[go: up one dir, main page]

WO2010023860A1 - 色素増感太陽電池およびその製造方法 - Google Patents

色素増感太陽電池およびその製造方法 Download PDF

Info

Publication number
WO2010023860A1
WO2010023860A1 PCT/JP2009/004047 JP2009004047W WO2010023860A1 WO 2010023860 A1 WO2010023860 A1 WO 2010023860A1 JP 2009004047 W JP2009004047 W JP 2009004047W WO 2010023860 A1 WO2010023860 A1 WO 2010023860A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive metal
dye
substrate
solar cell
sensitized solar
Prior art date
Application number
PCT/JP2009/004047
Other languages
English (en)
French (fr)
Inventor
山口能弘
早瀬修二
Original Assignee
新日鐵化学株式会社
国立大学法人九州工業大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵化学株式会社, 国立大学法人九州工業大学 filed Critical 新日鐵化学株式会社
Priority to JP2010526527A priority Critical patent/JP5458271B2/ja
Priority to CN2009801317336A priority patent/CN102124602A/zh
Priority to US13/058,651 priority patent/US20110232743A1/en
Priority to EP09809516.9A priority patent/EP2333896A4/en
Publication of WO2010023860A1 publication Critical patent/WO2010023860A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2068Panels or arrays of photoelectrochemical cells, e.g. photovoltaic modules based on photoelectrochemical cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F10/00Individual photovoltaic cells, e.g. solar cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F77/00Constructional details of devices covered by this subclass
    • H10F77/20Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • H10K30/82Transparent electrodes, e.g. indium tin oxide [ITO] electrodes
    • H10K30/83Transparent electrodes, e.g. indium tin oxide [ITO] electrodes comprising arrangements for extracting the current from the cell, e.g. metal finger grid systems to reduce the serial resistance of transparent electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a dye-sensitized solar cell and a method for producing the same.
  • the dye-sensitized solar cell is called a wet solar cell or a Gretzel battery, and is characterized in that it has an electrochemical cell structure typified by an iodine solution without using a silicon semiconductor.
  • a porous semiconductor layer such as a titania layer formed by baking a titanium dioxide powder or the like on a transparent conductive glass plate (transparent substrate on which a transparent conductive film is laminated) and adsorbing a pigment thereto, and conductive glass It has a simple structure in which an iodine solution or the like is disposed as an electrolytic solution between counter electrodes made of a plate (conductive substrate).
  • Electrons are generated by the absorption of sunlight into the dye-sensitized solar cell from the transparent conductive glass plate side.
  • Dye-sensitized solar cells are attracting attention as low-cost solar cells because they are inexpensive and do not require large-scale equipment for production.
  • Dye-sensitized solar cells are required to further improve the conversion efficiency of sunlight, and have been studied from various viewpoints. As one of them, in order to improve the power extraction efficiency by improving the conductivity of the electrode, it has been studied to omit the transparent conductive film normally formed on the transparent substrate provided on the light incident side. Improvement of the conductivity of the electrode is particularly significant when the size of the solar cell is increased.
  • a photoelectric conversion element having a structure including a laminated portion including a semiconductor fine particle layer, a metal network, a charge transfer layer, and a counter electrode in this order on a glass substrate is disclosed (Patent Documents 1 and 2). reference).
  • a dye-sensitized solar cell having SUS as a collector electrode on a transparent substrate, a SiOx film widely used as an insulator on SUS, and an SUS electrode sputtered with ITO on the SiOx film.
  • SUS as a collector electrode on a transparent substrate
  • SiOx film widely used as an insulator on SUS
  • ITO on the SiOx film
  • the counter electrode is formed of a conductive transparent substrate and light is introduced into the dye-sensitized solar cell from the counter electrode side (see, for example, Patent Document 4).
  • the present invention has been made in view of the above-described problems, and an object of the present invention is to provide a dye-sensitized solar cell that can further improve power extraction efficiency and a method for manufacturing the same.
  • the dye-sensitized solar cell according to the present invention has a substrate, a conductive substrate serving as a cathode electrode, and is disposed between the substrate and the conductive substrate in the vicinity of or in contact with the substrate to adsorb the dye.
  • the conductive metal layer is composed of a conductive metal portion and a covering portion that is coated on at least a side of the conductive metal portion in contact with the porous semiconductor layer,
  • the covering portion has a gradient composition structure in which a coefficient of thermal expansion decreases from the conductive metal portion side toward the porous semiconductor layer side.
  • the covering portion has a gradient composition structure in which the degree of oxidation increases from the conductive metal portion side toward the porous semiconductor layer side. It is characterized by.
  • the covering portion is an oxide of one or more types of corrosion-resistant metal materials selected from the group consisting of Ti, W, Ni, Pt and Au. It is formed.
  • the conductive metal layer is a current collector disposed on the side of the porous semiconductor layer opposite to the side on which the substrate is provided, Innumerable holes for allowing the electrolyte to freely flow through the porous semiconductor layer are formed in the conductive metal portion and electrically connected to external electrodes, and the substrate is a transparent substrate.
  • the dye-sensitized solar cell according to the present invention is preferably characterized in that the conductive metal portion of the conductive metal layer is a mesh member.
  • the conductive metal layer is a current collector provided on a surface of the substrate, and the conductive metal portion is provided on a side in contact with the substrate.
  • the conductive metal portion is covered to provide the covering portion, and the conductive substrate is a transparent substrate.
  • the dye-sensitized solar cell according to the present invention is a method for producing the above-described dye-sensitized solar cell, In the step of forming the covering portion on the conductive metal portion formed in advance, while introducing a small amount of a compound containing one or more elements selected from the group consisting of O, N, S, P, B and C A gradient composition structure is formed by depositing a conductive metal-coated raw metal by a thin film technique.
  • the dye-sensitized solar cell according to the present invention is a method for producing the above-described dye-sensitized solar cell,
  • a gradient composition structure is provided by including a step of forming a sputter layer by a sputtering method and a step of forming a vapor deposition layer on the surface of the sputter layer by a vacuum vapor deposition method. It is characterized by forming.
  • the dye-sensitized solar cell according to the present invention is preferably characterized in that the vacuum deposition method is an arc plasma deposition method or a vacuum arc deposition method.
  • the covering portion has two or more different materials whose thermal expansion coefficient decreases from the conductive metal portion side toward the porous semiconductor layer side. It is characterized by the laminated structure.
  • the conductive metal layer disposed in contact with the porous semiconductor layer and serving as the anode electrode is in contact with the conductive metal portion and at least the porous semiconductor layer of the conductive metal portion. Since it has a graded composition structure in which the thermal expansion coefficient decreases from the conductive metal portion side toward the porous semiconductor layer side, the high power extraction efficiency is obtained. be able to.
  • the method for producing a dye-sensitized solar cell according to the present invention is selected from the group consisting of O, N, S, P, B, and C in the step of covering the conductive metal portion formed in advance with the covering portion. Since a gradient composition structure is formed by forming a film by thin film technology while introducing a small amount of a compound containing one or two or more elements, the dye-sensitized solar cell according to the present invention can be suitably obtained.
  • the inventors of the present invention have studied various reasons for the low power extraction efficiency of the above-described conventional dye-sensitized solar cells.
  • the coefficient of thermal expansion linear expansion
  • a stainless steel material having a rate of about 16 ⁇ 10 ⁇ 6 / ° C. is used as the conductive metal.
  • the difference in thermal expansion between the conductive metal and the titania fired layer having a thermal expansion coefficient of about 5 ⁇ 10 ⁇ 6 / ° C.
  • the side close to the conductive metal is formed of a material close to the thermal expansion coefficient of the conductive metal and the side close to the titania fired layer is titania fired. It was conceived that the layer is made of a material having a thermal expansion coefficient close to that of the layer.
  • the dye-sensitized solar cell includes a substrate, a conductive substrate serving as a cathode electrode, a porous semiconductor layer that is disposed between or in contact with the substrate, adsorbs the dye, and porous A conductive metal layer disposed in contact with the porous semiconductor layer and serving as an anode electrode. At least one of the substrate and the conductive substrate is a transparent substrate, and an electrolyte is sealed in the dye-sensitized solar cell.
  • the conductive metal layer includes a conductive metal portion and a covering portion that covers at least a side of the conductive metal portion that contacts the porous semiconductor layer.
  • the covering portion has a gradient composition structure in which the coefficient of thermal expansion decreases from the conductive metal portion side toward the porous semiconductor layer side.
  • the dye-sensitized solar cell 10 which concerns on the 1st example of this Embodiment is demonstrated with reference to the schematic diagram of FIG.
  • the dye-sensitized solar cell 10 includes a substrate 12 and a porous semiconductor layer 14 that adsorbs a dye disposed on the substrate 12 (downward in FIG. 1; the same applies hereinafter). And a conductive metal layer 16 disposed on the surface of the porous semiconductor layer 14 opposite to the transparent substrate 12, and a conductive substrate 18 provided to face the substrate 12.
  • An internal spacer 21 (support) is provided between the conductive metal layer 16 and the conductive substrate 18.
  • An electrolyte (electrolytic solution) 22 is filled in the space of the dye-sensitized solar cell 10 sealed with the spacer 20.
  • the substrate 12 is a transparent substrate, and incident light is introduced into the cells of the dye-sensitized solar cell 10 from the substrate 12 side.
  • the porous semiconductor layer 14 may be disposed in contact with the substrate 12, or may be disposed in proximity to the substrate 12.
  • the conductive metal layer 16 is electrically connected to the external electrode 26.
  • the external electrode 26 may be provided at an appropriate position independently of the substrate 12.
  • the conductive substrate 18 includes a substrate 28, a transparent conductive film 30 formed on the substrate 28, and a catalyst film (catalyst layer) 32 formed on the transparent conductive film 30.
  • the internal spacer 21 is provided in order to more reliably perform electrical insulation between the conductive metal layer 16 and the conductive substrate 18.
  • the inner spacer 21 can be made of, for example, a spherical material having a diameter of about 20 ⁇ m formed of a zirconia material, a non-woven fabric made of resin or glass that is insoluble in the electrolytic solution, and the like.
  • the inner spacer 21 is not necessarily provided as long as the conductive metal layer 16 and the conductive substrate 18 are reliably spaced apart and insulated by the spacer 20.
  • the substrate 12 and the substrate 28 may be glass plates or plastic plates, for example.
  • a plastic plate for example, PET, PEN, polyimide, a cured acrylic resin, a cured epoxy resin, a cured silicone resin, various engineering plastics, a cyclic polymer obtained by metathesis polymerization, and the like can be given.
  • the transparent conductive film 30 may be, for example, ITO (indium film doped with tin), FTO (tin oxide film doped with fluorine), or SnO 2 film.
  • As the catalyst film 32 a platinum film, highly conductive carbon, or the like can be used.
  • the porous semiconductor layer 14 is baked at a temperature of 300 ° C. or higher, and more preferably baked at a temperature of 450 ° C. or higher.
  • the temperature is sufficiently lower than the melting point of the material of the porous semiconductor layer 14, and more preferably 550 ° C. or less.
  • the thickness of the porous semiconductor layer 14 is not particularly limited, but is preferably 14 ⁇ m or more.
  • the dye adsorbed on the porous semiconductor layer 14 is a dye adsorbed on the semiconductor material forming the porous semiconductor layer 14 and has absorption at a wavelength of 400 nm to 1000 nm.
  • a dye include a metal complex having a COOH group such as a ruthenium dye and a phthalocyanine dye, and an organic dye such as a cyanine dye.
  • a plurality of dyes having different light absorption regions may be mixed and adsorbed on the porous semiconductor layer 14, or a plurality of different dyes may be adsorbed in layers.
  • the electrolyte 22 contains iodine, lithium ions, ionic liquid, t-butylpyridine, and the like.
  • iodine a redox material composed of a combination of iodide ions and iodine can be used.
  • the redox form contains an appropriate solvent that can dissolve the redox form.
  • the conductive metal layer 16 is a current collector disposed on the side of the porous semiconductor layer 14 opposite to the side on which the substrate 12 is provided. As shown in FIG. 2, the conductive metal layer 16 includes a conductive metal portion 17 and a covering portion 19 that is covered with the conductive metal portion 17.
  • the covering portion 19 includes an inner layer 19a and an outer layer 19b.
  • innumerable holes 24 for allowing the electrolyte 22 to freely flow through the porous semiconductor layer 14 are formed in the conductive metal portion 17.
  • the conductive metal portion 17 shown in FIG. 2 is a mesh member.
  • the covering portion 19 covers the entire surface of the conductive metal portion 17 by a film forming method to be described later.
  • the present invention is not limited to this, and if the corrosion resistance of the conductive metal portion 17 is not so much required, the covering portion 19 is necessary.
  • the covering portion 19 has a gradient composition structure in which the degree of oxidation increases from the conductive metal portion 17 side toward the porous semiconductor layer 14 side.
  • This gradient composition structure may be one in which the composition changes continuously, or one in which the composition changes stepwise (stepwise). That is, the covering portion 19 may have a single-layer structure in which the degree of oxidation is gradually changed from the inside toward the outside during film formation.
  • the inner layer on the conductive metal portion 17 side was formed of a material having a low degree of oxidation
  • the outer layer on the porous semiconductor layer 14 side was formed of a material having a high degree of oxidation.
  • a multilayer structure composed of different material layers may be used.
  • the degree of oxidation of the outer layer 19b is higher than that of the inner layer 19a.
  • the thickness of the conductive metal portion 17 is not particularly limited, and can be, for example, about several tens of nm to several tens of ⁇ m.
  • the thickness is about several ⁇ m to about 10 ⁇ m. It is appropriate and sufficient.
  • the thickness of the covering portion 19 is not particularly limited, and can be, for example, about several hundred nm. When the thickness is at least 20 nm or more, the reverse electron transfer from the conductive metal layer 16 to the electrolyte 22 is prevented, and It is more preferable at the point which can relieve
  • the conductive metal portion 17 has moderate conductivity
  • an appropriate metal can be selected and used.
  • metals such as Ti, Pt, Au, and Ag, alloys thereof, and metal oxides can be used.
  • Metal compounds such as stainless steel, iron, copper, aluminum, tin, and the like can be used. Of these, it is more preferable to use stainless steel from the viewpoint of cost reduction of the material and higher conductivity.
  • the covering portion 19 is preferably made of a corrosion-resistant metal, and more preferably an oxide of one or more types of corrosion-resistant metal materials selected from the group consisting of Ti, W, Ni, Pt and Au.
  • a conductive metal layer 16a having a conductive metal portion 17a as shown in FIG. 3 may be used.
  • the conductive metal layer 16a is, for example, a sheet-like conductive metal portion 17a that has been punched in advance, and the conductive metal portion 17a is covered with a covering portion 19. In this case, holes having a desired size, shape and arrangement can be formed.
  • the covering portion 19 is directed from the conductive metal portions 17 and 17a toward the porous semiconductor layer 14.
  • the graded composition structure has a thermal expansion coefficient that decreases from the conductive metal portion 17 side toward the porous semiconductor layer 14 side. That is, the inner layer 19 a of the covering portion 19 has a high coefficient of thermal expansion close to that of the conductive metal portion 17, and the outer layer 19 b of the covering portion 19 has a low coefficient of thermal expansion close to that of the porous semiconductor layer 14.
  • the gradient composition structure of the covering portion 19 in which the coefficient of thermal expansion decreases from the conductive metal portion 17 side toward the porous semiconductor layer 14 side uses, for example, materials having two or more different thermal expansion coefficients, It can also be obtained by forming the metal portion 17 side with a material having a high coefficient of thermal expansion and forming the porous semiconductor layer 14 side with a material having a low coefficient of thermal expansion.
  • the dye-sensitized solar cell 10 has a phenomenon that a crack occurs in the covering portion due to a severe temperature change at the time of manufacture, and further the phenomenon that the covering portion peels from the conductive metal portion or the conductive metal covered portion and the porous semiconductor layer By reducing the phenomenon of separation, the function of the covering portion is maintained without being impaired, and good adhesion between the porous semiconductor layer and the conductive metal layer is maintained, and high power extraction efficiency can be obtained. .
  • a process of forming a porous semiconductor layer 14 by firing a titania paste disposed on the substrate 12 is usually employed, it is necessary to use a glass substrate as the substrate 12 in order to withstand a high temperature exceeding 450 ° C., for example. .
  • the dye-sensitized solar cell 10 can join the conductive metal layers 16 and 16a on which the porous semiconductor layer 14 is placed to the substrate 12 at the time of cell assembly. Any plastic material can be used. In the dye-sensitized solar cell 10, electrons easily move in the porous semiconductor layer 14 through the conductive metal layer 16, and further, reverse electron transfer at the interface between the conductive metal layer 16 and the electrolyte 22. Is unlikely to occur. Moreover, since the dye-sensitized solar cell 10 does not use a glass substrate with a transparent conductive film, an inexpensive substrate 12 can be used.
  • the dye-sensitized solar cell 10 can obtain better adhesion between the covering portion and the porous semiconductor layer by appropriately selecting the material of the covering portion or adjusting the film forming conditions. Further, the dye-sensitized solar cell 10 is obtained by applying a conductive metal layer 16 with a porous semiconductor layer 14 obtained by applying a titania paste to a conductive metal layer 16 and baking the conductive substrate 18 and a plastic made of, for example, Ti foil. Since it can be produced by being sandwiched between substrates 12 made of a sheet, it can be mass-produced at low cost by adopting a so-called roll-to-roll method.
  • the dye-sensitized solar cell 10a is provided with a counter electrode so that the substrate 12a and the conductive metal layer (hereinafter referred to as reference numeral 23) can be integrally provided prior to the assembly of the solar cell so that the number of constituent members can be reduced.
  • transduces incident light into a cell from the side of a certain conductive substrate 18 differs greatly from the dye-sensitized solar cell 10.
  • FIG. In order to realize the above structure, a transparent substrate is used as the conductive substrate 18.
  • the substrate 12a may be a transparent substrate or an opaque substrate.
  • the conductive metal layer 23 is a current collector provided on the surface of the substrate 12a.
  • a sheet-like conductive metal portion 23a is provided on the side in contact with the substrate 12a, and the conductive metal portion 23a is further covered to form a sheet.
  • the covering portion 23b is provided.
  • the conductive metal layer 23 has a certain rigidity, the substrate 12a can be omitted. Further, it is not excluded to use a mesh member as the conductive metal portion 23a on the assumption that the substrate 12a exists.
  • a manufacturing method will be described by taking the dye-sensitized solar cell 10 as an example.
  • the conductive metal portion 17 of the conductive metal layer uses the mesh member (wire net) shown in FIG.
  • seat of FIG. 3 as an electroconductive metal layer
  • the following process does not change.
  • the process for producing the conductive metal layer will be described later, and the process for producing the dye-sensitized solar cell using the produced conductive metal layer will be described first. This process is the same as the process for producing a conventional dye-sensitized solar cell.
  • titania paste is applied on the produced conductive metal layer 16 and baked at a temperature of 450 ° C., for example, to form the porous semiconductor layer 14 on the conductive metal layer 16.
  • the conductive metal layer 16 with the porous semiconductor layer 14 is impregnated in the dye solution for 48 hours, for example, and the dye is attached to the porous semiconductor layer 14.
  • the conductive substrate 18 having a porous semiconductor layer 14 to which a dye is attached is prepared using a separately manufactured conductive substrate 18 made of a substrate with a transparent conductive film and a catalyst film, and a separately manufactured substrate 12.
  • a cell is assembled using a spacer (not shown) so as to sandwich the metal layer 16, and an electrolyte is injected into the cell to produce a dye-sensitized solar cell.
  • the porous plastic sheet impregnated with the electrolytic solution is arranged between the conductive metal layer 16 with the porous semiconductor layer 14 and the conductive substrate 18 attached with the dye, the electrolytic solution is obtained after the cell is completed. This is suitable for adopting the roll-to-roll method described above.
  • the sheet-like conductive metal layer 16 is formed on the substrate 12 by a thin film technique, and the substrate 12 with the conductive metal layer 16 is formed.
  • the porous semiconductor layer 14 is formed on the conductive metal layer 16 by, for example, applying a titania paste on the substrate 12 with the conductive metal layer 16 and baking it at a temperature of 450 ° C., for example. Is the same as the above manufacturing method.
  • the conductive metal layer 16 and the substrate 12 are shown separately, but in reality, the conductive metal layer 16 is formed in close contact with the substrate 12. Just as you did.
  • a small amount of a compound containing one or more elements selected from the group consisting of O, N, S, P, B, and C is introduced into a conductive metal part such as a mesh member.
  • a conductive metal part such as a mesh member.
  • a covering portion having a graded composition structure of the degree of oxidation, that is, the coefficient of thermal expansion, is formed on the conductive metal portion.
  • the element to be introduced is more preferably O or N.
  • the gradient composition structure may be formed using materials having two or more different thermal expansion coefficients, and moreover, two or more stages of film formation using the same material and different film formation methods. By performing the step, two or more layers having different coefficients of thermal expansion may be formed.
  • the thermal expansion coefficient of the porous semiconductor layer 14 is 5 ⁇ 10 ⁇ by making the covering portion on the porous semiconductor layer 14 side have a structure close to TiO 2 having a high degree of oxidation.
  • the thermal expansion coefficient is close to 8.4 ⁇ 10 ⁇ 6 / ° C. with a coefficient of thermal expansion close to 6 / ° C., while the covering portion on the conductive metal portion 17 side has a structure close to Ti having a low degree of oxidation. Rate.
  • an appropriate method can be used.
  • the degree of oxidation is calculated from the ratio of the peak intensity of the standard metals and oxygen to the peak intensity of the sample. can do.
  • the coefficient of thermal expansion for example, the coefficient of thermal expansion corresponding to the degree of oxidation obtained by measuring the degree of oxidation can be calculated from the values described in the Metal Handbook 5th edition (Maruzen).
  • the thin film technique for forming the covering portion is not particularly limited, but preferably a sputtering method or a vacuum evaporation method is used.
  • the covering portion having the gradient composition structure can be formed using only one of these methods.
  • the method includes a step of forming a sputter layer on the surface of the conductive metal portion by a sputtering method and a step of forming a vapor deposition layer on the surface of the sputter layer by a vacuum vapor deposition method.
  • the aggregate of fine metal particles in the outer layer formed by the vacuum deposition method is smaller in size than the fine metal particles in the inner layer of the covering portion formed by the sputtering method.
  • the vacuum vapor deposition method is an arc plasma vapor deposition method (plasma arc deposition method) or a vacuum arc vapor deposition method because the flatness is excellent and a denser coating portion can be obtained.
  • FIG. 8 the SEM surface observation result of the layer used as the coating part after baking for 30 minutes at 450 degreeC is shown.
  • (a) shows a film formed by a conventional coating method
  • (b) shows a film formed by a sputtering method of this embodiment
  • (c) shows a film formed by an arc plasma vapor deposition method of this embodiment.
  • the surface roughness Ra of the film formed by the coating method is 5.28 nm
  • the surface roughness Ra of the film formed by the sputtering method of the present embodiment is 1.96 nm.
  • the surface roughness Ra of the film formed by the arc plasma deposition method of the present embodiment was 0.55 nm.
  • the contact angle was measured, and compared with the stainless steel mesh coated with the coating formed by the coating method, it was coated with the coating formed by the sputtering method and the arc plasma deposition method of this embodiment. Large values were obtained for the stainless steel mesh.
  • Stainless steel mesh used Stainless steel mesh # 500 (wire diameter: 0.025 mm, opening (opening, opening): 0.026 mm, space ratio: 25.8%, thickness: 55 ⁇ m, material: SUS316) was used.
  • Example 1 A sputtering film having a thickness of 200 nm was formed on both surfaces of a 40 mm ⁇ 50 mm stainless steel mesh by using Ti as a raw material metal and processing by sputtering at an output of 250 W for 50 minutes. At this time, we are introducing a small amount of oxygen gas into the film forming apparatus of the pressure in the chamber 2.0 ⁇ 10 -4 Pa, and was circulated to hold the pressure in the chamber to 4.0 ⁇ 10 -4 Pa. After the formed stainless steel mesh was cut into 20 mm ⁇ 25 mm, a TiO 2 paste for screen printing (Ti-Nanoxide D / SP) manufactured by Solaronix SA was applied by a squeegee method using a metal mask (20 mm ⁇ 5 mm).
  • Ti-Nanoxide D / SP Ti-Nanoxide D / SP
  • a porous film and a platinum sputter counter electrode are stacked in this order, and are cut into 26 mm ⁇ 10 mm micro slide glass manufactured by MASHNAMI (S1127, A solar cell was obtained by sealing with epoxy resin in a state of being sandwiched from two sides with a thickness of 1.2 mm.
  • the performance evaluation of the obtained solar battery cell was performed using a solar simulator (dye-sensitized spectral sensitivity measuring device KHP-1 type) manufactured by Spectrometer Co., Ltd.
  • the performance evaluation results are shown in Table 1.
  • efficiency indicates conversion efficiency
  • FF indicates fill factor
  • V OC indicates optical open circuit voltage
  • JSC indicates optical short circuit current density.
  • the results of performance evaluation of other examples and comparative examples below are also shown in Table 1.
  • Example 2 A solar cell was produced in the same manner as in Example 1 except that the stainless steel mesh was covered with an arc plasma film formed by an arc plasma deposition method instead of the sputtered film, and performance evaluation was performed.
  • the arc plasma deposition method a small amount of oxygen gas was introduced into the chamber of the film forming apparatus, and an arc plasma film having a film thickness of 100 mm was formed with 2000 shots while maintaining the chamber internal pressure at 4.0 ⁇ 10 ⁇ 4 Pa.
  • Example 3 Except for coating the stainless steel mesh with the sputtered film under the conditions of Examples 1 and 2 and further with the arc plasma film, solar cells were produced in the same manner as in Example 1 and performance evaluation was performed.
  • Example 4 instead of the stainless steel mesh, a porous Ti foil having a hole diameter of 75 ⁇ m and a hole thickness of 150 ⁇ m was drilled with an NC drill and having a thickness of 20 ⁇ m was coated with an arc plasma film formed by an arc plasma deposition method. Other than that, solar cells were produced in the same manner as in Example 1, and performance evaluation was performed.
  • Example 5 A sputtered film having a film thickness of 300 nm was formed on both surfaces of a 40 mm ⁇ 50 mm stainless steel mesh by using W as a raw material metal and by sputtering at an output of 200 W for 60 minutes. At this time, a small amount of oxygen gas was introduced and circulated through the film forming apparatus having a chamber internal pressure of 2.5 ⁇ 10 ⁇ 4 Pa to maintain the chamber internal pressure at 4.0 ⁇ 10 ⁇ 4 Pa.
  • TiO 2 paste for screen printing (Ti-Nanoxide D / SP) manufactured by Solaronix SA was applied by a squeegee method using a metal mask (20 mm ⁇ 5 mm). Then, it baked for 60 minutes at the temperature of 450 degreeC with the electric furnace. After cooling, soak in a dye (black dye) solution for 24 hours, and then rinse thoroughly with a mixed solution of acetonitrile and t-butyl alcohol (1: 0.9 (v / V)), then cut to 25 mm x 5 mm Thus, a conductive metal layer on which the porous semiconductor layer to which the dye was attached was placed was obtained.
  • a conductive metal layer on which the porous semiconductor layer to which the dye was attached was obtained.
  • an organic solvent electrolyte LiI 500mM, I2 50mM, t-Bupy 580mM, MeEtImN (CN) 2 600mM
  • a polyethylene porous film film thickness 40 ⁇ m, space ratio 80%
  • a platinum sputtered Ti counter electrode platinum sputtered Ti counter electrode
  • Example 2 A solar battery cell was produced by the same method as in Example 1 except that a stainless steel mesh was coated with a TiO 2 film having a thickness of 200 nm by a coating method, and performance evaluation was performed.
  • Example 3 A solar battery cell was produced in the same manner as in Example 4 except that the porous Ti foil without film formation was used as it was, and performance evaluation was performed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Abstract

 電力取り出し効率の大幅な向上を図ることができる色素増感太陽電池およびその製造方法を提供する。  色素増感太陽電池は、基板と、色素を吸着した多孔質半導体層と、導電性金属層と、導電性基板を備える。導電性金属層16は、多孔質半導体層の基板が設けられる側とは反対側に配置される集電部である。導電性金属層16は、メッシュ部材からなる導電性金属部17と、導電性金属部17に被覆される被覆部19で構成される。被覆部19は、内層19aと外層19bで構成され、導電性金属部17の側から多孔質半導体層14の側に向けて酸化度が高くなる傾斜組成構造を有する。これにより、被覆部19は、導電性金属部17の側から多孔質半導体層14の側に向けて熱膨張率が低くなる傾斜組成構造を有する。

Description

色素増感太陽電池およびその製造方法
 本発明は、色素増感太陽電池およびその製造方法に関する。
 色素増感太陽電池は、湿式太陽電池あるいはグレッツェル電池等と呼ばれ、シリコン半導体を用いることなくヨウ素溶液に代表される電気化学的なセル構造を持つ点に特徴がある。具体的には、透明な導電性ガラス板(透明導電膜を積層した透明基板)に二酸化チタン粉末等を焼付け、これに色素を吸着させて形成したチタニア層等の多孔質半導体層と導電性ガラス板(導電性基板)からなる対極の間に電解液としてヨウ素溶液等を配置した、簡易な構造を有する。透明な導電性ガラス板の側から色素増感太陽電池セル内に導入される太陽光が色素に吸収されることで電子が発生する。
 色素増感太陽電池は、材料が安価であり、作製に大掛かりな設備を必要としないことから、低コストの太陽電池として注目されている。
 色素増感太陽電池は、太陽光の変換効率のさらなる向上が求められており、種々の観点から検討がなされている。
 そのうちのひとつとして、電極の導電性の改善による電力取り出し効率の向上を図るために、光入射側に設けられる透明基板上に通常形成される透明導電膜を省略すること等が検討されている。電極の導電性の改善は、太陽電池を大型化する際に特に大きな意義を持つ。
 このような技術として、例えば、ガラス基板上に、半導体微粒子層、金属網、電荷移動層および対極をこの順番で含む積層部を有する構造の光電変換素子が開示されている(特許文献1、2参照)。
 また、例えば、基材上に、透明導電膜と、透明導電膜よりも抵抗値の低い金属または合金よりなるメッシュ状の導電体を設けることで電極の低抵抗化を図るとともに、さらに、メッシュ状の導電体が酸化することによって生じる抵抗値の増加を防ぐために、メッシュ状の導電体の表面に不働態膜を形成し、さらにはその上に半導体膜等の膜を形成した色素増感太陽電池用電極が開示されている(特許文献3参照)。
 また、例えば、透明基板上にSUSを集電電極として設け、SUSの上にインシュレーターとして汎用されるSiOx膜を、およびSiOx膜の上にITOを、それぞれスパッタリングしたSUS電極を有する色素増感太陽電池が開示されている(非特許文献1参照)。この太陽電池の太陽光の変換効率は4.2%と報告されている。
 なお、対極を導電性透明基板で形成し、対極側から色素増感太陽電池セル内に光を導入する種々の技術が開示されている(例えば特許文献4参照)。
特開2001-283941号公報 特開2007-73505号公報 特開2005-197176号公報 特許2664194号公報
Kang-Jin Kim,et al., A4.2% efficient flexible dye-sensitized TiO2 solar cells using stainlesssteel substrate,Solar Energy Materials & Solar Cells 90 (2006) 574-581
 しかしながら、上記した従来技術は、いずれも、電力取り出し効率の一層の向上を図るためにはさらなる改善が必要である。
 本発明は、上記の課題に鑑みてなされたものであり、電力取り出し効率の一層の向上を図ることができる色素増感太陽電池およびその製造方法を提供することを目的とする。
 本発明に係る色素増感太陽電池は、基板と、カソード極となる導電性基板と、該基板と該導電性基板の間に、該基板に近接してまたは接触して配置され色素を吸着した多孔質半導体層と、該多孔質半導体層と接触して配置されアノード極となる導電性金属層を備え、該基板および該導電性基板のうちの少なくともいずれか一方が透明基板であり、電解質が封止されてなる色素増感太陽電池であって、
 該導電性金属層が、導電性金属部と、該導電性金属部の少なくとも該多孔質半導体層と接触する側に被覆される被覆部で構成され、
 該被覆部が、該導電性金属部の側から該多孔質半導体層の側に向けて熱膨張率が低くなる傾斜組成構造を有することを特徴とする。
 また、本発明に係る色素増感太陽電池は、好ましくは、前記被覆部が、前記導電性金属部の側から前記多孔質半導体層の側に向けて酸化度が高くなる傾斜組成構造を有することを特徴とする。
 また、本発明に係る色素増感太陽電池は、好ましくは、前記被覆部が、Ti、W、Ni、PtおよびAuからなる群から選ばれる1種または2種以上の耐食性金属材料の酸化物で形成されてなることを特徴とする。
 また、本発明に係る色素増感太陽電池は、好ましくは、前記導電性金属層が、前記多孔質半導体層の前記基板が設けられる側とは反対側に配置される集電部であり、該多孔質半導体層に前記電解質が自在に流通するための無数の孔が前記導電性金属部に形成されてなるとともに、外部電極に電気的に接続されてなり、前記基板が透明基板であることを特徴とする。
 また、本発明に係る色素増感太陽電池は、好ましくは、前記導電性金属層の前記導電性金属部がメッシュ部材であることを特徴とする。
 また、本発明に係る色素増感太陽電池は、好ましくは、前記導電性金属層が、前記基板の表面に設けられる集電部であり、該基板に接する側に前記導電性金属部が設けられおよび該導電性金属部を被覆して前記被覆部が設けられるとともに、前記導電性基板が透明基板であることを特徴とする。
 また、本発明に係る色素増感太陽電池は、上記の色素増感太陽電池の製造方法であって、
 予め形成した導電性金属部に被覆部を被覆形成する工程において、O、N、S、P、BおよびCからなる群から選ばれる1種または2種以上の元素を含む化合物を少量導入しながら薄膜技術により導電性金属被覆の原料金属を成膜することにより傾斜組成構造を形成することを特徴とする。
 また、本発明に係る色素増感太陽電池は、上記の色素増感太陽電池の製造方法であって、
 予め形成した導電性金属部に被覆部を被覆形成する工程において、スパッタ法によりスパッタ層を形成する段階と該スパッタ層の表面に真空蒸着法により蒸着層を形成する段階を含むことにより傾斜組成構造を形成することを特徴とする。
 また、本発明に係る色素増感太陽電池は、好ましくは、前記真空蒸着法が、アークプラズマ蒸着法または真空アーク蒸着法であることを特徴とする。
 また、本発明に係る色素増感太陽電池は、好ましくは、前記被覆部が、前記導電性金属部の側から前記多孔質半導体層の側に向けて熱膨張率が低くなる2以上の異種材料の積層構造であることを特徴とする。
 本発明に係る色素増感太陽電池は、多孔質半導体層と接触して配置されアノード極となる導電性金属層が、導電性金属部と、導電性金属部の少なくとも多孔質半導体層と接触する側に被覆される被覆部で構成され、被覆部が、導電性金属部の側から多孔質半導体層の側に向けて熱膨張率が低くなる傾斜組成構造を有するため、高い電力取り出し効率を得ることができる。
 また、本発明に係る色素増感太陽電池の製造方法は、予め形成した導電性金属部に被覆部を被覆形成する工程において、O、N、S、P、BおよびCからなる群から選ばれる1種または2種以上の元素を含む化合物を少量導入しながら薄膜技術により成膜することにより傾斜組成構造を形成するため、本発明に係る色素増感太陽電池を好適に得ることができる。
本実施の形態の第一の例に係る色素増感太陽電池の断面構造の模式図である。 メッシュ部材で形成される導電性金属部と、導電性金属部に被覆される被覆部で構成される導電性金属層を説明するための図である。 予め孔あけ加工したシート状の導電性金属部と、導電性金属部に被覆される被覆部で構成される導電性金属層を説明するための図である。 本実施の形態の第二の例に係る色素増感太陽電池の断面構造の模式図である。 本実施の形態の色素増感太陽電池の製造方法の一例を説明するための図である。 本実施の形態の色素増感太陽電池の製造方法の他の一例を説明するための図である。 色素増感太陽電池の作製方法を説明するための図である。 被覆部となる層のSEM表面観察結果を示す図であり、(a)は従来技術の塗布法により、(b)は本実施の形態のスパッタ法により、(c)は本実施の形態のアークプラズマ蒸着法により、それぞれ成膜したものである。
  本発明に係る色素増感太陽電池およびその製造方法の好適な実施の形態について、図を参照して、以下に説明する。
 本発明者らは、前記した従来の色素増感太陽電池の電力取り出し効率が低い原因について種々検討した。
 従来技術は、透明導電膜に代えて酸化腐食防止用の保護膜等を被覆した低抵抗な導電性金属にチタニアペーストを塗布し、その後焼結を行う場合に、例えば、熱膨張率(線膨張率、線膨張係数)が16×10-6/℃程度のステンレス材を導電性金属として用いる。このとき、導電性金属と熱膨張率が5×10-6/℃程度のチタニア焼成層との熱膨張の差が大きいために、チタニア焼成時の加熱時や冷却時に熱膨張率の違いにより生じる導電性金属とチタニア焼成層の膨張率差および収縮率の違いから導電性金属とチタニア焼成層の間に生じるせん断力によって、保護膜等に部分的な剥離が生じて保護膜等の効果が損なわれ、光電変換効率が十分に得られないおそれがあることに思い至った。
 そして、上記の不具合を改善するために、保護膜等に相当するものについて、導電性金属に近い側を導電性金属の熱膨張率に近い材料で形成するとともにチタニア焼成層に近い側をチタニア焼成層の熱膨張率に近い材料で形成することに想達した。
 すなわち、本実施の形態に係る色素増感太陽電池の基本原理は、以下のとおりである。
 色素増感太陽電池は、基板と、カソード極となる導電性基板と、基板と導電性基板の間に、基板に近接してまたは接触して配置され色素を吸着した多孔質半導体層と、多孔質半導体層と接触して配置されアノード極となる導電性金属層を備える。基板および導電性基板のうちの少なくともいずれか一方は透明基板であり、色素増感太陽電池には電解質が封止される。
 導電性金属層は、導電性金属部と、導電性金属部の少なくとも多孔質半導体層と接触する側に被覆される被覆部で構成される。被覆部は、導電性金属部の側から多孔質半導体層の側に向けて熱膨張率が低くなる傾斜組成構造を有する。
 上記の構成により、導電性金属部と多孔質半導体層(チタニア焼成層)の膨張率差および収縮率の違いから導電性金属部とチタニア焼成層の間にせん断力を生じても、被覆部に加えられる応力が緩和され、被覆部にクラックを生じさらには導電性金属部から被覆部が剥離する現象が軽減される。これにより、被覆部の機能が損なわれることなく保持され、高い電力取り出し効率(変換効率)を得ることができる。
 まず、本実施の形態の第一の例に係る色素増感太陽電池について、図1の模式図を参照して説明する。
 本実施の形態の第一の例に係る色素増感太陽電池10は、基板12と、基板12上(図1では下方向。以下同じ。)に配置される色素を吸着した多孔質半導体層14と、多孔質半導体層14の透明基板12とは反対側の表面に配置される導電性金属層16と、基板12と対向して設けられる導電性基板18を備える。
 導電性金属層16と導電性基板18の間には内部スペーサ21(支持体)が設けられる。スペーサ20で密閉される色素増感太陽電池10の空間に電解質(電解液)22が充填される。
 基板12は、透明基板であり、基板12の側から入射光が色素増感太陽電池10のセル内に導入される。
 多孔質半導体層14は、図1に示すように基板12と接触して配置されてもよく、また基板12と近接して配置されてもよい。
 導電性金属層16は、外部電極26に電気的に接続される。なお、外部電極26は、基板12とは独立して適宜の位置に設けてもよい。
 導電性基板18は、基板28と、基板28上に形成される透明導電膜30と、透明導電膜30上に形成される触媒膜(触媒層)32で構成される。ただし、これに限らず、通常採用される適宜の構成としてもよい。
 内部スペーサ21は、導電性金属層16および導電性基板18の間の電気的絶縁をより確実に行うために設けるものである。内部スペーサ21は、例えばジルコニア材料で形成した直径が20μm程度の球状物や電解液に対し不溶性の樹脂製あるいはガラス製の不織布等を用いることができる。ただし、スペーサ20により導電性金属層16および導電性基板18を確実に離間配置させて絶縁する限り、内部スペーサ21は必ずしも設ける必要はない。
 基板12および基板28は、例えば、ガラス板であってもよくあるいはプラスチック板であってもよい。プラスチック板を用いる場合、例えば、PET,PEN、ポリイミド、硬化アクリル樹脂、硬化エポキシ樹脂、硬化シリコーン樹脂、各種エンジニアリングプラスチックス、メタセシス重合で得られる環状ポリマ等が挙げられる。
 透明導電膜30は、例えば、ITO(スズをドープしたインジウム膜)であってもよく、またFTO(フッ素をドープした酸化スズ膜)であってもよく、あるいはまたSnO膜であってもよい。
 触媒膜32は、白金膜や良導電性炭素等を用いることができる。
 多孔質半導体層14は、300℃以上の温度で焼成されたものであり、より好ましくは450℃以上の温度で焼成されたものである。一方、焼成温度の上限は特にないが、多孔質半導体層14の材料の融点よりは十分に低い温度とし、より好ましくは550℃以下の温度とする。
 多孔質半導体層14は、その厚みを特に限定するものではないが、好ましくは、14μm以上の厚みとする。
 多孔質半導体層14に吸着させる色素は、多孔質半導体層14を形成する半導体材料に吸着させる色素であり、400nm~1000nmの波長に吸収を持つものである。このような色素として、例えば、COOH基を有する、ルテニウム色素、フタロシアニン色素などの金属錯体、シアニン色素などの有機色素を挙げることができる。多孔質半導体層14には光吸収領域が異なる色素が複数混合されて吸着されてもよいし、異なる色素が層状に複数吸着されてもよい。
 電解質22は、ヨウ素、リチウムイオン、イオン液体、t-ブチルピリジン等を含むものであり、例えばヨウ素の場合、ヨウ化物イオンおよびヨウ素の組み合わせからなる酸化還元体を用いることができる。酸化還元体は、これを溶解可能な適宜の溶媒を含む。
 導電性金属層16は、多孔質半導体層14の基板12が設けられる側とは反対側に配置される集電部である。導電性金属層16は、図2に示すように、導電性金属部17と、導電性金属部17に被覆される被覆部19で構成される。被覆部19は内層19aと外層19bで構成される。導電性金属層16は、多孔質半導体層14に電解質22が自在に流通するための無数の孔24が導電性金属部17に形成されている。
 図2に示す導電性金属部17はメッシュ部材である。被覆部19は、後述する成膜法によって導電性金属部17の全面を被覆しているが、これに限らず、導電性金属部17の耐食性強化をさほど要しない場合等には、必要に応じて導電性金属部17の少なくとも多孔質半導体層14と接触する側を被覆すればよい。このことは、以下に説明する他の実施の形態においても同様である。
 被覆部19は、導電性金属部17の側から多孔質半導体層14の側に向けて酸化度が高くなる傾斜組成構造を有する。この傾斜組成構造は、組成が連続的に変化するものであってもよく、また、組成が段階的(階段的)に変化するものであってもよい。すなわち、被覆部19は、単層構造として、成膜時に内側から外側に向けて徐々に酸化度を変化させたものであってもよい。また、2以上の酸化度が異なる材料を用い、導電性金属部17の側の内層を酸化度が小さい材料で形成するとともに多孔質半導体層14の側の外層を酸化度が大きい材料で形成した、異種材料層からなる多層構造であってもよい。
 図2の被覆部19の場合、内層19aに比べて外層19bの酸化度が高い。
 導電性金属部17の厚みは、特に限定するものではなく例えば数十nm~数十μm程度とすることができるが、低い電気抵抗(抵抗)を得る観点からは、数μm~十μm程度であることが適当であり、かつ十分である。
 被覆部19の厚みは、特に限定するものではなく例えば数百nm程度とすることができるが、少なくとも20nm以上であると、導電性金属層16から電解質22への逆電子移動を防止し、かつ導電性金属部17との熱膨張係数との違いを緩和できる点で、より好ましい。
 導電性金属部17は、適度の導電性を有するものである限り、適宜の金属を選定して用いることができ、例えば、Ti、Pt、Au、Ag等の金属、その合金類および金属酸化物等の金属化合物や、ステンレス、鉄、銅、アルミ、スズ等を用いることができる。これらのうち、材料の低コスト化およびより高い導電性を得る観点からは、ステンレスを用いることがより好ましい。
 被覆部19は、耐食性金属を用いることが好ましく、Ti、W、Ni、PtおよびAuからなる群から選ばれる1種または2種以上の耐食性金属材料の酸化物であることがより好ましい。
 図2の導電性金属層16に代えて、図3に示すような導電性金属部17aを有する導電性金属層16aを用いてもよい。
 導電性金属層16aは、例えば予め孔あけ加工したシート状の導電性金属部17aを用い、この導電性金属部17aに被覆部19を被覆したものである。この場合、所望の寸法、形状および配列の孔を形成することができる。
 上記のように構成される本実施の形態の第一の例に係る色素増感太陽電池10は、被覆部19が導電性金属部17、17aの側から多孔質半導体層14の側に向けて酸化度が高くなる傾斜組成構造を有することにより、導電性金属部17の側から多孔質半導体層14の側に向けて熱膨張率が低くなる傾斜組成構造を有する。すなわち、被覆部19の内層19aは導電性金属部17に近い高い熱膨張率を有し、被覆部19の外層19bは多孔質半導体層14に近い低い熱膨張率を有する。
 なお、導電性金属部17の側から多孔質半導体層14の側に向けて熱膨張率が低くなる被覆部19の傾斜組成構造は、例えば2以上の熱膨張率が異なる材料を用い、導電性金属部17の側を熱膨張率が大きい材料で形成するとともに多孔質半導体層14の側を熱膨張率が小さい材料で形成することによっても得ることができる。
 これにより、色素増感太陽電池10は、製造時の過酷な温度変化によって被覆部にクラックを生じさらには導電性金属部から被覆部が剥離する現象や導電性金属被服部と多孔質半導体層が分離する現象が軽減されることで、被覆部の機能が損なわれることなく保持されるとともに多孔質半導体層と導電性金属層の良好な密着性が保持され、高い電力取り出し効率を得ることができる。
 また、通常、基板12上に配置したチタニアペーストを焼成して多孔質半導体層14を形成するプロセスを採用するため、例えば450℃を超える高温に耐えるために基板12としてガラス基板を用いる必要がある。これに対して、色素増感太陽電池10は、多孔質半導体層14を載置した導電性金属層16、16aをセル組み立て時に基板12と接合することができ、これにより、基板12として、フレキシブルなプラスチック材料を用いることができる。
 また、色素増感太陽電池10は、導電性金属層16を介して多孔質半導体層14内を電子が容易に移動し、さらにまた、導電性金属層16と電解質22の界面での逆電子移動が起こりにくい。
 また、色素増感太陽電池10は、透明導電膜付きのガラス基板を用いないため、安価な基板12を用いることができる。
 また、色素増感太陽電池10は、被覆部の材料を適宜選択し、あるいは成膜条件を調整することにより、被覆部と多孔質半導体層とのより良好な密着性を得ることができる。
 また、色素増感太陽電池10は、導電性金属層16にチタニアペーストを塗布、焼成して得られる多孔質半導体層14付き導電性金属層16を、例えばTi箔からなる導電性基板18とプラスチックシートからなる基板12で挟んで製造することができるため、いわゆるロール・ツー・ロール方式を採用して安価に大量生産することが可能である。
 つぎに、本実施の形態の第二の例に係る色素増感太陽電池について、図4の模式図を参照して説明する。
 本実施の形態の第二の例に係る色素増感太陽電池10aは、おおよその構成は色素増感太陽電池10と同様であるため、重複する構成要素についての説明は省略する。また、作用効果についても以下に格別に言及するもの以外は色素増感太陽電池10と同様であるため、重複する作用効果の説明は省略する。
 色素増感太陽電池10aは、太陽電池セル組み立てに先立ち基板12aと導電性金属層(以下、参照番号23で示す。)を一体的に設けて構成部材点数を減らすことができるように、対極である導電性基板18の側から入射光をセル内へ導入する点が、色素増感太陽電池10と大きく異なる。
 上記の構造を実現するために、導電性基板18として透明基板が用いられる。なお、基板12aは、透明基板であってもよく、また、不透明基板であってもよい。導電性金属層23は、基板12aの表面に設けられる集電部であり、基板12aに接する側にシート状の導電性金属部23aが設けられ、さらに導電性金属部23aを被覆してシート状の被覆部23bが設けられる。
 導電性金属層23に一定の剛性がある限り、基板12aを省略することも可能である。また、基板12aの存在を前提として、導電性金属部23aとしてメッシュ部材を用いることを排除するものではない。
 つぎに、上記本実施の形態の各例の色素増感太陽電池を好適に製造することができる、本実施の形態の色素増感太陽電池の製造方法について、図5および図6の模式図を参照して説明する。
 色素増感太陽電池10を例にとって、製造方法を説明する。
 導電性金属層の導電性金属部17は、図2のメッシュ部材(金網)を用いる。なお、導電性金属層として図3の孔あきシート状の導電性金属層を用いる場合も、以下の工程に変わりはない。説明の都合上、導電性金属層の作製工程については後述するものとし、作製した導電性金属層を用いて色素増感太陽電池セルを作製する工程について、先に説明する。この工程は、従来の色素増感太陽電池セルを作製する工程と変わりない。
 図5に示すように、作製した導電性金属層16の上に例えばチタニアペーストを塗布し、例えば450℃の温度で焼成して、導電性金属層16上に多孔質半導体層14を形成する。
 ついで、色素溶液に多孔質半導体層14付き導電性金属層16を例えば48時間含浸して、多孔質半導体層14に色素を付着させる。
 ついで、図6に示すように、別途作製した、透明導電膜および触媒膜付きの基板からなる導電性基板18と、同じく別途作製した基板12とで色素を付着した多孔質半導体層14付き導電性金属層16を挟み込むようにして、図示しないスペーサを用いてセルを組み立て、電解液をセル内に注入して色素増感太陽電池セルを作製する。なお、この場合、電解液を含浸した多孔質プラスチックシートを、色素を付着した多孔質半導体層14付き導電性金属層16と導電性基板18の間に配置する構成とすると、セル完成後に電解液をセル内に注入する工程が省略され、前記したロール・ツー・ロール方式を採用するうえで好適である。
 なお、色素増感太陽電池10aを作製する場合は、図7に示すように、基板12上に薄膜技術によってシート状の導電性金属層16を形成して導電性金属層16付きの基板12を作製し、ついで、導電性金属層16付きの基板12上に例えばチタニアペーストを塗布し、例えば450℃の温度で焼成して、導電性金属層16上に多孔質半導体層14を形成する点以外は、上記の製造方法と同様である。ここで、図7では、図示の便宜上、導電性金属層16と基板12を分離して表示しているが、実際には導電性金属層16が基板12に密着して形成されることは上記したとおりである。
 つぎに、導電性金属層の作製方法について説明する。
 色素増感太陽電池10の場合、メッシュ部材等の導電性金属部にO、N、S、P、BおよびCからなる群から選ばれる1種または2種以上の元素を含む化合物を少量導入しながら薄膜技術により被覆部の原料金属を成膜することにより、酸化度、言い換えれば熱膨張率の傾斜組成構造を有する被覆部を導電性金属部上に形成する。導入する元素は、OまたはNであると、より好ましい。
 一方、色素増感太陽電池10aの場合、基板上に導電性金属部であるシート状の導電膜を成膜し、ついで、上記の方法と同様にして、導電膜上にシート状の被覆部を形成する。
 また、先に説明したように、2以上の熱膨張率が異なる材料を用いて傾斜組成構造を形成してもよく、さらにまた、同一材料を用いて異なる成膜方法で二段階以上の成膜を行うことで、2以上の熱膨張率が異なる層を形成してもよい。
 例えばTiを原料金属として成膜する場合、多孔質半導体層14の側の被覆部部分を高い酸化度のTiOに近い組織とすることで、多孔質半導体層14の熱膨張率5×10-6/℃に近い熱膨張率とし、一方、導電性金属部17の側の被覆部部分を低い酸化度のTiに近い組織とすることで、8.4×10-6/℃に近い熱膨張率とすることができる。
 なお、必要に応じて熱膨張率および酸化度の値を測定するには、適宜の方法を用いることができる。
 酸化度については、例えばオージェ電子分光法 (走査型オージェ電子分光分析装置ULVAC PHI-700)を使用し、標準物質である金属および酸素のピーク強度と、サンプルのピーク強度の比から酸化度を算出することができる。
 熱膨張率については、例えば酸化度の測定により求められた酸化度に対応する熱膨張率を、金属便覧第5版(丸善)等に記載されている値から算出することができる。
 被覆部を形成する際の薄膜技術は、特に限定するものではないが、好ましくは、スパッタ法または真空蒸着法を用いる。
 このとき、これらのうちのいずれか一方の方法のみを用いて、傾斜組成構造を有する被覆部を形成することができる。好ましくは、スパッタ法により導電性金属部の表面にスパッタ層を形成する段階とスパッタ層の表面に真空蒸着法により蒸着層を形成する段階を含む。
 スパッタ法により形成される被覆部の内層の微粒子金属の集合体に比べて真空蒸着法により形成される外層の微粒子金属の集合体は、微粒子金属のサイズが小さい。このことも一因となって、大きな組成変化をもった傾斜組成構造が好適に形成されるものと考えられる。また、蒸着層は、その後の焼成時に膜厚が大きく増加しており、このことは、焼成時に蒸着層内の酸化が十分に進行していること、および焼成時に蒸着層にクラックが入ることを軽減することに寄与していることを示すものと考えられる。
 真空蒸着法は、アークプラズマ蒸着法(プラズマアークデポジション法)または真空アーク蒸着法であると、平坦性に優れ、また、より緻密な被覆部を得ることができて、より好ましい。
 図8に、450℃で30分焼成した後の被覆部となる層のSEM表面観察結果を示す。図8中、(a)は従来技術の塗布法により、(b)は本実施の形態のスパッタ法により、(c)は本実施の形態のアークプラズマ蒸着法により、それぞれ成膜したものである。なお、平坦性の一例として、(a)塗布法で成膜したものの表面粗さRaが5.28nm、(b)本実施の形態のスパッタ法で成膜したものの表面粗さRaが1.96nm、(c)本実施の形態のアークプラズマ蒸着法で成膜したものの表面粗さRaが0.55nmという結果が得られた。
 また、図示等を省略するが、SEM観察によれば、被覆部で被覆しないステンレスメッシュに多孔質半導体層を形成したものは、ステンレスメッシュに明瞭なクラックが生じ、塗布法で形成した被覆部で被覆したステンレスメッシュに多孔質半導体層を形成したものは、被覆部あるいはステンレスメッシュにクラックが観察されるとともに多孔質半導体層のムラが観察され、本実施の形態のスパッタ法およびアークプラズマ蒸着法で積層形成した被覆部で被覆したステンレスメッシュに多孔質半導体層を形成したものは、クラックが見られず、多孔質半導体層が均一にステンレスメッシュ上に形成されることが観察された。
 また、データを省略するが、接触角を測定したところ、塗布法で形成した被覆部で被覆したステンレスメッシュに比べて本実施の形態のスパッタ法およびアークプラズマ蒸着法で積層形成した被覆部で被覆したステンレスメッシュは大きな値が得られた。
 実施例および比較例を挙げて、本発明をさらに説明する。なお、本発明は、以下に説明する実施例に限定されるものではない。
(使用したステンレスメッシュ)
 NBC社製ステンレスメッシュ#500(線径0.025mm、目開き(開き目、空間目)0.026mm、空間率25.8%、厚み55μm、材質SUS316)を使用した。
(実施例1)
 40mm×50mmのステンレスメッシュの両面に、原料金属としてTiを用い、スパッタ法により、出力250Wで50分間処理して膜厚200nmのスパッタ膜を形成した。このとき、チャンバー内圧2.0×10-4Paの成膜装置に酸素ガスを少量導入、流通させて、チャンバー内圧を4.0×10-4Paに保持した。
 成膜したステンレスメッシュを20mm×25mmにカットした後、Solaronix SA社製スクリーンプリント用TiOペースト(Ti-Nanoxide D/SP)をメタルマスク(20mm×5mm)を用い、スキージ法で塗布した。その後、電気炉で450℃の温度で30分間焼成した。冷却後、色素(N719)溶液へ48時間浸漬し、ついで、アセトニトリルとt-ブチルアルコールの混合溶液(1:1(v/V))で十分にリンスした後、25mm×5mmにカットして、色素の付着した多孔質半導体層が載置された導電性金属層を得た。
 一方、15mm×10mmにカットした日本板硝子社製ポリエチレン多孔質フィルム(膜厚40μm、空間率80%)に有機溶媒系電解液(LiI 500mM, I2 50mM, t-Bupy 580mM,MeEtImN(CN)2  600mM, in Acetonitorile)を浸漬させて多孔質フィルムを作製するとともに、白金スパッタTi対極(白金スパッタの出力200W/50min、Ti板厚み3mm)を作製した。
 導電性金属層の多孔質半導体層が載置された側とは反対側に多孔質フィルムおよび白金スパッタ対極をこの順に重ね、26mm×10mmにカットしたMATSHNAMI社製マイクロスライドガラス(S1127,
厚み1.2mm)2枚で両側から挟みこんだ状態で、エポキシ樹脂で封止して太陽電池セルを得た。
 得られた太陽電池セルの性能評価は、分光計器社製ソーラーシュミレーター(色素増感型分光感度測定装置KHP-1型)を用いて行った。
 性能評価の結果を表1に示す。表1中、効率は変換効率を、FFはフィルファクターを、VOCは光開放電圧を、JSCは光短絡電流密度を、それぞれ示す。なお、以下の他の実施例および比較例の性能評価の結果も同様に表1に示す。
(実施例2)
 スパッタ膜に代えてアークプラズマ蒸着法により形成したアークプラズマ膜でステンレスメッシュを被覆したほかは、実施例1と同様の方法で太陽電池セルを作製し、性能評価を行った。
 アークプラズマ蒸着法は、酸素ガスを成膜装置のチャンバーに少量導入し、チャンバー内圧を4.0×10-4Paに保持しながら、2000ショットで膜厚100mmのアークプラズマ膜を成膜した。
(実施例3)
 実施例1,2の条件でステンレスメッシュをスパッタ膜で被覆し、さらにアークプラズマ膜で被覆したほかは、実施例1と同様の方法で太陽電池セルを作製し、性能評価を行った。
(実施例4)
 ステンレスメッシュに代えて、穴径75μm、穴間ピッチ150μmの穴をNCドリルで開けた膜厚20μmの多孔Ti箔を使用し、アークプラズマ蒸着法により形成したアークプラズマ膜で多孔Ti箔を被覆したほかは、実施例1と同様の方法で太陽電池セルを作製し、性能評価を行った。
(実施例5)
 40mm×50mmのステンレスメッシュの両面に、原料金属としてWを用い、スパッタ法により、出力200Wで60分間処理して膜厚300nmのスパッタ膜を形成した。このとき、チャンバー内圧2.5×10-4Paの成膜装置に酸素ガスを少量導入、流通させて、チャンバー内圧を4.0×10-4Paに保持した。
 成膜したステンレスメッシュを20mm×25mmにカットした後、Solaronix SA社製スクリーンプリント用TiO2ペースト(Ti-Nanoxide D/SP)をメタルマスク(20mm×5mm)を用い、スキージ法で塗布した。その後、電気炉で450℃の温度で60分間焼成した。冷却後、色素(ブラックダイ)溶液へ24時間浸漬し、ついで、アセトニトリルとt-ブチルアルコールの混合溶液(1:0.9(v/V))で十分にリンスした後、25mm×5mmにカットして、色素の付着した多孔質半導体層が載置された導電性金属層を得た。 
 一方、15mm×10mmにカットした日本板硝子社製ポリエチレン多孔質フィルム(膜厚40μm、空間率80%)に有機溶媒系電解液(LiI 500mM, I2 50mM, t-Bupy 580mM,MeEtImN(CN)2 600mM, in Acetonitorile)を浸漬させて多孔質フィルムを作製するとともに、白金スパッタTi対極(白金スパッタの出力250W/50min、Ti板厚み4mm)を作製した。
 導電性金属層の多孔質半導体層が載置された側とは反対側に多孔質フィルムおよび白金スパッタ対極をこの順に重ね、26mm×10mmにカットしたMATSHNAMI社製マイクロスライドガラス(S1127, 厚み1.2mm)2枚で両側から挟みこんだ状態で、エポキシ樹脂で封止して太陽電池セルを得た。
 得られた太陽電池セルの性能評価は、実施例1と同様の方法で行った。
(比較例1)
 成膜を行わないステンレスメッシュを用いたほかは、実施例1と同様の方法で太陽電池セルを作製し、性能評価を行った。
(比較例2)
 ステンレスメッシュに塗布法により膜厚200nmのTiO膜を被覆したほかは、実施例1と同様の方法で太陽電池セルを作製し、性能評価を行った。
(比較例3)
 成膜を行わない多孔Ti箔をそのまま用いたほかは、実施例4と同様の方法で太陽電池セルを作製し、性能評価を行った。
Figure JPOXMLDOC01-appb-T000001
 10 色素増感太陽電池
 12、28 基板
 14 多孔質半導体層
 16、16a、23 導電性金属層
 17、17a、23a 導電性金属部
 18 導電性基板
 19、23b 被覆部
 19a 内層
 19b 外層
 21 内部スペーサ
 20 スペーサ
 22 電解質
 23a 導電性金属部
 26 外部電極
 30 透明導電膜
 32 触媒膜
 

Claims (10)

  1.  基板と、カソード極となる導電性基板と、該基板と該導電性基板の間に、該基板に近接してまたは接触して配置され色素を吸着した多孔質半導体層と、該多孔質半導体層と接触して配置されアノード極となる導電性金属層を備え、該基板および該導電性基板のうちの少なくともいずれか一方が透明基板であり、電解質が封止されてなる色素増感太陽電池であって、
     該導電性金属層が、導電性金属部と、該導電性金属部の少なくとも該多孔質半導体層と接触する側に被覆される被覆部で構成され、
     該被覆部が、該導電性金属部の側から該多孔質半導体層の側に向けて熱膨張率が低くなる傾斜組成構造を有することを特徴とする色素増感太陽電池。
  2.  前記被覆部が、前記導電性金属部の側から前記多孔質半導体層の側に向けて酸化度が高くなる傾斜組成構造を有することを特徴とする請求項1記載の色素増感太陽電池。
  3.  前記被覆部が、Ti、W、Ni、PtおよびAuからなる群から選ばれる1種または2種以上の耐食性金属材料の酸化物で形成されてなることを特徴とする請求項2記載の色素増感太陽電池。
  4.  前記導電性金属層が、前記多孔質半導体層の前記基板が設けられる側とは反対側に配置される集電部であり、該多孔質半導体層に前記電解質が自在に流通するための無数の孔が前記導電性金属部に形成されてなるとともに、外部電極に電気的に接続されてなり、前記基板が透明基板であることを特徴とする請求項2または3に記載の色素増感太陽電池。
  5.  前記導電性金属層の前記導電性金属部がメッシュ部材であることを特徴とする請求項4記載の色素増感太陽電池。
  6.  前記導電性金属層が、前記基板の表面に設けられる集電部であり、該基板に接する側に前記導電性金属部が設けられおよび該導電性金属部を被覆して前記被覆部が設けられるとともに、前記導電性基板が透明基板であることを特徴とする請求項2または3に記載の色素増感太陽電池。
  7.  前記被覆部が、前記導電性金属部の側から前記多孔質半導体層の側に向けて熱膨張率が低くなる2以上の異種材料の積層構造であることを特徴とする請求項1記載の色素増感太陽電池。
  8.  請求項2~6のいずれか1項に記載の色素増感太陽電池の製造方法であって、
     予め形成した導電性金属部に被覆部を被覆形成する工程において、O、N、S、P、BおよびCからなる群から選ばれる1種または2種以上の元素を含む化合物を少量導入しながら薄膜技術により導電性金属被覆の原料金属を成膜することにより傾斜組成構造を形成することを特徴とする色素増感陽電池の製造方法。
  9.   請求項2~6のいずれか1項に記載の色素増感太陽電池の製造方法であって、
     予め形成した導電性金属部に被覆部を被覆形成する工程において、スパッタ法によりスパッタ層を形成する段階と該スパッタ層の表面に真空蒸着法により蒸着層を形成する段階を含むことにより傾斜組成構造を形成することを特徴とする色素増感太陽電池の製造方法。
  10.  前記真空蒸着法が、アークプラズマ蒸着法または真空アーク蒸着法であることを特徴とする請求項9記載の色素増感太陽電池の製造方法。
PCT/JP2009/004047 2008-08-29 2009-08-24 色素増感太陽電池およびその製造方法 WO2010023860A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010526527A JP5458271B2 (ja) 2008-08-29 2009-08-24 色素増感太陽電池およびその製造方法
CN2009801317336A CN102124602A (zh) 2008-08-29 2009-08-24 染料敏化太阳能电池及其制造方法
US13/058,651 US20110232743A1 (en) 2008-08-29 2009-08-24 Dye-sensitized solar cell and manufacturing method for the same
EP09809516.9A EP2333896A4 (en) 2008-08-29 2009-08-24 Dye-sensitized solar cell and production method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-221170 2008-08-29
JP2008221170 2008-08-29

Publications (1)

Publication Number Publication Date
WO2010023860A1 true WO2010023860A1 (ja) 2010-03-04

Family

ID=41721043

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/004047 WO2010023860A1 (ja) 2008-08-29 2009-08-24 色素増感太陽電池およびその製造方法

Country Status (6)

Country Link
US (1) US20110232743A1 (ja)
EP (1) EP2333896A4 (ja)
JP (1) JP5458271B2 (ja)
KR (1) KR20110053957A (ja)
CN (1) CN102124602A (ja)
WO (1) WO2010023860A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011070876A (ja) * 2009-09-25 2011-04-07 Fujikura Ltd 色素増感型光電変換素子
CN102129911A (zh) * 2009-12-24 2011-07-20 乐金显示有限公司 染料敏化太阳能电池
JP2011192622A (ja) * 2010-07-01 2011-09-29 Dainippon Printing Co Ltd 色素増感型太陽電池
US20110240116A1 (en) * 2010-03-31 2011-10-06 Sony Corporation Photoelectric conversion device and process for production thereof
US20140076385A1 (en) * 2012-02-13 2014-03-20 Korea Electrotechnology Research Institute Flexible dye-sensitized solar cell using fiber
JP2014534628A (ja) * 2011-10-11 2014-12-18 エクセジャー スウェーデン エービーExeger Sweden Ab 色素増感太陽電池の製造方法および前記製造方法により製造された色素増感太陽電池
KR101644788B1 (ko) * 2015-07-07 2016-08-03 한밭대학교 산학협력단 반투명성 화합물 박막 태양전지
JP2021507532A (ja) * 2017-12-21 2021-02-22 エクセジャー オペレーションズ エービー 太陽電池および前記太陽電池の製造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010277999A (ja) * 2009-06-01 2010-12-09 Korea Electronics Telecommun 染料感応太陽電池及びその製造方法
EP2823079B1 (en) 2012-02-23 2023-02-22 Treadstone Technologies, Inc. Corrosion resistant and electrically conductive surface of metal
TWI511349B (zh) * 2013-10-28 2015-12-01 Univ Nat Cheng Kung 導電性組成物及其應用
KR102704141B1 (ko) * 2023-02-02 2024-09-05 고려대학교 산학협력단 수분침투 방지 및 uv 파장의 빛 차단 기능을 가진 희생양극을 포함하는 태양광 모듈

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006059680A (ja) * 2004-08-20 2006-03-02 Fujikura Ltd 透明導電性基板およびこれを用いた光電変換素子
JP2007042366A (ja) * 2005-08-02 2007-02-15 Fujikura Ltd 電極基板および光電変換素子
JP2008192427A (ja) * 2007-02-02 2008-08-21 Fujikura Ltd 電極基板および光電変換素子

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7022910B2 (en) * 2002-03-29 2006-04-04 Konarka Technologies, Inc. Photovoltaic cells utilizing mesh electrodes
JP4515061B2 (ja) * 2003-08-28 2010-07-28 株式会社フジクラ 色素増感太陽電池の製造方法
IL153895A (en) * 2003-01-12 2013-01-31 Orion Solar Systems Ltd Solar cell device
WO2008139479A2 (en) * 2007-05-15 2008-11-20 3Gsolar Ltd. Photovoltaic cell
AU2006234481A1 (en) * 2005-04-11 2006-10-19 Nippon Kayaku Kabushiki Kaisha Electrolyte composition for photoelectric converter and photoelectric converter using same
JP5105764B2 (ja) * 2006-04-20 2012-12-26 ラピスセミコンダクタ株式会社 色素増感太陽電池
JP2007299557A (ja) * 2006-04-28 2007-11-15 Oki Electric Ind Co Ltd 色素増感太陽電池
EP2037529B1 (en) * 2006-06-29 2013-11-06 National University Corporation Kyushu Institute Process for manufacturing a dye-sensitized solar cell
JP5114499B2 (ja) * 2008-06-06 2013-01-09 株式会社フジクラ 光電変換素子
TWI505482B (zh) * 2009-06-24 2015-10-21 Nippon Steel & Sumikin Chem Co Pigment sensitized solar cells
US20120305073A1 (en) * 2010-02-03 2012-12-06 Shuzi Hayase Dye-sensitized solar cell and method for manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006059680A (ja) * 2004-08-20 2006-03-02 Fujikura Ltd 透明導電性基板およびこれを用いた光電変換素子
JP2007042366A (ja) * 2005-08-02 2007-02-15 Fujikura Ltd 電極基板および光電変換素子
JP2008192427A (ja) * 2007-02-02 2008-08-21 Fujikura Ltd 電極基板および光電変換素子

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2333896A4 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011070876A (ja) * 2009-09-25 2011-04-07 Fujikura Ltd 色素増感型光電変換素子
CN102129911A (zh) * 2009-12-24 2011-07-20 乐金显示有限公司 染料敏化太阳能电池
CN102129911B (zh) * 2009-12-24 2013-06-05 乐金显示有限公司 染料敏化太阳能电池
US20110240116A1 (en) * 2010-03-31 2011-10-06 Sony Corporation Photoelectric conversion device and process for production thereof
JP2011192622A (ja) * 2010-07-01 2011-09-29 Dainippon Printing Co Ltd 色素増感型太陽電池
JP2014534628A (ja) * 2011-10-11 2014-12-18 エクセジャー スウェーデン エービーExeger Sweden Ab 色素増感太陽電池の製造方法および前記製造方法により製造された色素増感太陽電池
US20140076385A1 (en) * 2012-02-13 2014-03-20 Korea Electrotechnology Research Institute Flexible dye-sensitized solar cell using fiber
US9842705B2 (en) * 2012-02-13 2017-12-12 Korea Electrotechnology Research Institute Flexible dye-sensitized solar cell using fiber
KR101644788B1 (ko) * 2015-07-07 2016-08-03 한밭대학교 산학협력단 반투명성 화합물 박막 태양전지
JP2021507532A (ja) * 2017-12-21 2021-02-22 エクセジャー オペレーションズ エービー 太陽電池および前記太陽電池の製造方法

Also Published As

Publication number Publication date
JPWO2010023860A1 (ja) 2012-01-26
EP2333896A1 (en) 2011-06-15
CN102124602A (zh) 2011-07-13
US20110232743A1 (en) 2011-09-29
EP2333896A4 (en) 2015-03-25
KR20110053957A (ko) 2011-05-24
JP5458271B2 (ja) 2014-04-02

Similar Documents

Publication Publication Date Title
JP5458271B2 (ja) 色素増感太陽電池およびその製造方法
JP5678345B2 (ja) 色素増感太陽電池およびその製造方法
JP5388209B2 (ja) 色素増感太陽電池の製造方法
JP5252488B2 (ja) 半導体電極およびこれを用いた色素増感型光電気化学セル
JP2009245750A (ja) 色素増感太陽電池およびその製造方法
JP5797555B2 (ja) 色素増感太陽電池
Li et al. Highly-flexible, low-cost, all stainless steel mesh-based dye-sensitized solar cells
Fu et al. TCO-free flexible monolithic back-contact dye-sensitized solar cells
WO2010109785A1 (ja) 色素増感太陽電池およびその製造方法
KR100994584B1 (ko) 티타늄 튜브와 와이어 메쉬 구조물이 포함되는 염료 감응형태양전지
Behrouznejad et al. Monolithic dye sensitized solar cell with metal foil counter electrode
Thompson et al. A novel carbon–PEDOT composite counter electrode for monolithic dye-sensitized solar cells
JP4954855B2 (ja) 色素増感太陽電池の製法
JP4966525B2 (ja) 色素増感型太陽電池、その光電極基板およびその光電極基板の製造方法
KR100998146B1 (ko) 티타늄 튜브와 박판 구조물이 포함되는 염료 감응형태양전지
JP2009117337A (ja) 電極基板、光電変換素子および色素増感太陽電池
JP5685708B2 (ja) 色素増感太陽電池の製造方法
JP2003123855A (ja) 光電変換素子用光電極
JP2009099435A (ja) 色素増感太陽電池
Morita et al. Tri-functional Nb2O5 nano-islands coated on an indium tin oxide layer for a highly efficient dye-sensitized plastic photoanode
US20130240014A1 (en) Vertical electrical connection of photoelectrochemical cells
TW201507183A (zh) 太陽能電池及染料敏化太陽能電池的製造方法
JP2005340167A (ja) 色素増感太陽電池の光電極基板の製造方法、色素増感太陽電池の光電極基板、及び色素増感太陽電池
Yoshida et al. I2-Resistant TiOx/Ag collector fabricated by arc plasma deposition for dye-sensitized solar cells
JP5485793B2 (ja) 太陽電池モジュールの接続電極および太陽電池モジュール

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980131733.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09809516

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2010526527

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20117002939

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13058651

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009809516

Country of ref document: EP