CN111769193A - A kind of nanocomposite material and its preparation method, use method and device - Google Patents
A kind of nanocomposite material and its preparation method, use method and device Download PDFInfo
- Publication number
- CN111769193A CN111769193A CN202010656576.9A CN202010656576A CN111769193A CN 111769193 A CN111769193 A CN 111769193A CN 202010656576 A CN202010656576 A CN 202010656576A CN 111769193 A CN111769193 A CN 111769193A
- Authority
- CN
- China
- Prior art keywords
- transition metal
- lithium
- nanocomposite material
- spin
- nanoparticles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N50/00—Galvanomagnetic devices
- H10N50/80—Constructional details
- H10N50/85—Materials of the active region
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N50/00—Galvanomagnetic devices
- H10N50/01—Manufacture or treatment
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
Abstract
本申请实施例公开了一种纳米复合材料及其制备方法、使用方法和器件,纳米复合材料,其特征在于,包括交联结合的第一纳米颗粒和第二纳米颗粒;所述第一纳米颗粒为过渡族金属纳米颗粒,所述第二纳米颗粒为以下材料中的一种或其组合:氮化锂纳米颗粒、氧化锂纳米颗粒、磷化锂纳米颗粒、硒化锂纳米颗粒和硫化锂纳米颗粒。所述纳米复合材料可以在低电压下进行磁性调控,实现高速、高密度的电子自旋信息存储。
The embodiments of the present application disclose a nanocomposite material and a preparation method, use method and device thereof, and the nanocomposite material is characterized in that it comprises cross-linked first nanoparticle and second nanoparticle; the first nanoparticle It is a transition metal nanoparticle, and the second nanoparticle is one or a combination of the following materials: lithium nitride nanoparticle, lithium oxide nanoparticle, lithium phosphide nanoparticle, lithium selenide nanoparticle and lithium sulfide nanoparticle particles. The nanocomposite material can perform magnetic regulation at low voltage, and realize high-speed and high-density electron spin information storage.
Description
技术领域technical field
本申请涉及材料技术领域,特别是涉及一种纳米复合材料及其制备方法、使用方法和器件。The present application relates to the technical field of materials, in particular to a nanocomposite material and its preparation method, use method and device.
背景技术Background technique
电场调控磁性是指利用电场控制材料的磁学性质,用电场替代磁场或者电流控制磁性来实现信息存储的读写,可有效满足新型信息存储器件在高密度、高速度、低功耗、非挥发等方面越来越高的要求。现有技术中,运用电场调控磁性主要有以下几种方法:在类似场效应管的铁磁薄膜/绝缘层结构中,利用强电场控制磁性薄膜中磁性相关载流子的富集或耗散,实现电场对磁性的调控;在由压电效应材料和磁致伸缩效应材料组成的复合结构中,通过两者界面处的应力相互作用,实现电场对磁性的调控;在单相多铁性材料/铁磁薄膜结构中,利用多铁性材料中铁电性和反铁磁性的磁电耦合及界面处多铁性材料中反铁磁性与铁磁薄膜的交换偏置作用,达到电场调控磁性的目的。Electric field regulation of magnetism refers to the use of electric field to control the magnetic properties of materials, and the use of electric field instead of magnetic field or current to control magnetism to realize reading and writing of information storage, which can effectively meet the requirements of new information storage devices in high density, high speed, low power consumption, non- The requirements for volatilization and other aspects are getting higher and higher. In the prior art, the use of electric field to control the magnetism mainly includes the following methods: in a ferromagnetic film/insulating layer structure similar to a field effect transistor, a strong electric field is used to control the enrichment or dissipation of magnetically related carriers in the magnetic film, Realize the regulation of the magnetic field by the electric field; in the composite structure composed of piezoelectric effect materials and magnetostrictive effect materials, the regulation of the magnetic field by the electric field is realized through the stress interaction at the interface of the two; in the single-phase multiferroic material/ In the ferromagnetic thin film structure, the magnetoelectric coupling of ferroelectricity and antiferromagnetism in multiferroic materials and the exchange bias effect of antiferromagnetism and ferromagnetic thin films in multiferroic materials at the interface are used to achieve the purpose of electric field regulation of magnetic properties.
然而,以上电场调控磁性通常需要在较低温度或较高电压下进行,其所对应的器件制备成本较高,严重限制了电场调控磁性在实际生产生活中的应用。However, the above electric field regulation of magnetism usually needs to be carried out at lower temperature or higher voltage, and the corresponding device fabrication cost is relatively high, which seriously limits the application of electric field regulation in practical production and life.
发明内容SUMMARY OF THE INVENTION
本申请实施例中提供了一种纳米复合材料及其制备方法、使用方法和器件,以利于解决现有技术中电场调控磁性通常需要在较低温度或较高电压下进行,其所对应的器件制备成本较高。The embodiments of the present application provide a nanocomposite material, a preparation method, a use method and a device thereof, so as to solve the problem that in the prior art, the electric field regulation of magnetism usually needs to be performed at a lower temperature or a higher voltage, and the corresponding device The preparation cost is high.
第一方面,本申请实施例提供了一种纳米复合材料,包括交联结合的第一纳米颗粒和第二纳米颗粒;In a first aspect, an embodiment of the present application provides a nanocomposite material, comprising a first nanoparticle and a second nanoparticle combined by cross-linking;
所述第一纳米颗粒为过渡族金属纳米颗粒,所述第二纳米颗粒为以下材料中的一种或其组合:The first nanoparticles are transition metal nanoparticles, and the second nanoparticles are one or a combination of the following materials:
氮化锂纳米颗粒、氧化锂纳米颗粒、磷化锂纳米颗粒、硒化锂纳米颗粒和硫化锂纳米颗粒。Lithium nitride nanoparticles, lithium oxide nanoparticles, lithium phosphide nanoparticles, lithium selenide nanoparticles, and lithium sulfide nanoparticles.
优选地,所述过渡族金属纳米颗粒中的过渡族金属为以下元素中的一种或其组合:Preferably, the transition metal in the transition metal nanoparticles is one or a combination of the following elements:
铁、钴、镍和钆。Iron, cobalt, nickel and gadolinium.
第二方面,本申请实施例提供了一种纳米复合材料的制备方法,所述方法包括:In a second aspect, the embodiments of the present application provide a method for preparing a nanocomposite material, the method comprising:
制备过渡族金属化合物,所述过渡族金属化合物为以下材料中的一种或其组合:过渡族金属氧化物、过渡族金属氮化物、过渡族金属磷化物、过渡族金属硒化物和过渡族金属硫化物;Preparation of a transition metal compound, the transition metal compound being one or a combination of the following materials: transition metal oxide, transition metal nitride, transition metal phosphide, transition metal selenide, and transition metal sulfide;
通过锂离子放电还原所述过渡族金属化合物,得到第一方面任一项所述的纳米复合材料。The transition metal compound is reduced by lithium ion discharge to obtain the nanocomposite material according to any one of the first aspects.
优选地,所述通过锂离子放电还原所述过渡族金属化合物,第一方面任一项所述的纳米复合材料,具体为:Preferably, the transition metal compound is reduced by lithium ion discharge, and the nanocomposite material described in any one of the first aspect is specifically:
将所述过渡族金属化合物作为锂离子电池的第一电极,将金属锂或锂源化合物作为锂离子电池的第二个电极;The transition metal compound is used as the first electrode of the lithium ion battery, and the metal lithium or lithium source compound is used as the second electrode of the lithium ion battery;
将所述锂离子电池放电,所述过渡族金属化合物被锂离子放电还原为上述第一方面所述的纳米复合材料。The lithium ion battery is discharged, and the transition metal compound is reduced to the nanocomposite material according to the first aspect above by the lithium ion discharge.
第三方面,本申请提供了一种第一方面任一项所述的纳米复合材料的使用方法,其特征在于,所述方法包括:In a third aspect, the present application provides a method for using the nanocomposite material according to any one of the first aspects, wherein the method includes:
所述纳米复合材料用于磁性调控。The nanocomposite material is used for magnetic regulation.
第四方面,本申请实施例提供了一种自旋电容,所述自旋电容包括第一电极和第二电极,所述第一电极为第一方面任一项所述的纳米复合材料,所述第二电极为金属锂或锂源化合物。In a fourth aspect, an embodiment of the present application provides a spin capacitor, the spin capacitor includes a first electrode and a second electrode, and the first electrode is the nanocomposite material according to any one of the first aspect, so the spin capacitor includes a first electrode and a second electrode. The second electrode is metal lithium or a lithium source compound.
第五方面,本申请实施例提供了一种第四方面所述自旋电容的使用方法,其特征在于,所述方法包括:In a fifth aspect, an embodiment of the present application provides a method for using the spin capacitor according to the fourth aspect, wherein the method includes:
采用所述自旋电容进行自旋信息存储。Spin information storage is performed using the spin capacitance.
优选地,所述采用所述自旋电容进行自旋信息存储,具体为:Preferably, the use of the spin capacitor to store spin information is specifically:
将所述自旋电容放于恒定磁场中,在小于过渡族金属氧化电压范围内,对所述自旋电容进行充放电,实现自旋信息存储。The spin capacitor is placed in a constant magnetic field, and the spin capacitor is charged and discharged within a range smaller than the oxidation voltage of the transition metal, thereby realizing spin information storage.
第六方面,本申请实施例提供了一种存储器,采用第一方面任一项所述的纳米复合材料,通过对所述纳米复合材料的磁性调控,实现信息存储。In a sixth aspect, an embodiment of the present application provides a memory, which adopts the nanocomposite material described in any one of the first aspect, and realizes information storage by adjusting the magnetic properties of the nanocomposite material.
第七方面,本申请实施例提供了一种传感器,采用第一方面任一项所述的纳米复合材料,通过所述纳米复合材料的磁性变化实现感应。In a seventh aspect, an embodiment of the present application provides a sensor, which adopts the nanocomposite material described in any one of the first aspect, and realizes sensing through magnetic changes of the nanocomposite material.
采用本申请实施例提供的方案进行磁性调控至少具备以下优点:Using the scheme provided in the embodiments of the present application to perform magnetic regulation at least has the following advantages:
1、可以在低电压下进行磁性调控,实现高速、高密度的电子自旋信息存储;1. Magnetic regulation can be performed at low voltage to achieve high-speed and high-density electron spin information storage;
2、采用化学方法制备纳米复合材料,比表面积较大;2. Nanocomposite materials are prepared by chemical methods, and the specific surface area is large;
3、制备方法步骤简单,成本低,耗能小,效率高,易于实施。3. The preparation method has the advantages of simple steps, low cost, low energy consumption, high efficiency and easy implementation.
附图说明Description of drawings
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the embodiments of the present application or the technical solutions in the prior art, the following briefly introduces the accompanying drawings that need to be used in the description of the embodiments or the prior art. In other words, other drawings can also be obtained based on these drawings without creative labor.
图1为本申请实施例提供的Fe/Li2O纳米复合材料的高分辨透射显微镜图像;FIG. 1 is a high-resolution transmission microscope image of the Fe/Li 2 O nanocomposite material provided in the embodiment of the present application;
图2为本申请实施例提供的一种纳米复合材料的制备方法流程示意图;FIG. 2 is a schematic flowchart of a preparation method of a nanocomposite material provided in an embodiment of the present application;
图3为本申请实施例提供的一种锂离子电池示意图;FIG. 3 is a schematic diagram of a lithium ion battery provided by an embodiment of the present application;
图4为本申请实施例提供的一种自旋电容在不同电压下的磁化曲线示意图;4 is a schematic diagram of magnetization curves of a spin capacitor under different voltages according to an embodiment of the present application;
图5为本申请实施例提供的一种饱和磁化强度随着电压的可逆循环变化示意图。FIG. 5 is a schematic diagram of a reversible cyclic change of saturation magnetization with voltage according to an embodiment of the present application.
具体实施方式Detailed ways
为了使本技术领域的人员更好地理解本申请中的技术方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本申请保护的范围。In order to make those skilled in the art better understand the technical solutions in the present application, the technical solutions in the embodiments of the present application will be described clearly and completely below with reference to the accompanying drawings in the embodiments of the present application. Obviously, the described The embodiments are only a part of the embodiments of the present application, but not all of the embodiments. Based on the embodiments in the present application, all other embodiments obtained by those of ordinary skill in the art without creative work shall fall within the scope of protection of the present application.
针对现有技术中存在的问题,本申请实施例提供了一种可以在较温和环境下进行磁性调控的纳米复合材料,所述纳米复合材料包括交联结合的第一纳米颗粒和第二纳米颗粒;In view of the problems existing in the prior art, the embodiments of the present application provide a nanocomposite material that can perform magnetic regulation in a milder environment, the nanocomposite material including cross-linked first nanoparticles and second nanoparticles ;
所述第一纳米颗粒为过渡族金属纳米颗粒,所述第二纳米颗粒为以下材料中的一种或其组合:氮化锂纳米颗粒、氧化锂纳米颗粒、磷化锂纳米颗粒、硒化锂纳米颗粒和硫化锂纳米颗粒。例如,所述第二纳米颗粒为氧化锂纳米颗粒,或者为氮化锂纳米颗粒和氧化锂纳米颗粒的组合,为了节约篇幅,在此不进行穷举说明。The first nanoparticles are transition metal nanoparticles, and the second nanoparticles are one or a combination of the following materials: lithium nitride nanoparticles, lithium oxide nanoparticles, lithium phosphide nanoparticles, lithium selenide Nanoparticles and Lithium Sulfide Nanoparticles. For example, the second nanoparticles are lithium oxide nanoparticles, or a combination of lithium nitride nanoparticles and lithium oxide nanoparticles. In order to save space, an exhaustive description is not provided here.
在一种可选实施例中,所述过渡族金属纳米颗粒中的过渡族金属为以下元素中的一种或其组合:铁、钴、镍和钆。例如,所述过渡族金属可以为铁,或者铁和钴的组合,为了节约篇幅,在此不进行穷举说明。In an optional embodiment, the transition metal in the transition metal nanoparticles is one or a combination of the following elements: iron, cobalt, nickel and gadolinium. For example, the transition group metal may be iron, or a combination of iron and cobalt, which will not be described here exhaustively in order to save space.
需要指出的是,上述过渡族金属仅是本申请所列举的几种可能的实现方式,并不应当将其作为本申请保护范围的限定。It should be pointed out that the above transition group metals are only several possible implementations listed in this application, and should not be taken as a limitation of the protection scope of this application.
在一种可选实施例中,所述纳米复合材料可以为Fe/Li2O纳米复合材料,图1为本申请实施例提供的Fe/Li2O纳米复合材料的高分辨透射显微镜图像。In an optional embodiment, the nanocomposite material may be a Fe/Li 2 O nanocomposite material, and FIG. 1 is a high-resolution transmission microscope image of the Fe/Li 2 O nanocomposite material provided in the embodiment of the present application.
除了Fe/Li2O纳米复合材料外,本申请实施例提供的纳米复合材料还可以为Co/Li2O纳米复合材料、Ni/Li2O纳米复合材料、Ga/Li2O纳米复合材料、Fe/Li3N纳米复合材料、Co/Li3N纳米复合材料、Ni/Li3N纳米复合材料、Ga/Li3P纳米复合材料、Fe/Li3P纳米复合材料、Co/Li3P纳米复合材料、Ni/Li3P纳米复合材料、Ga/Li3P纳米复合材料、Fe/Li2Se纳米复合材料、Co/Li2Se纳米复合材料、Ni/Li2Se纳米复合材料、Ga/Li2Se纳米复合材料、Fe/Li2S纳米复合材料、Co/Li2S纳米复合材料、Ni/Li2S纳米复合材料、Ga/Li2S纳米复合材料。In addition to Fe/Li 2 O nanocomposite materials, the nanocomposite materials provided in the embodiments of the present application may also be Co/Li 2 O nanocomposite materials, Ni/Li 2 O nanocomposite materials, Ga/Li 2 O nanocomposite materials, Fe/ Li3N nanocomposite, Co/Li3N nanocomposite, Ni/ Li3N nanocomposite, Ga/ Li3P nanocomposite, Fe/ Li3P nanocomposite, Co / Li3P Nanocomposite, Ni/ Li3P Nanocomposite, Ga/ Li3P Nanocomposite, Fe/ Li2Se Nanocomposite, Co/ Li2Se Nanocomposite, Ni/ Li2Se Nanocomposite, Ga / Li2Se nanocomposite, Fe/ Li2S nanocomposite, Co/ Li2S nanocomposite, Ni/ Li2S nanocomposite, Ga/ Li2S nanocomposite.
图2为本申请实施例提供的一种纳米复合材料的制备方法流程示意图,其用于制备图1所述的纳米复合材料。如图2所示,所述方法主要包括以下步骤。FIG. 2 is a schematic flowchart of a method for preparing a nanocomposite material provided in an embodiment of the present application, which is used to prepare the nanocomposite material described in FIG. 1 . As shown in FIG. 2 , the method mainly includes the following steps.
步骤S201:制备过渡族金属化合物。Step S201 : preparing a transition metal compound.
与上述实施例纳米复合材料中的第二纳米颗粒相对应,在本申请实施例中制备的过渡族金属化合物可以为以下材料中的一种或其组合:过渡族金属氧化物、过渡族金属氮化物、过渡族金属磷化物、过渡族金属硒化物和过渡族金属硫化物。Corresponding to the second nanoparticles in the nanocomposite materials of the above embodiments, the transition metal compound prepared in the embodiments of the present application may be one or a combination of the following materials: transition metal oxide, transition metal nitrogen compounds, transition metal phosphides, transition metal selenides, and transition metal sulfides.
例如,当过渡族金属化合物为过渡族金属氧化物时,最终制备的纳米复合材料中的第二纳米颗粒为氧化锂纳米颗粒;当过渡族金属化合物为过渡族金属氮化物时,最终制备的纳米复合材料中的第二纳米颗粒为氮化锂纳米颗粒。当然,该过渡族金属化合物也可以为过渡族金属氧化物和过渡族金属氮化物的组合。For example, when the transition metal compound is a transition metal oxide, the second nanoparticles in the final prepared nanocomposite are lithium oxide nanoparticles; when the transition metal compound is a transition metal nitride, the final prepared nanoparticle The second nanoparticles in the composite material are lithium nitride nanoparticles. Of course, the transition metal compound may also be a combination of transition metal oxide and transition metal nitride.
另外,所述过渡族金属纳米颗粒中的过渡族金属为以下元素中的一种或其组合:铁、钴、镍和钆。In addition, the transition metal in the transition metal nanoparticles is one or a combination of the following elements: iron, cobalt, nickel and gadolinium.
以Fe3O4为例,对过渡族金属化合物的制备方法进行详细说明。Taking Fe 3 O 4 as an example, the preparation method of the transition metal compound is described in detail.
混合2mmol氯化铁六水合物(FeCl3·6H2O)的水溶液40mL,8mmol柠檬酸钠(Na3C6H5O7·2H2O),6mmol尿素(CH4N2O)和一定量的聚丙烯酸钠。剧烈搅拌下2小时后,将混合物转移至60mL密封的Teflon衬里高压釜中。将高压釜放入烘箱中在200℃下加热6小时,然后冷却至室温。收集沉淀物离心(8,000转/分,5分钟),用蒸馏水和乙醇反复洗涤、干燥,得到Fe3O4纳米材料。Mix 40 mL of an aqueous solution of 2 mmol of ferric chloride hexahydrate (FeCl 3 ·6H 2 O), 8 mmol of sodium citrate (Na 3 C 6 H 5 O 7 ·2H 2 O), 6 mmol of urea (CH 4 N 2 O) and certain amount of sodium polyacrylate. After 2 hours with vigorous stirring, the mixture was transferred to a 60 mL sealed Teflon lined autoclave. The autoclave was heated in an oven at 200°C for 6 hours and then cooled to room temperature. The collected precipitate was centrifuged (8,000 rpm, 5 min), washed with distilled water and ethanol repeatedly, and dried to obtain Fe 3 O 4 nanomaterials.
步骤S202:通过锂离子放电还原所述过渡族金属化合物,得到纳米复合材料。Step S202 : reducing the transition metal compound through lithium ion discharge to obtain a nanocomposite material.
同样以Fe3O4为例,通过锂离子放电还原上述步骤中制备的Fe3O4,得到Fe/Li2O纳米复合材料。Also taking Fe 3 O 4 as an example, Fe 3 O 4 prepared in the above steps is reduced by lithium ion discharge to obtain Fe/Li 2 O nanocomposite materials.
在一种具体实现方式中,将Fe3O4纳米材料组装到锂离子电池中进行放电还原,得到Fe/Li2O纳米复合材料。In a specific implementation manner, Fe 3 O 4 nanomaterials are assembled into lithium ion batteries for discharge reduction to obtain Fe/Li 2 O nanocomposite materials.
图3为本申请实施例提供的一种锂离子电池示意图,如图3所示,所述锂离子电池包括第一电极301、第二电极302和隔膜303,其中,第一电极301为Fe3O4纳米材料,第二电极302为金属锂或锂源化合物。将所述锂离子电池放电,所述Fe3O4纳米材料被锂离子还原为Fe/Li2O纳米复合材料,如图3中第一电极301的放大图所示。其中,锂离子电池的放电程度影响Fe3O4纳米材料的还原程度,例如,可以将锂离子电池放电到0.1v,0.01v,0v等,本申请实施例对此不做具体限定。当然,优选将上述锂离子电池放电到0V,以使得电极材料充分反应。FIG. 3 is a schematic diagram of a lithium ion battery provided by an embodiment of the present application. As shown in FIG. 3 , the lithium ion battery includes a
采用上述方法除了制备Fe/Li2O纳米复合材料外,相应的,还可以制备Co/Li2O纳米复合材料、Ni/Li2O纳米复合材料、Ga/Li2O纳米复合材料、Fe/Li3N纳米复合材料、Co/Li3N纳米复合材料、Ni/Li3N纳米复合材料、Ga/Li3P纳米复合材料、Fe/Li3P纳米复合材料、Co/Li3P纳米复合材料、Ni/Li3P纳米复合材料、Ga/Li3P纳米复合材料、Fe/Li2Se纳米复合材料、Co/Li2Se纳米复合材料、Ni/Li2Se纳米复合材料、Ga/Li2Se纳米复合材料、Fe/Li2S纳米复合材料、Co/Li2S纳米复合材料、Ni/Li2S纳米复合材料、Ga/Li2S纳米复合材料。In addition to preparing Fe/Li 2 O nanocomposite materials, correspondingly, Co/Li 2 O nanocomposite materials, Ni/Li 2 O nanocomposite materials, Ga/Li 2 O nanocomposite materials, Fe/Li 2 O nanocomposite materials, and Fe/Li 2 O nanocomposite materials can also be prepared by the above method. Li3N nanocomposite, Co/ Li3N nanocomposite, Ni/ Li3N nanocomposite, Ga/ Li3P nanocomposite, Fe/ Li3P nanocomposite, Co/ Li3P nanocomposite Materials, Ni/ Li3P Nanocomposite, Ga/ Li3P Nanocomposite, Fe/ Li2Se Nanocomposite, Co/ Li2Se Nanocomposite, Ni/ Li2Se Nanocomposite, Ga/Li 2Se nanocomposite, Fe/ Li2S nanocomposite, Co/ Li2S nanocomposite, Ni/ Li2S nanocomposite, Ga/ Li2S nanocomposite.
基于上述实施例,在图3所示锂离子电池放电完成后,得到自旋电容。具体来说,所述自旋电容包括第一电极和第二电极,所述第一电极为上述实施例涉及的纳米复合材料,所述第二电极为金属锂或锂源化合物。所述锂源化合物为钴酸锂、磷酸铁锂、镍酸锂等。Based on the above embodiment, after the lithium-ion battery shown in FIG. 3 is discharged, the spin capacitance is obtained. Specifically, the spin capacitor includes a first electrode and a second electrode, the first electrode is the nanocomposite material involved in the above embodiment, and the second electrode is metal lithium or a lithium source compound. The lithium source compound is lithium cobaltate, lithium iron phosphate, lithium nickelate, and the like.
将上述自旋电容放于恒定磁场50000Oe中,在0-1V电压范围内,进行循环充放电的同时测试饱和磁化强度随着电压的变化规律。图4为本申请实施例提供的一种自旋电容在不同电压下的磁化曲线示意图,如图4所示,在本申请实施例提供的自旋电容中,1伏电压导致饱和磁化强度变化高达到16emu/g,饱和磁化强度随着电压的可逆循环变化规律如图5所示。The above spin capacitors were placed in a constant magnetic field of 50000Oe, and in the voltage range of 0-1V, the change of saturation magnetization with voltage was tested while cyclic charge and discharge were performed. FIG. 4 is a schematic diagram of magnetization curves of a spin capacitor provided by the embodiment of the present application under different voltages. As shown in FIG. 4 , in the spin capacitor provided by the embodiment of the present application, a voltage of 1 volt leads to a high change in the saturation magnetization. Up to 16 emu/g, the reversible cycling variation of saturation magnetization with voltage is shown in Fig. 5.
因此,本申请实施例提供的纳米复合材料可以在低电压下进行磁性调控。Therefore, the nanocomposite materials provided in the embodiments of the present application can perform magnetic regulation under low voltage.
在一种可能的应用场景中,本申请实施例通过自旋电容进行自旋信息存储。具体地,将所述自旋电容放于恒定磁场中,在小于过渡族金属氧化电压范围内,对所述自旋电容进行充放电,实现自旋信息存储。该自旋电容可以在低电压下,进行高速、高密度的电子自旋信息存储。In a possible application scenario, the embodiment of the present application performs spin information storage through spin capacitance. Specifically, the spin capacitor is placed in a constant magnetic field, and the spin capacitor is charged and discharged within a range less than the oxidation voltage of the transition metal, so as to realize spin information storage. The spin capacitor can perform high-speed, high-density electron spin information storage at low voltage.
在一种可能的应用场景中,本申请实施例提供的纳米复合材料应用于存储器,通过对所述纳米复合材料的磁性调控,实现信息存储。In a possible application scenario, the nanocomposite material provided in the embodiment of the present application is applied to a memory, and information storage is realized by adjusting the magnetic properties of the nanocomposite material.
在一种可能的应用场景中,本申请实施例提供的纳米复合材料应用于传感器,通过所述纳米复合材料的磁性变化实现感应。由于本申请实施例提供的纳米复合材料可以在低电压下实现较大的磁性变化,因此将其应用于传感器具有较好的效果。In a possible application scenario, the nanocomposite material provided in the embodiment of the present application is applied to a sensor, and sensing is realized through the magnetic change of the nanocomposite material. Since the nanocomposite materials provided in the embodiments of the present application can achieve large magnetic changes at low voltages, it has a good effect when applied to sensors.
需要说明的是,在本文中,诸如“第一”和“第二”等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。It should be noted that, in this document, relational terms such as "first" and "second" etc. are only used to distinguish one entity or operation from another entity or operation, and do not necessarily require or imply these There is no such actual relationship or sequence between entities or operations. Moreover, the terms "comprising", "comprising" or any other variation thereof are intended to encompass a non-exclusive inclusion such that a process, method, article or device that includes a list of elements includes not only those elements, but also includes not explicitly listed or other elements inherent to such a process, method, article or apparatus. Without further limitation, an element qualified by the phrase "comprising a..." does not preclude the presence of additional identical elements in a process, method, article or apparatus that includes the element.
以上所述仅是本发明的具体实施方式,使本领域技术人员能够理解或实现本发明。对这些实施例的多种修改对本领域的技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。The above descriptions are only specific embodiments of the present invention, so that those skilled in the art can understand or implement the present invention. Various modifications to these embodiments will be readily apparent to those skilled in the art, and the generic principles defined herein may be implemented in other embodiments without departing from the spirit or scope of the invention. Thus, the present invention is not intended to be limited to the embodiments shown herein, but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.
本说明书中各个实施例之间相同相似的部分互相参见即可。尤其,对于终端实施例而言,由于其基本相似于方法实施例,所以描述的比较简单,相关之处参见方法实施例中的说明即可。It is sufficient to refer to each other for the same and similar parts among the various embodiments in this specification. In particular, for the terminal embodiment, since it is basically similar to the method embodiment, the description is relatively simple, and for related parts, please refer to the description in the method embodiment.
以上所述的本申请实施方式并不构成对本申请保护范围的限定。The above-described embodiments of the present application do not limit the protection scope of the present application.
Claims (10)
Priority Applications (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010656576.9A CN111769193A (en) | 2020-07-09 | 2020-07-09 | A kind of nanocomposite material and its preparation method, use method and device |
CN202110767098.3A CN113921699A (en) | 2020-07-09 | 2021-07-07 | Lithium titanate/transition metal composite material, electrode material, battery and preparation method |
CN202110777692.0A CN113921703A (en) | 2020-07-09 | 2021-07-07 | Iron nano array material, electrode, super capacitor and preparation method thereof |
CN202110767178.9A CN113921700A (en) | 2020-07-09 | 2021-07-07 | Nano composite material, preparation method, use method and device thereof |
CN202110777665.3A CN113921701A (en) | 2020-07-09 | 2021-07-07 | Cobalt-carbon composite material, electrode material, lithium ion capacitor and preparation method thereof |
CN202110766976.XA CN113921696A (en) | 2020-07-09 | 2021-07-07 | Iron-carbon composite material, electrode material, lithium ion battery and preparation method thereof |
CN202110777694.XA CN113921704A (en) | 2020-07-09 | 2021-07-07 | Iron/carbon multilayer film, electrode material, battery and method |
CN202110777676.1A CN113921702A (en) | 2020-07-09 | 2021-07-07 | Iron-carbon composite material, electrode material, sodium/potassium ion battery and preparation method thereof |
CN202110767091.1A CN113921698A (en) | 2020-07-09 | 2021-07-07 | Electrode material for spin capacitor, spin capacitor and preparation method thereof |
CN202110766999.0A CN113921697A (en) | 2020-07-09 | 2021-07-07 | Transition metal/titanium dioxide multilayer film, electrode material, battery and method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010656576.9A CN111769193A (en) | 2020-07-09 | 2020-07-09 | A kind of nanocomposite material and its preparation method, use method and device |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111769193A true CN111769193A (en) | 2020-10-13 |
Family
ID=72726231
Family Applications (10)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010656576.9A Pending CN111769193A (en) | 2020-07-09 | 2020-07-09 | A kind of nanocomposite material and its preparation method, use method and device |
CN202110777676.1A Pending CN113921702A (en) | 2020-07-09 | 2021-07-07 | Iron-carbon composite material, electrode material, sodium/potassium ion battery and preparation method thereof |
CN202110777665.3A Pending CN113921701A (en) | 2020-07-09 | 2021-07-07 | Cobalt-carbon composite material, electrode material, lithium ion capacitor and preparation method thereof |
CN202110777692.0A Pending CN113921703A (en) | 2020-07-09 | 2021-07-07 | Iron nano array material, electrode, super capacitor and preparation method thereof |
CN202110766976.XA Pending CN113921696A (en) | 2020-07-09 | 2021-07-07 | Iron-carbon composite material, electrode material, lithium ion battery and preparation method thereof |
CN202110767091.1A Pending CN113921698A (en) | 2020-07-09 | 2021-07-07 | Electrode material for spin capacitor, spin capacitor and preparation method thereof |
CN202110767098.3A Pending CN113921699A (en) | 2020-07-09 | 2021-07-07 | Lithium titanate/transition metal composite material, electrode material, battery and preparation method |
CN202110766999.0A Pending CN113921697A (en) | 2020-07-09 | 2021-07-07 | Transition metal/titanium dioxide multilayer film, electrode material, battery and method |
CN202110777694.XA Pending CN113921704A (en) | 2020-07-09 | 2021-07-07 | Iron/carbon multilayer film, electrode material, battery and method |
CN202110767178.9A Pending CN113921700A (en) | 2020-07-09 | 2021-07-07 | Nano composite material, preparation method, use method and device thereof |
Family Applications After (9)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110777676.1A Pending CN113921702A (en) | 2020-07-09 | 2021-07-07 | Iron-carbon composite material, electrode material, sodium/potassium ion battery and preparation method thereof |
CN202110777665.3A Pending CN113921701A (en) | 2020-07-09 | 2021-07-07 | Cobalt-carbon composite material, electrode material, lithium ion capacitor and preparation method thereof |
CN202110777692.0A Pending CN113921703A (en) | 2020-07-09 | 2021-07-07 | Iron nano array material, electrode, super capacitor and preparation method thereof |
CN202110766976.XA Pending CN113921696A (en) | 2020-07-09 | 2021-07-07 | Iron-carbon composite material, electrode material, lithium ion battery and preparation method thereof |
CN202110767091.1A Pending CN113921698A (en) | 2020-07-09 | 2021-07-07 | Electrode material for spin capacitor, spin capacitor and preparation method thereof |
CN202110767098.3A Pending CN113921699A (en) | 2020-07-09 | 2021-07-07 | Lithium titanate/transition metal composite material, electrode material, battery and preparation method |
CN202110766999.0A Pending CN113921697A (en) | 2020-07-09 | 2021-07-07 | Transition metal/titanium dioxide multilayer film, electrode material, battery and method |
CN202110777694.XA Pending CN113921704A (en) | 2020-07-09 | 2021-07-07 | Iron/carbon multilayer film, electrode material, battery and method |
CN202110767178.9A Pending CN113921700A (en) | 2020-07-09 | 2021-07-07 | Nano composite material, preparation method, use method and device thereof |
Country Status (1)
Country | Link |
---|---|
CN (10) | CN111769193A (en) |
Family Cites Families (49)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2696989B2 (en) * | 1988-09-20 | 1998-01-14 | 三菱マテリアル株式会社 | Multilayer magnetic film |
DE69228007T2 (en) * | 1991-04-30 | 1999-08-05 | Saint-Gobain Vitrage, Courbevoie | Glass substrate with thin multi-layer clothing for sun protection |
US20030224214A1 (en) * | 2002-03-15 | 2003-12-04 | Garito Anthony F. | Magneto-optic polymer nanocomposites |
FR2870639B1 (en) * | 2004-05-19 | 2006-11-10 | Electricite De France | CURRENT COLLECTOR TYPE SUPPORT AND ITS USE AS A BATTERY ELECTRODE |
JP5256403B2 (en) * | 2004-09-06 | 2013-08-07 | 有限会社ジーイーエム | Negative electrode active material particles for lithium secondary battery, negative electrode, and production method thereof |
CN100470868C (en) * | 2004-09-14 | 2009-03-18 | 清华大学 | FexCl-x/Fe/Si multilayer coating material with low field room temperature huge magnetic resistance effect |
KR100777341B1 (en) * | 2006-03-16 | 2007-11-28 | 이상원 | Method for producing magnetic nanoparticles, and magnetic nanoparticles prepared therefrom |
US8039152B2 (en) * | 2007-04-03 | 2011-10-18 | Toyota Motor Engineering & Manufacturing North America, Inc. | Tin in an active support matrix |
CN101414674A (en) * | 2008-08-05 | 2009-04-22 | 华南师范大学 | Cathode material for lithium ion battery tin/carbon nanometer multilayer film, and preparation method and application thereof |
CN101373829B (en) * | 2008-10-07 | 2011-05-11 | 深圳市贝特瑞新能源材料股份有限公司 | Titanium-series cathode active material and preparation method thereof, titanium-series lithium ion power battery |
CN102140622B (en) * | 2010-01-29 | 2012-10-10 | 北京大学 | Preparation method of carbon/metal nano-particle composite film |
CN102146564A (en) * | 2010-12-17 | 2011-08-10 | 北京航空航天大学 | Method for preparing titanium dioxide array film on flexible metallic matrix and application of method in lithium ion battery |
WO2013048597A2 (en) * | 2011-09-29 | 2013-04-04 | Uchicago Argonne, Llc | High capacity electrode materials for batteries and process for their manufacture |
CN102509786B (en) * | 2011-10-11 | 2013-11-20 | 北京化工大学 | Porous metal oxide-carbon composite thin film electrode and preparation method thereof |
DE102011057015A1 (en) * | 2011-12-23 | 2013-06-27 | Westfälische Wilhelms-Universität Münster | Cobalt oxide-carbon composite useful as anode material for lithium-based energy storage device, preferably e.g. lithium-ion battery, lithium polymer battery and lithium-ion capacitor, comprises carbon coated cobalt monoxide particles |
CN102569796A (en) * | 2012-01-17 | 2012-07-11 | 东南大学 | Preparation method of lithium iron phosphate/carbon nanotube composite material |
ES2423970B1 (en) * | 2012-02-23 | 2014-07-15 | Universitat De València | Graphite matrix nanocomposites and metal nanoparticles with supercapacitance and magnetoresistance properties |
WO2014046107A1 (en) * | 2012-09-20 | 2014-03-27 | 国立大学法人京都大学 | Metal nanoparticle complex and method for producing same |
KR101578465B1 (en) * | 2012-11-16 | 2015-12-17 | 고려대학교 산학협력단 | Method for preparing iron oxide-carbon composites, the iron oxide-carbon composites prepared therefrom and Li ion battery comprising the iron oxide-carbon composites |
US9153814B2 (en) * | 2012-12-19 | 2015-10-06 | Toyota Motor Engineering & Manufacturing North America, Inc. | Mesoporous starburst carbon incorporated with metal nanocrystals or metal oxide nanocrystals, and uses thereof |
CN103050662A (en) * | 2012-12-27 | 2013-04-17 | 东莞上海大学纳米技术研究院 | A lithium titanate/copper composite lithium ion battery negative electrode material and preparation method thereof |
CN103236519B (en) * | 2013-04-16 | 2015-05-20 | 北京科技大学 | Porous carbon base monolith composite material for lithium ion battery, and preparation method thereof |
US10141121B2 (en) * | 2013-05-09 | 2018-11-27 | Woo Yong LIE | Super electrical battery |
CN103435105B (en) * | 2013-08-07 | 2016-03-23 | 浙江凯恩电池有限公司 | A kind of ferriferous oxide/carbon composition lithium ion battery cathode material and its preparation method and application |
KR102287812B1 (en) * | 2014-09-26 | 2021-08-09 | 삼성전자주식회사 | Negative active material, lithium battery including the material, and method for manufacturing the material |
CN104538207B (en) * | 2014-12-16 | 2017-07-11 | 南京航空航天大学 | TiNb2O7The preparation method of/carbon nano tube compound material and using the material as the lithium-ion capacitor of negative pole |
CN104681795B (en) * | 2015-01-29 | 2017-11-14 | 北大先行科技产业有限公司 | A kind of preparation method of lithium ferric manganese phosphate/carbon composite |
CN104766961B (en) * | 2015-04-17 | 2017-06-16 | 辽宁工程技术大学 | Preparation method of low-specific-surface-area carbon/carbon composite negative electrode material of sodium ion battery |
CN104934588A (en) * | 2015-06-26 | 2015-09-23 | 复旦大学 | Composite electrode material of lithium titanate surface load nanometer materials and preparation method and application thereof |
KR101811764B1 (en) * | 2015-08-06 | 2017-12-26 | 서울과학기술대학교 산학협력단 | Non-Pt catalyst for oxygen reduction electrode and manufacturing method thereof |
KR101816972B1 (en) * | 2015-08-26 | 2018-01-10 | 고려대학교 산학협력단 | Transparent electrode with TiO2/Ag/TiO2 multilayered structure and method for preparing the same |
JP6619216B2 (en) * | 2015-11-25 | 2019-12-11 | 公益財団法人電磁材料研究所 | Translucent magnetic material |
CN105965009A (en) * | 2016-05-17 | 2016-09-28 | 中国石油大学(华东) | Preparation method of magnetic carbon-covering nano material |
CN105810919A (en) * | 2016-06-03 | 2016-07-27 | 田东 | Preparation method of modified graphite cathode material for lithium ion batteries |
CN106099126A (en) * | 2016-06-11 | 2016-11-09 | 北京化工大学 | A kind of flower-like structure cobalt sulfide/carbon composite and preparation method thereof |
US20170373306A1 (en) * | 2016-06-22 | 2017-12-28 | Sharp Kabushiki Kaisha | Carbon-metal/alloy composite material, synthesis method, and electrode including same |
CN106784723B (en) * | 2017-01-12 | 2019-10-18 | 青岛大学 | A kind of iron oxide-based nanocomposite electrode material and preparation method thereof |
FR3063180A1 (en) * | 2017-02-21 | 2018-08-24 | Commissariat Energie Atomique | USE OF A MIXED ORGANIC-INORGANIC MATRIX COMPOUND, SAID MOF, AS AN ELECTRODE ACTIVE MATERIAL. |
CN109216663A (en) * | 2017-06-30 | 2019-01-15 | 南京理工大学 | A kind of nano particle/carbon cloth combination electrode material and preparation method thereof |
CN108682562B (en) * | 2018-04-08 | 2019-11-05 | 江苏大学 | A kind of γ-Fe of C doping2O3Nanocomposite and its preparation method and application |
CN108598420A (en) * | 2018-04-25 | 2018-09-28 | 中南大学 | Si-C composite material and preparation method thereof |
CN108611613B (en) * | 2018-06-09 | 2020-06-30 | 中国科学院兰州化学物理研究所 | Preparation method of nano multilayer structure carbon-based film |
CN108878820A (en) * | 2018-06-19 | 2018-11-23 | 上海师范大学 | A kind of sodium-ion battery antimony carbon negative pole material and its preparation, application method |
NO344360B1 (en) * | 2018-07-03 | 2019-11-18 | Univ I Tromsoe Norges Arktiske Univ | Rechargeable iron-ion battery |
JP7181064B2 (en) * | 2018-11-21 | 2022-11-30 | 公益財団法人電磁材料研究所 | FERROMAGNETIC LAMINATED FILM AND MANUFACTURING METHOD THEREOF AND ELECTROMAGNETIC INDUCTIVE ELECTRONIC COMPONENTS |
CN109786579A (en) * | 2019-02-02 | 2019-05-21 | 北京京东方显示技术有限公司 | OLED display panel and preparation method thereof |
CN110155980A (en) * | 2019-05-20 | 2019-08-23 | 北京化工大学 | Preparation method of a honeycomb three-dimensional porous carbon material |
CN110416537B (en) * | 2019-08-02 | 2022-05-31 | 广东东岛新能源股份有限公司 | Lithium titanate composite negative electrode material, preparation method thereof and lithium ion battery |
KR20200002754A (en) * | 2019-12-27 | 2020-01-08 | 에스케이하이닉스 주식회사 | Multi-layered magnetic thin film stack and data storage device having the same |
-
2020
- 2020-07-09 CN CN202010656576.9A patent/CN111769193A/en active Pending
-
2021
- 2021-07-07 CN CN202110777676.1A patent/CN113921702A/en active Pending
- 2021-07-07 CN CN202110777665.3A patent/CN113921701A/en active Pending
- 2021-07-07 CN CN202110777692.0A patent/CN113921703A/en active Pending
- 2021-07-07 CN CN202110766976.XA patent/CN113921696A/en active Pending
- 2021-07-07 CN CN202110767091.1A patent/CN113921698A/en active Pending
- 2021-07-07 CN CN202110767098.3A patent/CN113921699A/en active Pending
- 2021-07-07 CN CN202110766999.0A patent/CN113921697A/en active Pending
- 2021-07-07 CN CN202110777694.XA patent/CN113921704A/en active Pending
- 2021-07-07 CN CN202110767178.9A patent/CN113921700A/en active Pending
Also Published As
Publication number | Publication date |
---|---|
CN113921696A (en) | 2022-01-11 |
CN113921700A (en) | 2022-01-11 |
CN113921699A (en) | 2022-01-11 |
CN113921698A (en) | 2022-01-11 |
CN113921701A (en) | 2022-01-11 |
CN113921697A (en) | 2022-01-11 |
CN113921702A (en) | 2022-01-11 |
CN113921704A (en) | 2022-01-11 |
CN113921703A (en) | 2022-01-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zeng et al. | Iron‐based supercapacitor electrodes: advances and challenges | |
Yao et al. | Preparation of ZnFe2O4/α-Fe2O3 nanocomposites from sulfuric acid leaching liquor of jarosite residue and their application in lithium-ion batteries | |
Lu et al. | Heterogeneous engineering of MnSe@ NC@ ReS2 core–shell nanowires for advanced sodium-/potassium-ion batteries | |
Zhang et al. | Li-ionic control of magnetism through spin capacitance and conversion | |
CN111129475B (en) | Preparation method of molybdenum dioxide/carbon/silicon dioxide nanospheres and negative electrode material of lithium ion battery | |
CN102931406B (en) | Graphene and MoO2 nanocomposite material and preparation method and lithium ion battery negative electrode material | |
Liang et al. | High performance g-C3N4@ NiMoO4/CoMoO4 electrode for supercapacitors | |
CN104167536B (en) | The Preparation method and use of the spherical ferroferric oxide nano granules that size is controlled | |
CN110323429A (en) | Niobium pentaoxide/redox graphene composite negative pole material preparation method | |
Singh et al. | Room temperature ferromagnetism in metal oxides for spintronics: A comprehensive review | |
CN103022474A (en) | Lithium-ion battery negative electrode material Fe2O3 and preparation method thereof | |
Liu et al. | Improved sodium storage performance of Zn-substituted P3-Na0. 67Ni0. 33Mn0. 67O2 cathode materials for sodium-ion batteries | |
Hu et al. | Syntheses, characterization, magnetic, and electrochemical properties of perovskite‐type NdFeO3 and NdCoO3 nanofibers | |
CN108390046B (en) | Preparation method of rod-shaped α -ferric oxide/GN lithium battery negative electrode material | |
CN110759379B (en) | A kind of preparation method and application of 0D/2D heterostructure composite negative electrode material | |
Su et al. | Electrochemical and magnetic properties of perovskite-type PrFeO3 and EuFeO3 nanofibers | |
CN1189962C (en) | Nano anode material for Li-ion battery and its preparing process | |
CN104157856B (en) | Core-shell LaFeO 3 @ C lithium battery cathode material and preparation method thereof | |
CN106847552B (en) | A kind of Fe3O4/C3N4 composite material and preparation method | |
CN105552321A (en) | Mixed-valence vanadium oxide/carbon composite porous hollow roll material and preparation method | |
CN111769193A (en) | A kind of nanocomposite material and its preparation method, use method and device | |
CN105552322B (en) | Composite modified anode material for lithium-ion batteries of quaternary ion and preparation method thereof | |
CN110233254B (en) | Bell-shaped Fe for lithium ion battery cathode material3O4/C/MoS2Hybrid microparticles | |
CN108832102B (en) | Composite material for preparing lithium battery electrode and application thereof | |
Tang et al. | Pseudocapacitive properties of polypyrrole–ferrimagnetic CoFe2O4 composites |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20201013 |
|
WD01 | Invention patent application deemed withdrawn after publication |