WO2009145323A1 - 多環式化合物を用いるアルコールの酸化方法 - Google Patents
多環式化合物を用いるアルコールの酸化方法 Download PDFInfo
- Publication number
- WO2009145323A1 WO2009145323A1 PCT/JP2009/059909 JP2009059909W WO2009145323A1 WO 2009145323 A1 WO2009145323 A1 WO 2009145323A1 JP 2009059909 W JP2009059909 W JP 2009059909W WO 2009145323 A1 WO2009145323 A1 WO 2009145323A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- optionally substituted
- alkyl
- compound
- azaadamantane
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C51/00—Preparation of carboxylic acids or their salts, halides or anhydrides
- C07C51/16—Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
- C07C51/21—Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
- C07C51/23—Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of oxygen-containing groups to carboxyl groups
- C07C51/235—Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of oxygen-containing groups to carboxyl groups of —CHO groups or primary alcohol groups
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C45/00—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
- C07C45/51—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by pyrolysis, rearrangement or decomposition
- C07C45/516—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by pyrolysis, rearrangement or decomposition involving transformation of nitrogen-containing compounds to >C = O groups
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C51/00—Preparation of carboxylic acids or their salts, halides or anhydrides
- C07C51/16—Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
- C07C51/21—Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
- C07C51/255—Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of compounds containing six-membered aromatic rings without ring-splitting
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C67/00—Preparation of carboxylic acid esters
- C07C67/28—Preparation of carboxylic acid esters by modifying the hydroxylic moiety of the ester, such modification not being an introduction of an ester group
- C07C67/29—Preparation of carboxylic acid esters by modifying the hydroxylic moiety of the ester, such modification not being an introduction of an ester group by introduction of oxygen-containing functional groups
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C67/00—Preparation of carboxylic acid esters
- C07C67/39—Preparation of carboxylic acid esters by oxidation of groups which are precursors for the acid moiety of the ester
- C07C67/40—Preparation of carboxylic acid esters by oxidation of groups which are precursors for the acid moiety of the ester by oxidation of primary alcohols
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D451/00—Heterocyclic compounds containing 8-azabicyclo [3.2.1] octane, 9-azabicyclo [3.3.1] nonane, or 3-oxa-9-azatricyclo [3.3.1.0<2,4>] nonane ring systems, e.g. tropane or granatane alkaloids, scopolamine; Cyclic acetals thereof
- C07D451/14—Heterocyclic compounds containing 8-azabicyclo [3.2.1] octane, 9-azabicyclo [3.3.1] nonane, or 3-oxa-9-azatricyclo [3.3.1.0<2,4>] nonane ring systems, e.g. tropane or granatane alkaloids, scopolamine; Cyclic acetals thereof containing 9-azabicyclo [3.3.1] nonane ring systems, e.g. granatane, 2-aza-adamantane; Cyclic acetals thereof
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D453/00—Heterocyclic compounds containing quinuclidine or iso-quinuclidine ring systems, e.g. quinine alkaloids
- C07D453/02—Heterocyclic compounds containing quinuclidine or iso-quinuclidine ring systems, e.g. quinine alkaloids containing not further condensed quinuclidine ring systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D471/00—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
- C07D471/02—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
- C07D471/08—Bridged systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D493/00—Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system
- C07D493/12—Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains three hetero rings
- C07D493/20—Spiro-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2601/00—Systems containing only non-condensed rings
- C07C2601/12—Systems containing only non-condensed rings with a six-membered ring
- C07C2601/14—The ring being saturated
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2602/00—Systems containing two condensed rings
- C07C2602/36—Systems containing two condensed rings the rings having more than two atoms in common
- C07C2602/42—Systems containing two condensed rings the rings having more than two atoms in common the bicyclo ring system containing seven carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2603/00—Systems containing at least three condensed rings
- C07C2603/56—Ring systems containing bridged rings
- C07C2603/58—Ring systems containing bridged rings containing three rings
- C07C2603/70—Ring systems containing bridged rings containing three rings containing only six-membered rings
- C07C2603/74—Adamantanes
Definitions
- the present invention relates to a method for oxidizing alcohol with oxygen using a polycyclic compound.
- Oxidation reaction by air is expected as an ideal oxidation process from the viewpoint of safety and environmental harmony.
- Examples of the method for oxidizing alcohols using air as an oxidizing agent include examples using palladium compounds (for example, see Non-Patent Document 1 and Non-Patent Document 4), examples using cobalt complexes (for example, see Non-Patent Document 2), ruthenium.
- Examples using compounds for example, see Non-Patent Document 6
- examples using 2,2,6,6-tetramethylpyridine-N-oxyl (TEMPO) and its derivatives for example, Patent Document 1 and Non-Patent Document 3) 5, 7, 8, 9, 10, 11) are known.
- TEMPO 2,2,6,6-tetramethylpyridine-N-oxyl
- TEMPO 2,2,6,6-tetramethylpyridine-N-oxyl
- TEMPO 2,2,6,6-tetramethylpyridine-N-oxyl
- TEMPO 2,2,6,6-tetramethylpyridine-N-oxyl
- An object of the present invention is to provide a method for oxidizing alcohol with oxygen, which does not require a toxic heavy metal compound or the like in any alcohol oxidation, and is highly economical and safe for the environment.
- the present inventors have found an oxidation method using a polycyclic compound as a catalyst and oxygen as an oxidizing agent, thereby completing the present invention.
- R 1 represents a hydrogen atom, a halogen atom, a nitro group, a cyano group, a hydroxy group, a mercapto group, an amino group, a formyl group, a carboxyl group, a sulfo group, a C 1-12 alkyl group, a C 3-12 cyclo group.
- R 4 and R 5 each independently represent the same meaning as R 1 , or R 4 and R 5 may be taken together to form a methylene which may be substituted with R 1
- R a is halogen, C 1-6 alkyl group, C 1-6 haloalkyl group, C 3-6 cycloalkyl group, C 1-6 alkoxy group, C 1-6 alkoxy C 1-6 alkyl group, C 1- 6 alkylsulfenyl C 1-6 alkyl group, C 1-6 haloalkoxy group, C 1-6 alkylsulfenyl group, C 1-6 alkylsulfinyl group, C 1-6 alkylsulfonyl group, C 1-6 haloalkylsulfenyl Phenyl group, C 1-6 haloalkylsulfinyl group, C 1-6 haloalkylsulfonyl group, C 2-6 alkenyl group, C 2-6 haloalkenyl group, C 2
- R 3 may be the same or different from each other, and represents a hydrogen atom, a fluorine atom, a hydroxy group, an alkyl group having 1 to 3 carbon atoms or an alkoxy group having 1 to 3 carbon atoms, provided that R 3 Any one or more of them is a fluorine atom or a hydroxy group
- NO represents NO.
- Represents N-OH, or represents N + ( O)
- X ⁇ represents F ⁇ , Cl -, Br -, I -, ClO 2 -, ClO 4 -, IO 4 -, NO 2 -, NO 3 -, SO 4 2-, BF 4 -, PF 6 -, SbCl 5 -, SbF 6 -, XeF 2 -, (CF 3 SO 2 ) 2 N - Table in representing a) -, CH 3 CO 2 - , CF 3 CO 2 -, 4-CH 3 C 6 H 4 SO 2 O - or
- alcohols such as primary alcohols and secondary alcohols are oxidized with an oxygen-containing gas such as oxygen gas or air under mild conditions without the need for heating or toxic heavy metal oxides.
- oxygen-containing gas such as oxygen gas or air
- the compound, ketone compound and / or carboxylic acid compound can be produced almost selectively in high yield.
- the polycyclic compound used in the present invention is represented by the above formula (1).
- the notation method of each group in Formula (1) is as follows.
- the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
- the expression “halo” also represents these halogen atoms.
- C a -C b alkyl represents a linear or branched hydrocarbon group having a carbon number of a to b, such as methyl group, ethyl group, n-propyl group, i-propyl group.
- n-butyl group, i-butyl group, s-butyl group, t-butyl group, n-pentyl group 1-methylbutyl group, 2-methylbutyl group, 3-methylbutyl group, 1-ethylpropyl group, 1, 1-dimethylpropyl group, 1,2-dimethylpropyl group, 2,2-dimethylpropyl group, n-hexyl group, 1-methylpentyl group, 2-methylpentyl group, 1,1-dimethylbutyl group, 1,3
- Specific examples include -dimethylbutyl group, heptyl group, octyl group, nonyl group, decyl group, undecyl group, dodecyl group and the like, and each is selected within the range of the designated number of carbon atoms.
- C a -C b haloalkyl refers to a linear or branched hydrocarbon group comprising a to b carbon atoms, in which a hydrogen atom bonded to a carbon atom is optionally substituted with a halogen atom.
- the halogen atoms when substituted by two or more halogen atoms, the halogen atoms may be the same as or different from each other.
- fluoromethyl group chloromethyl group, bromomethyl group, iodomethyl group, difluoromethyl group, chlorofluoromethyl group, dichloromethyl group, bromofluoromethyl group, trifluoromethyl group, chlorodifluoromethyl group, dichlorofluoromethyl group, trichloromethyl Group, bromodifluoromethyl group, bromochlorofluoromethyl group, dibromofluoromethyl group, 2-fluoroethyl group, 2-chloroethyl group, 2-bromoethyl group, 2,2-difluoroethyl group, 2-chloro-2-fluoroethyl Group, 2,2-dichloroethyl group, 2-bromo-2-fluoroethyl group, 2,2,2-trifluoroethyl group, 2-chloro-2,2-difluoroethyl group, 2,2-dichloro-2 -Fl group, 2-chloro-2,2-
- C a -C b cycloalkyl represents a cyclic hydrocarbon group having a to b carbon atoms, and forms a monocyclic or complex ring structure having 3 to 6 members. I can do it. Each ring may be optionally substituted with an alkyl group within the range of the specified number of carbon atoms.
- cyclopropyl group 1-methylcyclopropyl group, 2-methylcyclopropyl group, 2,2-dimethylcyclopropyl group, 2,2,3,3-tetramethylcyclopropyl group, cyclobutyl group, cyclopentyl group, 2- Specific examples include methylcyclopentyl group, 3-methylcyclopentyl group, cyclohexyl group, 2-methylcyclohexyl group, 3-methylcyclohexyl group, 4-methylcyclohexyl group, bicyclo [2.2.1] heptan-2-yl group, etc. , Each selected range of carbon atoms.
- C a -C b halocycloalkyl represents a cyclic hydrocarbon group having a to b carbon atoms in which a hydrogen atom bonded to a carbon atom is optionally substituted with a halogen atom.
- a monocyclic or complex ring structure from 3 to 6 membered rings can be formed.
- Each ring may be optionally substituted with an alkyl group within the range of the specified number of carbon atoms, and the substitution with a halogen atom may be a ring structure part, a side chain part, They may be both, and when substituted by two or more halogen atoms, the halogen atoms may be the same as or different from each other.
- 2,2-difluorocyclopropyl group, 2,2-dichlorocyclopropyl group, 2,2-dibromocyclopropyl group, 2,2-difluoro-1-methylcyclopropyl group, 2,2-dichloro-1-methyl Cyclopropyl group, 2,2-dibromo-1-methylcyclopropyl group, 2,2,3,3-tetrafluorocyclobutyl group, 2- (trifluoromethyl) cyclohexyl group, 3- (trifluoromethyl) cyclohexyl group , 4- (trifluoromethyl) cyclohexyl group and the like are listed as specific examples, and each is selected within the range of the designated number of carbon atoms.
- C a -C b alkenyl is a linear or branched chain having a carbon number of a to b, and an unsaturated carbon having one or more double bonds in the molecule.
- vinyl group 1-propenyl group, 2-propenyl group, 1-methylethenyl group, 2-butenyl group, 1-methyl-2-propenyl group, 2-methyl-2-propenyl group, 2-pentenyl group, 2- Methyl-2-butenyl group, 3-methyl-2-butenyl group, 2-ethyl-2-propenyl group, 1,1-dimethyl-2-propenyl group, 2-hexenyl group, 2-methyl-2-pentenyl group, Specific examples include 2,4-dimethyl-2,6-heptadienyl group, 3,7-dimethyl-2,6-octadienyl group and the like, and each is selected within the range of the designated number of carbon atoms
- C a -C b haloalkenyl is a straight chain or branched chain consisting of a to b carbon atoms in which a hydrogen atom bonded to a carbon atom is optionally substituted with a halogen atom, and Represents an unsaturated hydrocarbon group having one or more double bonds in the molecule.
- the halogen atoms may be the same as or different from each other.
- C a -C b cycloalkenyl represents a cyclic unsaturated hydrocarbon group having 1 to 2 carbon atoms and having 1 to 2 carbon atoms.
- a monocyclic or complex ring structure from a member ring to a six-membered ring can be formed. Each ring may be optionally substituted with an alkyl group within the range of the specified number of carbon atoms, and the double bond may be either endo- or exo-.
- 2-cyclopenten-1-yl group, 3-cyclopenten-1-yl group, 2-cyclohexen-1-yl group, 3-cyclohexen-1-yl group, bicyclo [2.2.1] -5-hepten-2- Specific examples include yl groups and the like, and each is selected within the range of the designated number of carbon atoms.
- C a -C b halocycloalkenyl refers to a cyclic one having 1 to b carbon atoms in which a hydrogen atom bonded to a carbon atom is optionally substituted with a halogen atom.
- it represents an unsaturated hydrocarbon group having two or more double bonds, and can form a monocyclic or complex ring structure having 3 to 6 members.
- Each ring may be optionally substituted with an alkyl group within the range of the specified number of carbon atoms, and the double bond may be either endo- or exo-.
- substitution by a halogen atom may be a ring structure part, a side chain part or both of them, and when substituted by two or more halogen atoms, those halogen atoms May be the same as or different from each other.
- a 2-chlorobicyclo [2.2.1] -5-hepten-2-yl group and the like are given as specific examples, and each group is selected within the range of the designated number of carbon atoms.
- C a -C b alkynyl represents a linear or branched chain consisting of a to b carbon atoms and an unsaturated carbonization having one or more triple bonds in the molecule.
- ethynyl group, 1-propynyl group, 2-propynyl group, 2-butynyl group, 1-methyl-2-propynyl group, 2-pentynyl group, 1-methyl-2-butynyl group, 1,1-dimethyl-2 Specific examples include -propynyl group, 2-hexynyl group and the like, and each is selected within the range of the designated number of carbon atoms.
- C a -C b haloalkynyl as used herein is a straight or branched chain consisting of a to b carbon atoms, wherein a hydrogen atom bonded to a carbon atom is optionally substituted with a halogen atom, and Represents an unsaturated hydrocarbon group having one or more triple bonds in the molecule.
- these halogen atoms may be the same as or different from each other.
- Specific examples include 2-chloroethynyl group, 2-bromoethynyl group, 2-iodoethynyl group, 3-chloro-2-propynyl group, 3-bromo-2-propynyl group, 3-iodo-2-propynyl group and the like. Each of which is selected for each specified number of carbon atoms.
- phenyl group o-methylphenyl group, m-methylphenyl group, p-methylphenyl group, o-chlorophenyl group, m-chlorophenyl group, p-chlorophenyl Group, o-fluorophenyl group, p-fluorophenyl group, o-methoxyphenyl group, p-methoxyphenyl group, p-nitrophenyl group, p-cyanophenyl group, ⁇ -naphthyl group, ⁇ -naphthyl group, o- Biphenylyl group, m-biphenylyl group, p-biphenylyl group, 1-anthryl group, 2-anthryl group, 9-anthryl group, 1-phenanthryl group, 2-phenanthryl group, 3-phenanthryl group, 4-phenanthryl group, 9- Phenanthryl
- benzyl group optionally substituted by R a , benzyl group, o-methylbenzyl group, m-methylbenzyl group, p-methylbenzyl group, o-chlorobenzyl group, m-chlorobenzyl group, p-chlorobenzyl Group, o-fluorobenzyl group, p-fluorobenzyl group, o-methoxybenzyl group, p-methoxybenzyl group, p-nitrobenzyl group, p-cyanobenzyl group.
- the alcohol compound to be oxidized is not particularly limited, and includes various alcohol compounds. Among these alcohol compounds, menthol, 4-methoxybenzyl alcohol and the like are preferable.
- Examples of the polycyclic compound represented by (1) used in the present invention include 2-azaadamantane-N-oxyl (AZADO), 1-methyl-2-azaadamantane-N-oxyl (1-Me-AZADO). And 2-azaadamantane-N-oxyl compounds in which a hydroxy group or a fluorine atom is independently substituted at the 5-position and / or the 7-position.
- AZADO 2-azaadamantane-N-oxyl
- 1-methyl-2-azaadamantane-N-oxyl 1-methyl-2-azaadamantane-N-oxyl
- 2-azaadamantane-N-oxyl compounds in which a hydroxy group or a fluorine atom is independently substituted at the 5-position and / or the 7-position.
- AZADO 1-fluoro-2-azaadamantane-N-oxyl (1-F-AZADO), 5-fluoro-2-azaadamantane-N-oxyl (5-F-AZADO), 5-fluoro-1 -Methyl-2-azaadamantane-N-oxyl (5-F-1-Me-AZADO), 5,7-difluoro-1-methyl-2-azaadamantane-N-oxyl (5,7-F 2 -1 -Me-AZADO), 1-methyl-2-azaadamantane-N-oxyl (1-Me-AZADO), 1-methyl-5-hydroxy-2-azaadamantane-N-oxyl (1-Me-5-OH) -AZADO), 5-methoxy-1-methyl-2-azaadamantane-N-oxyl (5-MeO-1-Me-AZADO), 5-hydroxy-2-azaadamantane-N-oxyl (5-OH-AZADO) ), 9-azabic
- N-hydroxy compounds include N-hydroxy-1-fluoro-2-azaadamantane (1-F-AZADOH), N-hydroxy-5-fluoro-2 -Azaadamantane (5-F-AZADOH), N-hydroxy-5-fluoro-1-methyl-2-azaadamantane (5-F-1-Me-AZADOH), N-hydroxy-5,7-difluoro-1 -Methyl-2-azaadamantane (5,7-F 2 -1-Me-AZADOH), N-hydroxy-1-methyl-2-azaadamantane (1-Me-AZADOH), N-hydroxy-1-methyl- 5-hydroxy-2-azaadamantane (1-Me-5-OH-AZADOH), N-hydroxy-5-methoxy-1-methyl-2-azaadamantane (5-MeO-1-Me-AZADOH), N- Hydroxy-5-hydroxy-2-azaadamantane (5-OH-AZADOH), N-N-hydroxy-1-fluoro-2-azaadamantan
- Polycyclic compounds in which NO represents N + ( ⁇ O) X ⁇ that is, oxoammonium salts include, for example, 2-azaadamantane-N-oxoammonium salt (AZADO + X ⁇ ), 1-methyl-2-azaadamantane -N- oxo ammonium salts (1-Me-AZADO + X -), 5 -position and / or 7-position hydroxy group or a fluorine atom each independently are substituted 2-aza-adamantan -N- oxo ammonium salts Among them, for example, AZADO + X ⁇ , 1-fluoro-2-azaadamantane-N-oxoammonium salt (1-F-AZADO + X ⁇ ), 5-fluoro-2-azaadamantane-N-oxoammonium salt (5-F-AZADO + X -), 5- fluoro-1-methyl-2-aza-adamantan -N
- X - as the F -, Cl -, Br - , I -, ClO 2 -, ClO 4 -, IO 4 -, NO 2 -, NO 3 -, SO 4 2-, BF 4 -, PF 6 -, SbCl 5 -, SbF 6 -, XeF 2 -, (CF 3 SO 2) 2 N -, CH 3 CO 2 -, CF 3 CO 2 -, 4-CH 3 C 6 H 4 SO 2 O -, CF 3 SO 2 O 2- and the like can be mentioned, and Cl-or NO 3- is preferred.
- the amount of the polycyclic compound used is preferably 0.01 mol% to 50 mol%, more preferably 0.1 mol% to 10 mol%, based on the substrate alcohol.
- nitrite compound of the present invention examples include nitrites such as lithium nitrite, sodium nitrite, potassium nitrite, calcium nitrite, barium nitrite, silver nitrite; ethyl nitrite, isoamyl nitrite, isobutyl nitrite, Nitrite esters such as tertiary butyl nitrate, normal butyl nitrite, isopropyl nitrite, normal propyl nitrite, and adamantyl nitrite. Of these, sodium nitrite and tertiary butyl nitrite are preferable.
- the amount of the nitrite compound to be used is 1 mol% to 100 mol%, preferably, for example, 1 mol% to 50 mol% with respect to the substrate alcohol.
- Nitric acid may be used in place of the nitrous acid compound.
- the amount of nitric acid used is in accordance with the amount of nitrite compound.
- the oxidation reaction of the present invention is characterized in that it can be carried out under mild conditions, and the reaction temperature can also be carried out at room temperature. Furthermore, it can be carried out in the range of ⁇ 10 ° C. to 200 ° C.
- As the reaction pressure normal pressure (atmospheric pressure) is sufficient, but the reaction can be carried out in a reduced pressure state or a pressurized state in the range of 0.01 to 10 MPa (gauge pressure) as necessary.
- the oxidation reaction is preferably performed at room temperature and normal pressure.
- the reaction time is not necessarily constant depending on the alcohol compound as a substrate to be used and the reaction conditions, but is usually 1 minute to 100 hours, preferably 5 minutes to 24 hours.
- a solvent can be used as necessary.
- the solvent is not limited as long as it does not inhibit the progress of the reaction, and is water, alcohols (for example, methanol, ethanol, propanol, butanol, octanol, etc.), cellosolves (for example, methoxyethanol, ethoxyethanol, etc.), aprotic Polar organic solvents (eg, dimethylformamide, dimethyl sulfoxide, dimethylacetamide, tetramethylurea, sulfolane, N-methylpyrrolidone, N, N-dimethylimidazolidinone, etc.), ethers (eg, diethyl ether, diisopropyl ether, t- Butyl methyl ether, tetrahydrofuran, dioxane, etc.), aliphatic hydrocarbons (eg pentane, hexane, c-hexane, oc
- an alcohol having an amino substituent which does not easily undergo an oxidation reaction, can be used as a substrate.
- concentration of the alcohol compound as a substrate in the solvent is preferably 1 to 99% by mass, and more preferably 5 to 50% by mass except when alcohol is used as the solvent.
- oxygen gas 100% oxygen
- air can be used as oxygen as an oxidizing agent.
- 1-Me-AZADO can be produced by the method described in International Patent Application Publication WO2006 / 001387A1 pamphlet.
- 5-F-1-Me-AZADO can be produced by the method represented by the following scheme.
- 1-Methyl-N-benzyloxycarbonyl-2-azaadamantane 6 can be produced according to International Patent Application Publication WO2006 / 001387A1 pamphlet.
- 5,7-F 2 -1-Me-AZADO can be produced by the method represented by the following scheme.
- 5-MeO-1-Me-AZADO can be produced by the method represented by the following scheme.
- 5-F-AZADO can be produced by the method represented by the following scheme.
- the carboxylic acid compound represented by the formula (19) can be produced by a method according to, for example, J. Org. Chem., Vol. 39, No. 26, p3822 (1974).
- 1-F-AZADO can be produced by a method represented by the following scheme.
- 1-hydroxy-N-benzyloxycarbonyl-2-azaadamantane 31 can be produced according to the description in J. Am. Chem. Soc., 2006, 128, p8412-8413.
- Non-commercial nitrous acid compounds can be produced according to Synthesis, 2004, 11, 1747-1749.
- the oxoammonium nitrate of the present invention comprises N 2 -oxyl compound represented by the following formula (2) or N-hydroxy compound represented by the following formula (3) obtained as described above, and NO 2 (nitrogen dioxide). ), N 2 O 4 (dinitrogen tetroxide) or a nitrous acid compound.
- Examples of the method for producing oxoammonium nitrate of the present invention include a method in which an N-oxyl compound represented by the formula (2) is reacted with NO 2 or N 2 O 4 gas in a solvent.
- it can be carried out by a method in which NO 2 gas is blown into a diethyl ether solution of the N-oxyl compound represented by the formula (2) and reacted at room temperature.
- the oxoammonium nitrate of the present invention can be obtained by reacting the compound represented by the formula (2) under the same conditions as in the above-mentioned alcohol oxidation in the absence of the substrate alcohol.
- Example 1 Production of catalyst Production of 1-methyl-N-trifluoroacetyl-2-azaadamantane (7) 1-methyl-N-benzyloxycarbonyl-2-aza produced according to International Patent Application Publication WO2006 / 001387A1 Pamphlet Pd / C (189 mg) containing 5% by mass of Pd was added to a solution of adamantane 6 (1.89 g, 6.61 mmol) in MeOH (0.1 M, 66 mL), and the mixture was stirred for 2 hours under H 2 stream. The reaction solution was filtered through Celite (registered trademark manufactured by Celite Corporation), and the solvent was removed under reduced pressure.
- Celite registered trademark manufactured by Celite Corporation
- Tetrahydropyran (88.5 mL) and benzyl alcohol 91.6 mL (885 mmol) were added to the reaction solution, and heated and refluxed until the disappearance of endo-bicyclo [3.3.1] non-6-ene-3-carbonylazide was confirmed. did. After allowing to cool, water and ethyl acetate were added for liquid separation, and the organic layer was washed with a saturated aqueous sodium chloride solution, dried over magnesium sulfate, and concentrated.
- N-trifluoroacetyl-2-azaadamantane 22 500 mg, 2.14 mmol
- CCl 4 -MeCN-H 2 O 1.65 M; 1.3 mL-1.1 M; 1.9 mL-1.1 M; 1.9 mL
- NaIO 4 1.05 g, 4.90 mmol
- RuCl 3 44 mg, 0.214 mmol
- 5-fluoro-N-trifluoroacetyl-2-azaadamantane (25) 5-hydroxy-N-trifluoroacetyl-2-azaadamantane 23 (549 mg, 2.20 mmol) of CH 2 Cl 2 (1.43 M, 1.5 mL) DAST (0.58 mL, 4.40 mmol) was added to the solution at ⁇ 78 ° C., the temperature was gradually raised, and the mixture was stirred at 0 ° C. for 1 hour. Then, after diluting with Et 2 O, H 2 O was added and extracted with AcOEt, and the organic layer was washed with H 2 O and dried over MgSO 4 .
- N-benzyloxycarbonyl-1-fluoro-2-azaadamantane (32) 1-hydroxy-N-benzyloxycarbonyl-2-azaadamantane 31 (227 mg, 0.79 mmol) in CH 2 Cl 2 (1.43 M, 0.55 mL) DAST (0.32 mL, 2.37 mmol) was added to the solution at ⁇ 78 ° C., the temperature was gradually raised, and the mixture was stirred at 0 ° C. for 1 hour. Then, after diluting with Et 2 O, H 2 O was added and extracted with AcOEt. The organic layer was washed with H 2 O and dried over MgSO 4 , and the solvent was distilled off under reduced pressure.
- Example 2 Oxygen Oxidation Using N-Oxyl Compound Sodium nitrite (5 mol% of alcohol compound) or tartar nitrite was added to acetic acid solution (0.33 mol / L) or methylene chloride solution (0.33 mol / L) of alcohol compound. Addition of Libutyl (30 mol% of alcohol compound) and 5-fluoro-2-azaadamantane-N-oxyl (5 mol% of alcohol compound) and confirmation of the disappearance of the raw material alcohol with oxygen balloon attached at room temperature Stir vigorously until After completion of the reaction, water and methylene chloride were added for liquid separation, and the organic layer was washed with water to obtain the desired ketone or aldehyde.
- t-Bu tertiary butyl group
- AZADO 2-azaadamantane-N-oxyl
- 1-F-AZADO 1-fluoro-2-azaadamantane-N-oxyl
- 5-F-AZADO 5-Fluoro-2-azaadamantane-N-oxyl
- 1-Me-AZADO 1-methyl-2-azaadamantane-N-oxyl
- 1-Me-5-F-AZADO 1-methyl-5-fluoro- 2-Azaadamantane-N-oxyl
- 5,7-F 2 -1-Me-AZADO 5,7-difluoro-1-methyl-2-azaadamantane-N-oxyl
- 1-Me-5-OH-AZADO 1-methyl-5-hydroxy-2-azaadamantane-N-oxyl
- 5-MeO-1-Me-AZADO 5-methoxy-1-methyl-2-azaadamantane-N-oxyl
- 5-OH-AZADO 5-meth
- Entry is the example number
- substrate is the substrate
- product is the product
- cat is the catalyst
- Time (h) is the reaction time (unit: time)
- Yield is the yield
- recover represents raw material recovery
- methyl ester represents methyl ester
- carboxylic acid represents carboxylic acid
- trace represents trace amount
- balloon represents balloon
- rt represents room temperature
- ref represents reference.
- NaNO 2 in the reaction formula is sodium nitrite
- FeCl 3 ⁇ 6H 2 O is ferric chloride ⁇ hexahydrate
- AcOH is acetic acid
- t-BuONO is tertiary butyl nitrite
- CH 2 N 2 represents diazomethane.
- NR indicates that the reaction did not proceed
- ⁇ indicates that the reaction was not measured
- GC yield indicates the measurement result of the yield by the gas chromatography fluff method. .
- Example 3 Reaction example 3 in which the solvent for the oxidation reaction was changed 3-1 MeCN / AcOH solvent
- 2-octanol (3.91 g), 2-azaadamantane-N-oxyl (0.0229 g), acetonitrile (7.8 g ), Acetic acid (3.6 g) and NaNO 2 (0.831 g) in this order, and the inside of the reaction vessel was purged with oxygen, and then in an oxygen atmosphere (0.1 MPa) (gauge pressure, the same applies hereinafter) at room temperature. Stir for 4 hours.
- the yield of the desired 2-octanone was 98% (GC yield (measurement of yield by gas chromatography method, the same applies hereinafter)).
- Example 4 Reaction in a system using an N-hydroxy-2-azaadamantane compound
- 2-octanol (1.30 g), N-hydroxy-2-azaadamantane (0.0154 g), acetic acid (3.9 g) and NaNO 2 (0.415 g) was sequentially added, and the inside of the reaction vessel was purged with oxygen, and then stirred at room temperature for 15 hours in an oxygen atmosphere (0.1 MPa).
- the target yield of 2-octanone was 89% (GC yield).
- Example 5 Reaction in a system using nitric acid
- 2-octanol 0.392 g
- 2-azaadamantane-N-oxyl AZADO
- acetic acid 1.2 g
- 65% by mass nitric acid An aqueous solution (0.0288 g) was sequentially added, and the reaction vessel was purged with oxygen, and then stirred at room temperature in an oxygen atmosphere (0.1 MPa) for 7 hours.
- the yield of the desired 2-octanone was 99%.
- Example 6 Preparation Example of Oxoammonium Halide Salt
- Example 6-1 Preparation of Chloride Salt Chlorine at room temperature in a solution of 1-Me-AZADO (1920 mg, 11.55 mmol) in CCl 4 (23.1 mL, 0.5 M) Gas was blown in and stirred vigorously. The precipitated crystals were collected by filtration with a glass filter, washed with cooled Et 2 O, and dried under reduced pressure to obtain 1-Me-AZADO + Cl ⁇ (2316 mg, 99%).
- Example 6-2 Using the preparation bromine bromide, in the same manner as in Example 6-1, 1-Me-AZADO + Br - ( actual counter ions Br 3 -) was obtained.
- Example 7 Preparation of oxoammonium nitrate NO 2 gas generated by adding copper powder to concentrated HNO 3 to Et 2 O solution (red) of 5-F-AZADO (16 mg, 0.094 mmol) in a water bath Infused. After confirming that the color of the solution became transparent, the precipitated solid was filtered. Thereafter, the precipitated yellow solid was thoroughly washed with Et 2 O. The obtained solid was dried under reduced pressure with a vacuum pump to obtain 5-F-AZADO + NO 3 ⁇ (20.5 mg, 0.088 mmol, 94%) as a yellow solid.
- Example 9 Oxygen oxidation using oxoammonium nitrate
- Oxoammonium nitrate of 5-fluoro-2-azaadamantane (5 mol% of the alcohol compound) was added to an acetic acid or methylene chloride solution of the alcohol compound, and the starting alcohol compound at room temperature. The mixture was stirred vigorously until disappearance was confirmed. After completion of the reaction, water and methylene chloride were added for liquid separation, and the organic layer was washed with water to obtain the desired ketone or aldehyde.
- 2-octanol (1.30 g), 2-azaadamantane-N-oxoammonium nitrate (0.0214 g), acetic acid (3.91 g) and NaNO 2 (0.413 g) were added to the reaction vessel in the order shown on the left.
- the inside of the reaction vessel was purged with oxygen, and then stirred at room temperature in an oxygen atmosphere (0.1 MPa) for 15 hours.
- the target yield of 2-octanone was 92% (GC yield).
- Air is air
- TBS is tertiary butyldimethylsilyl group
- Cbz is benzyloxycarbonyl group
- Bz is benzoyl group
- Ac is acetyl group
- Me is methyl group
- Ph is phenyl group
- THP is tetrahydro Pyran
- HFIP represents 1,1,1,3,3,3-hexafluoro-2-propanol
- DMSO represents dimethyl sulfoxide.
- 5-F-AZADO + NO 3 - represents an oxo ammonium nitrate 5-fluoro-2-aza-adamantane.
- the present invention oxidizes various alcohols with oxygen in the air, almost selectively under mild conditions without the need for heating or toxic heavy metal compounds, and provides aldehyde compounds, ketone compounds and / or carboxylic acids.
- the compound can be produced and is extremely useful industrially.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
アルコール化合物の新しい酸化方法を提供すること 下記スキーム: (化1) で表される、多環式化合物および亜硝酸化合物の存在下、酸素を用いることを特徴とするアルコール化合物の酸化方法。
Description
本発明は、多環式化合物を用いるアルコールの酸素による酸化方法に関する。
空気による酸化反応は、安全性及び環境調和性という観点から、理想的な酸化プロセスとして期待を集めている。空気を酸化剤として用いるアルコール類の酸化方法としては、パラジウム化合物を用いる例(例えば、非特許文献1及び非特許文献4参照)、コバルト錯体を用いる例(例えば、非特許文献2参照)、ルテニウム化合物を用いる例(例えば、非特許文献6参照)、2,2,6,6-テトラメチルピリジン-N-オキシル(TEMPO)およびその誘導体を用いる例(例えば、特許文献1、及び非特許文献3、5、7、8、9、10、11参照)が知られている。また、TEMPOのオキソアンモニウム硝酸塩の調製方法としては、二酸化窒素を用いる例(非特許文献12及び13参照)が知られている。
J. Chem. Soc, Commun, 1977, 157-158
J. Am. Chem. Soc, 1981, 103, 3522-3526
J. Am. Chem. Soc, 1984, 106, 3374-3376
J.Am.Chem.Soc. 2004, 126, 6554-6555
Chem. Commun, 2005, 5322-5324
Bull. Chem. Soc. Jpn. 2006, 79, 981-1016
Tetrahedron Letters, 2006, 47, 13-17
J.Org.Chem.2005, 70, 729-731
J.Org.Chem.2007, 72, 4288-4291
Angewandte Chemie, International Edition 2007, 46, 7210-7213
European Journal, 2008, 14, 2679-2685
J. Org. Chem. 1974, 39, 2359-61
J. Org. Chem. 1995,60,5494-503
しかし、従来知られている、空気を酸化剤として用いるアルコール類の酸化方法は、1級アルコールの酸化において反応が複雑化したり、適用できる基質が限られるといった難点を有している。また、従来知られている空気酸化は、酸化反応の際に加熱を必要とするか、有毒な重金属化合物を用いる必要があり、経済性や環境への安全性などの観点から更なる改善が望まれている。
本発明の目的は、いずれのアルコールの酸化においても、有毒な重金属化合物などを必要とせずに、経済性及び環境への安全性の高い酸素によるアルコールの酸化方法を提供するものである。
本発明者らは上記課題を解決すべく鋭意検討した結果、多環式化合物を触媒として用い、酸素を酸化剤とする酸化方法を見いだし、本発明を完成させた。
すなわち、本発明は以下の要旨を有する。
〔1〕式(1):
〔1〕式(1):
(式中、R1は、水素原子、ハロゲン原子、ニトロ基、シアノ基、ヒドロキシ基、メルカプト基、アミノ基、ホルミル基、カルボキシル基、スルホ基、C1-12アルキル基、C3-12シクロアルキル基、(C1-12アルキル)オキシ基、(C3-12シクロアルキル)オキシ基、(C1-12アルキル)チオ基、(C3-12シクロアルキル)チオ基、(C1-12アルキル)アミノ基、(C3-12シクロアルキル)アミノ基、ジ(C1-6アルキル)アミノ基、ジ(C3-6シクロアルキル)アミノ基、C1-12アルキルカルボニル基、C3-12シクロアルキルカルボニル基、(C1-12アルキル)オキシカルボニル基、(C3-12シクロアルキル)オキシカルボニル基、(C1-12アルキル)チオカルボニル基、(C3-12シクロアルキル)チオカルボニル基、(C1-12アルキル)アミノカルボニル基、(C3-12シクロアルキル)アミノカルボニル基、ジ(C1-6アルキル)アミノカルボニル基、ジ(C3-6シクロアルキル)アミノカルボニル基、(C1-12アルキル)カルボニルオキシ基、(C3-12シクロアルキル)カルボニルオキシ基、(C1-12アルキル)カルボニルチオ基、(C3-12シクロアルキル)カルボニルチオ基、(C1-12アルキル)カルボニルアミノ基、(C3-12シクロアルキル)カルボニルアミノ基、ジ(C1-12アルキルカルボニル)アミノ基、ジ(C3-12シクロアルキルカルボニル)アミノ基、C1-6ハロアルキル基、C3-6ハロシクロアルキル基、C2-6アルケニル基、C3-6シクロアルケニル基、C2-6ハロアルケニル基、C3-6ハロシクロアルケニル基、C2-6アルキニル基、C2-6ハロアルキニル基、Raで置換されていてもよいベンジル基、Raで置換されていてもよいベンジルオキシ基、Raで置換されていてもよいベンジルチオ基、Raで置換されていてもよいベンジルアミノ基、Raで置換されていてもよいジベンジルアミノ基、Raで置換されていてもよいベンジルカルボニル基、Raで置換されていてもよいベンジルオキシカルボニル基、Raで置換されていてもよいベンジルチオカルボニル基、Raで置換されていてもよいベンジルアミノカルボニル基、Raで置換されていてもよいジベンジルアミノカルボニル基、Raで置換されていてもよいベンジルカルボニルオキシ基、Raで置換されていてもよいベンジルカルボニルチオ基、Raで置換されていてもよいベンジルカルボニルアミノ基、Raで置換されていてもよいジ(ベンジルカルボニル)アミノ基、Raで置換されていてもよいアリール基、Raで置換されていてもよいアリールオキシ基、Raで置換されていてもよいアリールチオ基、Raで置換されていてもよいアリールアミノ基、Raで置換されていてもよいジアリールアミノ基、Raで置換されていてもよいアリールカルボニル基、Raで置換されていてもよいアリールオキシカルボニル基、Raで置換されていてもよいアリールチオカルボニル基、Raで置換されていてもよいアリールアミノカルボニル基、Raで置換されていてもよいジアリールアミノカルボニル基、Raで置換されていてもよいアリールカルボニルオキシ基、Raで置換されていてもよいアリールカルボニルチオ基、Raで置換されていてもよいアリールカルボニルアミノ基、及びRaで置換されていてもよいジ(アリールカルボニル)アミノ基からなる群から選ばれる1以上の置換基を表し、置換基の数が2以上である場合は、それぞれの置換基は同じでも異なっていてもよく、
R4およびR5は、それぞれ独立にR1と同じ意味を表すか、またはR4とR5とが一緒になってR1で置換されていてもよいメチレンを形成していてもよく、
Raは、ハロゲン、C1-6アルキル基、C1-6ハロアルキル基、C3-6シクロアルキル基、C1-6アルコキシ基、C1-6アルコキシC1-6アルキル基、C1-6アルキルスルフェニルC1-6アルキル基、C1-6ハロアルコキシ基、C1-6アルキルスルフェニル基、C1-6アルキルスルフィニル基、C1-6アルキルスルホニル基、C1-6ハロアルキルスルフェニル基、C1-6ハロアルキルスルフィニル基、C1-6ハロアルキルスルホニル基、C2-6アルケニル基、C2-6ハロアルケニル基、C2-6アルケニルオキシ基、C2-6ハロアルケニルオキシ基、C2-6アルケニルスルフェニル基、C2-6アルケニルスルフィニル基、C2-6アルケニルスルホニル基、C2-6ハロアルケニルスルフェニル基、C2-6ハロアルケニルスルフィニル基、C2-6ハロアルケニルスルホニル基、C2-6アルキニル基、C2-6ハロアルキニル基、C2-6アルキニルオキシ基、C2-6ハロアルキニルオキシ基、C2-6アルキニルスルフェニル基、C2-6アルキニルスルフィニル基、C2-6アルキニルスルホニル基、C2-6ハロアルキニルスルフェニル基、C2-6ハロアルキニルスルフィニル基、C2~C6ハロアルキニルスルホニル基、-NO2、-CN、ホルミル基、-OH、-SH、-NH2、-SCN、C1-6アルコキシカルボニル基、C1-6アルキルカルボニル基、C1-6ハロアルキルカルボニル基、C1-6アルキルカルボニルオキシ基、フェニル基、C1-6アルキルアミノ基またはジC1-6アルキルアミノ基であって、
置換するRaの数は1~5個であり、Raが2個以上の場合は、それぞれの置換基は同じでも異なっていてもよく、
N-OはN-O・を表すか、N-OHを表すか、またはN+(=O)X-を表し、X-はF-、Cl-、Br-、I-、ClO2 -、ClO4 -、IO4 -、NO2 -、NO3 -、SO4 2-、BF4 -、PF6 -、SbCl5 -、SbF6 -、XeF2 -、(CF3 SO2) 2N-、CH3CO2 -、CF3CO2 -、4-CH3C6H4SO2O-またはCF3SO2O-を表す。)で表される多環式化合物の存在下、亜硝酸化合物または硝酸の存在下(但し、N-OがN+(=O)X-であってX-がNO3 -である場合は、亜硝酸化合物または硝酸の存在下又は非存在下)、アルコール化合物を酸素で酸化することを特徴とする酸化方法。
〔2〕前記多環式化合物の使用量が、アルコール化合物に対して0.1モル%~50モル%である前記〔1〕に記載の酸化方法。
〔3〕前記亜硝酸化合物の使用量が、アルコール化合物に対して1モル%ないし100モル%である前記〔1〕又は〔2〕に記載の酸化方法。
〔4〕前記亜硝酸化合物が式(2)
Raは、ハロゲン、C1-6アルキル基、C1-6ハロアルキル基、C3-6シクロアルキル基、C1-6アルコキシ基、C1-6アルコキシC1-6アルキル基、C1-6アルキルスルフェニルC1-6アルキル基、C1-6ハロアルコキシ基、C1-6アルキルスルフェニル基、C1-6アルキルスルフィニル基、C1-6アルキルスルホニル基、C1-6ハロアルキルスルフェニル基、C1-6ハロアルキルスルフィニル基、C1-6ハロアルキルスルホニル基、C2-6アルケニル基、C2-6ハロアルケニル基、C2-6アルケニルオキシ基、C2-6ハロアルケニルオキシ基、C2-6アルケニルスルフェニル基、C2-6アルケニルスルフィニル基、C2-6アルケニルスルホニル基、C2-6ハロアルケニルスルフェニル基、C2-6ハロアルケニルスルフィニル基、C2-6ハロアルケニルスルホニル基、C2-6アルキニル基、C2-6ハロアルキニル基、C2-6アルキニルオキシ基、C2-6ハロアルキニルオキシ基、C2-6アルキニルスルフェニル基、C2-6アルキニルスルフィニル基、C2-6アルキニルスルホニル基、C2-6ハロアルキニルスルフェニル基、C2-6ハロアルキニルスルフィニル基、C2~C6ハロアルキニルスルホニル基、-NO2、-CN、ホルミル基、-OH、-SH、-NH2、-SCN、C1-6アルコキシカルボニル基、C1-6アルキルカルボニル基、C1-6ハロアルキルカルボニル基、C1-6アルキルカルボニルオキシ基、フェニル基、C1-6アルキルアミノ基またはジC1-6アルキルアミノ基であって、
置換するRaの数は1~5個であり、Raが2個以上の場合は、それぞれの置換基は同じでも異なっていてもよく、
N-OはN-O・を表すか、N-OHを表すか、またはN+(=O)X-を表し、X-はF-、Cl-、Br-、I-、ClO2 -、ClO4 -、IO4 -、NO2 -、NO3 -、SO4 2-、BF4 -、PF6 -、SbCl5 -、SbF6 -、XeF2 -、(CF3 SO2) 2N-、CH3CO2 -、CF3CO2 -、4-CH3C6H4SO2O-またはCF3SO2O-を表す。)で表される多環式化合物の存在下、亜硝酸化合物または硝酸の存在下(但し、N-OがN+(=O)X-であってX-がNO3 -である場合は、亜硝酸化合物または硝酸の存在下又は非存在下)、アルコール化合物を酸素で酸化することを特徴とする酸化方法。
〔2〕前記多環式化合物の使用量が、アルコール化合物に対して0.1モル%~50モル%である前記〔1〕に記載の酸化方法。
〔3〕前記亜硝酸化合物の使用量が、アルコール化合物に対して1モル%ないし100モル%である前記〔1〕又は〔2〕に記載の酸化方法。
〔4〕前記亜硝酸化合物が式(2)
〔5〕前記亜硝酸化合物が亜硝酸又は亜硝酸塩である前記〔1〕~〔3〕に記載の酸化方法。
〔6〕前記多環式化合物が、下記式
(式中、R3はお互いに同一でも異なっていても良く、水素原子、フッ素原子、ヒドロキシ基、炭素数1から3のアルキル基または炭素数1から3のアルコキシ基を表し、かつ、R3のうちいずれか1つ以上がフッ素原子またはヒドロキシ基であり、N-OはN-O・を表すか、N-OHを表すか、またはN+(=O)X-を表し、X-はF-、Cl-、Br-、I-、ClO2
-、ClO4
-、IO4
-、NO2
-、NO3
-、SO4
2-、BF4
-、PF6
-、SbCl5
-、SbF6
-、XeF2
‐、(CF3 SO2) 2N-、CH3CO2
-、CF3CO2
-、4-CH3C6H4SO2O-またはCF3SO2O-を表す。)で表される化合物である、前記〔1〕~〔5〕のいずれかに記載の酸化方法。
〔7〕アルコール化合物を酸化してアルデヒド化合物、ケトン化合物及び/又はカルボン酸化合物を製造する前記〔1〕~〔6〕のいずれかに記載の酸化方法。
〔8〕下記式
〔7〕アルコール化合物を酸化してアルデヒド化合物、ケトン化合物及び/又はカルボン酸化合物を製造する前記〔1〕~〔6〕のいずれかに記載の酸化方法。
〔8〕下記式
(式中、R3はお互いに同一でも異なっていても良く、水素原子、フッ素原子、ヒドロキシ基、炭素数1から3のアルキル基または炭素数1から3のアルコキシ基を表し、但し、R3のうちいずれか1つ以上がフッ素原子またはヒドロキシ基であり、N-OはN-O・を表すか、N-OHを表すか、またはN+(=O)X-を表し、X-はF-、Cl-、Br-、I-、ClO2
-、ClO4
-、IO4
-、NO2
-、NO3
-、SO4
2-、BF4
-、PF6
-、SbCl5
-、SbF6
-、XeF2
‐、(CF3 SO2) 2N-、CH3CO2
-、CF3CO2
-、4-CH3C6H4SO2O-またはCF3SO2O-を表す。)で表されることを特徴とする化合物。
本発明によれば、1級アルコール、2級アルコールなどのアルコールを、加熱や有毒な重金属酸化物を必要とせずに、穏和な条件において、酸素ガス又は空気などの含酸素ガスにより酸化し、アルデヒド化合物、ケトン化合物及び/又はカルボン酸化合物をほぼ選択的に高収率で製造することができる。
本発明で用いる多環式化合物は、上記した式(1)で表される。式(1)における各基の表記方法は以下の通りである。
ハロゲン原子としては、フッ素原子、塩素原子、臭素原子及びヨウ素原子が挙げられる。尚、本明細書中「ハロ」(halo)の表記もこれらのハロゲン原子を表す。
ハロゲン原子としては、フッ素原子、塩素原子、臭素原子及びヨウ素原子が挙げられる。尚、本明細書中「ハロ」(halo)の表記もこれらのハロゲン原子を表す。
本明細書におけるCa~Cbアルキルとは、炭素原子数がa~b個よりなる直鎖または分岐鎖の炭化水素基を表し、例えばメチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、s-ブチル基、t-ブチル基、n-ペンチル基、1-メチルブチル基、2-メチルブチル基、3-メチルブチル基、1-エチルプロピル基、1,1-ジメチルプロピル基、1,2-ジメチルプロピル基、2,2-ジメチルプロピル基、n-ヘキシル基、1-メチルペンチル基、2-メチルペンチル基、1,1-ジメチルブチル基、1,3-ジメチルブチル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基等が具体例として挙げられ、各々の指定の炭素原子数の範囲で選択される。
本明細書におけるCa~Cbハロアルキルとは、炭素原子に結合した水素原子が、ハロゲン原子によって任意に置換された、炭素原子数がa~b個よりなる直鎖または分岐鎖の炭化水素基を表し、このとき、2個以上のハロゲン原子によって置換されている場合、それらのハロゲン原子は互いに同一でも、または互いに異なっていてもよい。例えばフルオロメチル基、クロロメチル基、ブロモメチル基、ヨードメチル基、ジフルオロメチル基、クロロフルオロメチル基、ジクロロメチル基、ブロモフルオロメチル基、トリフルオロメチル基、クロロジフルオロメチル基、ジクロロフルオロメチル基、トリクロロメチル基、ブロモジフルオロメチル基、ブロモクロロフルオロメチル基、ジブロモフルオロメチル基、2-フルオロエチル基、2-クロロエチル基、2-ブロモエチル基、2,2-ジフルオロエチル基、2-クロロ-2-フルオロエチル基、2,2-ジクロロエチル基、2-ブロモ-2-フルオロエチル基、2,2,2-トリフルオロエチル基、2-クロロ-2,2-ジフルオロエチル基、2,2-ジクロロ-2-フルオロエチル基、2,2,2-トリクロロエチル基、2-ブロモ-2,2-ジフルオロエチル基、2-ブロモ-2-クロロ-2-フルオロエチル基、2-ブロモ-2,2-ジクロロエチル基、1,1,2,2-テトラフルオロエチル基、ペンタフルオロエチル基、1-クロロ-1,2,2,2-テトラフルオロエチル基、2-クロロ-1,1,2,2-テトラフルオロエチル基、1,2-ジクロロ-1,2,2-トリフルオロエチル基、2-ブロモ-1,1,2,2-テトラフルオロエチル基、2-フルオロプロピル基、2-クロロプロピル基、2-ブロモプロピル基、2-クロロ-2-フルオロプロピル基、2,3-ジクロロプロピル基、2-ブロモ-3-フルオロプロピル基、3-ブロモ-2-クロロプロピル基、2,3-ジブロモプロピル基、3,3,3-トリフルオロプロピル基、3-ブロモ-3,3-ジフルオロプロピル基、2,2,3,3-テトラフルオロプロピル基、2-クロロ-3,3,3-トリフルオロプロピル基、2,2,3,3,3-ペンタフルオロプロピル基、1,1,2,3,3,3-ヘキサフルオロプロピル基、ヘプタフルオロプロピル基、2,3-ジクロロ-1,1,2,3,3-ペンタフルオロプロピル基、2-フルオロ-1-メチルエチル基、2-クロロ-1-メチルエチル基、2-ブロモ-1-メチルエチル基、2,2,2-トリフルオロ-1-(トリフルオロメチル)エチル基、1,2,2,2-テトラフルオロ-1-(トリフルオロメチル)エチル基、2,2,3,3,4,4-ヘキサフルオロブチル基、2,2,3,4,4,4-ヘキサフルオロブチル基、2,2,3,3,4,4,4-ヘプタフルオロブチル基、1,1,2,2,3,3,4,4-オクタフルオロブチル基、ノナフルオロブチル基、4-クロロ-1,1,2,2,3,3,4,4-オクタフルオロブチル基、2-フルオロ-2-メチルプロピル基、2-クロロ-1,1-ジメチルエチル基、2-ブロモ-1,1-ジメチルエチル基、5-クロロ-2,2,3,4,4,5,5-ヘプタフルオロペンチル基、トリデカフルオロヘキシル基等が具体例として挙げられ、各々の指定の炭素原子数の範囲で選択される。
本明細書におけるCa~Cbシクロアルキルとは、炭素原子数がa~b個よりなる環状の炭化水素基を表し、3員環から6員環までの単環または複合環構造を形成することが出来る。また、各々の環は指定の炭素原子数の範囲でアルキル基によって任意に置換されていてもよい。例えばシクロプロピル基、1-メチルシクロプロピル基、2-メチルシクロプロピル基、2,2-ジメチルシクロプロピル基、2,2,3,3-テトラメチルシクロプロピル基、シクロブチル基、シクロペンチル基、2-メチルシクロペンチル基、3-メチルシクロペンチル基、シクロヘキシル基、2-メチルシクロヘキシル基、3-メチルシクロヘキシル基、4-メチルシクロヘキシル基、ビシクロ[2.2.1]ヘプタン-2-イル基等が具体例として挙げられ、各々の指定の炭素原子数の範囲で選択される。
本明細書におけるCa~Cbハロシクロアルキルとは、炭素原子に結合した水素原子が、ハロゲン原子によって任意に置換された、炭素原子数がa~b個よりなる環状の炭化水素基を表し、3員環から6員環までの単環または複合環構造を形成することが出来る。また、各々の環は指定の炭素原子数の範囲でアルキル基によって任意に置換されていてもよく、ハロゲン原子による置換は環構造部分であっても、側鎖部分であっても、或いはそれらの両方であってもよく、さらに、2個以上のハロゲン原子によって置換されている場合、それらのハロゲン原子は互いに同一でも、または互いに異なっていてもよい。例えば2,2-ジフルオロシクロプロピル基、2,2-ジクロロシクロプロピル基、2,2-ジブロモシクロプロピル基、2,2-ジフルオロ-1-メチルシクロプロピル基、2,2-ジクロロ-1-メチルシクロプロピル基、2,2-ジブロモ-1-メチルシクロプロピル基、2,2,3,3-テトラフルオロシクロブチル基、2-(トリフルオロメチル)シクロヘキシル基、3-(トリフルオロメチル)シクロヘキシル基、4-(トリフルオロメチル)シクロヘキシル基等が具体例として挙げられ、各々の指定の炭素原子数の範囲で選択される。
本明細書におけるCa~Cbアルケニルとは、炭素原子数がa~b個よりなる直鎖または分岐鎖で、且つ、分子内に1個または2個以上の二重結合を有する不飽和炭化水素基を表す。例えば、ビニル基、1-プロペニル基、2-プロペニル基、1-メチルエテニル基、2-ブテニル基、1-メチル-2-プロペニル基、2-メチル-2-プロペニル基、2-ペンテニル基、2-メチル-2-ブテニル基、3-メチル-2-ブテニル基、2-エチル-2-プロペニル基、1,1-ジメチル-2-プロペニル基、2-ヘキセニル基、2-メチル-2-ペンテニル基、2,4-ジメチル-2,6-ヘプタジエニル基、3,7-ジメチル-2,6-オクタジエニル基等が具体例として挙げられ、各々の指定の炭素原子数の範囲で選択される。
本明細書におけるCa~Cbハロアルケニルとは、炭素原子に結合した水素原子が、ハロゲン原子によって任意に置換された、炭素原子数がa~b個よりなる直鎖または分岐鎖で、且つ、分子内に1個または2個以上の二重結合を有する不飽和炭化水素基を表す。このとき、2個以上のハロゲン原子によって置換されている場合、それらのハロゲン原子は互いに同一でも、または互いに異なっていてもよい。例えば2,2-ジクロロビニル基、2-フルオロ-2-プロペニル基、2-クロロ-2-プロペニル基、3-クロロ-2-プロペニル基、2-ブロモ-2-プロペニル基、3-ブロモ-2-プロペニル基、3,3-ジフルオロ-2-プロペニル基、2,3-ジクロロ-2-プロペニル基、3,3-ジクロロ-2-プロペニル基、2,3-ジブロモ-2-プロペニル基、2,3,3-トリフルオロ-2-プロペニル基、2,3,3-トリクロロ-2-プロペニル基、1-(トリフルオロメチル)エテニル基、3-クロロ-2-ブテニル基、3-ブロモ-2-ブテニル基、4,4-ジフルオロ-3-ブテニル基、3,4,4-トリフルオロ-3-ブテニル基、3-クロロ-4,4,4-トリフルオロ-2-ブテニル基、3-ブロモ-2-メチル-2-プロペニル基等が具体例として挙げられ、各々の指定の炭素原子数の範囲で選択される。
本明細書におけるCa~Cbシクロアルケニルとは、炭素原子数がa~b個よりなる環状の、且つ、1個または2個以上の二重結合を有する不飽和炭化水素基を表し、3員環から6員環までの単環または複合環構造を形成することが出来る。また、各々の環は指定の炭素原子数の範囲でアルキル基によって任意に置換されていてもよく、さらに、二重結合はendo-またはexo-のどちらの形式であってもよい。例えば2-シクロペンテン-1-イル基、3-シクロペンテン-1-イル基、2-シクロヘキセン-1-イル基、3-シクロヘキセン-1-イル基、ビシクロ[2.2.1]-5-ヘプテン-2-イル基等が具体例として挙げられ、各々の指定の炭素原子数の範囲で選択される。
本明細書におけるCa~Cbハロシクロアルケニルとは、炭素原子に結合した水素原子が、ハロゲン原子によって任意に置換された、炭素原子数がa~b個よりなる環状の、且つ、1個または2個以上の二重結合を有する不飽和炭化水素基を表し、3員環から6員環までの単環または複合環構造を形成することが出来る。また、各々の環は指定の炭素原子数の範囲でアルキル基によって任意に置換されていてもよく、さらに、二重結合はendo-またはexo-のどちらの形式であってもよい。また、ハロゲン原子による置換は環構造部分であっても、側鎖部分であっても、或いはそれらの両方であってもよく、2個以上のハロゲン原子によって置換されている場合、それらのハロゲン原子は互いに同一でも、または互いに異なっていても良い。例えば2-クロロビシクロ[2.2.1]-5-ヘプテン-2-イル基等が具体例として挙げられ、各々の指定の炭素原子数の範囲で選択される。
本明細書におけるCa~Cbアルキニルの表記は、炭素原子数がa~b個よりなる直鎖または分岐鎖で、且つ、分子内に1個または2個以上の三重結合を有する不飽和炭化水素基を表す。例えば、エチニル基、1-プロピニル基、2-プロピニル基、2-ブチニル基、1-メチル-2-プロピニル基、2-ペンチニル基、1-メチル-2-ブチニル基、1,1-ジメチル-2-プロピニル基、2-ヘキシニル基等が具体例として挙げられ、各々の指定の炭素原子数の範囲で選択される。
本明細書におけるCa~Cbハロアルキニルとは、炭素原子に結合した水素原子が、ハロゲン原子によって任意に置換された、炭素原子数がa~b個よりなる直鎖または分岐鎖で、且つ、分子内に1個または2個以上の三重結合を有する不飽和炭化水素基を表す。このとき、2個以上のハロゲン原子によって置換されている場合、それらのハロゲン原子は互いに同一でも、または互いに異なっていても良い。例えば2-クロロエチニル基、2-ブロモエチニル基、2-ヨードエチニル基、3-クロロ-2-プロピニル基、3-ブロモ-2-プロピニル基、3-ヨード-2-プロピニル基等が具体例として挙げられ、各々の指定の炭素原子数の範囲で選択される。
Raで置換されていてもよいアリール基として、フェニル基、o-メチルフェニル基、m-メチルフェニル基、p-メチルフェニル基、o-クロルフェニル基、m-クロルフェニル基、p-クロルフェニル基、o-フルオロフェニル基、p-フルオロフェニル基、o-メトキシフェニル基、p-メトキシフェニル基、p-ニトロフェニル基、p-シアノフェニル基、α-ナフチル基、β-ナフチル基、o-ビフェニリル基、m-ビフェニリル基、p-ビフェニリル基、1-アントリル基、2-アントリル基、9-アントリル基、1-フェナントリル基、2-フェナントリル基、3-フェナントリル基、4-フェナントリル基、9-フェナントリル基、2-チエニル基、3-チエニル基、2-フリル基、3-フリル基、2-ピラニル基、3-ピラニル基、4-ピラニル基、2-ベンゾフラニル基、3-ベンゾフラニル基、4-ベンゾフラニル基、5-ベンゾフラニル基、6-ベンゾフラニル基、7-ベンゾフラニル基、1-イソベンゾフラニル基、4-イソベンゾフラニル基、5-イソベンゾフラニル基、2-ベンゾチエニル基、3-ベンゾチエニル基、4-ベンゾチエニル基、5-ベンゾチエニル基、6-ベンゾチエニル基、7-ベンゾチエニル基、1-イソベンゾチエニル基、4-イソベンゾチエニル基、5-イソベンゾチエニル基、2-クロメニル基、3-クロメニル基、4-クロメニル基、5-クロメニル基、6-クロメニル基、7-クロメニル基、8-クロメニル基、1-ピロリル基、2-ピロリル基、3-ピロリル基、1-イミダゾリル基、2-イミダゾリル基、4-イミダゾリル基、1-ピラゾリル基、3-ピラゾリル基、4-ピラゾリル基、2-チアゾリル基、4-チアゾリル基、5-チアゾリル基、3-イソチアゾリル基、4-イソチアゾリル基、5-イソチアゾリル基、2-オキサゾリル基、4-オキサゾリル基、5-オキサゾリル基、3-イソオキサゾリル基、4-イソオキサゾリル基、5-イソオキサゾリル基、2-ピリジル基、3-ピリジル基、4-ピリジル基、2-ピラジニル基、2-ピリミジニル基、4-ピリミジニル基、5-ピリミジニル基、3-ピリダジニル基、4-ピリダジニル基、1-インドリジニル基、2-インドリジニル基、3-インドリジニル基、5-インドリジニル基、6-インドリジニル基、7-インドリジニル基、8-インドリジニル基、1-イソインドリル基、4-イソインドリル基、5-イソインドリル基、1-インドリル基、2-インドリル基、3-インドリル基、4-インドリル基、5-インドリル基、6-インドリル基、7-インドリル基、1-インダゾリル基、2-インダゾリル基、3-インダゾリル基、4-インダゾリル基、5-インダゾリル基、6-インダゾリル基、7-インダゾリル基、1-プリニル基、2-プリニル基、3-プリニル基、6-プリニル基、7-プリニル基、8-プリニル基、2-キノリル基、3-キノリル基、4-キノリル基、5-キノリル基、6-キノリル基、7-キノリル基、8-キノリル基、1-イソキノリル基、3-イソキノリル基、4-イソキノリル基、5-イソキノリル基、6-イソキノリル基、7-イソキノリル基、8-イソキノリル基、1-フタラジニル基、5-フタラジニル基、6-フタラジニル基、2-ナフチリジニル基、3-ナフチリジニル基、4-ナフチリジニル基、2-キノキサリニル基、5-キノキサリニル基、6-キノキサリニル基、2-キナゾリニル基、4-キナゾリニル基、5-キナゾリニル基、6-キナゾリニル基、7-キナゾリニル基、8-キナゾリニル基、3-シンノリニル基、4-シンノリニル基、5-シンノリニル基、6-シンノリニル基、7-シンノリニル基、8-シンノリニル基、2-プテニジニル基、4-プテニジニル基、6-プテニジニル基、7-プテニジニル基及び3-フラザニル基が挙げられる。
Raで置換されていてもよいベンジル基として、ベンジル基、o-メチルベンジル基、m-メチルベンジル基、p-メチルベンジル基、o-クロルベンジル基、m-クロルベンジル基、p-クロルベンジル基、o-フルオロベンジル基、p-フルオロベンジル基、o-メトキシベンジル基、p-メトキシベンジル基、p-ニトロベンジル基、p-シアノベンジル基が挙げられる。
本発明では、各種アルコールを基質として、触媒として多環式化合物を用い、亜硝酸化合物の存在下、酸素を用いて酸化反応を行うことができる。
本発明において、酸化されるアルコール化合物としては、特に制限されるものではなく、各種のアルコール化合物が挙げられる。これらアルコール化合物の例としては、なかでも、メントール、4-メトキシベンジルアルコール等が好ましい。
本発明において、酸化されるアルコール化合物としては、特に制限されるものではなく、各種のアルコール化合物が挙げられる。これらアルコール化合物の例としては、なかでも、メントール、4-メトキシベンジルアルコール等が好ましい。
本発明に用いられる(1)で表される多環式化合物としては、例えば2-アザアダマンタン-N-オキシル(AZADO)、1-メチル-2-アザアダマンタン-N-オキシル(1-Me-AZADO)、5位および/または7位にヒドロキシ基またはフッ素原子がそれぞれ独立して置換している2-アザアダマンタン-N-オキシル化合物等が挙げられる。また、例えばAZADO、1-フルオロ-2-アザアダマンタン-N-オキシル(1-F-AZADO)、5-フルオロ-2-アザアダマンタン-N-オキシル(5-F-AZADO)、5-フルオロ-1-メチル-2-アザアダマンタン-N-オキシル(5-F-1-Me-AZADO)、5,7-ジフルオロ-1-メチル-2-アザアダマンタン-N-オキシル(5,7-F2-1-Me-AZADO)、1-メチル-2-アザアダマンタン-N-オキシル(1-Me-AZADO)、1-メチル-5-ヒドロキシ-2-アザアダマンタン-N-オキシル(1-Me-5-OH-AZADO)、5-メトキシ-1-メチル-2-アザアダマンタン-N-オキシル(5-MeO-1-Me-AZADO)、5-ヒドロキシ-2-アザアダマンタン-N-オキシル(5-OH-AZADO)、9-アザビシクロ[3.3.1]ノナンN-オキシル(ABNO)等が挙げられ、特に、例えば5-F-AZADOが好ましい。
N-OがN-OHを表す多環式化合物、すなわN-ヒドロキシ化合物としては、N-ヒドロキシ-1-フルオロ-2-アザアダマンタン (1-F-AZADOH)、N-ヒドロキシ-5-フルオロ-2-アザアダマンタン (5-F-AZADOH)、N-ヒドロキシ-5-フルオロ-1-メチル-2-アザアダマンタン (5-F-1-Me-AZADOH)、N-ヒドロキシ-5,7-ジフルオロ-1-メチル-2-アザアダマンタン (5,7-F2-1-Me-AZADOH)、N-ヒドロキシ-1-メチル-2-アザアダマンタン(1-Me-AZADOH)、N-ヒドロキシ-1-メチル-5-ヒドロキシ-2-アザアダマンタン (1-Me-5-OH-AZADOH)、N-ヒドロキシ-5-メトキシ-1-メチル-2-アザアダマンタン (5-MeO-1-Me-AZADOH)、N-ヒドロキシ-5-ヒドロキシ-2-アザアダマンタン(5-OH-AZADOH)、N-ヒドロキシ-9-アザビシクロ[3.3.1]ノナン (ABNOH)等が挙げられ、特に、例えば5-F-AZADOHが好ましい。
N-OがN+(=O)X-を表す多環式化合物、すなわちオキソアンモニウム塩としては、例えば2-アザアダマンタン-N-オキソアンモニウム塩(AZADO+X-)、1-メチル-2-アザアダマンタン-N-オキソアンモニウム塩(1-Me-AZADO+X-)、5位および/または7位にヒドロキシ基またはフッ素原子がそれぞれ独立して置換している2-アザアダマンタン-N-オキソアンモニウム塩等が挙げられ、中でも、例えばAZADO+X-、1-フルオロ-2-アザアダマンタン-N-オキソアンモニウム塩(1-F-AZADO+X-)、5-フルオロ-2-アザアダマンタン-N-オキソアンモニウム塩(5-F-AZADO+X-)、5-フルオロ-1-メチル-2-アザアダマンタン-N-オキソアンモニウム塩(5-F-1-Me-AZADO+X-)、5,7-ジフルオロ-1-メチル-2-アザアダマンタン-N-オキソアンモニウム塩(5,7-F2-1-Me-AZADO+X-)、1-メチル-2-アザアダマンタン-N-オキソアンモニウム塩(1-Me-AZADO+X-)、1-メチル-5-ヒドロキシ-2-アザアダマンタン-N-オキソアンモニウム塩(1-Me-5-OH-AZADO+X-)、5-メトキシ-1-メチル-2-アザアダマンタン-N-オキソアンモニウム塩(5-MeO-1-Me-AZADO+X-)、5-ヒドロキシ-2-アザアダマンタン-N-オキソアンモニウム塩(5-OH-AZADO+X-)、9-アザビシクロ[3.3.1]ノナン N-オキソアンモニウム塩(ABNO+X-)等が挙げられ、特に、例えば5-F-AZADO+X-が好ましい。
その場合、X-としてはF-、Cl-、Br-、I-、ClO2
-、ClO4
-、IO4
-、NO2
-、NO3
-、SO4
2-、BF4
-、PF6
-、SbCl5
-、SbF6
-、XeF2
‐、(CF3 SO2) 2N-、CH3CO2
-、CF3CO2
-、4-CH3C6H4SO2O-、CF3SO2O-等が挙げられるが、好ましくはCl-またはNO3-である。
用いる多環式化合物の量は、基質のアルコールに対して好ましくは0.01モル%~50モル%、より好ましくは0.1モル%~10モル%である。
用いる多環式化合物の量は、基質のアルコールに対して好ましくは0.01モル%~50モル%、より好ましくは0.1モル%~10モル%である。
本発明の亜硝酸化合物としては、例えば、亜硝酸リチウム、亜硝酸ナトリウム、亜硝酸カリウム、亜硝酸カルシウム、亜硝酸バリウム、亜硝酸銀等の亜硝酸塩;亜硝酸エチル、亜硝酸イソアミル、亜硝酸イソブチル、亜硝酸ターシャリーブチル、亜硝酸ノルマルブチル、亜硝酸イソプロピル、亜硝酸ノルマルプロピル、亜硝酸アダマンチル等の亜硝酸エステル等が挙げられる。なかでも、例えば亜硝酸ナトリウム、亜硝酸ターシャリーブチルが好ましい。
用いる亜硝酸化合物の量としては、基質のアルコールに対して1モル%ないし100モル%、好ましくは、例えば1モル%ないし50モル%である。
用いる亜硝酸化合物の量としては、基質のアルコールに対して1モル%ないし100モル%、好ましくは、例えば1モル%ないし50モル%である。
なお、亜硝酸化合物の代わりに硝酸を用いても良い。その場合、用いる硝酸の量は、亜硝酸化合物の量に準じる。
本発明の酸化反応は、穏和な条件で実施できることが特徴であり、反応温度としては、室温で行うこともできるが、必要により、10℃~40℃の範囲、0℃~100℃の範囲、さらには、-10℃~200℃の範囲で実施できる。また、反応圧力として、常圧(大気圧)で充分であるが、必要に応じて、0.01~10MPa(ゲージ圧)の範囲の減圧状態でも加圧状態でも実施できる。酸化反応は、室温で、常圧が行なうのが好ましい。
反応時間は用いる基質であるアルコール化合物及び反応条件により必ずしも一定しないが、通常1分~100時間であり、好ましくは5分~24時間である。
本発明の酸化反応は、穏和な条件で実施できることが特徴であり、反応温度としては、室温で行うこともできるが、必要により、10℃~40℃の範囲、0℃~100℃の範囲、さらには、-10℃~200℃の範囲で実施できる。また、反応圧力として、常圧(大気圧)で充分であるが、必要に応じて、0.01~10MPa(ゲージ圧)の範囲の減圧状態でも加圧状態でも実施できる。酸化反応は、室温で、常圧が行なうのが好ましい。
反応時間は用いる基質であるアルコール化合物及び反応条件により必ずしも一定しないが、通常1分~100時間であり、好ましくは5分~24時間である。
本発明の酸化反応では、必要に応じて溶媒が使用できる。溶媒としては、反応の進行を阻害しないものであれば制限はなく、水、アルコール類(例えばメタノール、エタノール、プロパノール、ブタノール、オクタノール等)、セロソルブ類(例えばメトキシエタノール、エトキシエタノール等)、非プロトン性極性有機溶媒類(例えばジメチルホルムアミド、ジメチルスルホキシド、ジメチルアセトアミド、テトラメチルウレア、スルホラン、N-メチルピロリドン、N,N-ジメチルイミダゾリジノン等)、エーテル類(例えばジエチルエーテル、ジイソプロピルエーテル、t-ブチルメチルエーテル、テトラヒドロフラン、ジオキサン等)、脂肪族炭化水素類(例えばペンタン、ヘキサン、c-ヘキサン、オクタン、デカン、デカリン、石油エーテル等)、芳香族炭化水素類(ベンゼン、クロロベンゼン、o-ジクロロベンゼン、ニトロベンゼン、トルエン、キシレン、メシチレン、テトラリン等)、ハロゲン化炭化水素類(例えばクロロホルム、ジクロロメタン、ジクロロエタン、四塩化炭素等)、ケトン類(アセトン、メチルエチルケトン、メチルブチルケトン、メチルイソブチルケトン等)、低級脂肪族酸エステル(例えば酢酸メチル、酢酸エチル、酢酸ブチル、プロピオン酸メチル等)、アルコキシアルカン類(例えばジメトキシエタン、ジエトキシエタン等)及びニトリル類(例えばアセトニトリル、プロピオニトリル、ブチロニトリル等)、カルボン酸(酢酸等)等の溶媒が挙げられる。その中でも、例えば、ジクロロメタンおよび酢酸が好ましい。また、基質のアルコールを溶媒として用いることもできる。
溶媒として、あるいは添加物として酢酸を用いると、酸化反応が進行し難い、アミノ置換基を有するアルコールを基質として用いることもできる。
基質であるアルコール化合物の溶媒中の濃度は、アルコールを溶媒として用いる場合以外は、好ましくは1~99質量%であり、5~50質量%がより好ましい。
本発明において、酸化剤となる酸素としては、酸素ガス(100%の酸素)だけでなく、空気を用いることができる。
基質であるアルコール化合物の溶媒中の濃度は、アルコールを溶媒として用いる場合以外は、好ましくは1~99質量%であり、5~50質量%がより好ましい。
本発明において、酸化剤となる酸素としては、酸素ガス(100%の酸素)だけでなく、空気を用いることができる。
本発明において、基質であるアルコールの消失と、アルデヒド体、ケトン体またはカルボン酸の生成を確認したあと、溶媒の留去、抽出、再結晶、濾過、デカント、カラムクロマトグラフィー等の通常の精製操作により、目的とするアルデヒド、ケトンまたはカルボン酸化合物を単離することができる。
本発明で用いる多環式化合物の製造方法を以下の反応式で示すが、各製造方法の詳細及び具体例は、後述の実施例中で説明される。
例えば、1-Me-AZADOは、国際特許出願公開WO2006/001387A1パンフレット記載の方法で製造することができる。
5-F-1-Me-AZADOは、下記のスキームで表される方法により製造することができる。なお、1-メチル-N-ベンジルオキシカルボニル-2-アザアダマンタン6は、国際特許出願公開WO2006/001387A1パンフレットに従って製造することができる。
例えば、1-Me-AZADOは、国際特許出願公開WO2006/001387A1パンフレット記載の方法で製造することができる。
5-F-1-Me-AZADOは、下記のスキームで表される方法により製造することができる。なお、1-メチル-N-ベンジルオキシカルボニル-2-アザアダマンタン6は、国際特許出願公開WO2006/001387A1パンフレットに従って製造することができる。
亜硝酸化合物のうち市販されていないものについては、Synthesis, 2004, 11, 1747-1749に従って製造することができる。
本発明のオキソアンモニウム硝酸塩は、上記のようにして得られた下記式(2)で表されるN-オキシル化合物又は下記式(3)で表されるN-ヒドロキシ化合物を、NO2(二酸化窒素)、N2O4(四酸化二窒素)又は亜硝酸化合物と反応させることにより製造することができる。
本発明のオキソアンモニウム硝酸塩の製造方法としては、例えば、式(2)で表されるN-オキシル化合物を溶媒中でNO2又はN2O4ガスと反応させる方法が挙げられる。
例えば、式(2)で表されるN-オキシル化合物のジエチルエーテル溶液に、室温でNO2ガスを吹き込んで反応させる、といった方法で行うことができる。
また、式(2)で表される化合物を、前記のアルコール酸化と同じ条件下で、基質のアルコールが存在しない状態で反応させても、本発明のオキソアンモニウム硝酸塩を得ることができる。
例えば、式(2)で表されるN-オキシル化合物のジエチルエーテル溶液に、室温でNO2ガスを吹き込んで反応させる、といった方法で行うことができる。
また、式(2)で表される化合物を、前記のアルコール酸化と同じ条件下で、基質のアルコールが存在しない状態で反応させても、本発明のオキソアンモニウム硝酸塩を得ることができる。
以下、実施例に基づき、本発明を更に詳細に説明するが、本発明はこれらの実施例により限定して解釈されるものではない。
なお、実施例では、各化合物は以下のように化学式、若しくは略号で表記した。
なお、実施例では、各化合物は以下のように化学式、若しくは略号で表記した。
水:H2O、メタノール:MeOH、パラジウム/炭素:Pd/C、水素ガス:H2、炭酸水素ナトリウム:NaHCO3、クロロホルム:CHCl3、炭酸カリウム:K2CO3、ジクロロメタン:CH2Cl2、酢酸エチル:AcOEt、硫酸マグネシウム:MgSO4、四塩化炭素:CCl4、アセトニトリル:MeCN、過ヨウ素酸ナトリウム:NaIO4、三塩化ルテニウム:RuCl3、チオ硫酸ナトリウム:Na2S2O3、ジエチルエーテル:Et2O、エタノール:EtOH、水酸化ナトリウム:NaOH、水素化ナトリウム:NaH、ジメチル硫酸:Me2SO4、タングステン酸ナトリウム・二水和物:Na2WO4/2H2O。
また、各化合物の同定に用いた分析方法の略号は、以下の通りである。
IR:赤外線吸収分析法、NMR:核磁気共鳴分析法、MS:質量分析法、
HRMS(EI):高分解能質量分析法(電子イオン化)、Anal:元素分析法。
IR:赤外線吸収分析法、NMR:核磁気共鳴分析法、MS:質量分析法、
HRMS(EI):高分解能質量分析法(電子イオン化)、Anal:元素分析法。
実施例1:触媒の製造
1-メチル-N-トリフルオロアセチル-2-アザアダマンタン(7)の製造
国際特許出願公開WO2006/001387A1パンフレットに従って製造した1-メチル-N-ベンジルオキシカルボニル-2-アザアダマンタン6 (1.89 g, 6.61 mmol) のMeOH (0.1 M, 66 mL) 溶液に、Pd が5質量% のPd/C (189 mg) を加え、H2気流下2時間攪拌した。反応溶液をセライト(セライト・コーポレーション社製の登録商標)でろ過し、減圧下溶媒を除去した。残渣に飽和NaHCO3 水溶液 を加え、CHCl3で抽出した。有機層をK2CO3で乾燥後、減圧下溶媒を留去し、粗アミン化合物(1 g) を得た。該アミン化合物化合物は精製することなく、次反応に用いた。粗アミン化合物(1 g) のCH2Cl2 (0.2 M,33 mL) 溶液に、氷冷下、トリフルオロ酢酸無水物(1.4 mL, 9.91 mmol) を滴下し、室温に昇温し2時間攪拌した。その後、H2Oを加え、AcOEtにより抽出し、飽和食塩水により洗浄し、MgSO4で乾燥した後、減圧下溶媒を留去した。残渣はシリカゲルカラムクロマトグラフィーにより処理しAcOEt-ヘキサン (1:30 v/v) の流分として1-メチル-N-トリフルオロアセチル-2-アザアダマンタン7 (1.25 g, 5.04 mmol, 収率76%(以下、同様である。)) を無色固体として得た。
1-メチル-N-トリフルオロアセチル-2-アザアダマンタン(7)の製造
国際特許出願公開WO2006/001387A1パンフレットに従って製造した1-メチル-N-ベンジルオキシカルボニル-2-アザアダマンタン6 (1.89 g, 6.61 mmol) のMeOH (0.1 M, 66 mL) 溶液に、Pd が5質量% のPd/C (189 mg) を加え、H2気流下2時間攪拌した。反応溶液をセライト(セライト・コーポレーション社製の登録商標)でろ過し、減圧下溶媒を除去した。残渣に飽和NaHCO3 水溶液 を加え、CHCl3で抽出した。有機層をK2CO3で乾燥後、減圧下溶媒を留去し、粗アミン化合物(1 g) を得た。該アミン化合物化合物は精製することなく、次反応に用いた。粗アミン化合物(1 g) のCH2Cl2 (0.2 M,33 mL) 溶液に、氷冷下、トリフルオロ酢酸無水物(1.4 mL, 9.91 mmol) を滴下し、室温に昇温し2時間攪拌した。その後、H2Oを加え、AcOEtにより抽出し、飽和食塩水により洗浄し、MgSO4で乾燥した後、減圧下溶媒を留去した。残渣はシリカゲルカラムクロマトグラフィーにより処理しAcOEt-ヘキサン (1:30 v/v) の流分として1-メチル-N-トリフルオロアセチル-2-アザアダマンタン7 (1.25 g, 5.04 mmol, 収率76%(以下、同様である。)) を無色固体として得た。
無色固体の一部をとり、ヘキサンにより再結晶し無色柱状晶を得た。mp 42 ℃,
IR(neat):ν =1693 cm-1
1H-NMR(400 MHz, CDCl3):δ=4.18(br., 1H), 2.12(br., 2H), 2.03(br. d, J=11 Hz, 2H), 1.89(m, 3H), 1.85-1.70(m, 3H), 1.63(s, 3H), 1.58(br. d, J=12 .6 Hz, 2H).13C-NMR(100 MHz, CDCl3):δ =156.1(q, J=33.7 Hz),116.9(q, J=292.1 Hz),57.6,50.6(q, J=4.1 Hz),43.7,35.9,34.4,29.4,26.5 .
MS m/z: 247 (M+), 190 (100%).HRMS: Calcd. for C12H16F3NO 247.1184 (M+), Found.: 247.1174.
IR(neat):ν =1693 cm-1
1H-NMR(400 MHz, CDCl3):δ=4.18(br., 1H), 2.12(br., 2H), 2.03(br. d, J=11 Hz, 2H), 1.89(m, 3H), 1.85-1.70(m, 3H), 1.63(s, 3H), 1.58(br. d, J=12 .6 Hz, 2H).13C-NMR(100 MHz, CDCl3):δ =156.1(q, J=33.7 Hz),116.9(q, J=292.1 Hz),57.6,50.6(q, J=4.1 Hz),43.7,35.9,34.4,29.4,26.5 .
MS m/z: 247 (M+), 190 (100%).HRMS: Calcd. for C12H16F3NO 247.1184 (M+), Found.: 247.1174.
5-ヒドロキシ-1-メチル-N-トリフルオロアセチル-2-アザアダマンタン(8)及び5, 7-ジヒドロキシ-1-メチル-N-トリフルオロアセチル-2-アザアダマンタン(9)の製造
1-メチル-N-トリフルオロアセチル-2-アザアダマンタン7 (2.271 g, 9.19 mmol) のCCl4-MeCN-H2O (1.65 M; 5.6 mL-1.1 M; 8.4 mL-1.1 M;8.4 mL) 溶液に、NaIO4 (4.52 g,21.1 mmol) 、及びRuCl3 (95 mg,0.460 mmol) を順次加え、60 ℃で9時間激しく攪拌した。その後、飽和NaHCO3 水溶液、及びNa2S2O3水溶液を順次加え、AcOEtにより抽出した。有機層をMgSO4で乾燥した後、減圧下溶媒を留去した。残渣はシリカゲルカラムクロマトグラフィーにより処理し、AcOEt-ヘキサン(1:2 v/v) の流分として、白色固体の5-ヒドロキシ-1-メチル-N-トリフルオロアセチル-2-アザアダマンタン8 (1.29 g, 4.87 mmol, 53%) を得た。また同時に、白色固体の5,7-ジヒドロキシ-1-メチル-N-トリフルオロアセチル-2-アザアダマンタン9 (340 mg,1.195 mmol,13%) と原料 7 (350 mg, 1.38 mmol, 15%) を得た。
1-メチル-N-トリフルオロアセチル-2-アザアダマンタン7 (2.271 g, 9.19 mmol) のCCl4-MeCN-H2O (1.65 M; 5.6 mL-1.1 M; 8.4 mL-1.1 M;8.4 mL) 溶液に、NaIO4 (4.52 g,21.1 mmol) 、及びRuCl3 (95 mg,0.460 mmol) を順次加え、60 ℃で9時間激しく攪拌した。その後、飽和NaHCO3 水溶液、及びNa2S2O3水溶液を順次加え、AcOEtにより抽出した。有機層をMgSO4で乾燥した後、減圧下溶媒を留去した。残渣はシリカゲルカラムクロマトグラフィーにより処理し、AcOEt-ヘキサン(1:2 v/v) の流分として、白色固体の5-ヒドロキシ-1-メチル-N-トリフルオロアセチル-2-アザアダマンタン8 (1.29 g, 4.87 mmol, 53%) を得た。また同時に、白色固体の5,7-ジヒドロキシ-1-メチル-N-トリフルオロアセチル-2-アザアダマンタン9 (340 mg,1.195 mmol,13%) と原料 7 (350 mg, 1.38 mmol, 15%) を得た。
8の一部をとり,ヘキサンにより再結晶し無色柱状晶を得た。mp 91 ℃,
IR(neat):ν =3428,1692 cm-1
1H-NMR(400 MHz, CDCl3):δ=4.37(br., 1H), 2.38(br., 1H), 1.95(br. d, J=12.5 Hz, 2H), 1.9-1.7(m, 5H), 1.69(s, 3H), 1.63(br. d, J=13.0 Hz, 1H), 1.57(br. d, J=12.1 Hz, 1H), 1.48(br. d, J=13.0 Hz, 1H).13C-NMR(100 MHz, CDCl3):δ =156.1(q, J=34.6 Hz),116.7(q, J=291.3 Hz),66.71,66.66,52.3(q, J=4.9 Hz),51.3,43.3,42.4,34.6,29.0,28.8 .
MS m/z: 263 (M+), 206 (100%).HRMS: Calcd. for C12H16F3NO2 263.1133 (M+), Found.: 263.1118.
9の一部をとり,CHCl3により再結晶し白色針状晶を得た。mp 186 ℃,
IR(neat):ν =3265,1677 cm-1
1H-NMR(400 MHz, CDCl3):δ=4.49(br., 1H), 1.91(br. d, J=12.1 Hz, 2H), 1.88-1.70(m, 8H), 1.59(s, 3H), 1.55(br. d, J=12.1 Hz, 2H).13C-NMR(100 MHz, CDCl3):δ =157.3(q, J=33.7 Hz),118.1(q, J=291.4 Hz),69.2,62.5.54.0(q, J=4.1 Hz),51.0,50.6,43.0,28.8 .
MS m/z: 279(M+), 206 (100%).HRMS: Calcd. for C12H16F3NO3 279.1082 (M+), Found.: 279.1107.
IR(neat):ν =3428,1692 cm-1
1H-NMR(400 MHz, CDCl3):δ=4.37(br., 1H), 2.38(br., 1H), 1.95(br. d, J=12.5 Hz, 2H), 1.9-1.7(m, 5H), 1.69(s, 3H), 1.63(br. d, J=13.0 Hz, 1H), 1.57(br. d, J=12.1 Hz, 1H), 1.48(br. d, J=13.0 Hz, 1H).13C-NMR(100 MHz, CDCl3):δ =156.1(q, J=34.6 Hz),116.7(q, J=291.3 Hz),66.71,66.66,52.3(q, J=4.9 Hz),51.3,43.3,42.4,34.6,29.0,28.8 .
MS m/z: 263 (M+), 206 (100%).HRMS: Calcd. for C12H16F3NO2 263.1133 (M+), Found.: 263.1118.
9の一部をとり,CHCl3により再結晶し白色針状晶を得た。mp 186 ℃,
IR(neat):ν =3265,1677 cm-1
1H-NMR(400 MHz, CDCl3):δ=4.49(br., 1H), 1.91(br. d, J=12.1 Hz, 2H), 1.88-1.70(m, 8H), 1.59(s, 3H), 1.55(br. d, J=12.1 Hz, 2H).13C-NMR(100 MHz, CDCl3):δ =157.3(q, J=33.7 Hz),118.1(q, J=291.4 Hz),69.2,62.5.54.0(q, J=4.1 Hz),51.0,50.6,43.0,28.8 .
MS m/z: 279(M+), 206 (100%).HRMS: Calcd. for C12H16F3NO3 279.1082 (M+), Found.: 279.1107.
5-フルオロ-1-メチル-N-トリフルオロアセチル-2-アザアダマンタン(10)の製造
5-ヒドロキシ-1-メチル-N-トリフルオロアセチル-2-アザアダマンタン8 (184 mg,0.69 mmol) のCH2Cl2 (1.43 M,0.5 mL) 溶液に-78℃下、(ジエチルアミノ)サルファートリフルオリド(三フッ化N,N-ジエチルアミノ硫黄)(以下、DASTと記すこともある)(0.46 mL, 3.5 mmol) を加え、徐々に昇温し0℃で1時間攪拌した。その後Et2Oで希釈した後H2Oを加えて、AcOEtにより抽出し、有機層をH2Oにより洗浄し、MgSO4で乾燥した。その後、減圧下溶媒を留去し、残渣はシリカゲルカラムクロマトグラフィーにより処理し、AcOEt-ヘキサン (1:30 v/v) の流分として、無色固体の5-フルオロ-1-メチル-N-トリフルオロアセチル-2-アザアダマンタン 10 (183 mg, 定量的) を得た。
5-ヒドロキシ-1-メチル-N-トリフルオロアセチル-2-アザアダマンタン8 (184 mg,0.69 mmol) のCH2Cl2 (1.43 M,0.5 mL) 溶液に-78℃下、(ジエチルアミノ)サルファートリフルオリド(三フッ化N,N-ジエチルアミノ硫黄)(以下、DASTと記すこともある)(0.46 mL, 3.5 mmol) を加え、徐々に昇温し0℃で1時間攪拌した。その後Et2Oで希釈した後H2Oを加えて、AcOEtにより抽出し、有機層をH2Oにより洗浄し、MgSO4で乾燥した。その後、減圧下溶媒を留去し、残渣はシリカゲルカラムクロマトグラフィーにより処理し、AcOEt-ヘキサン (1:30 v/v) の流分として、無色固体の5-フルオロ-1-メチル-N-トリフルオロアセチル-2-アザアダマンタン 10 (183 mg, 定量的) を得た。
10の一部をとり、ヘキサンにより再結晶し無色柱状晶を得た。mp 48 ℃,
IR(neat):ν =1698 cm-1
1H-NMR(400 MHz, CDCl3):δ=4.45(br., 1H), 2.46(br., 1H), 2.14-2.10(m, 1H), 2.01-1.95(m, 5H), 1.94-1.65(m, 6H),1.56-1.50(m, 1H).13C-NMR(100 MHz, CDCl3):δ =156.1(q, J=34.4 Hz), 116.6(q, J=290.6 Hz), 89.8(d, J=186.8 Hz), 61.3(d, J=10.7 Hz), 52.7(m), 48.6(d, J=18.0 Hz), 42.1(d, J=1.6 Hz), 41.1(d, J=18.8 Hz), 39.9(d, J=18.0 Hz), 34.4(d, J=1.6 Hz), 29.6(d, J=9.0 Hz), 28.6.
MS m/z: 265 (M+), 190 (100%).HRMS: Calcd. for C12H15F4NO 265.1090 (M+), Found.: 265.1068.
IR(neat):ν =1698 cm-1
1H-NMR(400 MHz, CDCl3):δ=4.45(br., 1H), 2.46(br., 1H), 2.14-2.10(m, 1H), 2.01-1.95(m, 5H), 1.94-1.65(m, 6H),1.56-1.50(m, 1H).13C-NMR(100 MHz, CDCl3):δ =156.1(q, J=34.4 Hz), 116.6(q, J=290.6 Hz), 89.8(d, J=186.8 Hz), 61.3(d, J=10.7 Hz), 52.7(m), 48.6(d, J=18.0 Hz), 42.1(d, J=1.6 Hz), 41.1(d, J=18.8 Hz), 39.9(d, J=18.0 Hz), 34.4(d, J=1.6 Hz), 29.6(d, J=9.0 Hz), 28.6.
MS m/z: 265 (M+), 190 (100%).HRMS: Calcd. for C12H15F4NO 265.1090 (M+), Found.: 265.1068.
5フルオロ-1-メチル-2-アザアダマンタン-N-オキシル (11)の製造
5-フルオロ-1-メチル-N-トリフルオロアセチル-2-アザアダマンタン 10 (270 mg, 1.02 mmol) のEtOH (6 mL) 溶液にNaOH水溶液 (10質量%溶液, 3 mL) を加えて2時間攪拌した。その後、CHCl3により抽出し、K2CO3で乾燥した後、減圧下溶媒を留去し、粗5-フルオロ-1-メチル-2-アザアダマンタン (165 mg) を得た。本化合物は精製することなく、次反応に用いた。
5-フルオロ-1-メチル-N-トリフルオロアセチル-2-アザアダマンタン 10 (270 mg, 1.02 mmol) のEtOH (6 mL) 溶液にNaOH水溶液 (10質量%溶液, 3 mL) を加えて2時間攪拌した。その後、CHCl3により抽出し、K2CO3で乾燥した後、減圧下溶媒を留去し、粗5-フルオロ-1-メチル-2-アザアダマンタン (165 mg) を得た。本化合物は精製することなく、次反応に用いた。
粗5-フルオロ-1-メチル-2-アザアダマンタン (165 mg) のMeOH (0.5 M,2 mL) 溶液に、氷冷下ウレアハイドロゲンパーオキシド(以下、UHPと記すこともある)(365 mg, 3.88 mmol)、及びNa2WO4・2H2O(160 mg, 0.485 mmol)を順次加え、室温にて1.5時間攪拌した。その後H2Oを加え、減圧下で溶媒を留去し、残渣はCHCl3により抽出し、K2CO3で乾燥した。その後、減圧下溶媒を留去し、残渣はシリカゲルカラムクロマトグラフィーにより処理し、AcOEt-ヘキサン(1:7 v/v)の流分として黄色針状の5-フルオロ-1-メチル- 2-アザアダマンタン-N-オキシル 11(106 mg, 0.579 mmol, 2工程通しでの収率57% (for 2 steps))を得た。
IR(neat):ν =1215 cm-1
MS m/z: 184 (M+), 111 (100%).HRMS: Calcd. for C10H15FNO 184.1138 (M+), Found.: 184.11
26.Anal. Calcd. C11H18NO2:C, 65.19;H, 8.21;N, 7.60. Found:C, 65.27;H, 8.09;N, 7.33.
IR(neat):ν =1215 cm-1
MS m/z: 184 (M+), 111 (100%).HRMS: Calcd. for C10H15FNO 184.1138 (M+), Found.: 184.11
26.Anal. Calcd. C11H18NO2:C, 65.19;H, 8.21;N, 7.60. Found:C, 65.27;H, 8.09;N, 7.33.
5-フルオロ-7-ヒドロキシ-1-メチル-N-トリフルオロアセチル-2-アザアダマンタン (12)の製造
5-フルオロ-1-メチル-N-トリフルオロアセチル-2-アザアダマンタン 10 (186 mg, 0.70 mmol) のCCl4-MeCN-H2O (1.65 M; 0.42 mL-1.1 M; 0.64 mL-1.1 M;0.64 mL) 溶液に、NaIO4 (344 mg,1.61 mmol)、及びRuCl3H2O(14.5 mg,0.07 mmol) を順次加え、70 ℃で2日激しく攪拌した。その後、飽和NaHCO3 水溶液、及びNa2S2O3水溶液を順次加え、AcOEtにより抽出した。有機層をMgSO4で乾燥した。その後、減圧下溶媒を留去した。残渣はシリカゲルカラムクロマトグラフィーにより処理し、AcOEt-Hexane (1:2 v/v) の流分として5-フルオロ-7-ヒドロキシ-1-メチル-N-トリフルオロアセチル-2-アザアダマンタン 12 (26 mg, 0.092 mmol, 13%)と原料 (134 mg, 1.38 mmol, 72%) を得た。
IR (neat) :ν= 3415, 1701 cm-1
13C-NMR (150 MHz, CDCl3) : δ = 156.2 (q, J = 34.4 Hz), 116.4 (q, J = 290.0 Hz), 90.8 (d, J =189.2 Hz), 69.44 (d, J =11.5 Hz), 61.49 (d, J =11.5 Hz), 52.17 (m), 50.6, 47.86 (d, J =17.2 Hz), 47.37 (d, J = 18.0 Hz), 42.15 (d, J = 1.7 Hz), 40.00 (d, J = 19.7 Hz), 28.11.
MS : m/z = 281 (M+), 206 (100%). HRMS Calcd. for C12H15F4NO2 (M+) : 281. 1039, Found. : 281.034.
5-フルオロ-1-メチル-N-トリフルオロアセチル-2-アザアダマンタン 10 (186 mg, 0.70 mmol) のCCl4-MeCN-H2O (1.65 M; 0.42 mL-1.1 M; 0.64 mL-1.1 M;0.64 mL) 溶液に、NaIO4 (344 mg,1.61 mmol)、及びRuCl3H2O(14.5 mg,0.07 mmol) を順次加え、70 ℃で2日激しく攪拌した。その後、飽和NaHCO3 水溶液、及びNa2S2O3水溶液を順次加え、AcOEtにより抽出した。有機層をMgSO4で乾燥した。その後、減圧下溶媒を留去した。残渣はシリカゲルカラムクロマトグラフィーにより処理し、AcOEt-Hexane (1:2 v/v) の流分として5-フルオロ-7-ヒドロキシ-1-メチル-N-トリフルオロアセチル-2-アザアダマンタン 12 (26 mg, 0.092 mmol, 13%)と原料 (134 mg, 1.38 mmol, 72%) を得た。
IR (neat) :ν= 3415, 1701 cm-1
13C-NMR (150 MHz, CDCl3) : δ = 156.2 (q, J = 34.4 Hz), 116.4 (q, J = 290.0 Hz), 90.8 (d, J =189.2 Hz), 69.44 (d, J =11.5 Hz), 61.49 (d, J =11.5 Hz), 52.17 (m), 50.6, 47.86 (d, J =17.2 Hz), 47.37 (d, J = 18.0 Hz), 42.15 (d, J = 1.7 Hz), 40.00 (d, J = 19.7 Hz), 28.11.
MS : m/z = 281 (M+), 206 (100%). HRMS Calcd. for C12H15F4NO2 (M+) : 281. 1039, Found. : 281.034.
5,7-ジフルオロ-1-メチル-N-トリフルオロアセチル-2-アザアダマンタン (13)の製造
5-フルオロ-7-ヒドロキシ-1-メチル-N-トリフルオロアセチル-2-アザアダマンタン 12 (26 mg,0.092 mmol) のCH2Cl2 (1.43 M,0.064 mL) 溶液に-78℃下、DAST (0.061 mL, 0.46 mmol) を加え、徐々に昇温し0℃で1時間攪拌した。その後、Et2Oで希釈した後H2Oを加えて、AcOEtにより抽出し、次いでH2Oにより有機層を洗浄し、MgSO4で乾燥した。その後、減圧下溶媒を留去し、残渣はシリカゲルカラムクロマトグラフィーにより処理し、AcOEt-Hexane (1:3 v/v) の流分として、5,7-ジフルオロ-1-メチル-N-トリフルオロアセチル-2-アザアダマンタン 13 (14 mg, 0.049 mmol, 54%) を得た。
IR (neat) :ν= 1698 cm-1
MS : m/z = 283 (M+), 208 (100%). HRMS Calcd. for C12H14F5NO2 (M+) : 283. 0996, Found. : 283.0993..
5-フルオロ-7-ヒドロキシ-1-メチル-N-トリフルオロアセチル-2-アザアダマンタン 12 (26 mg,0.092 mmol) のCH2Cl2 (1.43 M,0.064 mL) 溶液に-78℃下、DAST (0.061 mL, 0.46 mmol) を加え、徐々に昇温し0℃で1時間攪拌した。その後、Et2Oで希釈した後H2Oを加えて、AcOEtにより抽出し、次いでH2Oにより有機層を洗浄し、MgSO4で乾燥した。その後、減圧下溶媒を留去し、残渣はシリカゲルカラムクロマトグラフィーにより処理し、AcOEt-Hexane (1:3 v/v) の流分として、5,7-ジフルオロ-1-メチル-N-トリフルオロアセチル-2-アザアダマンタン 13 (14 mg, 0.049 mmol, 54%) を得た。
IR (neat) :ν= 1698 cm-1
MS : m/z = 283 (M+), 208 (100%). HRMS Calcd. for C12H14F5NO2 (M+) : 283. 0996, Found. : 283.0993..
5,7-ジフルオロ-1-メチル-2-アザアダマンタン-N-オキシル (14)の製造
5,7-ジフルオロ-1-メチル-N-トリフルオロアセチル-2-アザアダマンタン 13 (20 mg, 0.071 mmol) のEtOH (0.42 mL) 溶液にNaOH 水溶液(10質量%溶液, 0.21 mL) を加えて3時間攪拌した。その後、CHCl3により抽出し、K2CO3で乾燥した後、減圧下溶媒を留去し、粗5,7-ジフルオロ-1-メチル- 2-アザアダマンタン (11 mg) を得た。本化合物は精製することなく、次反応に用いた。
5,7-ジフルオロ-1-メチル-N-トリフルオロアセチル-2-アザアダマンタン 13 (20 mg, 0.071 mmol) のEtOH (0.42 mL) 溶液にNaOH 水溶液(10質量%溶液, 0.21 mL) を加えて3時間攪拌した。その後、CHCl3により抽出し、K2CO3で乾燥した後、減圧下溶媒を留去し、粗5,7-ジフルオロ-1-メチル- 2-アザアダマンタン (11 mg) を得た。本化合物は精製することなく、次反応に用いた。
粗5,7-ジフルオロ-1-メチル- 2-アザアダマンタン (11 mg) のMeOH (0.24 M,0.24 mL) 溶液に、氷冷下UHP(22 mg, 0.24 mmol)、及びNa2WO4・2H2O(9.7 mg, 0.029 mmol)を順次加え、室温にて3時間攪拌した。その後H2Oを加え、減圧下溶媒を留去し、残渣はCHCl3により抽出し、K2CO3で乾燥した。その後、減圧下溶媒を留去し、残渣はシリカゲルカラムクロマトグラフィーにより処理し、AcOEt-ヘキサン(1:2 v/v)の流分として5,7-ジフルオロ-1-メチル- 2-アザアダマンタン-N-オキシル 14(3.5 mg, 0.017 mmol, 2工程通しでの収率29%(for 2 steps))を黄色固体として得た。
IR :ν= 1443, 1143 cm-1
MS : m/z = 281 (M+), 206 (100%). HRMS Calcd. for C10H14F2NO (M+) : 202. 1043, Found. : 202.1043.
IR :ν= 1443, 1143 cm-1
MS : m/z = 281 (M+), 206 (100%). HRMS Calcd. for C10H14F2NO (M+) : 202. 1043, Found. : 202.1043.
5-メトキシ-1-メチル-N-トリフルオロアセチル-2-アザアダマンタン(15)の製造
NaH(82 mg,3.42 mmol)のTHF(テトラヒドロフラン)溶液(1.0 mL)に氷冷下、5-ヒドロキシ-1-メチル-N-トリフルオロアセチル-2-アザアダマンタン(8;300 mg,1.14 mmol)のTHF溶液(2.8 mL)を加え30分攪拌した後に、氷冷下Me2SO4(0.32 mL,3.42 mmol)を滴下し、室温に昇温し4時間攪拌した。3時間経過後、再びNaH(82 mg,3.42 mmol),及びMe2SO4(0.32 mL,3.42 mmol)をさらに加え攪拌した。その後、H2Oを加え、Et2Oにより抽出し、次いで、有機層を食塩水により洗浄し、MgSO4で乾燥した後、減圧下溶媒を留去した。残渣はシリカゲルカラムクロマトグラフィーにより処理し、AcOEt-ヘキサン(1:15 v/v)の流分として精製し、Me2SO4との混合物(403 mg)を得た。混合物の一部(333 mg)はさらに精製することなく、次反応に用いた。また混合物の一部をさらにシリカゲルカラムクロマトグラフィーにより処理し、AcOEt-ヘキサン(1:60 v/v)の流分として無色油状5-メトキシ-1-メチル-N-トリフルオロアセチル-2-アザアダマンタン15を得た。
IR(neat):ν =1698 cm-1
1H-NMR(400 MHz, CDCl3):δ=4.39(br., 1H), 3.24(s, 3H), 2.38(br., 1H), 1.96(br. d, J=12.3 Hz, 2H), 1.90-1.75(m, 5H), 1.69(s, 3H), 1.67(br. d, J=13.0 Hz, 1H),1.57(br. d, J=12.3 Hz, 1H), 1.51(br. d, J=13.3 Hz, 1H).13C-NMR(100 MHz, CDCl3):δ =156.1(q, J=34.6 Hz),116.7(q, J=292.2 Hz),70.4,60.2,52.1(q, J=4.1 Hz),48.2,47.4,39.4,38.3,35.0,29.0,28.7.
MS:m/z=277(M+),220(100%).HRMS Calcd. for C13H18F3NO2(M+):277.1290 Found.:277.1271
NaH(82 mg,3.42 mmol)のTHF(テトラヒドロフラン)溶液(1.0 mL)に氷冷下、5-ヒドロキシ-1-メチル-N-トリフルオロアセチル-2-アザアダマンタン(8;300 mg,1.14 mmol)のTHF溶液(2.8 mL)を加え30分攪拌した後に、氷冷下Me2SO4(0.32 mL,3.42 mmol)を滴下し、室温に昇温し4時間攪拌した。3時間経過後、再びNaH(82 mg,3.42 mmol),及びMe2SO4(0.32 mL,3.42 mmol)をさらに加え攪拌した。その後、H2Oを加え、Et2Oにより抽出し、次いで、有機層を食塩水により洗浄し、MgSO4で乾燥した後、減圧下溶媒を留去した。残渣はシリカゲルカラムクロマトグラフィーにより処理し、AcOEt-ヘキサン(1:15 v/v)の流分として精製し、Me2SO4との混合物(403 mg)を得た。混合物の一部(333 mg)はさらに精製することなく、次反応に用いた。また混合物の一部をさらにシリカゲルカラムクロマトグラフィーにより処理し、AcOEt-ヘキサン(1:60 v/v)の流分として無色油状5-メトキシ-1-メチル-N-トリフルオロアセチル-2-アザアダマンタン15を得た。
IR(neat):ν =1698 cm-1
1H-NMR(400 MHz, CDCl3):δ=4.39(br., 1H), 3.24(s, 3H), 2.38(br., 1H), 1.96(br. d, J=12.3 Hz, 2H), 1.90-1.75(m, 5H), 1.69(s, 3H), 1.67(br. d, J=13.0 Hz, 1H),1.57(br. d, J=12.3 Hz, 1H), 1.51(br. d, J=13.3 Hz, 1H).13C-NMR(100 MHz, CDCl3):δ =156.1(q, J=34.6 Hz),116.7(q, J=292.2 Hz),70.4,60.2,52.1(q, J=4.1 Hz),48.2,47.4,39.4,38.3,35.0,29.0,28.7.
MS:m/z=277(M+),220(100%).HRMS Calcd. for C13H18F3NO2(M+):277.1290 Found.:277.1271
5-メトキシ-1-メチル-2-アザアダマンタン-N-オキシル(16)の製造
5-メトキシ-1-メチル-N-トリフルオロアセチル-2-アザアダマンタン15のMe2SO4との混合物(333 mg)のEtOH溶液(4 mL)にNaOH水溶液(50質量%溶液,2 mL)を加えて1時間攪拌した。その後、CHCl3により抽出し、有機層をK2CO3で乾燥した後、減圧下溶媒を留去し、粗5-メトキシ-1-メチル-2-アザアダマンタン(135 mg)を得た.本化合物は精製することなく,次反応に用いた。
5-メトキシ-1-メチル-N-トリフルオロアセチル-2-アザアダマンタン15のMe2SO4との混合物(333 mg)のEtOH溶液(4 mL)にNaOH水溶液(50質量%溶液,2 mL)を加えて1時間攪拌した。その後、CHCl3により抽出し、有機層をK2CO3で乾燥した後、減圧下溶媒を留去し、粗5-メトキシ-1-メチル-2-アザアダマンタン(135 mg)を得た.本化合物は精製することなく,次反応に用いた。
粗5-メトキシ-1-メチル-2-アザアダマンタン(135 mg)のMeOH溶液(0.5 M,1.5 mL)に、氷冷下UHP(280 mg,2.96 mmol),及びNa2WO4・2H2O(122 mg,0.37 mmol)を順次加え、室温にて3時間攪拌した。その後、H2Oを加え、減圧下溶媒を留去し、残渣はCHCl3により抽出し、有機層をK2CO3で乾燥した。その後、減圧下溶媒を留去し、残渣はシリカゲルカラムクロマトグラフィーにより処理し、AcOEt-ヘキサン(1:4 v/v)の流分として山吹色針状晶の5-メトキシ-1-メチル-2-アザアダマンタン-N-オキシル(16;105 mg,0.534 mmol, 3工程通しでの収率56% (for 3 steps))を得た。
IR(neat):ν =1215 cm-1.MS:m/z=196(M+),196(100%).HRMS Calcd. for C11H18NO2(M+):196.1338,Found.:196.1319.Anal. Calcd. C11H18NO2:C, 67.32;H, 9.24;N, 7.14. Found:C, 67.14;H, 9.16;N, 7.10.
IR(neat):ν =1215 cm-1.MS:m/z=196(M+),196(100%).HRMS Calcd. for C11H18NO2(M+):196.1338,Found.:196.1319.Anal. Calcd. C11H18NO2:C, 67.32;H, 9.24;N, 7.14. Found:C, 67.14;H, 9.16;N, 7.10.
5-ヒドロキシ-1-メチル-2-アザアダマンタン-N-オキシル(17)の製造
5-ヒドロキシ-1-メチル-N-トリフルオロアセチル-2-アザアダマンタン(8; 500 mg,1.90 mmol)のMeOH溶液(0.5 M,40 mL)にAmberlyst(アンバーリスト:ローム・アンド・ハース社製の登録商標) A-26(OH form)(5.50 g)を加え,油浴中50 ℃に加熱し40時間攪拌した。その後、セライト(セライト・コーポレーション社製の登録商標)で濾過し、減圧下溶媒を留去し、粗5-ヒドロキシ-1-メチル-2-アザアダマンタン(458 mg)を得た。本化合物は精製することなく、次反応に用いた。
5-ヒドロキシ-1-メチル-N-トリフルオロアセチル-2-アザアダマンタン(8; 500 mg,1.90 mmol)のMeOH溶液(0.5 M,40 mL)にAmberlyst(アンバーリスト:ローム・アンド・ハース社製の登録商標) A-26(OH form)(5.50 g)を加え,油浴中50 ℃に加熱し40時間攪拌した。その後、セライト(セライト・コーポレーション社製の登録商標)で濾過し、減圧下溶媒を留去し、粗5-ヒドロキシ-1-メチル-2-アザアダマンタン(458 mg)を得た。本化合物は精製することなく、次反応に用いた。
粗5-ヒドロキシ-1-メチル-2-アザアダマンタン(458 mg)のMeOH溶液(0.5 M,4 mL)に、UHP(715 mg,7.6 mmol)、及びNa2WO4・2H2O(314 mg,0.95 mmol)を順次加え、2時間攪拌した。その後H2Oを加え、減圧下溶媒を留去し、残渣はCHCl3により抽出し、有機層をK2CO3で乾燥した。その後、減圧下溶媒を留去し、残渣はシリカゲルカラムクロマトグラフィーにより処理し、AcOEt-ヘキサン(4:1 v/v)の流分として得た油状物質を分子ふるいクロマトグラフィーにより処理し、橙色固体の5-ヒドロキシ-1-メチル-2-アザアダマンタン-N-オキシル(17;217.5 mg, 1.19 mmol, 2工程通しでの収率63%( for 2 steps))を得た。
IR(neat):ν =3396 cm-1, MS:m/z=182(M+),182(100%).HRMS Calcd. for C10H16NO2(M+):182.1181,Found.:182.1161.Anal. Calcd. C11H18NO2:C, 65.91;H, 8.85;N, 7.69. Found:C, 65.69;H, 8.83;N, 7.65.
IR(neat):ν =3396 cm-1, MS:m/z=182(M+),182(100%).HRMS Calcd. for C10H16NO2(M+):182.1181,Found.:182.1161.Anal. Calcd. C11H18NO2:C, 65.91;H, 8.85;N, 7.69. Found:C, 65.69;H, 8.83;N, 7.65.
エンド-ビシクロ[3.3.1]ノン-6-エン- 3-カルボン酸(19)の製造
1L の3径フラスコに2-アダマンタノン(18) 48.0 g (0.320 mol) とメタンスルホン酸300 g (202 mL, 1.58 M) を加えて溶解した。この溶液に、撹拌下、反応溶液の温度が20℃から35℃以下を保つようにアジ化ナトリウム 22.9 g (0.353 mol) を少量ずつ加えた。その過程でアジ化水素酸および窒素ガスが発生するので、適宜、氷冷水浴で反応温度を下げた。その後、室温で1時間撹拌し、ガスクロマトグラフィーで2-アダマンタノンの消失を確認した。このとき、4-メタンスルホニル-2-アダマンタノン (2)が生成が確認された。次に、反応装置にジムロート冷却管を連結し、50質量%水酸化カリウム水溶液 (450 mL)を徐々に加えた。この際、反応温度は95℃まで上昇した。室温になるまで1時間半撹拌した後、反応液をジエチルエーテル 600 mL で洗浄した。水層に濃塩酸120 mLを注意深く加えて反応液を酸性にすると目的物が晶出した。これを濾取し、水で十分に洗浄後、乾燥して粗エンド-ビシクロ[3.3.1]ノン-6-エン- 3-カルボン酸(19)36.5 g (0.220 mol, 69%)を得た。
エンド-ビシクロ[3.3.1]ノン-6-エン- 3-カルボン酸(19): 1H-NMR (400 MHz, CDCl3):δ=5.65 (m, 1H), 5.58 (dt, J = 9.5, 3.2 Hz, 1H), 2.57 (t, J = 6.3 Hz, 1H), 2.39 (d, J = 14.0 Hz, 1H), 2.36-2.20 (m, 4H), 2.06 (br s, 1H), 1.78-1.66 (m, 3H), 1.54 (br d, J = 12.3 Hz, 1H). 13C-NMR (100 MHz, CDCl3): δ= 182.6, 130.6, 129.5, 35.9, 31.9, 31.4, 31.1, 29.8, 28.5, 26.2. IR (neat, cm-1): ν=1680. MS m/z: 166 (M+), 79 (100%). HRMS (EI): Calcd. for C10H14O2 166.0994 (M+), found: 166.0989.
1L の3径フラスコに2-アダマンタノン(18) 48.0 g (0.320 mol) とメタンスルホン酸300 g (202 mL, 1.58 M) を加えて溶解した。この溶液に、撹拌下、反応溶液の温度が20℃から35℃以下を保つようにアジ化ナトリウム 22.9 g (0.353 mol) を少量ずつ加えた。その過程でアジ化水素酸および窒素ガスが発生するので、適宜、氷冷水浴で反応温度を下げた。その後、室温で1時間撹拌し、ガスクロマトグラフィーで2-アダマンタノンの消失を確認した。このとき、4-メタンスルホニル-2-アダマンタノン (2)が生成が確認された。次に、反応装置にジムロート冷却管を連結し、50質量%水酸化カリウム水溶液 (450 mL)を徐々に加えた。この際、反応温度は95℃まで上昇した。室温になるまで1時間半撹拌した後、反応液をジエチルエーテル 600 mL で洗浄した。水層に濃塩酸120 mLを注意深く加えて反応液を酸性にすると目的物が晶出した。これを濾取し、水で十分に洗浄後、乾燥して粗エンド-ビシクロ[3.3.1]ノン-6-エン- 3-カルボン酸(19)36.5 g (0.220 mol, 69%)を得た。
エンド-ビシクロ[3.3.1]ノン-6-エン- 3-カルボン酸(19): 1H-NMR (400 MHz, CDCl3):δ=5.65 (m, 1H), 5.58 (dt, J = 9.5, 3.2 Hz, 1H), 2.57 (t, J = 6.3 Hz, 1H), 2.39 (d, J = 14.0 Hz, 1H), 2.36-2.20 (m, 4H), 2.06 (br s, 1H), 1.78-1.66 (m, 3H), 1.54 (br d, J = 12.3 Hz, 1H). 13C-NMR (100 MHz, CDCl3): δ= 182.6, 130.6, 129.5, 35.9, 31.9, 31.4, 31.1, 29.8, 28.5, 26.2. IR (neat, cm-1): ν=1680. MS m/z: 166 (M+), 79 (100%). HRMS (EI): Calcd. for C10H14O2 166.0994 (M+), found: 166.0989.
N-ベンジルオキシカルボニル-エンド-ビシクロ[3.3.1]ノン-6-エン-3-イルアミン(20)の製造
エンド-ビシクロ[3.3.1]ノン-6-エン- 3-カルボン酸 (19) 14.7 g (88.5 mmol) のテトラヒドロピラン (88.5 mL, 1.0 M)溶液(1L ナス形フラスコ中)に、室温下、トリエチルアミン29.8 mL (213 mmol) およびジフェニルホスホリルアジド(DPPA) 21.0 mL (97.4 mmol) を順次加え、同温度で3時間撹拌した。この時点で、反応系内にはエンド-ビシクロ[3.3.1]ノン-6-エン-3-カルボニルアジドが生成していると考えられる。
エンド-ビシクロ[3.3.1]ノン-6-エン- 3-カルボン酸 (19) 14.7 g (88.5 mmol) のテトラヒドロピラン (88.5 mL, 1.0 M)溶液(1L ナス形フラスコ中)に、室温下、トリエチルアミン29.8 mL (213 mmol) およびジフェニルホスホリルアジド(DPPA) 21.0 mL (97.4 mmol) を順次加え、同温度で3時間撹拌した。この時点で、反応系内にはエンド-ビシクロ[3.3.1]ノン-6-エン-3-カルボニルアジドが生成していると考えられる。
この反応液にテトラヒドロピラン(88.5 mL) およびベンジルアルコール 91.6 mL (885 mmol) を加え、エンド-ビシクロ[3.3.1]ノン-6-エン-3-カルボニルアジドの消失が確認されるまで加熱・還流した。放冷後、水および酢酸エチルを加えて分液し、有機層を飽和食塩水溶液で洗浄後、硫酸マグネシウムで乾燥した後、濃縮した。粗生成物をカラムクロマトグラフィー(展開溶媒:酢酸エチル-ヘキサン(1 : 8 v/v))で精製し、N-ベンジルオキシカルボニル-エンド-ビシクロ[3.3.1]ノン-6-エン-3-イルアミン(20) 20.4 g (85%) を得た。
N-ベンジルオキシカルボニル-エンド-ビシクロ[3.3.1]ノン-6-エン-3-イルアミン(20): 1H-NMR (400 MHz, CDCl3): δ= 7.38-7.25 (m, 5H), 6.05 (t, J = 7.8 Hz, 1H), 5.92 (d, J = 8.4 Hz, 1H), 5.79 (dt, J = 9.9, 3.2 Hz, 1H), 5.56 (dd, J = 18.5, 12.4 Hz, 2H), 4.03 (m, 1H), 2.43 (dd, J = 18.8, 7.2 Hz, 1H), 2.34 (br s, 1H), 2.18 (br s, 1H), 2.06 (br d, J = 18.1 Hz 1H), 2.00 (dt, J = 14.7, 5.5 Hz, 1H) 1.89-1.66 (m, 4H), 1.55 (br d, J = 12.1 Hz, 1H). 13C-NMR (100 MHz, CDCl3): δ= 155.5, 136.9, 134.4, 128.8, 128.4, 128.0, 127.9, 66.2, 44.7, 37.5, 34.2, 32.5, 31.0, 27.7, 25.5. IR (neat, cm-1): ν= 3434, 1721, 1504. MS m/z: 271 (M+), 91 (100%). HRMS (EI): Calcd. for C17H21NO2 271.1572 (M+), found: 271.1554.
N-ベンジルオキシカルボニル-エンド-ビシクロ[3.3.1]ノン-6-エン-3-イルアミン(20): 1H-NMR (400 MHz, CDCl3): δ= 7.38-7.25 (m, 5H), 6.05 (t, J = 7.8 Hz, 1H), 5.92 (d, J = 8.4 Hz, 1H), 5.79 (dt, J = 9.9, 3.2 Hz, 1H), 5.56 (dd, J = 18.5, 12.4 Hz, 2H), 4.03 (m, 1H), 2.43 (dd, J = 18.8, 7.2 Hz, 1H), 2.34 (br s, 1H), 2.18 (br s, 1H), 2.06 (br d, J = 18.1 Hz 1H), 2.00 (dt, J = 14.7, 5.5 Hz, 1H) 1.89-1.66 (m, 4H), 1.55 (br d, J = 12.1 Hz, 1H). 13C-NMR (100 MHz, CDCl3): δ= 155.5, 136.9, 134.4, 128.8, 128.4, 128.0, 127.9, 66.2, 44.7, 37.5, 34.2, 32.5, 31.0, 27.7, 25.5. IR (neat, cm-1): ν= 3434, 1721, 1504. MS m/z: 271 (M+), 91 (100%). HRMS (EI): Calcd. for C17H21NO2 271.1572 (M+), found: 271.1554.
2-アザアダマンタン(21)の製造
100 mlナスフラスコ内にN-ベンジルオキシカルボニル-エンド-ビシクロ[3.3.1]ノン-6-エン-3-イルアミン(20) 4.2 g (15.5 mmol) の塩化メチレン(40 ml, 0.4M)溶液を調製し、そこへ、氷冷下、トリフルオロメタンスルホン酸5.8 ml (62 mmol) を加え1時間撹拌した。薄層クロマトグラフィー(TLC)で原料の消失を確認後、氷冷下、トリエチルアミン9.6 ml (68.2 mmol)を加え、中和した後、10質量 % 水酸化ナトリウム水溶液(40ml)を加え1時間攪拌した。その後、CHCl3を加えて抽出し、有機層をMgSO4で乾燥し、濃縮して粗2-アザアダマンタン(21)を得た。
2-アザアダマンタン(azaadamantane) (21): 1H-NMR (400 MHz, CDCl3): δ= 3.13 (s, 2H), 2.04 (s, 2H), 1.94 (d, J = 11.4 Hz, 4H), 1.87 (s, 2H), 1.77 (d, J = 11.4 Hz, 4H).
100 mlナスフラスコ内にN-ベンジルオキシカルボニル-エンド-ビシクロ[3.3.1]ノン-6-エン-3-イルアミン(20) 4.2 g (15.5 mmol) の塩化メチレン(40 ml, 0.4M)溶液を調製し、そこへ、氷冷下、トリフルオロメタンスルホン酸5.8 ml (62 mmol) を加え1時間撹拌した。薄層クロマトグラフィー(TLC)で原料の消失を確認後、氷冷下、トリエチルアミン9.6 ml (68.2 mmol)を加え、中和した後、10質量 % 水酸化ナトリウム水溶液(40ml)を加え1時間攪拌した。その後、CHCl3を加えて抽出し、有機層をMgSO4で乾燥し、濃縮して粗2-アザアダマンタン(21)を得た。
2-アザアダマンタン(azaadamantane) (21): 1H-NMR (400 MHz, CDCl3): δ= 3.13 (s, 2H), 2.04 (s, 2H), 1.94 (d, J = 11.4 Hz, 4H), 1.87 (s, 2H), 1.77 (d, J = 11.4 Hz, 4H).
N-トリフルオロアセチル-2-アザアダマンタン(22)の製造
2-アザアダマンタン 21 (1 g) のCH2Cl2(0.2 M,3 7mL)溶液に,氷冷下 、Et3N (1.5 mL, 10.9 mmol) 、及びトリフルオロ酢酸無水物(1.5 mL, 10.9 mmol)を順次加え、室温に昇温し2.5時間攪拌した。その後、H2Oを加え,AcOEtにより抽出し,有機層を食塩水により洗浄し、MgSO4で乾燥した。その後、減圧下溶媒を留去した。残渣はシリカゲルクロマトグラフィーにより処理しAcOEt-ヘキサン(1:4 v/v)の流分としてN-トリフルオロアセチル-2-アザアダマンタン 22 (1.42 g, 6.09 mmol, 83%)を 黄色油状物として得た。
IR(CHCl3):ν=1685 cm-1
1H-NMR(400 MHz, CDCl3):δ=4.76(br., 1H), 4.23(br., 1H), 2.14(br., 2H), 1.83-1.91(m, 10H).
13C-NMR(100 MHz, CDCl3):δ=154.1 (q, J = 35.3 Hz), 116.8 (q, J = 288.4 Hz), 49.7 (q, J = 3.3 Hz), 46.2, 36.1, 35.2, 35.1, 26.2.
MS:m/z=233(M+),233(100%).HRMS Calcd. for C11H14F3NO(M+):233.1027,Found.:233.1023.
2-アザアダマンタン 21 (1 g) のCH2Cl2(0.2 M,3 7mL)溶液に,氷冷下 、Et3N (1.5 mL, 10.9 mmol) 、及びトリフルオロ酢酸無水物(1.5 mL, 10.9 mmol)を順次加え、室温に昇温し2.5時間攪拌した。その後、H2Oを加え,AcOEtにより抽出し,有機層を食塩水により洗浄し、MgSO4で乾燥した。その後、減圧下溶媒を留去した。残渣はシリカゲルクロマトグラフィーにより処理しAcOEt-ヘキサン(1:4 v/v)の流分としてN-トリフルオロアセチル-2-アザアダマンタン 22 (1.42 g, 6.09 mmol, 83%)を 黄色油状物として得た。
IR(CHCl3):ν=1685 cm-1
1H-NMR(400 MHz, CDCl3):δ=4.76(br., 1H), 4.23(br., 1H), 2.14(br., 2H), 1.83-1.91(m, 10H).
13C-NMR(100 MHz, CDCl3):δ=154.1 (q, J = 35.3 Hz), 116.8 (q, J = 288.4 Hz), 49.7 (q, J = 3.3 Hz), 46.2, 36.1, 35.2, 35.1, 26.2.
MS:m/z=233(M+),233(100%).HRMS Calcd. for C11H14F3NO(M+):233.1027,Found.:233.1023.
5-ヒドロキシ-N-トリフルオロアセチル-2-アザアダマンタン (23)および5, 7-ジヒドロキシ-N-トリフルオロアセチル-2-アザアダマンタン (24)の製造
N-トリフルオロアセチル-2-アザアダマンタン 22 (500 mg,2.14 mmol)のCCl4-MeCN-H2O (1.65 M;1.3 mL-1.1 M;1.9 mL-1.1 M;1.9 mL) 溶液に、NaIO4(1.05 g,4.90 mmol)、及びRuCl3(44 mg,0.214 mmol)を順次加え、70 ℃で20時間激しく攪拌した。その後、飽和 NaHCO3水溶液、及びNaSO3水溶液を順次加え、AcOEtにより抽出した。次いで、有機層をMgSO4で乾燥した。その後、減圧下溶媒を留去した。残渣はシリカゲルクロマトグラフィーにより処理しAcOEt-ヘキサン(1:2 v/v)の流分として、白色固体の5-ヒドロキシ-N-トリフルオロアセチル-2-アザアダマンタン 23 (341 mg,1.37 mmol,64%)を得た。また同時に、白色固体の5,7-ジヒドロキシ-N-トリフルオロアセチル-2-アザアダマンタン 24 (70 mg,0.26 mmol,12%)と原料22 (138 mg,0.59 mmol,20%)を得た。
N-トリフルオロアセチル-2-アザアダマンタン 22 (500 mg,2.14 mmol)のCCl4-MeCN-H2O (1.65 M;1.3 mL-1.1 M;1.9 mL-1.1 M;1.9 mL) 溶液に、NaIO4(1.05 g,4.90 mmol)、及びRuCl3(44 mg,0.214 mmol)を順次加え、70 ℃で20時間激しく攪拌した。その後、飽和 NaHCO3水溶液、及びNaSO3水溶液を順次加え、AcOEtにより抽出した。次いで、有機層をMgSO4で乾燥した。その後、減圧下溶媒を留去した。残渣はシリカゲルクロマトグラフィーにより処理しAcOEt-ヘキサン(1:2 v/v)の流分として、白色固体の5-ヒドロキシ-N-トリフルオロアセチル-2-アザアダマンタン 23 (341 mg,1.37 mmol,64%)を得た。また同時に、白色固体の5,7-ジヒドロキシ-N-トリフルオロアセチル-2-アザアダマンタン 24 (70 mg,0.26 mmol,12%)と原料22 (138 mg,0.59 mmol,20%)を得た。
5-ヒドロキシ-N-トリフルオロアセチル-2-アザアダマンタン 23 の物性;
IR(neat):ν=3425,1681 cm-1
1H-NMR(400 MHz, CDCl3):δ=4.97(br., 1H), 4.43(br., 1H), 2.04(br, 1H), 1.92-1.79(m, 8H), 1.73-1.68(s, 2H), 1.63(br. d, J=13.0 Hz, 1H).
13C-NMR(100 MHz, CDCl3):δ=154.0 (q, J = 35.2 Hz), 116.5 (q, J = 288.4 Hz), 66.3, 60.3, 51.5 (q, J = 3.3 Hz), 43.4, 42.9, 42.6, 34.7, 33.8, 28.6.
MS:m/z=249(M+),249(100%).HRMS Calcd. for C12H16F3NO2(M+):249.0977,Found.:249.0956.
IR(neat):ν=3425,1681 cm-1
1H-NMR(400 MHz, CDCl3):δ=4.97(br., 1H), 4.43(br., 1H), 2.04(br, 1H), 1.92-1.79(m, 8H), 1.73-1.68(s, 2H), 1.63(br. d, J=13.0 Hz, 1H).
13C-NMR(100 MHz, CDCl3):δ=154.0 (q, J = 35.2 Hz), 116.5 (q, J = 288.4 Hz), 66.3, 60.3, 51.5 (q, J = 3.3 Hz), 43.4, 42.9, 42.6, 34.7, 33.8, 28.6.
MS:m/z=249(M+),249(100%).HRMS Calcd. for C12H16F3NO2(M+):249.0977,Found.:249.0956.
5,7-ジヒドロキシ-N-トリフルオロアセチル-2-アザアダマンタン24の物性;
IR:ν= 3335, 3197, 2686 cm-1
1H-NMR(400 MHz, CDCl3):δ = 4.97 (br s, 1H), 4.52 (br s, 1H), 1.87-1.66 (m, 10H).
13C-NMR(100 MHz, CDCl3):δ = 155.2 (q, J = 35.2 Hz), 118.1 (q, J = 287.6 Hz), 69.4, 53.2 (m), 51.5, 50.3, 43.3, 42.5.
MS : m/z = 265 (M+), 265 (100%). HRMS Calcd. for C11H14F3NO3 (M+) : 265. 0926, Found. : 265.0925
IR:ν= 3335, 3197, 2686 cm-1
1H-NMR(400 MHz, CDCl3):δ = 4.97 (br s, 1H), 4.52 (br s, 1H), 1.87-1.66 (m, 10H).
13C-NMR(100 MHz, CDCl3):δ = 155.2 (q, J = 35.2 Hz), 118.1 (q, J = 287.6 Hz), 69.4, 53.2 (m), 51.5, 50.3, 43.3, 42.5.
MS : m/z = 265 (M+), 265 (100%). HRMS Calcd. for C11H14F3NO3 (M+) : 265. 0926, Found. : 265.0925
5-フルオロ-N-トリフルオロアセチル-2-アザアダマンタン (25)の製造
5-ヒドロキシ-N-トリフルオロアセチル-2-アザアダマンタン 23 (549 mg,2.20 mmol) のCH2Cl2 (1.43 M,1.5 mL) 溶液に-78℃下、DAST (0.58 mL, 4.40 mmol)を加え、徐々に昇温し0℃で1時間攪拌した。その後、Et2Oで希釈した後H2Oを加えて、AcOEtにより抽出し、有機層をH2Oにより洗浄し、MgSO4で乾燥した。その後、減圧下溶媒を留去し、残渣はシリカゲルクロマトグラフィーにより処理し、AcOEt-ヘキサン (1:4 v/v) の流分として、5-フルオロ-N-トリフルオロアセチル-2-アザアダマンタン 25 (457 mg, 1.82mmol, 81%)を白色固体として得た。
IR (neat) : ν =1681 cm-1
1H-NMR (600 MHz, CDCl3) : δ = 5.02 (br s, 1H), 4.48 (br s, 1H), 2.47 (br d, J = 1.8 Hz, 2H), 2.06-1.94 (m, 6H), 1.81-1.77 (m, 2H), 1.73-1.67 (m, 2H).
13C-NMR (150 MHz, CDCl3) : δ = 154.1 (q, J = 35.6 Hz), 116.6 (q, J = 289.7 Hz), 89.9 (d, J = 187.9 Hz), 52.0 (m), 48.8 (d, J = 11.5 Hz), 41.4 (d, J = 20.1 Hz), 40.7 (d, J = 17.2 Hz), 40.7 (d, J = 17.2 Hz), 34.7 (d, J = 18.6 Hz), 34.7, 33.8, 29.6 (d, J = 10.1 Hz).
MS:m/z=251(M+),251(100%).HRMS Calcd. for C11H13F4NO(M+):251.0933,Found.:251.0919.
5-ヒドロキシ-N-トリフルオロアセチル-2-アザアダマンタン 23 (549 mg,2.20 mmol) のCH2Cl2 (1.43 M,1.5 mL) 溶液に-78℃下、DAST (0.58 mL, 4.40 mmol)を加え、徐々に昇温し0℃で1時間攪拌した。その後、Et2Oで希釈した後H2Oを加えて、AcOEtにより抽出し、有機層をH2Oにより洗浄し、MgSO4で乾燥した。その後、減圧下溶媒を留去し、残渣はシリカゲルクロマトグラフィーにより処理し、AcOEt-ヘキサン (1:4 v/v) の流分として、5-フルオロ-N-トリフルオロアセチル-2-アザアダマンタン 25 (457 mg, 1.82mmol, 81%)を白色固体として得た。
IR (neat) : ν =1681 cm-1
1H-NMR (600 MHz, CDCl3) : δ = 5.02 (br s, 1H), 4.48 (br s, 1H), 2.47 (br d, J = 1.8 Hz, 2H), 2.06-1.94 (m, 6H), 1.81-1.77 (m, 2H), 1.73-1.67 (m, 2H).
13C-NMR (150 MHz, CDCl3) : δ = 154.1 (q, J = 35.6 Hz), 116.6 (q, J = 289.7 Hz), 89.9 (d, J = 187.9 Hz), 52.0 (m), 48.8 (d, J = 11.5 Hz), 41.4 (d, J = 20.1 Hz), 40.7 (d, J = 17.2 Hz), 40.7 (d, J = 17.2 Hz), 34.7 (d, J = 18.6 Hz), 34.7, 33.8, 29.6 (d, J = 10.1 Hz).
MS:m/z=251(M+),251(100%).HRMS Calcd. for C11H13F4NO(M+):251.0933,Found.:251.0919.
5-フルオロ-2-アザアダマンタン-N-オキシル(26)の製造
5-フルオロ-N-トリフルオロアセチル-2-アザアダマンタン 25 (457 mg,1.82 mmol)のEtOH (12mL) 溶液にNaOH 水溶液(50質量%,3 mL) を加えて、3時間攪拌した。その後、CHCl3により抽出し、有機層をK2CO3で乾燥した。その後、減圧下溶媒を留去し、粗5-フルオロ-2-アザアダマンタン (268 mg) を得た。本化合物は精製することなく、次反応に用いた。
5-フルオロ-N-トリフルオロアセチル-2-アザアダマンタン 25 (457 mg,1.82 mmol)のEtOH (12mL) 溶液にNaOH 水溶液(50質量%,3 mL) を加えて、3時間攪拌した。その後、CHCl3により抽出し、有機層をK2CO3で乾燥した。その後、減圧下溶媒を留去し、粗5-フルオロ-2-アザアダマンタン (268 mg) を得た。本化合物は精製することなく、次反応に用いた。
粗5-フルオロ-2-アザアダマンタン (268 mg) のMeOH (0.5 M, 3 mL)溶液に、氷冷下、UHP (544 mg, 5.78 mmol) 、及びNa2WO4・2H2O (238 mg, 0.722 mmol)を順次加え、室温にて2.5時間攪拌した。その後H2Oを加え、減圧下溶媒を留去し、残渣はCHCl3により抽出し、有機層をK2CO3で乾燥した後、減圧下溶媒を留去し、残渣はシリカゲルクロマトグラフィーにより処理し、Et2O-ヘキサン(1:2 v/v)の流分として、5-フルオロ-2-アザアダマンタン-N-オキシル 26 (214 mg,1.26 mmol, 2工程通しでの収率69%(for 2 steps))を黄色固体として得た。
IR (neat) :ν= 1442, 1347, 1282 cm-1
MS : m/z = 170 (M+), 170 (100%). HRMS Calcd. for C9H13FNO (M+) : 170.0981, Found. : 170.0965.
Anal. Calcd. C9H15FNO:C, 63.51;H, 7.70;N, 8.23. Found:C, 63.32;H, 7.62;N, 8.13.
IR (neat) :ν= 1442, 1347, 1282 cm-1
MS : m/z = 170 (M+), 170 (100%). HRMS Calcd. for C9H13FNO (M+) : 170.0981, Found. : 170.0965.
Anal. Calcd. C9H15FNO:C, 63.51;H, 7.70;N, 8.23. Found:C, 63.32;H, 7.62;N, 8.13.
N-ベンジルオキシカルボニル-1-フルオロ-2-アザアダマンタン (32)の製造
1-ヒドロキシ-N-ベンジルオキシカルボニル-2-アザアダマンタン 31 (227 mg,0.79 mmol) のCH2Cl2 (1.43 M,0.55 mL) 溶液に-78℃下、DAST (0.32 mL, 2.37 mmol) を加え、徐々に昇温し0℃で1時間攪拌した。その後、Et2Oで希釈した後H2Oを加えて、AcOEtにより抽出した。有機層をH2Oにより洗浄し、MgSO4で乾燥後、減圧下溶媒を留去した。残渣はシリカゲルクロマトグラフィーにより処理し、AcOEt-ヘキサン (1:4 v/v) の流分として、油状の 1-フルオロ-N-ベンジルオキシカルボニル-2-アザアダマンタン 32 (211 mg, 0.729 mmol, 92%) を得た。
IR :ν= 1720, 1687, 1392 cm-1
1H-NMR (600 MHz, CDCl3) : δ = 7.37-7.36 (m, 2H), 7.34-7.31 (m, 2H), 7.28-7.26 (m, 1H), 5.19 (s, 2H), 4.62 (m, 1H), 2.32 (br d, 1H, J =2.5 Hz), 2.13-2.10 (m, 2H), 1.92-1.88 (m, 2H), 1.79-1.69 (m, 4H), 1.61-1.58(m, 2H).
13C-NMR (150 MHz, CDCl3) : δ = 155.8 (q, J = 2.9 Hz), 136.8, 128.4, 127.7, 127.6, 100 (d, J =218.0 Hz), 66.9, 53.7, 41.0 (d, J =20.1), 34.2, 29.9 (d, J =10.1 Hz).
MS m/z: 289 (M+), 91 (100%).HRMS: Calcd. for C17H20FNO2 289.1478 (M+), Found: 289.1465.
1-ヒドロキシ-N-ベンジルオキシカルボニル-2-アザアダマンタン 31 (227 mg,0.79 mmol) のCH2Cl2 (1.43 M,0.55 mL) 溶液に-78℃下、DAST (0.32 mL, 2.37 mmol) を加え、徐々に昇温し0℃で1時間攪拌した。その後、Et2Oで希釈した後H2Oを加えて、AcOEtにより抽出した。有機層をH2Oにより洗浄し、MgSO4で乾燥後、減圧下溶媒を留去した。残渣はシリカゲルクロマトグラフィーにより処理し、AcOEt-ヘキサン (1:4 v/v) の流分として、油状の 1-フルオロ-N-ベンジルオキシカルボニル-2-アザアダマンタン 32 (211 mg, 0.729 mmol, 92%) を得た。
IR :ν= 1720, 1687, 1392 cm-1
1H-NMR (600 MHz, CDCl3) : δ = 7.37-7.36 (m, 2H), 7.34-7.31 (m, 2H), 7.28-7.26 (m, 1H), 5.19 (s, 2H), 4.62 (m, 1H), 2.32 (br d, 1H, J =2.5 Hz), 2.13-2.10 (m, 2H), 1.92-1.88 (m, 2H), 1.79-1.69 (m, 4H), 1.61-1.58(m, 2H).
13C-NMR (150 MHz, CDCl3) : δ = 155.8 (q, J = 2.9 Hz), 136.8, 128.4, 127.7, 127.6, 100 (d, J =218.0 Hz), 66.9, 53.7, 41.0 (d, J =20.1), 34.2, 29.9 (d, J =10.1 Hz).
MS m/z: 289 (M+), 91 (100%).HRMS: Calcd. for C17H20FNO2 289.1478 (M+), Found: 289.1465.
1-フルオロ-2-アザアダマンタン-N-オキシル (33)の製造
1-フルオロ-N-ベンジルオキシカルボニル-2-アザアダマンタン 32 (155 mg,0.535 mmol)のMeOH(6 mL, 0.1M)溶液に、Pd が10質量% のPd/C (16 mg) を加え、H2雰囲気下室温にて2時間攪拌した。反応溶液をセライト(セライト・コーポレーション社製の登録商標)でろ過し、減圧下溶媒を除去した。残渣に飽和Na2CO3水溶液を加え、CHCl3で抽出した。有機層をK2CO3で乾燥後、減圧下溶媒を留去し、粗1-フルオロ-2-アザアダマンタン (70 mg) を得た。本化合物は精製することなく、次反応に用いた。
1-フルオロ-N-ベンジルオキシカルボニル-2-アザアダマンタン 32 (155 mg,0.535 mmol)のMeOH(6 mL, 0.1M)溶液に、Pd が10質量% のPd/C (16 mg) を加え、H2雰囲気下室温にて2時間攪拌した。反応溶液をセライト(セライト・コーポレーション社製の登録商標)でろ過し、減圧下溶媒を除去した。残渣に飽和Na2CO3水溶液を加え、CHCl3で抽出した。有機層をK2CO3で乾燥後、減圧下溶媒を留去し、粗1-フルオロ-2-アザアダマンタン (70 mg) を得た。本化合物は精製することなく、次反応に用いた。
粗1-フルオロ-2-アザアダマンタン (70 mg) のMeOH溶液 (0.5 M, 0.9 mL) に、氷冷下UHP (169 mg, 1.8 mmol)、及びNa2WO4・2H2O (74.3 mg, 0.225 mmol) を順次加え、室温にて3時間攪拌した。減圧下溶媒を留去し、残渣はCHCl3により抽出した。有機層をK2CO3で乾燥後、減圧下溶媒を留去した。残渣はシリカゲルクロマトグラフィーにより処理し、Et2O-ヘキサン (1:1 v/v) の流分として、1-フルオロ-2-アザアダマンタン-N-オキシル33 (56 mg, 0.329 mmol, 2工程通しでの収率62%(for 2 steps)) を黄色固体として得た。
IR :ν= 1449, 1323, 1257 cm-1
MS : m/z = 170 (M+), 97 (100%). HRMS Calcd. for C9H13FNO (M+) : 170.0981, Found. : 170.0968
Anal: Calcd. for C9H13FNO: C, 63.51; H, 7.70; N, 8.23.Found: C, 63.44; H, 7.67; N, 8.23.
IR :ν= 1449, 1323, 1257 cm-1
MS : m/z = 170 (M+), 97 (100%). HRMS Calcd. for C9H13FNO (M+) : 170.0981, Found. : 170.0968
Anal: Calcd. for C9H13FNO: C, 63.51; H, 7.70; N, 8.23.Found: C, 63.44; H, 7.67; N, 8.23.
5-ヒドロキシ-2-アザアダマンタン-N-オキシルの製造
N-CF3CO-5-OH-AZAD(N-トリフルオロアセチル-5-ヒドロキシ- 2-アザアダマンタン)(616mg)にIPA(イソプロピルアルコール) 3gと6N NaOH水溶液2mLを加え、50℃で4時間攪拌した。GC(ガスクロマトグラフ法による分析)で原料の消失を確認した後、トルエンを加えて分液し、有機層を濃縮した。白色固体として5-OH-AZAD(5-ヒドロキシ-2-アザアダマンタン)粗物426mgを得た。
GC-MS(CI): 154(M+1)
H-NMR: δ = 3.41(2H, s), 2.27(1H, s), 1.2-1.9(12H, m)
5-OH-AZADから5-OH-AZADO(5-ヒドロキシ-2-アザアダマンタン-N-オキシル)の製造は、以下のように行なった。
N-CF3CO-5-OH-AZAD(N-トリフルオロアセチル-5-ヒドロキシ- 2-アザアダマンタン)(616mg)にIPA(イソプロピルアルコール) 3gと6N NaOH水溶液2mLを加え、50℃で4時間攪拌した。GC(ガスクロマトグラフ法による分析)で原料の消失を確認した後、トルエンを加えて分液し、有機層を濃縮した。白色固体として5-OH-AZAD(5-ヒドロキシ-2-アザアダマンタン)粗物426mgを得た。
GC-MS(CI): 154(M+1)
H-NMR: δ = 3.41(2H, s), 2.27(1H, s), 1.2-1.9(12H, m)
5-OH-AZADから5-OH-AZADO(5-ヒドロキシ-2-アザアダマンタン-N-オキシル)の製造は、以下のように行なった。
すなわち、5-OH-AZAD(484mg)のt-ブタノール溶液にNaHCO3(5-OH-AZAD に対して0.3eq(0.3当量)(以下、同様である。))を加え、70℃に加熱した後、過酸化水素水(8.0eq)を加えたところ、2時間の反応で5-OH-AZADから5-OH-AZADOへの転化率は74.6%であった。さらにNaHCO3(0.3eq)、及び過酸化水素水(4.0eq)を加え、70℃で2時間撹拌したところ、5-OH-AZADから5-OH-AZADOへの転化率は86.3%まで向上した。その後、反応溶液をトルエン/6N-NaOH水溶液で分液(褐色溶液)した。次いで、水層をジクロロメタンで2回抽出した。有機層を濃縮した後にカラム精製(シリカゲルクロマトグラフィーにより処理)して、黄色固体308mgを得た(得率58%)
GC-MS(CI): 169(M+1)
GC-MS(CI): 169(M+1)
実施例2:N-オキシル化合物を用いた酸素酸化
アルコール化合物の酢酸溶液(0.33mol/L)または塩化メチレン溶液(0.33mol/L)に、亜硝酸ナトリウム(アルコール化合物の5mol%)または亜硝酸ターシャリーブチル(アルコール化合物の30mol%)および5-フルオロ-2-アザアダマンタン-N-オキシル(アルコール化合物の5mol%)を加えて室温下、酸素バルーンを付した状態で、原料のアルコールの消失が確認されるまで激しく撹拌した。反応終了後、水と塩化メチレンを加えて分液し、有機層を水洗することにより、目的のケトンまたはアルデヒドを得た。
アルコール化合物の酢酸溶液(0.33mol/L)または塩化メチレン溶液(0.33mol/L)に、亜硝酸ナトリウム(アルコール化合物の5mol%)または亜硝酸ターシャリーブチル(アルコール化合物の30mol%)および5-フルオロ-2-アザアダマンタン-N-オキシル(アルコール化合物の5mol%)を加えて室温下、酸素バルーンを付した状態で、原料のアルコールの消失が確認されるまで激しく撹拌した。反応終了後、水と塩化メチレンを加えて分液し、有機層を水洗することにより、目的のケトンまたはアルデヒドを得た。
なお、アルコール化合物として3-フェニル-n-プロパノールおよび4-フェニル-n-ブタノールを用いた場合、3時間撹拌し続けるとカルボン酸が生成したので、これを水酸化ナトリウム水溶液で逆抽出した。次いで、塩酸で中和して再度塩化メチレンで抽出することにより、目的とするカルボン酸を単離した。
上記と同様にアルコール化合物の酸化反応を行った例を、それぞれの反応式、及び表で示す。
上記と同様にアルコール化合物の酸化反応を行った例を、それぞれの反応式、及び表で示す。
なお、表中、t-Bu:ターシャリーブチル基、AZADO:2-アザアダマンタン-N-オキシル、1-F-AZADO:1-フルオロ-2-アザアダマンタン-N-オキシル、5-F-AZADO:5-フルオロ-2-アザアダマンタン-N-オキシル、1-Me-AZADO:1-メチル-2-アザアダマンタン-N-オキシル、1-Me-5-F-AZADO:1-メチル-5-フルオロ-2-アザアダマンタン-N-オキシル、5,7-F2-1-Me-AZADO:5,7-ジフルオロ-1-メチル-2-アザアダマンタン-N-オキシル、1-Me-5-OH-AZADO:1-メチル-5-ヒドロキシ-2-アザアダマンタン-N-オキシル、5-MeO-1-Me-AZADO:5-メトキシ-1-メチル-2-アザアダマンタン-N-オキシル、5-OH-AZADO:5-ヒドロキシ-2-アザアダマンタン-N-オキシル、ABNO:9-アザビシクロ[3.3.1]ノナンN-オキシルを、それぞれ表す。
表中、Entryは実施例の番号を、substrateは基質を、productは生成物を、cat.またはcatalystは触媒を、Time(h)は反応時間(単位:時間)を、Yieldは収率を、recoverは原料回収を、Noteは備考を、methyl esterはメチルエステルを、carboxylic acidはカルボン酸を、traceは痕跡量を、balloonは風船を、rtは室温を、refは参考を、それぞれ表す。
また、濃度や使用量が通常と異なる場合は、注釈を付けて示した。
さらに、反応式中のNaNO2は亜硝酸ナトリウムを、FeCl3・6H2Oは塩化第二鉄・6水和物を、AcOHは酢酸を、t-BuONOは亜硝酸ターシャリーブチルを、CH2N2はジアゾメタンを表す。
また、表中、「NR」は反応が進行しなかったことを示し、「-」は測定しなかったことを示し、「GC yield」とは、ガスクロマトフラフ法による収率の測定結果を示す。
さらに、反応式中のNaNO2は亜硝酸ナトリウムを、FeCl3・6H2Oは塩化第二鉄・6水和物を、AcOHは酢酸を、t-BuONOは亜硝酸ターシャリーブチルを、CH2N2はジアゾメタンを表す。
また、表中、「NR」は反応が進行しなかったことを示し、「-」は測定しなかったことを示し、「GC yield」とは、ガスクロマトフラフ法による収率の測定結果を示す。
実施例3:酸化反応の溶媒を変更した反応例
3-1 MeCN/AcOH系溶媒
反応容器に、2-オクタノール(3.91g)、2-アザアダマンタン-N-オキシル(0.0229g)、アセトニトリル(7.8g)、酢酸(3.6g)およびNaNO2(0.831g)を順次に加え、反応容器内を酸素置換した後、酸素雰囲気下(0.1MPa)(ゲージ圧、以下、同様である。)、室温にて4時間撹拌した。目的の2-オクタノンの収率は98%(GC yield(ガスクロマトフラフ法による収率の測定、以下、同様である。)であった。
3-2 H2O/AcOH系溶媒
反応容器に、2-オクタノール(3.91g)、2-アザアダマンタン-N-オキシル(0.0227g)、H2O(7.81g)、酢酸(3.61g)およびNaNO2(0.827g)を順次に加え、反応容器内を酸素置換した後、酸素雰囲気下(0.1MPa)、室温にて7時間撹拌した。目的とする2-オクタノンの収率は84%(GC yield)であった。
3-1 MeCN/AcOH系溶媒
反応容器に、2-オクタノール(3.91g)、2-アザアダマンタン-N-オキシル(0.0229g)、アセトニトリル(7.8g)、酢酸(3.6g)およびNaNO2(0.831g)を順次に加え、反応容器内を酸素置換した後、酸素雰囲気下(0.1MPa)(ゲージ圧、以下、同様である。)、室温にて4時間撹拌した。目的の2-オクタノンの収率は98%(GC yield(ガスクロマトフラフ法による収率の測定、以下、同様である。)であった。
3-2 H2O/AcOH系溶媒
反応容器に、2-オクタノール(3.91g)、2-アザアダマンタン-N-オキシル(0.0227g)、H2O(7.81g)、酢酸(3.61g)およびNaNO2(0.827g)を順次に加え、反応容器内を酸素置換した後、酸素雰囲気下(0.1MPa)、室温にて7時間撹拌した。目的とする2-オクタノンの収率は84%(GC yield)であった。
実施例4 N-ヒドロキシ-2-アザアダマンタン化合物を用いる系での反応
反応容器に、2-オクタノール(1.30g)、N-ヒドロキシ-2-アザアダマンタン(0.0154g)、酢酸(3.9g)およびNaNO2(0.415g)を順次に加え、反応容器内を酸素置換した後、酸素雰囲気下(0.1MPa)室温にて15時間撹拌した。目的とする2-オクタノンの収率は89%(GC yield)であった。
反応容器に、2-オクタノール(1.30g)、N-ヒドロキシ-2-アザアダマンタン(0.0154g)、酢酸(3.9g)およびNaNO2(0.415g)を順次に加え、反応容器内を酸素置換した後、酸素雰囲気下(0.1MPa)室温にて15時間撹拌した。目的とする2-オクタノンの収率は89%(GC yield)であった。
実施例5:硝酸を用いた系での反応
反応容器に、2-オクタノール(0.392g)、2-アザアダマンタン-N-オキシル(AZADO)(0.0135g)、酢酸(1.2g)および65質量% 硝酸水溶液(0.0288g)、を順次に加え、反応容器を酸素置換した後、酸素雰囲気下(0.1MPa)室温にて7時間撹拌した。目的とする2-オクタノンの収率は99%であった。
反応容器に、2-オクタノール(0.392g)、2-アザアダマンタン-N-オキシル(AZADO)(0.0135g)、酢酸(1.2g)および65質量% 硝酸水溶液(0.0288g)、を順次に加え、反応容器を酸素置換した後、酸素雰囲気下(0.1MPa)室温にて7時間撹拌した。目的とする2-オクタノンの収率は99%であった。
実施例6 オキソアンモニウムハロゲン化物塩の製造例
実施例6-1:塩化物塩の製造
1‐Me‐AZADO(1920 mg, 11.55 mmol)のCCl4 (23.1 mL, 0.5 M)溶液中に室温下塩素ガスを吹き込み激しく攪拌した。析出した結晶をグラスフィルターにて濾取し、冷却したEt2Oにより洗浄し、減圧下乾燥を行い、1‐Me‐AZADO+Cl-を得た(2316 mg, 99%)。
実施例6-2:臭化物塩の製造
臭素を用い、実施例6-1と同様の手法で、1‐Me‐AZADO+Br-(実際のカウンターイオンはBr3 -)を得た。
実施例6-1:塩化物塩の製造
1‐Me‐AZADO(1920 mg, 11.55 mmol)のCCl4 (23.1 mL, 0.5 M)溶液中に室温下塩素ガスを吹き込み激しく攪拌した。析出した結晶をグラスフィルターにて濾取し、冷却したEt2Oにより洗浄し、減圧下乾燥を行い、1‐Me‐AZADO+Cl-を得た(2316 mg, 99%)。
実施例6-2:臭化物塩の製造
臭素を用い、実施例6-1と同様の手法で、1‐Me‐AZADO+Br-(実際のカウンターイオンはBr3 -)を得た。
実施例7:オキソアンモニウム硝酸塩の製造
5-F-AZADO (16 mg, 0.094 mmol) のEt2O溶液 (赤色)に、濃HNO3に銅粉を加えて発生させたNO2ガスを水浴下で吹き込んだ。溶液の色が透明になったのを確認し、析出した固体をろ過した。その後、析出した黄色い固体をEt2Oでよく洗浄した。得られた固体を真空ポンプで減圧下乾燥し、5-F-AZADO+NO3 - (20.5 mg, 0.088 mmol, 94 %) を黄色固体として得た。
5-F-AZADO (16 mg, 0.094 mmol) のEt2O溶液 (赤色)に、濃HNO3に銅粉を加えて発生させたNO2ガスを水浴下で吹き込んだ。溶液の色が透明になったのを確認し、析出した固体をろ過した。その後、析出した黄色い固体をEt2Oでよく洗浄した。得られた固体を真空ポンプで減圧下乾燥し、5-F-AZADO+NO3 - (20.5 mg, 0.088 mmol, 94 %) を黄色固体として得た。
同様に、以下のオキソアンモニウム塩を製造した。
5-F-AZADO+NO3 -
IR (neat): ν =1628, 1372, 1333 cm-1
Anal: Calcd. for C9H13FN2O4: C, 46.55; H, 5.64; N, 12.06.Found: C, 46.26; H, 5.73; N, 11.86.
1-Me-AZADO+NO3 -
IR (neat): ν =1617, 1366, 1333 cm-1
Anal: Calcd. for C10H16N2O4: C, 52.62; H, 7.07; N, 12.27.
5-F-1-Me-AZADO+NO3 -
IR (neat): ν =1634, 1462, 1334 cm-1
Anal: Calcd. for C10H15FN2O4: C, 48.78; H, 6.14; N, 11.38.Found: C, 48.55; H, 5.99; N, 11.24.
TEMPO+NO3 -
IR (neat): ν =1620, 1470, 1321 cm-1
Anal: Calcd. for C9H18N2O4: C, 49.53; H, 8.31; N, 12.84.Found: C, 49.26; H, 8.07; N, 12.78.
ABNO+NO3 -
IR (neat): ν =1627, 1320 cm-1
AZADO+NO3 -
IR (neat): ν =1633, 1615, 1332 cm-1
実施例8 AZADOオキソアンモニウム塩化物塩を用いる系
反応容器に、2-オクタノール(1.30g)、2-アザアダマンタン-N-オキソアンモニウム塩化物塩(0.0187g)、酢酸(3.9g)およびNaNO2(0.417g)を左記の順に加え、反応容器内を酸素置換した後、酸素雰囲気下(0.1MPa)室温にて15時間撹拌した。目的とする2-オクタノンの収率は90%(GC yield)であった。
5-F-AZADO+NO3 -
IR (neat): ν =1628, 1372, 1333 cm-1
Anal: Calcd. for C9H13FN2O4: C, 46.55; H, 5.64; N, 12.06.Found: C, 46.26; H, 5.73; N, 11.86.
1-Me-AZADO+NO3 -
IR (neat): ν =1617, 1366, 1333 cm-1
Anal: Calcd. for C10H16N2O4: C, 52.62; H, 7.07; N, 12.27.
5-F-1-Me-AZADO+NO3 -
IR (neat): ν =1634, 1462, 1334 cm-1
Anal: Calcd. for C10H15FN2O4: C, 48.78; H, 6.14; N, 11.38.Found: C, 48.55; H, 5.99; N, 11.24.
TEMPO+NO3 -
IR (neat): ν =1620, 1470, 1321 cm-1
Anal: Calcd. for C9H18N2O4: C, 49.53; H, 8.31; N, 12.84.Found: C, 49.26; H, 8.07; N, 12.78.
ABNO+NO3 -
IR (neat): ν =1627, 1320 cm-1
AZADO+NO3 -
IR (neat): ν =1633, 1615, 1332 cm-1
実施例8 AZADOオキソアンモニウム塩化物塩を用いる系
反応容器に、2-オクタノール(1.30g)、2-アザアダマンタン-N-オキソアンモニウム塩化物塩(0.0187g)、酢酸(3.9g)およびNaNO2(0.417g)を左記の順に加え、反応容器内を酸素置換した後、酸素雰囲気下(0.1MPa)室温にて15時間撹拌した。目的とする2-オクタノンの収率は90%(GC yield)であった。
実施例9:オキソアンモニウム硝酸塩を用いた酸素酸化
アルコール化合物の酢酸又は塩化メチレン溶液に5-フルオロ-2-アザアダマンタンのオキソアンモニウム硝酸塩(アルコール化合物の5mol%)を加えて室温下、原料のアルコール化合物の消失が確認されるまで激しく撹拌した。反応終了後、水と塩化メチレンを加えて分液し、有機層を水洗することにより、目的のケトン又はアルデヒドを得た。
アルコール化合物の酢酸又は塩化メチレン溶液に5-フルオロ-2-アザアダマンタンのオキソアンモニウム硝酸塩(アルコール化合物の5mol%)を加えて室温下、原料のアルコール化合物の消失が確認されるまで激しく撹拌した。反応終了後、水と塩化メチレンを加えて分液し、有機層を水洗することにより、目的のケトン又はアルデヒドを得た。
具体的には、反応容器に、2-オクタノール(1.30g)、2-アザアダマンタン-N-オキソアンモニウム硝酸塩(0.0214g)、酢酸(3.91g)およびNaNO2(0.413g)を左記の順に加え、反応容器内を酸素置換した後、酸素雰囲気下(0.1MPa)室温にて15時間撹拌した。目的とする2-オクタノンの収率は92%(GC yield)であった。
同様に反応を行った例を、表で示す。なお、表中、Entryは実施例の番号を、Substrateは基質を、Time (h)は反応時間(hは時間、dayは日)を、Yieldは収率を、recoverは原料回収を、Noteは備考を、traceは痕跡量を、balloonは風船を、rtは室温を、それぞれ表す。また、反応条件が通常と異なる場合は付記した。
さらに、表中の以下の各略号は、以下の基、あるいは化合物を表す。
Airは空気を、TBSはターシャリーブチルジメチルシリル基を、Cbzはベンジルオキシカルボニル基を、Bzはベンゾイル基を、Acはアセチル基を、Meはメチル基を、Phはフェニル基を、THPはテトラヒドロピランを、HFIPは1,1,1,3,3,3-ヘキサフルオロ-2-プロパノールを、DMSOはジメチルスルホキシドを表す。また、5-F-AZADO+NO3 -は、5-フルオロ-2-アザアダマンタンのオキソアンモニウム硝酸塩を表す。
実施例9-1
Airは空気を、TBSはターシャリーブチルジメチルシリル基を、Cbzはベンジルオキシカルボニル基を、Bzはベンゾイル基を、Acはアセチル基を、Meはメチル基を、Phはフェニル基を、THPはテトラヒドロピランを、HFIPは1,1,1,3,3,3-ヘキサフルオロ-2-プロパノールを、DMSOはジメチルスルホキシドを表す。また、5-F-AZADO+NO3 -は、5-フルオロ-2-アザアダマンタンのオキソアンモニウム硝酸塩を表す。
実施例9-1
本発明は、各種のアルコールの酸化を、空気中の酸素により、加熱や有毒な重金属化合物を必要とせずに、穏和な条件でほぼ選択的に行って、アルデヒド化合物、ケトン化合物及び/又はカルボン酸化合物を製造することが可能であり、工業的に極めて有用である。
なお、2008年5月30日に出願された日本特許出願2008-143200号及び2008年9月5日に出願された日本特許出願2008-228721号の明細書、特許請求の範囲、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
Claims (6)
- 式(1):
R4およびR5は、それぞれ独立にR1と同じ意味を表すか、またはR4とR5とが一緒になってR1で置換されていてもよいメチレン基を形成していてもよく、
Raは、ハロゲン、C1-6アルキル基、C1-6ハロアルキル基、C3-6シクロアルキル基、C1-6アルコキシ基、C1-6アルコキシC1-6アルキル基、C1-6アルキルスルフェニルC1-6アルキル基、C1-6ハロアルコキシ基、C1-6アルキルスルフェニル基、C1-6アルキルスルフィニル基、C1-6アルキルスルホニル基、C1-6ハロアルキルスルフェニル基、C1-6ハロアルキルスルフィニル基、C1-6ハロアルキルスルホニル基、C2-6アルケニル基、C2-6ハロアルケニル基、C2-6アルケニルオキシ基、C2-6ハロアルケニルオキシ基、C2-6アルケニルスルフェニル基、C2-6アルケニルスルフィニル基、C2-6アルケニルスルホニル基、C2-6ハロアルケニルスルフェニル基、C2-6ハロアルケニルスルフィニル基、C2-6ハロアルケニルスルホニル基、C2-6アルキニル基、C2-6ハロアルキニル基、C2-6アルキニルオキシ基、C2-6ハロアルキニルオキシ基、C2-6アルキニルスルフェニル基、C2-6アルキニルスルフィニル基、C2-6アルキニルスルホニル基、C2-6ハロアルキニルスルフェニル基、C2-6ハロアルキニルスルフィニル基、C2~C6ハロアルキニルスルホニル基、-NO2、-CN、ホルミル基、-OH、-SH、-NH2、-SCN、C1-6アルコキシカルボニル基、C1-6アルキルカルボニル基、C1-6ハロアルキルカルボニル基、C1-6アルキルカルボニルオキシ基、フェニル基、C1-6アルキルアミノ基またはジC1-6アルキルアミノ基であって、
置換するRaの数は1~5個であり、Raが2個以上の場合は、それぞれの置換基は同じでも異なっていてもよく、
N-OはN-O・を表すか、N-OHを表すか、またはN+(=O)X-を表し、X-はF-、Cl-、Br-、I-、ClO2 -、ClO4 -、IO4 -、NO2 -、NO3 -、SO4 2-、BF4 -、PF6 -、SbCl5 -、SbF6 -、XeF2 ‐、(CF3 SO2) 2N-、CH3CO2 -、CF3CO2 -、4-CH3C6H4SO2O-またはCF3SO2O-を表す。)で表される多環式化合物の存在下、亜硝酸化合物または硝酸の存在下(但し、N-OがN+(=O)X-であってX-がNO3 -である場合は、亜硝酸化合物または硝酸の存在下又は非存在下)、アルコール化合物を酸素で酸化することを特徴とする酸化方法。 - 前記亜硝酸化合物が亜硝酸又は亜硝酸塩である請求項1又は2に記載の酸化方法。
- 前記多環式化合物が、下記式
- アルコール化合物を酸化してアルデヒド化合物、ケトン化合物及び/又はカルボン酸化合物を製造する請求項1~4のいずれかに記載の酸化方法。
- 下記式
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008-143200 | 2008-05-30 | ||
JP2008143200A JP2011153076A (ja) | 2008-05-30 | 2008-05-30 | 多環式n−オキシル化合物を用いるアルコールの酸化方法 |
JP2008-228721 | 2008-09-05 | ||
JP2008228721A JP2011153077A (ja) | 2008-09-05 | 2008-09-05 | オキソアンモニウム硝酸塩を用いるアルコールの酸化方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009145323A1 true WO2009145323A1 (ja) | 2009-12-03 |
Family
ID=41377191
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/059909 WO2009145323A1 (ja) | 2008-05-30 | 2009-05-29 | 多環式化合物を用いるアルコールの酸化方法 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2009145323A1 (ja) |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010089213A1 (de) * | 2009-02-06 | 2010-08-12 | Evonik Degussa Gmbh | Verfahren zur herstellung von aldehyden und ketonen aus primären und sekundären alkoholen |
EP2221306A1 (en) * | 2007-11-20 | 2010-08-25 | Nissan Chemical Industries, Ltd. | Method for producing 2-azaadamantane |
WO2011027865A1 (ja) * | 2009-09-04 | 2011-03-10 | 日産化学工業株式会社 | 新規な2-アザアダマンタン化合物及びその製造方法 |
JP2011153104A (ja) * | 2010-01-28 | 2011-08-11 | Nisshinbo Holdings Inc | アルコールの酸化方法 |
WO2012004069A1 (de) * | 2010-07-06 | 2012-01-12 | Evonik Degussa Gmbh | Verfahren zur herstellung von 2,5-diformylfuran und seiner derivate |
WO2012008228A1 (ja) * | 2010-07-16 | 2012-01-19 | 第一三共株式会社 | アルコール類の酸化方法 |
WO2013118118A1 (en) | 2012-02-06 | 2013-08-15 | Technion Research And Development Foundation Ltd. | Alpha-hydrogen substituted nitroxyls and derivatives thereof as catalysts |
WO2013125688A1 (ja) * | 2012-02-24 | 2013-08-29 | 国立大学法人東北大学 | 9-アザノルアダマンタンn-オキシル化合物及びその製造方法、並びに9-アザノルアダマンタンn-オキシル化合物を用いた有機分子酸化触媒及びアルコール類の酸化方法 |
WO2014003203A2 (en) | 2012-06-29 | 2014-01-03 | Nissan Chemical Industries, Ltd. | Method for producing stereoselective epoxyketone compound |
WO2014136730A1 (ja) * | 2013-03-04 | 2014-09-12 | 小野薬品工業株式会社 | 転化率に優れた酸化反応 |
JP2015502972A (ja) * | 2011-12-22 | 2015-01-29 | ロケット・フルーレ | 5−ヒドロキシメチルフルアルデヒドを選択的に酸化するための改善された方法 |
JP2015166325A (ja) * | 2014-03-04 | 2015-09-24 | 国立大学法人東北大学 | アルコキシアミン化合物、アルコキシアミン型アルコール酸化触媒及びそれを用いたアルコール酸化方法 |
CN105246873A (zh) * | 2013-06-14 | 2016-01-13 | 日产化学工业株式会社 | 光学活性醇化合物的制造方法 |
US9512078B2 (en) | 2009-09-18 | 2016-12-06 | Paion Uk Limited | Process for preparing 3-[(45)-8-bromo-1-methyl-6-(2-pyridinyl)-4H-imidazo[1,2-A][1,4]benzodiazepine-4-yl]propionic acid methyl ester or the benzene sulfonate salt thereof, and compounds useful in that process |
US9777007B2 (en) | 2006-07-10 | 2017-10-03 | Paion Uk Limited | Short-acting benzodiazepine salts and their polymorphic forms |
US9914692B2 (en) * | 2016-05-25 | 2018-03-13 | Horizon Therapeutics, Llc | Procedure for the preparation of 4-phenyl butyrate and uses thereof |
US9962358B2 (en) | 2011-09-30 | 2018-05-08 | Horizon Therapeutics, Llc | Methods of therapeutic monitoring of nitrogen scavenging drugs |
US10195210B2 (en) | 2010-11-08 | 2019-02-05 | Paion Uk Ltd. | Dosing regimen for sedation with CNS 7056 (Remimazolam) |
US10668040B2 (en) | 2017-09-11 | 2020-06-02 | Horizon Therapeutics, Llc | Treatment of urea cycle disorders in neonates and infants |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006001387A1 (ja) * | 2004-06-25 | 2006-01-05 | Tohoku University | アルコール酸化触媒およびその合成方法 |
JP2009114143A (ja) * | 2007-11-08 | 2009-05-28 | Nissan Chem Ind Ltd | 第一級アルコールからのカルボン酸の製造方法 |
JP2009161613A (ja) * | 2007-12-28 | 2009-07-23 | Nippon Paper Industries Co Ltd | セルロースの酸化方法、セルロースの酸化触媒及びセルロースナノファイバーの製造方法 |
-
2009
- 2009-05-29 WO PCT/JP2009/059909 patent/WO2009145323A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006001387A1 (ja) * | 2004-06-25 | 2006-01-05 | Tohoku University | アルコール酸化触媒およびその合成方法 |
JP2009114143A (ja) * | 2007-11-08 | 2009-05-28 | Nissan Chem Ind Ltd | 第一級アルコールからのカルボン酸の製造方法 |
JP2009161613A (ja) * | 2007-12-28 | 2009-07-23 | Nippon Paper Industries Co Ltd | セルロースの酸化方法、セルロースの酸化触媒及びセルロースナノファイバーの製造方法 |
Non-Patent Citations (3)
Title |
---|
MASATOSHI SHIBUYA ET AL., J. AM. CHEM. SOC., vol. 128, no. 26, 2006, pages 8412 - 8413 * |
THE CHEMICAL SOCIETY OF JAPAN, JIKKEN KAGAKU KOZA 17 YUKI KAGOBUTSU NO GOSEI V -SANKA HANNO, 2004, pages 393 - 395 * |
YOSUKE DEMIZU ET AL., TETRAHEDRON LETTERS, vol. 49, no. 1, January 2008 (2008-01-01), pages 48 - 52 * |
Cited By (49)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9914738B2 (en) | 2006-07-10 | 2018-03-13 | Paion Uk Limited | Short-acting benzodiazepine salts and their polymorphic forms |
US10961250B2 (en) | 2006-07-10 | 2021-03-30 | Paion Uk Limited | Short-acting benzodiazepine salts and their polymorphic forms |
US10472365B2 (en) | 2006-07-10 | 2019-11-12 | Paion Uk Limited | Short-acting benzodiazepine salts and their polymorphic forms |
US9777007B2 (en) | 2006-07-10 | 2017-10-03 | Paion Uk Limited | Short-acting benzodiazepine salts and their polymorphic forms |
EP2221306A1 (en) * | 2007-11-20 | 2010-08-25 | Nissan Chemical Industries, Ltd. | Method for producing 2-azaadamantane |
EP2221306A4 (en) * | 2007-11-20 | 2010-12-29 | Nissan Chemical Ind Ltd | PROCESS FOR PREPARING 2-AZAADAMANTANE |
US8273889B2 (en) | 2007-11-20 | 2012-09-25 | Nissan Chemical Industries, Ltd. | Method for producing 2-azaadamantane |
US8669367B2 (en) | 2007-11-20 | 2014-03-11 | Nissan Chemical Industries, Ltd. | Method for producing 2-azaadamantane |
WO2010089213A1 (de) * | 2009-02-06 | 2010-08-12 | Evonik Degussa Gmbh | Verfahren zur herstellung von aldehyden und ketonen aus primären und sekundären alkoholen |
WO2011027865A1 (ja) * | 2009-09-04 | 2011-03-10 | 日産化学工業株式会社 | 新規な2-アザアダマンタン化合物及びその製造方法 |
US10000464B2 (en) | 2009-09-18 | 2018-06-19 | Paion Uk Limited | Process for preparing 3-[(4S)-8-bromo-1-methyl-6-(2-pyridinyl)-4H-imidazo[1,2-A][1,4]benzodiazepine-4-yl]propionic acid methyl ester or the benzene sulfonate salt thereof, and compounds useful in that process |
US9512078B2 (en) | 2009-09-18 | 2016-12-06 | Paion Uk Limited | Process for preparing 3-[(45)-8-bromo-1-methyl-6-(2-pyridinyl)-4H-imidazo[1,2-A][1,4]benzodiazepine-4-yl]propionic acid methyl ester or the benzene sulfonate salt thereof, and compounds useful in that process |
JP2011153104A (ja) * | 2010-01-28 | 2011-08-11 | Nisshinbo Holdings Inc | アルコールの酸化方法 |
WO2012004069A1 (de) * | 2010-07-06 | 2012-01-12 | Evonik Degussa Gmbh | Verfahren zur herstellung von 2,5-diformylfuran und seiner derivate |
US8871981B2 (en) | 2010-07-16 | 2014-10-28 | Tohoku University | Method for oxidizing alcohols |
WO2012008228A1 (ja) * | 2010-07-16 | 2012-01-19 | 第一三共株式会社 | アルコール類の酸化方法 |
US10195210B2 (en) | 2010-11-08 | 2019-02-05 | Paion Uk Ltd. | Dosing regimen for sedation with CNS 7056 (Remimazolam) |
US10342800B2 (en) | 2010-11-08 | 2019-07-09 | Paion Uk Ltd. | Dosing regimen for sedation with CNS 7056 (Remimazolam) |
US12201637B2 (en) | 2010-11-08 | 2025-01-21 | Paion Uk Ltd. | Dosing regimen for sedation with CNS 7056 (Remimazolam) |
US9962359B2 (en) | 2011-09-30 | 2018-05-08 | Horizon Therapeutics, Llc | Methods of therapeutic monitoring of nitrogen scavenging drugs |
US10045959B1 (en) | 2011-09-30 | 2018-08-14 | Horizon Therapeutics, Llc | Methods of therapeutic monitoring of nitrogen scavenging drugs |
US10617665B2 (en) | 2011-09-30 | 2020-04-14 | Horizon Therapeutics, Llc | Methods of therapeutic monitoring of nitrogen scavenging drugs |
US10183005B2 (en) | 2011-09-30 | 2019-01-22 | Horizon Therapeutics, Llc | Methods of therapeutic monitoring of nitrogen scavenging drugs |
US10183002B2 (en) | 2011-09-30 | 2019-01-22 | Horizon Therapeutics, Llc | Methods of therapeutic monitoring of nitrogen scavenging drugs |
US10183004B2 (en) | 2011-09-30 | 2019-01-22 | Horizon Therapeutics, Llc | Methods of therapeutic monitoring of nitrogen scavenging drugs |
US10183006B2 (en) | 2011-09-30 | 2019-01-22 | Horizon Therapeutics, Llc | Methods of therapeutic monitoring of nitrogen scavenging drugs |
US9962358B2 (en) | 2011-09-30 | 2018-05-08 | Horizon Therapeutics, Llc | Methods of therapeutic monitoring of nitrogen scavenging drugs |
US10183003B2 (en) | 2011-09-30 | 2019-01-22 | Horizon Therapeutics, Llc | Methods of therapeutic monitoring of nitrogen scavenging drugs |
US10045958B1 (en) | 2011-09-30 | 2018-08-14 | Horizon Therapeutics, Llc | Methods of therapeutic monitoring of nitrogen scavenging drugs |
US9999608B2 (en) | 2011-09-30 | 2018-06-19 | Horizon Therapeutics, Llc | Methods of therapeutic monitoring of nitrogen scavenging drugs |
JP2015502972A (ja) * | 2011-12-22 | 2015-01-29 | ロケット・フルーレ | 5−ヒドロキシメチルフルアルデヒドを選択的に酸化するための改善された方法 |
WO2013118118A1 (en) | 2012-02-06 | 2013-08-15 | Technion Research And Development Foundation Ltd. | Alpha-hydrogen substituted nitroxyls and derivatives thereof as catalysts |
US9475774B2 (en) | 2012-02-06 | 2016-10-25 | Technion Research And Development Foundation Ltd. | Alpha-hydrogen substituted nitroxyls and derivatives thereof as catalysts |
WO2013125688A1 (ja) * | 2012-02-24 | 2013-08-29 | 国立大学法人東北大学 | 9-アザノルアダマンタンn-オキシル化合物及びその製造方法、並びに9-アザノルアダマンタンn-オキシル化合物を用いた有機分子酸化触媒及びアルコール類の酸化方法 |
JPWO2013125688A1 (ja) * | 2012-02-24 | 2015-07-30 | 国立大学法人東北大学 | 9−アザノルアダマンタンn−オキシル化合物及びその製造方法、並びに9−アザノルアダマンタンn−オキシル化合物を用いた有機分子酸化触媒及びアルコール類の酸化方法 |
US9114390B2 (en) | 2012-02-24 | 2015-08-25 | Tohoku University | 9-azanoradamantane N—oxyl compound and method for producing same, and organic oxidation catalyst and method for oxidizing alcohols using 9-azanoradamantane N—oxyl compound |
WO2014003203A2 (en) | 2012-06-29 | 2014-01-03 | Nissan Chemical Industries, Ltd. | Method for producing stereoselective epoxyketone compound |
WO2014136730A1 (ja) * | 2013-03-04 | 2014-09-12 | 小野薬品工業株式会社 | 転化率に優れた酸化反応 |
US9981941B2 (en) | 2013-03-04 | 2018-05-29 | Paion Uk Limited | Process for preparing 3-[(4S)-8-bromo-1-methyl-6-(2-pyridinyl)-4H-imidazo[1,2-a][1,4]benzodiazepin-4-yl]propionic acid methyl ester benzenesulfonate |
EA032065B1 (ru) * | 2013-03-04 | 2019-04-30 | ПАЙОН ЮКей ЛИМИТЕД | Реакция окисления, превосходящая в степени превращения |
US10414749B2 (en) | 2013-03-04 | 2019-09-17 | Paion Uk Limited | Process for preparing 3-[(S)-7-bromo-2-((2-oxopropyl)amino)-5-pyridin-2-yl-3H-1,4-benzodiazepin-3-yl]propionic acid methyl ester |
US9656987B2 (en) | 2013-03-04 | 2017-05-23 | Paion Uk Limited | Process for preparing 3-[(S)-7-bromo-2-((2-oxopropyl)amino)-5-pyridin-2-yl-3H-1,4-benzodiazepin-3-yl]Propionic acid methyl ester |
JPWO2014136730A1 (ja) * | 2013-03-04 | 2017-02-09 | パイオン ユーケー リミティド | 転化率に優れた酸化反応 |
CN105246873A (zh) * | 2013-06-14 | 2016-01-13 | 日产化学工业株式会社 | 光学活性醇化合物的制造方法 |
JP2015166325A (ja) * | 2014-03-04 | 2015-09-24 | 国立大学法人東北大学 | アルコキシアミン化合物、アルコキシアミン型アルコール酸化触媒及びそれを用いたアルコール酸化方法 |
US10329236B2 (en) | 2016-05-25 | 2019-06-25 | Horizon Therapeutics, Llc | Procedure for the preparation of 4-phenyl butyrate and uses thereof |
US9914692B2 (en) * | 2016-05-25 | 2018-03-13 | Horizon Therapeutics, Llc | Procedure for the preparation of 4-phenyl butyrate and uses thereof |
US11014870B2 (en) | 2016-05-25 | 2021-05-25 | Horizon Therapeutics, Llc | Procedure for the preparation of 4-phenyl butyrate and uses thereof |
US10668040B2 (en) | 2017-09-11 | 2020-06-02 | Horizon Therapeutics, Llc | Treatment of urea cycle disorders in neonates and infants |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2009145323A1 (ja) | 多環式化合物を用いるアルコールの酸化方法 | |
JP2011153076A (ja) | 多環式n−オキシル化合物を用いるアルコールの酸化方法 | |
US8669367B2 (en) | Method for producing 2-azaadamantane | |
JP2009114143A (ja) | 第一級アルコールからのカルボン酸の製造方法 | |
WO2008053652A1 (fr) | Procédé de fabrication d'hydroxyadamantane-amine | |
EP3498695B1 (en) | Method for synthesizing 3-(difluoromethyl)-1-methyl-1h-pyrazole-4-carboxylic acid | |
Ballini et al. | New and efficient synthesis of ω-nitroalcohols and spiroketals by chemio-and regioselective reductive cleavage of 2-nitrocycloalkanones | |
US8329909B2 (en) | Method for producing 2-azaadamantane compound from bicyclocarbamate compound | |
WO1999054271A1 (en) | Adamantanemethanol derivatives and process for the preparation thereof | |
JP2012229163A (ja) | 2−アザアダマンタン化合物 | |
WO2017014214A1 (ja) | 4-(トリフルオロメチルスルホニル)フェノール化合物の製造方法 | |
DE112016002460T5 (de) | Verfahren zur Herstellung von Perfluoralkansulfonylphenol-Verbindungen | |
JP2014009171A (ja) | ヒドロキシアダマンタンカルボン酸化合物の製造方法 | |
JP2011153077A (ja) | オキソアンモニウム硝酸塩を用いるアルコールの酸化方法 | |
JP2005306791A (ja) | アビエタンキノン化合物の製造方法 | |
US9745281B2 (en) | Method for the synthesis of 4-(heterocycloalkyl)-benzene-1,3,-diol compounds | |
JP5280187B2 (ja) | リオニレシノール又はその類似体の製造方法 | |
KURATA et al. | Preparation of a tricyclic A-ring analog of quassin | |
JP2009256306A (ja) | 重合性不飽和基を有するアダマンタン誘導体とその製造法 | |
WO2025022915A1 (ja) | 2-エチルスルホニル-1-ヘテロアリールエタノン化合物の製造方法 | |
CN119431219A (zh) | 一种手性3-羟基-4-氟哌啶衍生物及其合成方法 | |
JP3313820B2 (ja) | 環式カルボン酸およびエステルの製法 | |
JP4159767B2 (ja) | ラクトンの製造方法 | |
ITMI20131782A1 (it) | Procedimento per la preparazione di un agonista della trombopoietina | |
JP2014101280A (ja) | ヒドロキシアダマンタンポリカルボン酸化合物の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09754831 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
NENP | Non-entry into the national phase |
Ref country code: JP |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09754831 Country of ref document: EP Kind code of ref document: A1 |