[go: up one dir, main page]

WO2009036638A1 - Procédé et système d'auto-acheminement dans une connexion transversale numérique synchrone - Google Patents

Procédé et système d'auto-acheminement dans une connexion transversale numérique synchrone Download PDF

Info

Publication number
WO2009036638A1
WO2009036638A1 PCT/CN2007/003976 CN2007003976W WO2009036638A1 WO 2009036638 A1 WO2009036638 A1 WO 2009036638A1 CN 2007003976 W CN2007003976 W CN 2007003976W WO 2009036638 A1 WO2009036638 A1 WO 2009036638A1
Authority
WO
WIPO (PCT)
Prior art keywords
self
routing
data
cross
stm
Prior art date
Application number
PCT/CN2007/003976
Other languages
English (en)
French (fr)
Inventor
Jing Wang
Zhiwei Zhang
Chunsong Deng
Original Assignee
Zte Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zte Corporation filed Critical Zte Corporation
Priority to US12/678,660 priority Critical patent/US20100195657A1/en
Publication of WO2009036638A1 publication Critical patent/WO2009036638A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/04Selecting arrangements for multiplex systems for time-division multiplexing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2213/00Indexing scheme relating to selecting arrangements in general and for multiplex systems
    • H04Q2213/13103Memory
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2213/00Indexing scheme relating to selecting arrangements in general and for multiplex systems
    • H04Q2213/13109Initializing, personal profile
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2213/00Indexing scheme relating to selecting arrangements in general and for multiplex systems
    • H04Q2213/13141Hunting for free outlet, circuit or channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2213/00Indexing scheme relating to selecting arrangements in general and for multiplex systems
    • H04Q2213/13174Data transmission, file transfer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2213/00Indexing scheme relating to selecting arrangements in general and for multiplex systems
    • H04Q2213/13215Code checking, CRC
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2213/00Indexing scheme relating to selecting arrangements in general and for multiplex systems
    • H04Q2213/13216Code signals, frame structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2213/00Indexing scheme relating to selecting arrangements in general and for multiplex systems
    • H04Q2213/1329Asynchronous transfer mode, ATM
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2213/00Indexing scheme relating to selecting arrangements in general and for multiplex systems
    • H04Q2213/13352Self-routing networks, real-time routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2213/00Indexing scheme relating to selecting arrangements in general and for multiplex systems
    • H04Q2213/13367Hierarchical multiplexing, add-drop multiplexing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2213/00Indexing scheme relating to selecting arrangements in general and for multiplex systems
    • H04Q2213/1338Inter-exchange connection

Definitions

  • a cross-connect device is an important component in an SDH (Synchronous Digital Hierarchy) system, and a synchronous digital cross-connect realizes a virtual machine (VC, Virtual Container) formed by a standard G.709. Transparent connection and reconnection, which is controllable between any port.
  • SDH Serial Digital Hierarchy
  • PSH Psiochronous Digital Hierarchy
  • these ports also support the control and management functions defined by the SDH management standard G.784.
  • inter-layer traffic grooming is to channel low-order channels to specific high-order channels by service category, destination or protection category, and enable these channels to be managed separately. Similarly, the higher order channel can also be routed to the STM-N (Synchronous Transport Module -N) data stream.
  • Intra-layer traffic consolidation is the process of improving service layer services that consolidate user connections from service layer paths into fewer service layer paths to improve system and device utilization.
  • Cross-connect devices can be classified into cross-connect devices that provide high-order VCs, and cross-connect devices that provide low-order VCs, depending on the type of cross-connect.
  • Performing a high-order VC cross-connect device typically connects two or more STM-N data streams, which must first be adjusted to the reference time 4 of the cross-connect device and to the STM-N data stream. The pointer is adjusted accordingly. If the STM-N data stream is interleaved into the management unit (AU, Administration Unit), these STM-N data streams can be synchronously cross-connected in a single space-switching matrix for these STM-N data. Synchronous alignment adjustment of the stream is a guarantee of no damage re-arrangement in the matrix. In this way, a large capacity VC-3 or VC-4 switching matrix is constructed.
  • the low-order VC cross-connect function is similar to the high-order VC cross-connect function, except that the VC-3 is replaced by a fractional VC.
  • a cross-connection can be established between a specific input and a specific output.
  • the processor interface configures the cross-connect chip. In this way, the processor system resources need to be occupied. In an application environment where the cross-capacity is large and the cross-matrix of the chip is to be updated rapidly, the self-routing configuration using the processor cannot meet the requirements.
  • an object of the present invention is to provide a method and system for self-routing of a synchronous digital cross-connect, by which the user is provided with an easy implementation, less system resources, high reliability, and suitable for the user.
  • Self-routing solution for high-capacity cross-configured synchronous digital cross-connects The present invention provides a method for self-routing of a synchronous digital cross-connect, comprising:
  • the self-routing module inserts the cross-connect control memory CM data into the STM-N data stream according to the frame header flag and the self-routing start address signal;
  • the self-routing receiving module extracts CM data from the STM-N data stream according to the frame header flag and the self-routing start address signal;
  • the C self-routing receiver module writes the CM data to the cross-connect control memory.
  • the step A of the method further includes: performing a redundancy loop check on the CM data to be inserted into the STM-N data stream from the routing module.
  • the CRC obtains a first calibration value, 'insert the first school risk value into the STM-N data stream; the method B further includes: the self-routing receiving module extracts the first check value from the STM-N data stream;
  • the step C is: the self-routing receiving module performs CRC calibration on the CM data extracted from the STM-N data stream to obtain a second check value, and extracts the second check value from the STM-N data stream.
  • the first check value is compared, if the same, the CM data is written to the cross-connect control memory; otherwise, the CM data is not written to the cross-connect control memory.
  • the step A of the method further includes: setting, by the routing and sending module, an allowable configuration signal, and inserting the allowed configuration signal into the STM-N data stream;
  • the step A of the method further includes: the self-routing parameter includes a self-routing insertion position, and the self-routing transmission module inserts the CM data into the STM-N data stream according to the self-routing insertion position.
  • the self-routing parameter of the method further includes a self-routing configuration form-feeding request flag; the method, the cross-connection control memory includes an active page and an inactive page; and the self-routing receiving module of the method is configured according to the self-routing configuration page-changing request The flag switches between the active page and the inactive page, writing CM data to the inactive page.
  • the present invention also provides a self-routing system for synchronous digital cross-connection, comprising: a self-routing module for inserting cross-connect control memory CM data into an STM-N data stream according to a frame header flag and a self-routing start address signal
  • the self-routing receiving module is configured to extract CM data from the STM-N data stream according to the frame header flag and the self-routing start address signal, and write the CM data into the cross-connect control memory.
  • the self-routing transmission module of the system includes a self-routing transmission control unit, a first CRC check unit, and an insertion data generating unit, wherein the first CRC check unit is configured to perform CM data to be inserted into the STM-N data stream.
  • the CRC school-risk obtains the first check value; the insertion data generating unit is configured to insert the first check value and the CM data into the STM-N data stream under the control of the self-routing control unit;
  • the self-routing receiving module of the system includes a self-routing extraction control unit, a second CRC check unit, and a cross-connection control memory, wherein the second CRC check unit is configured to perform CM data extracted from the STM-N data stream.
  • the CRC check obtains the second check value, and compares the second check value with the "check value extracted from the STM-N data stream. If the same, the CM data is written by the self-routing extraction control unit.
  • the self-routing transmission control unit of the system sets an allow configuration signal, and the insertion data generating unit inserts the permission configuration signal into the STM -N data stream; the self-routing extraction control unit of the system analyzes the allowable configuration signal extracted from the STM-N data stream, and if the configuration signal is allowed to be valid, writes the CM data into the cross-connect control memory; otherwise, the CM data is not Writing to the cross-connect control memory.
  • the present invention also provides a self-routing device for synchronous digital cross-connection, including: a transmission control unit, a first CRC calibration unit, and a data generation unit, wherein the first CRC check unit performs CRC check on the CM data to be inserted into the STM-N data stream to obtain a first check value, and inserts The data generating unit inserts the first check value and the CM data into the STM-N data stream under the control of the self-routing control unit.
  • the present invention also provides a self-routing receiving device for synchronous digital cross-connection, including: self-routing extraction a control unit, a second CRC check unit, and a cross-connect control memory, wherein the CRC data extracted from the STM-N data stream by the route extraction control unit, and the second CRC check unit performs CRC check on the CM data to obtain the second school Verifying, and comparing the second check value with the first check value extracted from the STM-N data stream, if the same, the CM data is written into the cross-connect control memory by the self-routing extraction control unit; otherwise, The self-routing control unit does not write the CM data into the cross-connect control memory.
  • FIG. 1 is a block diagram of a self-routing system for synchronous digital cross-connection in the present invention
  • FIG. 2 is a self-routing overhead position distribution diagram of a synchronous digital cross-connect in the present invention
  • FIG. 4 is a structural block diagram of a self-routing transceiver module for synchronous digital cross-connection according to the present invention
  • FIG. 5 is a structural block diagram of a self-routing receiving module for synchronous digital cross-connection according to the present invention.
  • FIG. 1 is a block diagram of a self-routing system for synchronous digital cross-connection according to the present invention, including: a service board 101 and a cross-chip 102, wherein the service board 101 includes a transport terminal function module 1011 and a self-routing module 1012, and the cross-chip 102 includes a self-routing.
  • the receiving module 1021 and the cross matrix module 1022, the self-routing receiving module 1021 includes a self-routing extraction module 10211 and a cross-connection control memory 10212.
  • the self-routing module 1012 sets the starting address of the self-routing, that is, the location of the self-routing inserted in the overhead, and at the same time, needs to be
  • the downlink CM data is subjected to Cyclic Redundancy Check (CRC), and the check value is inserted into the overhead byte position corresponding to the self-routing in the STM-16 frame structure together with the CM data, and then sent to the cross chip 102.
  • CRC Cyclic Redundancy Check
  • the cross-chip 102 receives the STM-16 data stream sent by the service board 101, and the self-routing receiving module 1021 extracts the CRC check value from the preset overhead byte position corresponding to the self-routing according to the self-routing mode status information configured by the system. And the CM data, and perform CRC check. If the result of the calibration is correct, the corresponding content of the CM is rewritten, and the configuration of the cross matrix module 1022 is completed.
  • 2 is a self-routing overhead location distribution diagram of a synchronous digital cross-connect in the present invention
  • the STM-16 frame structure is an example of a byte that allows self-routing information to be passed in the STM-16 frame structure.
  • the slashed area in the figure indicates that it cannot be used to pass self-routing information, and the unfilled area can be used to pass self-routing information.
  • the Payload byte position cannot be passed from the routing information, the segment overhead (SOH, Section Overhead) byte position except the first row header byte and the fourth row pointer byte, and the In principle, the self-routing information can be passed in addition to the B1 byte of the first column of the second row.
  • the location and data distribution characteristics of the self-routing can be set according to user requirements.
  • FIG. 3 is a schematic diagram of a self-routing data format of a synchronous digital cross-connection according to the present invention, that is, a self-routing information format definition passed.
  • the CRC-7 school- ⁇ method is adopted in the self-routing information format, that is, the transmitting side is required to
  • the self-routing information passed is accompanied by a CRC-7 check code.
  • the receiving side finds that the CRC-7 check is incorrect, it refuses to receive the CM data. Also set an allow configuration bit, along with each CM data down. If this bit is not allowed, the CM data will not be received even if the CRC-7 check is correct, thus making the control of the self-routing configuration more flexible.
  • the self-routing information shown in Figure 3 is transmitted in the order of VC-4. If a line of overhead cannot pass all the self-routing information, it must be wrapped. That is, the location of the payload must be temporarily interrupted. , to the next line from the area allowed by the route, restart the transfer of self-routing information, if the next line can not complete the transfer, then continue to the next line for the self-routing information.
  • FIG. 4 is a structural block diagram of a self-routing transmitting module 1012 of a synchronous digital cross-connect according to the present invention.
  • the self-routing transmission module 1012 includes a self-routing location distribution map shown in FIG. 2, including a self-routing transmission control unit 10121, a first CRC-7 verification unit 10122, and an insertion data generation unit 10123 0 .
  • the self-routing parameter is set, and the self-routing information is inserted into the STM-16 data stream according to the self-routing parameter.
  • Self-routing parameters include self-route insertion location, self-route insertion number, and form feed after self-routing configuration Request sign.
  • the frame header flag indicates the frame header position of the STM-16 data stream
  • the self-routing start address signal indicates the insertion start position of the self-routing in the frame structure
  • the frame header flag and the self-routing start address signal jointly determine the VC- The location of the SOH in the frame structure for the self-routing information of each CM in 4.
  • the self-routing control unit 10121 determines the time at which the self-routing information is inserted according to the signal such as the frame header and the self-routing start address, and sends the CM data and the CRC-7 check enable signal crc_gen to the first CRC- 7 check unit 10122.
  • the first CRC-7 check unit 10122 generates a CRC-7 check value according to the CM data and the CRC-7 check enable signal crc_gen, and the insertion data generating unit 10123 follows the self-routing data format shown in FIG.
  • the CRC-7 check value, the CM data, and the allowable configuration signal are inserted into the corresponding locations of the self-routing information of the respective CMs in the SOH.
  • the self-routing control unit 10121 needs to insert a form-changing flag at the subsequent self-routing permission position, which can be defined by the user.
  • the B1 byte needs to be regenerated before sending the STM-16 data stream that has been inserted from the routing information.
  • the self-routing receiving module 1021 includes a self-routing extraction control unit 10211, and a second
  • the CRC-7 insurance unit 10213 and the cross-connect control memory 10212 determines the time from the arrival of the routing information according to the frame header and the self-routing start address, that is, the position corresponding to the self-routing information in the STM-16 data stream, and generates a self-routing extraction flag.
  • the signal cm_get is sent to the second CRC-7 check unit 10213.
  • the second CRC-7 school-risk unit 10213 extracts self-routing information from the STM-16 data stream according to the self-routing extraction flag signal cm_get, and performs CRC-7 check on the CM data in the self-routing information.
  • the cross-connect control memory 10212 includes two parts, CM0 and CM1. When CM0 is in the currently active page, CM1 is in the inactive page; otherwise, when CM1 is in the currently active page, CM0 is in the inactive page.
  • the paging change operation is performed, and the self-routing receiving module sets a status signal for each VC-4, as long as there is a VC. If the CM inactive page content of -4 is not rewritten during the configuration process, the status signal is low. Even if the form feed flag is received, the page change operation is not performed, so that some VC-4s after page change can be avoided. The cross connect did not get the correct update. But for the corresponding VC-4 Allowed configuration bits to be invalid and not rewritten are not included.
  • the self-routing method and system for cross-connection inserts cross-matrix information CM data to be configured into a pre-defined overhead byte position in the STM-N data stream, and then crosses
  • the connection chip extracts the CM value from the overhead byte position corresponding to the ST-data stream, and rewrites the corresponding CM in the cross matrix.
  • the configuration process of the cross matrix information can be flexible, and can be completed by the cross chip 102 or by the FPGA.
  • the invention can greatly reduce the load of the processor in a large-capacity cross-connect application environment, thereby making the advantages more prominent.
  • the present invention has been applied to actual chip design and has passed system test verification. The above is only the preferred embodiment of the present invention, and is not intended to limit the present invention. Any modifications, equivalents, improvements, etc., which are included in the spirit and scope of the present invention, should be included in the present invention. Within the scope of protection.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Description

一种同步数字交叉连接的自路由的方法及系统 技术领域 本发明主要涉及数字通信领域,尤其涉及一种同步数字交叉连接的自路 由的方法及系统。 背景技术 交叉连接设备是光同步数字传输 ( SDH, Synchronous Digital Hierarchy ) 系统中的重要组成部分, 同步数字交叉连接实现了按标准 G.709构成的多个 虚拟器( VC , Virtual Container )之间的透明连接和再连接, 该透明连接和再 连接在任何端口间都可控。 这些端口除了支持标准 G.707定义的 SDH速率、 标准 G.702定义的准同步数字传输 ( PDH, Plesiochronous Digital Hierarchy ) 速率, 还支持 SDH管理标准 G.784定义的控制和管理功能。 对层间的业务量的疏导和对层内业务量的合并是交叉连接设备管理的 一个重要方面。 其中, 层间业务量疏导是按服务类别、 目的地或保护类别将 低阶通道疏导到特定的高阶通道中去, 并使这些通道能分别管理。 同样地, 也可以将高阶通道 ¾导到同步传送 ( STM-N, Synchronous Transport Module -N)数据流中。层内业务量合并是改善服务层服务的过程, 该过程将来自服务 层路径的用户连接合并到较少的服务层路径中,以提高系统和设备的利用率。 交叉连接设备按照交叉连接的类型可以分为提供高阶 VC 的交叉连接 设备, 以及提供低阶 VC的交叉连接设备。 执行高阶 VC交叉连接设备通常 连接两个或更多的 STM- N数据流,这些 STM-N数据流必须先调整到该交叉 连接设备的参考时 4中上, 并对 STM-N数据流的指针作相应的调节。 如果把 STM-N数据流解间插到管理单元( AU , Administration Unit ), 则可以在一个 单一的空分交换矩阵中对这些 STM-N 数据流 #文同步交叉连接, 对这些 STM-N数据流的同步对位调整是在矩阵中作无损伤再安排的保证。通过这种 方式构成容量很大的 VC-3或 VC-4交换矩阵。低阶 VC交叉连接功能与高阶 VC交叉连接功能类似,只是 VC-3换成了 氏阶 VC,通过对交叉矩阵的配置, 可在特定的输入端和特定的输出端之间建立交叉连接关系。 确定交叉连接关系的交叉矩阵, 目前常规的方法是由网络管理者通过处 理器接口对交叉连接芯片进行配置。 这种方式需要占用处理器系统资源, 在 交叉容量很大, 且芯片的交叉矩阵又要快速更新的应用环境下, 采用处理器 进行自路由配置的方式将无法满足要求。 发明内容 有鉴于此,本发明的目的在于提供一种同步数字交叉连接的自路由的方 法及系统, 通过该方法及系统达到为用户提供一种易于实现、 占用系统资源 少、可靠性高、适合大容量交叉配置的同步数字交叉连接的自路由解决方案。 本发明提供了一种同步数字交叉连接的自路由的方法, 包括:
A. 自路由发送模块根据帧头标志和自路由起始地址信号将交叉连接控 制存储器 CM数据插入 STM-N数据流;
B. 自路由接收模块根据帧头标志和自路由起始地址信号从 STM-N 数 据流提取 CM数据;
C 自路由接收模块将该 CM数据写入交叉连接控制存储器。 该方法所述步驟 A还包括: 自路由发送模块对要插入 STM-N数据流的 CM数据进行冗余循环校验
CRC得到第一校 ¾r值, '将该第一校险值插入 STM-N数据流; 该方法所述步骤 B还包括: 自路由接收模块从 STM-N数据流提取第一 校验值; 该方法所述步 C为: 自路由接收模块对从 STM-N数据流提取的 CM数据进行 CRC校-睑得 到第二校验值, 将该第二校验值与从 STM-N数据流提取的第一校验值比较, 如果相同, 则将 CM数据写入交叉连接控制存储器; 否则, 不将 CM数据写 入交叉连接控制存储器。 该方法所述步骤 A还包括: 自路由发送模块设置允许配置信号, 将该允许配置信号插入 STM-N数 据流; 该方法所述步骤 B还包括: 自路由接收模块从 STM-N数据流提取允许 配置信号; 该方法所述步骤 C为: 自路由接收模块分析从 STM-N数据流提取的允许配置信号, 如果允许 配置信号有效, 则将 CM数据写入交叉连接控制存储器; 否则, 不将 CM数 据写入交叉连接控制存储器。 该方法所述步骤 A前还包括: 自路由发送模块设定自路由参数, 该自路由参数包括自路由插入位置; 所述自路由发送模块根据自路由插入位置将 CM数据插入 STM-N数据 流。 该方法所述自路由参数还包括自路由配置换页请求标志; 该方法所述交叉连接控制存储器包括活动页与非活动页; 该方法所述自路由接收模块才艮据自路由配置换页请求标志在活动页与 非活动页之间进行切换, 将 CM数据写入非活动页。 本发明还提供了一种同步数字交叉连接的自路由的系统, 包括: 自路由发送模块,用于根据帧头标志和自路由起始地址信号将交叉连接 控制存储器 CM数据插入 STM-N数据流; 自路由接收模块, 用于根据帧头标志和自路由起始地址信号从 STM-N 数据流提取 CM数据, 并将该 CM数据写入交叉连接控制存储器。 该系统所述自路由发送模块包括自路由发送控制单元、 第一 CRC校验 单元和插入数据生成单元, 其中, 第一 CRC校验单元,用于对要插入 STM-N数据流的 CM数据进行 CRC 校-险得到第一校验值; 插入数据生成单元,用于在自路由发送控制单元的控制下将第一校验值 和 CM数据插入 STM-N数据流; 该系统所述自路由接收模块包括自路由提取控制单元、 第二 CRC校验 单元和交叉连接控制存储器, 其中, 第二 CRC校验单元,用于对从 STM-N数据流提取的 CM数据进行 CRC 校验得到第二校验值, 并将该第二校验值与从 STM-N数据流提取的第「校 驗值比较判断, 如果相同, 则由自路由提取控制单元将 CM数据写入交叉连 接控制存储器; 否则, 自路由提取控制单元不将 CM数据写入交叉连接控制 存储器。 该系统所述自路由发送控制单元设置允许配置信号,所述插入数据生成 单元将该允许配置信号插入 STM-N数据流; 该系统所述自路由提取控制单元分析从 STM-N数据流提取的允许配置 信号, 如果允许配置信号有效, 则将 CM数据写入交叉连接控制存储器; 否 则, 不将 CM数据写入交叉连接控制存储器。 本发明还提供了一种同步数字交叉连接的自路由发送装置, 包括: 自路由发送控制单元、 第一 CRC校猞单元和 ·ί翁入数据生成单元, 其中, 第一 CRC校验单元对要插入 STM-N数据流的 CM数据进行 CRC校验 得到第一校验值, 插入数据生成单元在自路由发送控制单元的控制下将第一 校驗值和 CM数据插入 STM-N数据流。 本发明还提供了一种同步数字交叉连接的自路由接收装置, 包括: 自路由提取控制单元、 第二 CRC校验单元和交叉连接控制存储器, 其 中, 自路由提取控制单元从 STM-N数据流提取的 CM数据, 第二 CRC校 验单元对 CM数据进行 CRC校验得到第二校验值, 并将该第二校验值与从 STM-N数据流提取的第一校验值比较判断, 如果相同, 则由自路由提取控制 单元将 CM数据写入交叉连接控制存储器; 否则, 自路由提取控制单元不将 CM数据写入交叉连接控制存储器。 本发明所述的同步数字交叉连接的自路由的方法及系统, 通过 STM-N 数据流的上游业务板处理各个 VC的交叉配置并发送给交叉芯片, 交叉芯片 才艮据接收的各个 VC的交叉配置信息进行自动路由配置, 从而克服了现有技 术中处理器接口难以满足大容量交叉连接配置需要的缺点, 达到为用户提供 一种易于实现、 占用系统资源少、 可靠性高、 适合大容量交叉配置的同步数 字交叉连接的自路由解决方案的有益效果。 附图说明 图 1为本发明中同步数字交叉连接的自路由系统框图; 图 2为本发明中同步数字交叉连接的自路由开销位置分布图; 图 3为本发明中同步数字交叉连接的自路由数据格式示意图; 图 4为本发明中同步数字交叉连接的自路由发送模块结构框图; 图 5为本发明中同步数字交叉连接的自路由接收模块结构框图。 具体实施方式 下面以 VC- 4空分交叉连接为例, 并结合附图详细描述本发明。 图 1 为本发明中同步数字交叉连接的自路由系统框图, 包括: 业务板 101和交叉芯片 102, 其中, 业务板 101包括传送终端功能模块 1011和自路 由发送模块 1012, 交叉芯片 102包括自路由接收模块 1021和交叉矩阵模块 1022,自路由接收模块 1021包括自路由提取模块 10211和交叉连接控制存储 器 10212。 业务板 101在传送终端功能模块 1011处理完成后, 当系统控制需要配 置自路由模式时, 自路由发送模块 1012 设定自路由的起始地址, 即开销中 插入自路由的位置,并同时将需要下传的 CM数据进行循环冗余校验(CRC, Cyclic Redundancy Check ), 将校验值与 CM数据一起插入到 STM-16帧结构 中自路由对应的开销字节位置, 然后送给交叉芯片 102。 交叉芯片 102接收业务板 101发送的 STM-16数据流,其中的自路由接 收模块 1021 根据系统配置的自路由模式状态信息, 从预先设定的自路由对 应的开销字节位置取出 CRC校验值及 CM数据, 并进行 CRC校验, 如果校 ¾r结果正确, 则改写 CM相应的内容, 完成对交叉矩阵模块 1022的配置。 图 2 为本发明中同步数字交叉连接的自路由开销位置分布图, 以 STM-16帧结构为例, 表示了 STM-16帧结构中允许传递自路由信息的字节。 图中带斜线区域表示不可用来传递自路由信息, 无填充区域可用来传递自路 由信息。 从图中可以看出, 净荷(Payload )字节位置不可传递自路由信息, 段开销(SOH, Section Overhead )字节位置除第一行帧头字节及第四行指针 字节, 以及第二行第一列的 B1 字节外, 原则上都可以传递自路由信息。 本 发明在具体实现时, 自路由的位置及数据分布特点可根据用户需求的设定。 其它帧结构的开销字节有所不同, 但自路由位置允许分布的区域基本是类似 的, 即净荷位置、 段开销的第一行帧头以及第四行指针位置不可用来传递自 路由^ ί言息。 图 3为本发明中同步数字交叉连接的自路由数据格式示意图,即传递的 自路由信息格式定义。 为了避免自路由信息传递过程出现因自路由信息有误 码, 而导致的交叉矩阵的 CM配置数据出错的情况, 自路由的信息格式中采 用 CRC-7的校-睑方式, 即发送侧对所要传递的自路由信息伴随 CRC-7校验 码。 如果接收侧发现 CRC- 7校验不正确, 则拒绝接收 CM数据。 同时设置一 个允许配置位, 伴随每个 CM 数据下传。 如果该位不允许, 则即使 CRC-7 校验正确, 也不接收 CM数据, 从而使自路由配置的控制更力口灵活。 图 3所 示的自路由信息按 VC-4的编号顺序传递, 如果一行开销位置不能传递完所 有的自路由信息, 则必须换行, 即在净荷出现的位置, 自路由信息的传递必 须暂时中断,到下一行自路由允许传递的区域,重新开始自路由信息的传递, 如果该下一行还不能完成传递, 则延续到再下一行进行自路由信息的传递。 为了使 CM的自路由信息传递过程更加稳定可靠, 系统在实际工作过程中, 根据需要传递的自路由信息的数量情况, 可以重复传递同一个 CM的自路由 信息。 这样, 当某个 CM的自路由信息第一次传递时出现错误, 第二次也出 现错误的概率就比较低, 大大增加配置 CM的成功率。 图 4为本发明中同步数字交叉连接的自路由发送模块 1012结构框图, 图 5为本发明中同步数字交叉连接的自路由接收模块 1021结构框图, 两个 模块可统一设置, 配套应用。 图 4中, 自路由发送模块 1012包括自路由发送控制单元 10121、 第一 CRC-7校驗单元 10122和插入数据生成单元 101230 自路由发送控制单元 10121根据图 2所示的自路由位置分布图,设定自 路由参数, 根据该自路由参数将自路由信息插入 STM-16数据流中。 自路由 参数包括自路由插入位置、 自路由插入数量、 以及自路由配置完成后的换页 请求标志。 图 4中的 STM-16数据流完成指针处理, 帧头对齐等操作后, 进 入自路由发送模块 1012。 其中, 帧头标志表示 STM-16数据流的帧头位置, 自路由起始地址信号表示自路由在帧结构中的插入起始位置, 帧头标志和自 路由起始地址信号共同确定了 VC-4 中每个 CM 的自路由信息在帧结构中 SOH的位置。自路由发送控制单元 10121根据帧头和自路由起始地址等信号, 确定自路由信息开始插入的时刻, 并将 CM数据及 CRC-7校验的使能信号 crc— gen送给第一 CRC-7校验单元 10122。 第一 CRC-7校验单元 10122 _据 CM数据及 CRC-7校验的使能信号 crc— gen产生 CRC-7校验值,插入数据生 成单元 10123按照图 3所示的自路由数据格式, 将 CRC-7校验值、 CM数据 以及允许配置信号插入到各个 CM的自路由信息在 SOH中的对应位置。 当 所有需要配置的 CM信息都完成后, 自路由发送控制单元 10121需要在随后 的自路由允许位置下插入一个换页标志, 该换页标志可由用户自行定义。 该 过程中, 在发送已插入自路由信息的 STM-16数据流之前, 需要重新生成 B1 字节。 图 5 中, 自路由接收模块 1021 包括自路由提取控制单元 10211、 第二
CRC-7校险单元 10213和交叉连接控制存储器 10212。 自路由提取单元 10211 >据帧头及自路由起始地址等信号,确定自路由 ·息到来的时刻, 即对应于自路由信息在 STM-16数据流中的位置, 并产生 一个自路由提取标志信号 cm_get, 发送给第二 CRC-7校验单元 10213。 第二 CRC-7校-险单元 10213根据自路由提取标志信号 cm— get,从 STM-16数据流 中提取自路由信息, 并对自路由信息中的 CM数据进行 CRC-7校验。 如果 CRC-7校验结果与接收的 CRC-7校验结果相同, 则表明校验正确,如果此时 允许配置信号有效, 则将 CM数据写入对应的 CM的非活动页中。 另夕卜, 如 果此时自路由提取单元 10211检测到换页标志, 则将当前活动页与非活动页 进行切换。 交叉连接控制存储器 10212包括 CM0和 CM1两部分, 当 CM0 处于当前活动页时, 则 CM1处于非活动页; 反之, 当 CM1处于当前活动页 时, 则 CM0处于非活动页。 本发明为了保证 STM- 16数据流中每个 VC-4都正确配置 CM数据后才 进行换页操作, 自路由接收模块为每个 VC-4设置了一个是否配置的状态信 号, 只要有一个 VC-4的 CM非活动页内容在本次配置过程中未被改写, 则 此状态信号为低, 即使接收到换页标志, 也不进行换页操作, 从而可以避免 换页后某些 VC-4的交叉连接没有得到正确的更新。但对于因为 VC-4对应的 允许配置位无效而造成未被改写, 则不包括在内。 本发明所述的交叉连接的自路由方法与系统, 通过在前级业务处理时, 将需要配置的交叉矩阵信息 CM数据插入到 STM-N数据流中预先定义的开 销字节位置, 然后由交叉连接芯片从 ST - 数据流对应的开销字节位置提 取出 CM值, 对交叉矩阵中相应的 CM进行改写。 其中, 交叉矩阵信息的配 置过程可以比较灵活, 既可由交叉芯片 102完成, 也可由 FPGA完成。 本发 明在大容量的交叉连接应用环境下, 能够大大减少处理器的负荷, 从而使其 优点更为突出。 另外, 本发明已经应用到实际的芯片设计之中, 并通过了系 统测试验证。 以上所述仅为本发明的较佳实施例而已, 并不用以限制本发明, 凡在本 发明的精神和原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在 本发明的保护范围之内。

Claims

权 利 要 求 书 一种同步数字交叉连接的自路由的方法, 其特征在于, 包括:
A. 自路由发送模块根据帧头标志和自路由起始地址信号将交叉 连接控制存储器 CM数据插入 STM- N数据流;
B. 自路由接收模块根据帧头标志和自路由起始地址信号从 STM-N数据流提取 CM数据;
C. 自路由接收模块将该 CM数据写入交叉连接控制存储器。 根据权利要求 1所述的方法, 其特征在于,
所述步驟 A还包括:
自路由发送模块对要插入 STM-N数据流的 CM数据进行冗余循 环校验 CRC得到第一校验值, 将该第一校—险值插入 STM-N数据流; 所述步骤 B还包括: 自路由接收模块从 STM-N数据流提取第一 校验值;
所述步骤 C为:
自路由接收模块对从 STM-N数据流提取的 CM数据进行 CRC校 验得到第二校验值,将该第二校验值与从 STM-N数据流提取的第一校 儉值比较, 如果相同, 则将 CM数据写入交叉连接控制存储器; 否则, 不将 CM数据写入交叉连接控制存储器。 根据权利要求 1所述的方法, 其特征在于,
所述步骤 A还包括:
自路由发送模块设置允许配置信号, 将该允许配置信号插入 STM- 数据流;
所述步骤 B还包括: 自路由接收模块从 STM-N数据流提取允许 配置信号;
所述步驟 C为:
自路由接收模块分析从 STM-N数据流提取的允许配置信号, 如 果允许配置信号有效, 则将 CM数据写入交叉连接控制存储器; 否则, 不将 CM数据写入交叉连接控制存储器。
4. 根据权利要求 1所述的方法, 其特征在于, 所述步碌 A前还包括:
自路由发送模块设定自路由参数,该自路由参数包括自路由插入 位置;
所述自路由发送模块根据自路由插入位置将 CM 数据插入 STM-N数据流。
5. 根据权利要求 4所述的方法, 其特征在于,
所述自路由参数还包括自路由配置换页请求标志; 所述交叉连接控制存储器包括活动页与非活动页; 所述自路由接收模块根据自路由配置换页请求标志在活动页与 非活动页之间进行切换, 将 CM数据写入非活动页。
6. —种同步数字交叉连接的自路由的系统, 其特征在于, 包括:
自路由发送模块, 用于根据帧头标志和自路由起始地址信号将交 叉连接控制存储器 CM数据插入 STM-N数据流;
自路由接收模块, 用于根据帧头标志和自路由起始地址信号从 STM-N数据流提取 CM数据,并将该 CM数据写入交叉连接控制存储 器。
7. 根据权利要求 6所述的系统, 其特征在于,
所述自路由发送模块包括自路由发送控制单元、 第一 CRC校验 单元和插入数据生成单元, 其中,
第一 CRC校验单元,用于对要插入 STM-N数据流的 CM数据进 行 CRC校验得到第一校验值;
插入数据生成单元, 用于在自路由发送控制单元的控制下将第一 校脸值和 CM数据插入 STM-N数据流;
所述自路由接收模块包括自路由提取控制单元、 第二 CRC校验 单元和交叉连接控制存储器, 其中,
第二 CRC校验单元,用于对从 STM-N数据流提取的 CM数据进 行 CRC校验得到第二校验值, 并将该第二校验值与从 STM-N数据流 提取的第一校验值比较, 如果相同, 则由自路由提取控制单元将 CM 数据写入交叉连接控制存储器; 否则, 自路由提取控制单元不将 CM 数据写入交叉连接控制存储器。 根据权利要求 6所述的系统 , 其特征在于,
所述自路由发送控制单元设置允许配置信号, 所述插入数据生成 单元将该允许配置信号插入 STM-N数据流;
所述自路由提取控制单元分析从 STM-N数据流提取的允许配置 信号, 如果允许配置信号有效, 则将 CM数据写入交叉连接控制存储 器; 否则, 不将 CM数据写入交叉连接控制存储器。 一种同步数字交叉连接的自路由发送装置, 其特征在于, 包括:
自路由发送控制单元、第一 CRC校验单元和插入数据生成单元, 其中,
第一 CRC校-险单元对要插入 STM-N数据流的 CM数据进行 CRC 校验得到第一校验值, 插入数据生成单元在自路由发送控制单元的控 制下将第一校验值和 CM数据插入 STM-N数据流。
一种同步数字交叉连接的自路由接收装置, 其特征在于, 包括:
自路由提取控制单元、 第二 CRC校验单元和交叉连接控制存储 器, 其中,
自路由提取控制单元从 STM- N数据流提取的 CM数据, 第二 CRC校验单元对 CM数据进行 CRC校验得到第二校验值, 并将该第 二校验值与从 STM-N数据流提取的第一校验值比较判断, 如果相同, 则由自路由提取控制单元将 CM数据写入交叉连接控制存储器;否则, 自路由提取控制单元不将 CM数据写入交叉连接控制存储器。
PCT/CN2007/003976 2007-09-20 2007-12-29 Procédé et système d'auto-acheminement dans une connexion transversale numérique synchrone WO2009036638A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/678,660 US20100195657A1 (en) 2007-09-20 2007-12-29 Method and system for self-routing in synchronous digital cross-connection

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200710122073.8 2007-09-20
CN2007101220738A CN101394335B (zh) 2007-09-20 2007-09-20 一种同步数字交叉连接的自路由的方法及系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/476,591 Continuation US8280381B2 (en) 2007-07-06 2009-06-02 Intra-system handoff method

Publications (1)

Publication Number Publication Date
WO2009036638A1 true WO2009036638A1 (fr) 2009-03-26

Family

ID=40467493

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2007/003976 WO2009036638A1 (fr) 2007-09-20 2007-12-29 Procédé et système d'auto-acheminement dans une connexion transversale numérique synchrone

Country Status (3)

Country Link
US (1) US20100195657A1 (zh)
CN (1) CN101394335B (zh)
WO (1) WO2009036638A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011113392A2 (zh) * 2011-04-27 2011-09-22 华为技术有限公司 一种短信处理方法、相关设备及系统
CN105556904A (zh) * 2012-12-04 2016-05-04 北京大学深圳研究生院 基本自路由单元及其半清器、排序单元、网络集线器和组播交换网络构建方法
US10193806B2 (en) * 2014-03-31 2019-01-29 Nicira, Inc. Performing a finishing operation to improve the quality of a resulting hash
CN104618051B (zh) * 2014-12-29 2018-03-30 曙光信息产业(北京)有限公司 一种基于移位寄存器的stm‑n帧b2校验方法
CN106294044B (zh) * 2016-08-09 2019-05-03 上海东软载波微电子有限公司 芯片内部寄存器的校验电路及芯片
CN109254788B (zh) * 2018-09-06 2022-02-08 四川爱联科技股份有限公司 低带宽下设备固件升级的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993022886A1 (en) * 1992-04-23 1993-11-11 Nokia Telecommunications Oy A method and a cross-connection architecture for error-free change-over of a cross-connection matrix
US20040190504A1 (en) * 2003-03-28 2004-09-30 Bansal Narendra K. Technique for building a large single-stage cross-connect using multiple devices without interleaving
CN1571328A (zh) * 2003-07-17 2005-01-26 深圳市中兴通讯股份有限公司 用于同步数字传输系统的超大规模交叉连接装置及方法
US7266128B1 (en) * 2002-12-06 2007-09-04 Integrated Device Technology, Inc. Time-slot interchange switches having efficient block programming and on-chip bypass capabilities and methods of operating same

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI91349C (fi) * 1992-07-17 1994-06-10 Nokia Telecommunications Oy Menetelmä kytkennän toteuttamiseksi aika- tai tilatasossa
DE19545675A1 (de) * 1995-12-07 1997-06-12 Sel Alcatel Ag Synchrones digitales Übertragungssystem
JP3584965B2 (ja) * 1999-12-09 2004-11-04 日本電気株式会社 光ラインプロテクション方式
JP3613102B2 (ja) * 1999-12-14 2005-01-26 日本電気株式会社 フレーム構成方法、フレーム構成装置およびフレーム構成転送システム
JP2002077210A (ja) * 2000-08-25 2002-03-15 Fujitsu Denso Ltd Pon伝送システム、atm−pon伝送システム、光ネットワーク装置、及び光回線終端装置
JP4290320B2 (ja) * 2000-09-28 2009-07-01 富士通株式会社 ルーチング装置
US7047382B2 (en) * 2000-11-29 2006-05-16 Quickshift, Inc. System and method for managing compression and decompression and decompression of system memory in a computer system
JP3570507B2 (ja) * 2001-03-28 2004-09-29 日本電気株式会社 Stmマッピング回路及び方法
DE60203173T2 (de) * 2001-04-26 2006-04-20 International Business Machines Corp. Verfahren und vorichtung mit einfünger/rahmenanpasser mehrerer kanäle niedriger geschwindigkeiten in einen einzigen hochgeschwindigkeits sdh/sonet kanal
JP3494168B2 (ja) * 2001-06-25 2004-02-03 日本電気株式会社 パケットパス監視方式及び装置
US20030012214A1 (en) * 2001-07-09 2003-01-16 Nortel Networks Limited Hybrid time switch as a rotator tandem
US20040013129A1 (en) * 2001-08-07 2004-01-22 Xiaojun Fang Method and protocol for packetized optical channel based on digital wrapper
US8274892B2 (en) * 2001-10-09 2012-09-25 Infinera Corporation Universal digital framer architecture for transport of client signals of any client payload and format type
JP3970581B2 (ja) * 2001-11-09 2007-09-05 富士通株式会社 伝送装置および伝送システム
JP2003309531A (ja) * 2002-04-17 2003-10-31 Fujitsu Ltd クロスコネクトスイッチおよび方路監視支援装置
US20040047367A1 (en) * 2002-09-05 2004-03-11 Litchfield Communications, Inc. Method and system for optimizing the size of a variable buffer
US7391793B2 (en) * 2003-03-18 2008-06-24 Nortel Networks Limited Tandem connection monitoring implementing sink functionality on egress without an egress pointer processor
CN1791278B (zh) * 2004-12-14 2010-04-14 华为技术有限公司 光传送网络调度系统及其方法
JP2008538456A (ja) * 2005-01-21 2008-10-23 アール・エム・アイ コーポレーション ネットワークシステム及び中央認証サービスの実行方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993022886A1 (en) * 1992-04-23 1993-11-11 Nokia Telecommunications Oy A method and a cross-connection architecture for error-free change-over of a cross-connection matrix
US7266128B1 (en) * 2002-12-06 2007-09-04 Integrated Device Technology, Inc. Time-slot interchange switches having efficient block programming and on-chip bypass capabilities and methods of operating same
US20040190504A1 (en) * 2003-03-28 2004-09-30 Bansal Narendra K. Technique for building a large single-stage cross-connect using multiple devices without interleaving
CN1571328A (zh) * 2003-07-17 2005-01-26 深圳市中兴通讯股份有限公司 用于同步数字传输系统的超大规模交叉连接装置及方法

Also Published As

Publication number Publication date
US20100195657A1 (en) 2010-08-05
CN101394335B (zh) 2011-01-19
CN101394335A (zh) 2009-03-25

Similar Documents

Publication Publication Date Title
US11082199B2 (en) Data transmission method in optical network and optical network device
US11252098B2 (en) Data transmission method, transmitter, and receiver
US9071376B2 (en) Bandwidth adjusting method and communication node
KR101643671B1 (ko) 네트워크 디바이스 및 정보 송신 방법
US20070280223A1 (en) Hybrid data switching for efficient packet processing
US8416770B2 (en) Universal service transport transitional encoding
JP5883509B2 (ja) 時分割多重信号をスイッチングするためのネットワーク要素
CN114844593A (zh) 一种光传送网中业务数据的处理方法及装置
WO2018090856A1 (zh) 用于建立灵活以太网群组的方法和设备
CN108777667A (zh) 灵活以太网中调整传输通道的带宽方法和装置
WO2009036638A1 (fr) Procédé et système d'auto-acheminement dans une connexion transversale numérique synchrone
EP4117237A1 (en) Service flow adjustment method and communication device
EP4207633A1 (en) Service protection method and network node
CN102136865B (zh) 业务恢复方法、系统和节点设备
US7535895B2 (en) Selectively switching data between link interfaces and processing engines in a network switch
CN102055727A (zh) 多业务传送网中的数据封装方法、封装设备和支路单元
CN101399751B (zh) 一种通信网络中的交换系统和方法
US8699524B2 (en) Method and apparatus for generating resize control overhead in optical transport network
EP4195748A1 (en) Resource configuration method and communication device
WO2023143507A1 (zh) 一种带宽调整方法及装置
WO2007076700A1 (fr) Dispositif de transmission sur un reseau de transmission numerique par synchronisation de fibres separees a services multiples et procede de transmission
EP1636926B1 (en) Network switch for link interfaces and processing engines
US20120141123A1 (en) Adapting apparatus and method
WO2019061406A1 (zh) 一种业务数据发送方法及装置
CN115225585A (zh) 一种dcn报文处理的方法、网络设备及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07855974

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12678660

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07855974

Country of ref document: EP

Kind code of ref document: A1