大于 0 4.0 The method for preparing a titanium-based negative electrode active material, characterized in that: the lithium in the inorganic lithium salt: titanium dioxide: miscellaneous modifier: nano-cladding material molar ratio 1.9 to 2.1: 4.9-5.1: greater than 0- 10: Greater than 0 4.0
混合制得复合钛酸锂前驱混合物; 纳米包覆材料是纳米二氧化钛、 氧化铝 Mixing a composite lithium titanate precursor mixture; the nano-cladding material is nano-titanium dioxide, aluminum oxide
、 氧化镁、 氧化锆、 氧化亚铜、 氧化银、 氧化锡、 乙炔黑或纳米碳材料。 , magnesium oxide, zirconium oxide, cuprous oxide, silver oxide, tin oxide, acetylene black or nano carbon materials.
[5] 根据权利要求 3或 4 [5] according to claim 3 or 4
所述的钛系负极活性物质制备方法, 其特征在于: 所述冷却后进行粉碎和 筛分, 得到粒度为 0.1~30μηι的钛系负极活性物质。 In the method for producing a titanium-based negative electrode active material, the film is cooled and sieved to obtain a titanium-based negative electrode active material having a particle size of 0.1 to 30 μm.
[6] 根据权利要求 5 [6] according to claim 5
所述的钛系负极活性物质制备方法, 其特征在于: 所述混合釆用用高速搅 拌或球磨的方法, 转速 100~500 r/min, 研磨分散 2~40小吋。 The method for preparing a titanium-based negative electrode active material is characterized in that: the mixed crucible is subjected to high-speed stirring or ball milling at a rotation speed of 100 to 500 r/min, and is ground and dispersed for 2 to 40 hours.
[7] 根据权利要求 6 [7] according to claim 6
所述的钛系负极活性物质制备方法, 其特征在于: 所述有机溶剂是乙醇或 丙酮。 The method for producing a titanium-based negative electrode active material, characterized in that the organic solvent is ethanol or acetone.
[8] 根据权利要求 7 [8] according to claim 7
所述的钛系负极活性物质制备方法, 其特征在于: 所述热处理期间通入氩 气或氮气。 The method for producing a titanium-based negative electrode active material, characterized in that argon or nitrogen gas is supplied during the heat treatment.
[9] 一种钛系锂离子动力电池, 具有正极和负极, 其特征在于: 所述负极为 Li4 [9] A titanium-based lithium ion power battery having a positive electrode and a negative electrode, wherein: the negative electrode is Li4
Ti5012/Mx、 导电剂和溶于 N-甲基吡咯垸酮的粘结剂组成, 质量比为 85〜 95 %: 3〜 10 %: 2〜 10 %, 其中: 0<x≤10, Li4Ti5012
为尖晶石钛酸锂, M Ti 5 0 12 /M x , a conductive agent and a binder dissolved in N-methylpyrrolidone, the mass ratio is 85 to 95%: 3 to 10%: 2 to 10%, wherein: 0 < x ≤ 10, Li 4 Ti 5 0 12 For spinel lithium titanate, M
为惨杂物质金属单质、 金属化合物、 非金属单质或非金属化合物, 所述惨 杂物质所含元素或离子进入 Li4Ti5012晶格点阵或与之复合, 平均粒径为 0.1~30μηι; 所述金属单质为 Al、 Mg、 Cu、 Ag、 Ni、 Co、 Mn、 Cd 、 Pb、 Bi、 Sn或 Ge a monolithic metal element, a metal compound, a non-metal elemental or a non-metal compound, the element or ion contained in the impurity substance enters or is complexed with a Li4Ti 5 0 12 lattice lattice, and the average particle diameter is 0.1 to 30 μm; The metal element is Al, Mg, Cu, Ag, Ni, Co, Mn, Cd, Pb, Bi, Sn or Ge
, 金属化合物为氧化铝、 氧化镁、 氧化锆、 氧化铜、 氧化亚铜、 氧化银, 氧化钴, 二氧化锰、 三氧化二锰、 氧化铅、 氧化锡、 氟化铝、 氟化锂或氟 化镁, 非金属单质为硼、 碳、 硅、 磷或碘, 非金属化合物为呋哺树脂、 脲 醛树脂、 密胺树脂、 酚醛树脂、 环氧树脂、 聚乙烯醇、 聚甲基丙烯酸甲酯 、 聚四氟乙烯、 聚丙烯腈、 丁苯橡胶, 纤维素、 葡萄糖、 煤沥青或石油沥 青的一种以上。 The metal compound is alumina, magnesia, zirconia, copper oxide, cuprous oxide, silver oxide, cobalt oxide, manganese dioxide, dimanganese trioxide, lead oxide, tin oxide, aluminum fluoride, lithium fluoride or fluorine. Magnesium, non-metal element is boron, carbon, silicon, phosphorus or iodine. Non-metallic compounds are furfural resin, urea-formaldehyde resin, melamine resin, phenolic resin, epoxy resin, polyvinyl alcohol, polymethyl methacrylate, More than one type of polytetrafluoroethylene, polyacrylonitrile, styrene butadiene rubber, cellulose, glucose, coal tar pitch or petroleum pitch.
[10] 根据权利要求 9所述的钛系锂离子动力电池, 其特征在于: 所述 Li4Ti5012 [10] The titanium-based lithium ion power battery according to claim 9, wherein: said Li4Ti 5 0 12
/Mx /M x
基体外包覆有纳米包覆材料的包覆层, 纳米包覆材料是纳米二氧化钛、 氧 化铝、 氧化镁、 氧化锆、 氧化亚铜、 氧化银、 氧化锡、 乙炔黑或纳米碳材 料, 包覆层的厚度在 5~50nm之间。 The substrate is coated with a coating layer of nano-cladding material, and the nano-cladding material is nano-titanium dioxide, aluminum oxide, magnesium oxide, zirconium oxide, cuprous oxide, silver oxide, tin oxide, acetylene black or nano carbon material, coated The thickness of the layer is between 5 and 50 nm.
[11] 根据权利要求 9或 10所述的钛系锂离子动力电池, 其特征在于: 所述正极为 铁系或锰系活性物质、 导电剂和溶于 N-甲基吡咯垸酮的粘结剂组成, 质量 比为 85〜95%: 3〜10%: 2〜10%。 [11] The titanium-based lithium ion power battery according to claim 9 or 10, wherein the positive electrode is an iron-based or manganese-based active material, a conductive agent, and a binder dissolved in N-methylpyrrolidone Composition, mass ratio of 85~95%: 3~10%: 2~10%.
[12] 根据权利要求 11所述的钛系锂离子动力电池, 其特征在于: 所述铁系活性 物质是 LiFeP04或 Li2FeSi04, 锰系活性物质是 LiMnP04、 LiCoxNiyMn(1.x.y)02 [12] The titanium-based lithium ion power battery according to claim 11, wherein the iron-based active material is LiFeP0 4 or Li 2 FeSi0 4 , and the manganese-based active material is LiMnP0 4 or LiCo x Ni y Mn ( 1 . x . y) 0 2
, 其中 0≤x<l、 0<y<l , Li[LixMn(2.x)]04 , 其中 0≤χ<1/3, Li[MxMn(2.x)]04 Where 0 ≤ x < l, 0 < y < l , Li [Li x Mn (2 . x) ] 0 4 , where 0 ≤ χ < 1/3, Li [M x Mn (2 . x) ] 0 4
, 其中 0<χ<1, M是 3d过渡金属元素, Li2MnSi04。 Where 0<χ<1, M is a 3d transition metal element, Li 2 MnSi0 4 .
[13] 根据权利要求 12所述的钛系锂离子动力电池, 其特征在于: 所述铁系和锰 系活性活性物质平均粒径为 0.1~30μηι。
[13] The titanium-based lithium ion power battery according to claim 12, wherein the iron-based and manganese-based active material has an average particle diameter of 0.1 to 30 μm.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200810216802.0 | 2008-10-07 | ||
CN2008102168020A CN101373829B (en) | 2008-10-07 | 2008-10-07 | Titanium-series cathode active material and preparation method thereof, titanium-series lithium ion power battery |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010040285A1 true WO2010040285A1 (en) | 2010-04-15 |
Family
ID=40447851
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2009/070353 WO2010040285A1 (en) | 2008-10-07 | 2009-02-04 | Titanium-containing active material for negative electrodes and its production method and titanium-containing power lithium battery |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN101373829B (en) |
WO (1) | WO2010040285A1 (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103326010A (en) * | 2013-06-05 | 2013-09-25 | 深圳市斯诺实业发展有限公司永丰县分公司 | Process for preparing nano-silicon-doped composite-lithium-titanate anode materials |
CN103326009A (en) * | 2013-06-05 | 2013-09-25 | 深圳市斯诺实业发展有限公司永丰县分公司 | Process for preparing high capacity lithium titanate anode material |
US9011713B2 (en) | 2011-07-05 | 2015-04-21 | Samsung Sdi Co., Ltd. | Composite, method of manufacturing the composite, anode active material including the composite, anode including the anode active material, and lithium secondary battery including the anode |
CN105006562A (en) * | 2015-06-05 | 2015-10-28 | 田东 | Preparation method of multiphase metal doped lithium titanate negative electrode materials |
CN106486631A (en) * | 2016-10-28 | 2017-03-08 | 珠海市鹏辉电池有限公司 | A kind of high voltage fills lithium ion battery and preparation method thereof soon |
CN109319830A (en) * | 2018-11-13 | 2019-02-12 | 北方奥钛纳米技术有限公司 | Lithium titanate material and preparation method thereof, negative electrode tab, battery |
CN110299524A (en) * | 2019-06-28 | 2019-10-01 | 陕西科技大学 | It is a kind of to prepare lithium ion battery negative material MnO2The method of/Ag |
CN111162255A (en) * | 2019-12-27 | 2020-05-15 | 北方奥钛纳米技术有限公司 | Silicon-based/lithium titanate composite material, preparation method thereof and battery |
CN112038581A (en) * | 2014-01-03 | 2020-12-04 | 溧阳天目先导电池材料科技有限公司 | Method for preliminary alkali metallization and application of method in battery material |
CN114497469A (en) * | 2020-11-11 | 2022-05-13 | 成都爱敏特新能源技术有限公司 | Silicon monoxide-cobalt fluoride-graphene composite negative electrode material and preparation method thereof |
CN115072703A (en) * | 2022-08-02 | 2022-09-20 | 洛阳月星新能源科技有限公司 | Composite negative electrode material and preparation method and application thereof |
CN115241461A (en) * | 2022-09-20 | 2022-10-25 | 河北格力钛新能源有限公司 | Method for preparing modified lithium titanate composite material and modified lithium titanate composite material |
CN115548311A (en) * | 2022-10-20 | 2022-12-30 | 福州大学 | Fluorine-doped TiO2(B)/rGO composite material and its preparation method and application |
CN119170782A (en) * | 2024-11-14 | 2024-12-20 | 青岛青北碳素制品有限公司 | A high power density graphite negative electrode material and its production process |
Families Citing this family (81)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101373829B (en) * | 2008-10-07 | 2011-05-11 | 深圳市贝特瑞新能源材料股份有限公司 | Titanium-series cathode active material and preparation method thereof, titanium-series lithium ion power battery |
CN101841017B (en) * | 2009-03-16 | 2013-07-31 | 成都兴能新材料有限公司 | Lithium titanate/carbon/carbon nano tube composite electrode material and preparation method thereof |
CN101540392B (en) * | 2009-04-09 | 2011-04-06 | 西安建筑科技大学 | Method for preparing lithium-manganese silicate of cathode material of lithium-ion battery |
CN102414883B (en) * | 2009-04-24 | 2014-04-02 | 夏普株式会社 | Positive active material and nonaqueous secondary battery equipped with positive electrode including same |
CN101877407B (en) * | 2009-04-30 | 2013-06-19 | 比亚迪股份有限公司 | Cathode active material, preparation method thereof and battery |
CN102428031B (en) | 2009-05-26 | 2016-08-10 | 石原产业株式会社 | Lithium titanate, the method producing lithium titanate and the electrode active material of each self-contained lithium titanate and electrical storage device |
CN101609883B (en) * | 2009-07-13 | 2011-01-05 | 北京安华联合能源科技有限责任公司 | Preparation method of nano-silver particle dispersed Li4Ti5O12 thin film lithium ion battery negative electrode |
CN102013526B (en) * | 2009-09-08 | 2012-08-29 | 清华大学深圳研究生院 | Rechargeable zinc ion battery |
CN102122708A (en) * | 2010-01-08 | 2011-07-13 | 中国科学院物理研究所 | Negative pole material for lithium-ion secondary battery, negative pole containing negative pole material, preparation method of negative pole and battery containing negative pole |
CN102148351B (en) | 2010-02-06 | 2013-04-24 | 清华大学 | Preparation method for electrode material of lithium battery |
CN101800305B (en) * | 2010-03-09 | 2012-02-29 | 福建师范大学 | A method for depositing silicon thin film on the surface of lithium titanate negative electrode of lithium ion battery |
CN101800306B (en) * | 2010-03-25 | 2012-07-04 | 陕西师范大学 | Method for preparing tin oxide/carbon composite electrode material for lithium-ion batteries |
CN102201570B (en) * | 2010-03-25 | 2013-11-06 | 清华大学 | Preparation method for electrode material of lithium battery |
TWI458164B (en) * | 2010-03-30 | 2014-10-21 | Hon Hai Prec Ind Co Ltd | Method for making electrode material of lithium-ion battery |
TWI403017B (en) * | 2010-04-27 | 2013-07-21 | Hon Hai Prec Ind Co Ltd | Method for making electrode material of lithium-ion batteries |
CN102869612B (en) * | 2010-04-28 | 2015-12-02 | 石原产业株式会社 | Lithium titanate, its preparation method, comprise lithium titanate electrode active material and use the Electrical storage devices of electrode active material |
CN101859890A (en) * | 2010-06-21 | 2010-10-13 | 惠州市赛能电池有限公司 | Anode material of lithium ion battery |
CN102442695A (en) * | 2010-10-09 | 2012-05-09 | 合肥国轩高科动力能源有限公司 | Preparation method of lithium titanate material of lithium ion battery |
CN102013479A (en) * | 2010-10-19 | 2011-04-13 | 合肥国轩高科动力能源有限公司 | Preparation method of carbon-coated zirconium-doped lithium titanate as negative electrode material of lithium ion battery |
CN102024574B (en) * | 2010-12-20 | 2012-09-26 | 浙江吉利汽车研究院有限公司 | Method for preparing composite anode material of super capacitor lithium titanate |
CN102544438A (en) * | 2010-12-20 | 2012-07-04 | 梅岭化工厂 | Lithium titanate electrode doped with nanometer silver powder for lithium ion battery and preparation method for electrode |
TWI441779B (en) * | 2010-12-20 | 2014-06-21 | Ind Tech Res Inst | Material of phosphorus-doped lithium titanium oxide with spinel structure and method of manufacturing the same |
US9160001B2 (en) * | 2010-12-23 | 2015-10-13 | Wildcat Discovery Technologies, Inc. | Lithium-ion battery materials with improved properties |
EP2701231A4 (en) | 2011-04-20 | 2014-11-19 | Panasonic Corp | NONAQUEOUS ELECTROLYTE SECONDARY BATTERY |
CN102299297A (en) * | 2011-07-30 | 2011-12-28 | 珠海锂源动力科技有限公司 | Cathode of lithium ion battery and preparation method thereof |
JP5569980B2 (en) * | 2011-12-26 | 2014-08-13 | 太陽誘電株式会社 | Lithium titanium composite oxide, battery electrode using the same, and lithium ion secondary battery |
CN102637873B (en) * | 2012-03-27 | 2016-08-17 | 曾小毛 | A kind of lithium ion battery negative material and preparation method thereof |
CN102623698A (en) * | 2012-04-16 | 2012-08-01 | 南京大学 | Lithium titanosilicate and its preparation method and application as lithium battery electrode material |
CN102683663B (en) * | 2012-05-07 | 2016-08-03 | 宁德新能源科技有限公司 | Lithium rechargeable battery and negative material and preparation method thereof thereof |
CN103390746B (en) * | 2012-05-07 | 2016-08-03 | 电子科技大学 | A kind of method improving lithium ionic cell cathode material lithium titanate performance |
CN102683664A (en) * | 2012-05-17 | 2012-09-19 | 湖南瑞翔新材料股份有限公司 | Lithium titanate negative electrode material and preparation method thereof |
CN102891304B (en) * | 2012-09-24 | 2016-01-13 | 合肥国轩高科动力能源有限公司 | Lithium titanate and lithium ion battery using lithium titanate negative electrode active material |
CN103779549B (en) * | 2012-10-18 | 2015-11-18 | 上海纳米技术及应用国家工程研究中心有限公司 | The preparation method of even particulate dispersion lithium ion battery electrode material nano lithium titanate |
CN103840146A (en) * | 2012-11-27 | 2014-06-04 | 西安物华新能源科技有限公司 | Preparation method of high-tap-density lithium titanate material |
CN103280567B (en) * | 2013-03-06 | 2016-11-23 | 广东工业大学 | A kind of surface electroless metal plating modified Li4Ti5O12 and its preparation method |
CN103259048A (en) * | 2013-05-22 | 2013-08-21 | 南京双登科技发展研究院有限公司 | Formation method for prolonging cycle life of lithium titanate battery |
CN103337616B (en) * | 2013-06-28 | 2015-06-17 | 上海电力学院 | Metal oxide coated lithium titanate negative pole material and preparation method thereof |
CN104347864A (en) * | 2013-08-05 | 2015-02-11 | 神华集团有限责任公司 | Material and preparation thereof, lithium ion battery electrode active substance containing material, electrode material, electrode and battery |
CN103682303B (en) * | 2013-11-11 | 2016-03-02 | 江苏华东锂电技术研究院有限公司 | Lithium ion battery anode active material and preparation method thereof and lithium ion battery |
CN103872304B (en) * | 2014-03-18 | 2017-02-15 | 中国科学院化学研究所 | Novel magnesium secondary battery electrode material and application thereof |
CN103872305B (en) * | 2014-03-24 | 2016-01-20 | 四川兴能新材料有限公司 | The coated Li of polyelectrolyte 4ti 5o 12the preparation method of negative material |
CN104979542B (en) * | 2014-04-11 | 2019-10-29 | 上海杉杉科技有限公司 | A kind of modified lithium titanate composite material and preparation method and application |
CN104009218B (en) * | 2014-05-07 | 2016-02-03 | 上海应用技术学院 | The preparation method of lithium ion battery negative material tin/lithium titanate composite electrode material |
CN105185972B (en) * | 2014-05-27 | 2018-05-29 | 中信国安盟固利动力科技有限公司 | The compound titanate negative material and its synthetic method of a kind of lithium rechargeable battery |
CN104037400A (en) * | 2014-07-09 | 2014-09-10 | 扬州大学 | Preparation method of copper-doped lithium titanate lithium ion battery cathode material |
CN104091917A (en) * | 2014-07-10 | 2014-10-08 | 上海电力学院 | A kind of titanium oxide negative electrode material that can be used as sodium ion battery and preparation method thereof |
CN104577130A (en) * | 2014-12-13 | 2015-04-29 | 山东神工海特电子科技有限公司 | Flexible-packaged high-power lithium iron phosphate power battery |
CN105990574B (en) * | 2015-02-11 | 2020-01-14 | 微宏动力系统(湖州)有限公司 | Coated lithium-rich negative electrode material and preparation method thereof |
CN105990582A (en) | 2015-03-06 | 2016-10-05 | 苏州宝时得电动工具有限公司 | Battery |
CN104733720A (en) * | 2015-04-15 | 2015-06-24 | 田东 | Preparation method for modified lithium titanate cathode materials |
CN104966828A (en) * | 2015-08-07 | 2015-10-07 | 田东 | Preparation method of high-capacity lithium battery negative electrode material |
CN105006555A (en) * | 2015-08-07 | 2015-10-28 | 田东 | Preparation method of compound lithium titanate anode material doped with metallic tin |
CN105958021B (en) * | 2016-05-27 | 2019-07-30 | 天津泰和九思科技有限公司 | A kind of lithium titanate composite material and preparation method thereof and lithium ion battery |
CN109983610B (en) * | 2016-11-18 | 2022-09-23 | 株式会社东芝 | Nonaqueous electrolyte secondary battery |
WO2018165825A1 (en) * | 2017-03-13 | 2018-09-20 | GM Global Technology Operations LLC | Methods to stabilize lithium titanate oxide (lto) by surface coating |
CN106935829A (en) * | 2017-03-30 | 2017-07-07 | 上海动力储能电池系统工程技术有限公司 | A kind of method for strengthening lithium ion battery lithium titanate material low-temperature characteristics |
CN106935831A (en) * | 2017-03-31 | 2017-07-07 | 深圳市国创新能源研究院 | A kind of lithium titanate anode material for suppressing flatulence and its preparation method and application |
CN107634221B (en) * | 2017-08-18 | 2020-04-21 | 华北理工大学 | A synthetic method for preparing bismuth-doped lithium ferrosilicate cathode material from iron tailings |
CN107732172B (en) * | 2017-09-25 | 2020-10-30 | 中国计量大学 | Lithium ion battery cathode material and preparation method thereof |
CN107994219B (en) * | 2017-11-27 | 2021-11-05 | 桑顿新能源科技(长沙)有限公司 | A kind of graphene-coated metal-doped composite cathode material and preparation method thereof |
CN108417785B (en) * | 2018-01-11 | 2020-11-17 | 茆胜 | Fluorine-nitrogen doped graphene coated lithium titanate composite material and preparation method thereof |
CN108365194B (en) * | 2018-02-06 | 2020-02-14 | 深圳市普锐能源科技有限公司 | Preparation method of composite negative electrode material for lithium ion battery |
CN108695494A (en) * | 2018-04-25 | 2018-10-23 | 福建翔丰华新能源材料有限公司 | A kind of preparation method preparing lithium titanate cladding silicon-carbon composite cathode material |
CN108682832B (en) * | 2018-06-11 | 2021-08-20 | 黑龙江海达新材料科技有限公司 | Composite negative electrode material for lithium battery and preparation method thereof |
CN109599553A (en) * | 2018-11-20 | 2019-04-09 | 湘潭大学 | A kind of hollow sphere nickel sodium manganate and preparation method thereof, sodium-ion battery positive plate and sodium-ion battery |
CN109768234A (en) * | 2018-12-24 | 2019-05-17 | 肇庆市华师大光电产业研究院 | A kind of cobalt doped strontium titanates/graphene composite material, preparation method and application |
CN109830677A (en) * | 2018-12-29 | 2019-05-31 | 北方奥钛纳米技术有限公司 | Negative electrode material and preparation method thereof, negative electrode tab, battery |
CN110112369A (en) * | 2019-05-15 | 2019-08-09 | 桂林电子科技大学 | Compound titanium deoxid film and the preparation method and application thereof |
CN110176586A (en) * | 2019-05-15 | 2019-08-27 | 桂林电子科技大学 | Compound lithium titanate thin film and the preparation method and application thereof |
CN110224118A (en) * | 2019-05-15 | 2019-09-10 | 桂林电子科技大学 | Compound manganese and oxygen compound film and the preparation method and application thereof |
CN110289410A (en) * | 2019-06-28 | 2019-09-27 | 陕西科技大学 | A kind of preparation method of MnO2/Ag composite material with high specific capacity |
CN110289414A (en) * | 2019-07-04 | 2019-09-27 | 银隆新能源股份有限公司 | A kind of lithium ion battery negative material and preparation method thereof |
CN110923646A (en) * | 2019-11-28 | 2020-03-27 | 桂林电子科技大学 | Composite carbon film and its preparation method and application |
CN111769193A (en) * | 2020-07-09 | 2020-10-13 | 青岛大学 | A kind of nanocomposite material and its preparation method, use method and device |
CN112216827A (en) * | 2020-09-21 | 2021-01-12 | 广东工业大学 | A Cu-doped modified LTO@SnO2 composite material and its preparation method and application |
CN112164803B (en) * | 2020-11-03 | 2022-03-25 | 天目湖先进储能技术研究院有限公司 | Three-dimensional dielectric polyacrylonitrile/nano silver-lithium composite material and preparation method thereof |
CN114284483A (en) * | 2021-12-24 | 2022-04-05 | 安徽博石高科新材料股份有限公司 | Preparation and application of a zirconium dioxide-coated lithium manganate cathode material |
CN114744196B (en) * | 2022-03-28 | 2024-03-12 | 蜂巢能源科技股份有限公司 | C-doped and coated cobalt-free positive electrode material, preparation method and lithium ion battery |
CN115395115A (en) * | 2022-09-30 | 2022-11-25 | 电子科技大学 | Multifunctional high-conductivity microcapsule and self-repairing silicon cathode |
CN116230899B (en) * | 2023-03-16 | 2024-08-20 | 深圳市德方创域新能源科技有限公司 | Lithium supplementing material, preparation method thereof, positive electrode plate and secondary battery |
CN116960280B (en) * | 2023-09-18 | 2024-04-30 | 宁德新能源科技有限公司 | Negative electrode sheet, method of manufacturing the same, electrochemical device and electronic device including the same |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1622368A (en) * | 2004-12-17 | 2005-06-01 | 清华大学 | Preparation method of spherical Li4Ti5O12 as lithium ion cell cathode material |
CN101000960A (en) * | 2006-12-29 | 2007-07-18 | 深圳市贝特瑞电子材料有限公司 | Composite lithium titanate electrode material and preparation method thereof |
CN101151747A (en) * | 2005-03-30 | 2008-03-26 | 株式会社杰士汤浅 | Active material for lithium ion battery composed of lithium titanate containing Al, and lithium ion battery |
CN101151746A (en) * | 2005-03-30 | 2008-03-26 | 株式会社杰士汤浅 | Active material for lithium ion battery composed of Mg-containing lithium titanate and lithium ion battery |
CN101373829A (en) * | 2008-10-07 | 2009-02-25 | 深圳市贝特瑞新能源材料股份有限公司 | Titanium-series cathode active material and preparation method thereof, titanium-series lithium ion power battery |
-
2008
- 2008-10-07 CN CN2008102168020A patent/CN101373829B/en active Active
-
2009
- 2009-02-04 WO PCT/CN2009/070353 patent/WO2010040285A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1622368A (en) * | 2004-12-17 | 2005-06-01 | 清华大学 | Preparation method of spherical Li4Ti5O12 as lithium ion cell cathode material |
CN101151747A (en) * | 2005-03-30 | 2008-03-26 | 株式会社杰士汤浅 | Active material for lithium ion battery composed of lithium titanate containing Al, and lithium ion battery |
CN101151746A (en) * | 2005-03-30 | 2008-03-26 | 株式会社杰士汤浅 | Active material for lithium ion battery composed of Mg-containing lithium titanate and lithium ion battery |
CN101000960A (en) * | 2006-12-29 | 2007-07-18 | 深圳市贝特瑞电子材料有限公司 | Composite lithium titanate electrode material and preparation method thereof |
CN101373829A (en) * | 2008-10-07 | 2009-02-25 | 深圳市贝特瑞新能源材料股份有限公司 | Titanium-series cathode active material and preparation method thereof, titanium-series lithium ion power battery |
Non-Patent Citations (1)
Title |
---|
TANG ZHIYUAN ET AL.: "Research progress on electrode material lithium titanate", CHINESE JOURNAL OF POWER SOURCES, vol. 31, no. 5, April 2007 (2007-04-01), pages 333 - 335 * |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9011713B2 (en) | 2011-07-05 | 2015-04-21 | Samsung Sdi Co., Ltd. | Composite, method of manufacturing the composite, anode active material including the composite, anode including the anode active material, and lithium secondary battery including the anode |
CN103326009A (en) * | 2013-06-05 | 2013-09-25 | 深圳市斯诺实业发展有限公司永丰县分公司 | Process for preparing high capacity lithium titanate anode material |
CN103326010A (en) * | 2013-06-05 | 2013-09-25 | 深圳市斯诺实业发展有限公司永丰县分公司 | Process for preparing nano-silicon-doped composite-lithium-titanate anode materials |
CN112038581A (en) * | 2014-01-03 | 2020-12-04 | 溧阳天目先导电池材料科技有限公司 | Method for preliminary alkali metallization and application of method in battery material |
CN105006562A (en) * | 2015-06-05 | 2015-10-28 | 田东 | Preparation method of multiphase metal doped lithium titanate negative electrode materials |
CN106486631A (en) * | 2016-10-28 | 2017-03-08 | 珠海市鹏辉电池有限公司 | A kind of high voltage fills lithium ion battery and preparation method thereof soon |
CN106486631B (en) * | 2016-10-28 | 2023-08-22 | 珠海鹏辉能源有限公司 | High-voltage quick-charge lithium ion battery and preparation method thereof |
CN109319830A (en) * | 2018-11-13 | 2019-02-12 | 北方奥钛纳米技术有限公司 | Lithium titanate material and preparation method thereof, negative electrode tab, battery |
CN110299524A (en) * | 2019-06-28 | 2019-10-01 | 陕西科技大学 | It is a kind of to prepare lithium ion battery negative material MnO2The method of/Ag |
CN110299524B (en) * | 2019-06-28 | 2022-04-01 | 陕西科技大学 | MnO for preparing lithium ion battery negative electrode material2Method for producing Ag |
CN111162255A (en) * | 2019-12-27 | 2020-05-15 | 北方奥钛纳米技术有限公司 | Silicon-based/lithium titanate composite material, preparation method thereof and battery |
CN114497469A (en) * | 2020-11-11 | 2022-05-13 | 成都爱敏特新能源技术有限公司 | Silicon monoxide-cobalt fluoride-graphene composite negative electrode material and preparation method thereof |
CN114497469B (en) * | 2020-11-11 | 2023-12-22 | 成都爱敏特新能源技术有限公司 | Silicon monoxide-cobalt fluoride-graphene composite negative electrode material and preparation method thereof |
CN115072703A (en) * | 2022-08-02 | 2022-09-20 | 洛阳月星新能源科技有限公司 | Composite negative electrode material and preparation method and application thereof |
CN115072703B (en) * | 2022-08-02 | 2024-01-30 | 洛阳月星新能源科技有限公司 | Composite anode material and preparation method and application thereof |
CN115241461A (en) * | 2022-09-20 | 2022-10-25 | 河北格力钛新能源有限公司 | Method for preparing modified lithium titanate composite material and modified lithium titanate composite material |
CN115548311A (en) * | 2022-10-20 | 2022-12-30 | 福州大学 | Fluorine-doped TiO2(B)/rGO composite material and its preparation method and application |
CN119170782A (en) * | 2024-11-14 | 2024-12-20 | 青岛青北碳素制品有限公司 | A high power density graphite negative electrode material and its production process |
Also Published As
Publication number | Publication date |
---|---|
CN101373829B (en) | 2011-05-11 |
CN101373829A (en) | 2009-02-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2010040285A1 (en) | Titanium-containing active material for negative electrodes and its production method and titanium-containing power lithium battery | |
CN1208866C (en) | Lithium secondary battery using nano surface coating composite material as positive electrode active material | |
WO2021185014A1 (en) | Negative electrode active material and electrochemical device and electronic device using same | |
Yuan et al. | Surfactant-assisted hydrothermal synthesis of V2O5 coated LiNi1/3Co1/3Mn1/3O2 with ideal electrochemical performance | |
CN114223073B (en) | Negative electrode active material, method for preparing same, secondary battery, and device comprising secondary battery | |
CN113113583A (en) | Preparation method of nano carbon coated composite lithium iron phosphate low-temperature cathode material | |
CN101540394A (en) | Method for preparing lithium ferrosilicon silicate of lithium-ion battery cathode material | |
CN101964412A (en) | Lithium iron phosphate/carbon composite material with surface modified by coupling agent and preparation method thereof | |
US12218354B2 (en) | Negative-electrode active material and preparation method thereof, secondary battery, and battery module, battery pack, and apparatus containing such secondary battery | |
WO2022133926A1 (en) | Lithium-ion secondary battery and preparation method therefor, battery module, battery pack, and device | |
Song et al. | Enhanced electrochemical performance of Li 1.2 Mn 0.54 Ni 0.13 Co 0.13 O 2 cathode material with bamboo essential oil | |
EP4228034B1 (en) | Composite graphite material and preparation method therefor, negative electrode plate, secondary battery, battery module, battery pack, and powered device | |
US11569498B2 (en) | Negative electrode active material and method for preparation thereof, secondary battery, and apparatus including secondary battery | |
CN114229818A (en) | A kind of preparation method of in-situ doped graphene low-temperature lithium iron phosphate cathode material | |
CN112216829A (en) | A composite cathode material, preparation method thereof, and lithium ion battery | |
CN102104149A (en) | Lithium iron phosphate composite anode material in lithium-ion battery and preparation method thereof | |
CN101540393A (en) | Method for preparing lithium-manganese silicate of lithium-ion battery cathode material | |
CN115411253B (en) | Carbon-coated one-dimensional ferrous fluoride positive electrode material and preparation method and application thereof | |
CN106025182A (en) | Titanium and chromium doped iron fluoride-carbon nanometer composite positive electrode material, and preparation method and application thereof | |
WO2024011621A1 (en) | Lithium manganese iron phosphate positive electrode active material and preparation method therefor, positive electrode sheet, secondary battery and electric device | |
CN112038609A (en) | Lithium iron phosphate surface-modified spinel type lithium nickel manganese oxide positive electrode material and preparation method thereof | |
CN116014104A (en) | Lithium-rich nickel positive electrode material, preparation method thereof, positive electrode sheet and secondary battery | |
CN103337625B (en) | The preparation method of a kind of LiFePO4-denatured conductive carbon black combination electrode material | |
Liu et al. | Ultrathin-ZrO2-coated LiNi0. 4Co0. 2Mn0. 4O2 cathode material for Li-ion batteries: Synthesis and electrochemical performance | |
WO2022193122A1 (en) | Lithium replenishment additive, electrochemical apparatus comprising same, and electronic device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09818749 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09818749 Country of ref document: EP Kind code of ref document: A1 |