[go: up one dir, main page]

WO2007023668A1 - 自動制動制御装置 - Google Patents

自動制動制御装置 Download PDF

Info

Publication number
WO2007023668A1
WO2007023668A1 PCT/JP2006/315646 JP2006315646W WO2007023668A1 WO 2007023668 A1 WO2007023668 A1 WO 2007023668A1 JP 2006315646 W JP2006315646 W JP 2006315646W WO 2007023668 A1 WO2007023668 A1 WO 2007023668A1
Authority
WO
WIPO (PCT)
Prior art keywords
braking
braking control
vehicle
pattern
driver
Prior art date
Application number
PCT/JP2006/315646
Other languages
English (en)
French (fr)
Inventor
Toshiki Ezoe
Shuji Narada
Naoshi Ichinose
Koichi Okamoto
Hirokazu Okuyama
Original Assignee
Hino Motors, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hino Motors, Ltd. filed Critical Hino Motors, Ltd.
Priority to US12/064,609 priority Critical patent/US20090102277A1/en
Priority to DE112006002246T priority patent/DE112006002246B4/de
Publication of WO2007023668A1 publication Critical patent/WO2007023668A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/12Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/12Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger
    • B60T7/22Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger initiated by contact of vehicle, e.g. bumper, with an external object, e.g. another vehicle, or by means of contactless obstacle detectors mounted on the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2201/00Particular use of vehicle brake systems; Special systems using also the brakes; Special software modules within the brake system controller
    • B60T2201/02Active or adaptive cruise control system; Distance control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2201/00Particular use of vehicle brake systems; Special systems using also the brakes; Special software modules within the brake system controller
    • B60T2201/02Active or adaptive cruise control system; Distance control
    • B60T2201/024Collision mitigation systems

Definitions

  • the present invention is used for large vehicles (trucks, buses) for transporting cargo and passengers.
  • the distance between the preceding vehicle and the host vehicle is monitored by a radar, and when the inter-vehicle distance approaches abnormally, appropriate braking control is automatically performed.
  • an automatic braking control device that minimizes the damage (see, for example, Patent Document 1).
  • Patent Document 1 JP 2005-31967 A
  • the above-described automatic braking control device uses the same function that is already in practical use in passenger cars when it is used for large vehicles (trucks, buses) for transporting cargo and passengers. There is a problem that must be solved.
  • the present invention has been made under such a background, and an object thereof is to provide an automatic braking control device capable of realizing automatic braking control in a truck or a bus. Means for solving the problem
  • the present invention operates based on a sensor output including a distance to an object in the traveling direction of the host vehicle.
  • Control means for automatically performing braking control even when there is no rolling operation, and the control means is derived based on a relative distance and a relative speed between the object and the vehicle obtained by the sensor output.
  • An automatic braking control device comprising stepwise braking control means for automatically performing stepwise braking control when a predicted value of a time required for the object and the host vehicle to fall below a predetermined distance falls below a set value. is there.
  • the predicted value of the time required for the object and the vehicle to be less than a predetermined distance derived based on the relative distance and relative speed between the object and the vehicle is, for example, This is the estimated time required for the vehicle to collide (hereinafter referred to as TTC (Time To Collision)).
  • the present invention is characterized in that the stepped braking control means includes means for changing a braking pattern in accordance with the weight of a loaded cargo or a passenger.
  • a plurality of different braking patterns for executing the stepwise braking control are provided, and the stepwise braking control means selects any of the plurality of different braking notches according to an operation input. Means can also be provided. According to this, a plurality of braking patterns for executing stepwise braking control are prepared, and the driver can select the braking pattern regardless of the loaded cargo or the weight of the passenger.
  • the driver can select a braking pattern according to the type and weight of the passenger or the cargo. For example, if the passengers include many elderly people or infants, or if the cargo is a precision machine or artwork, a braking pattern that provides a relatively slow deceleration can be selected. Alternatively, when the weight of passengers or cargo is large, the stability of the vehicle can be kept high by selecting a braking pattern that allows a relatively slow deceleration compared to when the weight is small. For example, the integrated values of the plurality of different braking patterns are the same, and the braking force or braking deceleration at the final stage in each braking pattern is made different so that the degree of deceleration deceleration can be adjusted. You can select any braking pattern.
  • the braking pattern may include a pattern in which a warning is given to the driver instead of performing the braking control at a stage other than the final stage in the stepwise braking control.
  • Such a pattern is a pattern on the assumption that the driver is cautioned and the driver who is urged to perform the driving operation of the own vehicle by the driver himself. Until now, it is based on the idea that it is an auxiliary means of driving operation by the driver himself. Including a braking pattern based on this concept among a plurality of braking pattern options is useful in increasing the degree of freedom in selecting a braking pattern.
  • inter-vehicle distance alarm means for issuing an alarm according to the inter-vehicle distance between the preceding vehicle and the host vehicle, and the inter-vehicle distance alarm means indicates the length of the inter-vehicle distance at which the alarm is issued.
  • Means for setting is provided by the above operation, and the operation input is performed in conjunction with the setting operation of the means for setting.
  • the braking pattern selection in the automatic braking control also reflects the level of the driver's dependence on the inter-vehicle distance warning means, and when the dependence is high, the braking pattern selection is also activated early. Select the braking pattern to be used. On the other hand, when the dependence is low, the braking pattern that gives priority to the driving operation by the driver is selected even for the braking pattern.
  • the braking pattern giving priority to the driving operation by the driver himself is, for example, instead of performing the braking control at a stage other than the final stage in the staged braking control as described above.
  • This is a braking pattern including a pattern for notifying the driver of a warning.
  • means for detecting the operation execution status of the driver with respect to the vehicle and means for increasing the set value when the detection result by the detecting means does not satisfy the condition indicating the normality of the driving of the driver. Can be provided.
  • the automatic braking control device of the present invention is a device based on the premise that no braking operation is performed at all due to the driver's dozing or looking aside. However, the brake operation by the driver is performed. Even under such circumstances, by utilizing the device of the present invention, it is possible to assist the driver in braking and reduce the damage caused by the collision.
  • Means for reducing the number of stages when the means for detecting the operation execution state of the driver's vehicle and the detection result by the means for detecting satisfy the condition indicating the normality of the driver's driving, Means for reducing the number of stages.
  • the means for reducing may comprise means for starting automatic braking control from the final stage of the plurality of stages.
  • stepwise braking control is no longer necessary, so the device of the present invention may start braking control from the final step.
  • the braking control means may include means for changing a braking pattern in accordance with the predicted value.
  • the braking force is gradually increased over a plurality of stages as originally planned.
  • the braking control can be increased. This allows large vehicles such as trucks and buses Braking control suitable for both can be performed.
  • TTC also It may be a short time that is significantly less than the original plan. According to the present invention, it is possible to appropriately cope with such a situation.
  • the means for changing the braking pattern can correspond to any TTC by providing means for reducing the number of stages of braking control in the original plan according to the TTC.
  • the means for reducing the number of stages is a means for changing the shape of the braking pattern applied when the number of stages is not reduced to a new braking pattern shape corresponding to the number of stages to be reduced. Can be included.
  • the means for changing the braking pattern may include means for changing the shape of the braking pattern without reducing the number of steps. According to this, a sudden change in the braking pattern can be avoided, and the stability of the vehicle can be kept high.
  • a means for prohibiting activation of the stepwise braking control means can be provided.
  • the stepwise braking control performed by the automatic braking control device of the present invention is such that, for example, the host vehicle speed before starting the braking control is 60 kmZh or more, and a large handle such as when changing lanes or driving sharply Since it is assumed to be used in a state where the operation is performed, the start of the stepwise braking control can be restricted in other traveling states.
  • the vehicle has less kinetic energy, and therefore, a simple sudden braking control such as that applied to conventional passenger cars is performed.
  • the activation of the stepwise braking control is limited. For example, If the steering angle before the start of braking control is + 30 ° or more or ⁇ 30 ° or less, this means that the vehicle is changing lanes or driving in a sharp curve, so it is outside the staged braking control application event and restricts startup. . In this case, a correct may be used instead of the steering angle.
  • automatic braking control in a truck or bus can be realized.
  • appropriate automatic braking control can be performed in accordance with changes in the weight of loaded cargo and passengers.
  • any braking pattern can be selected according to the speed of deceleration, automatic braking control suitable for the type and weight of passengers and cargo can be realized.
  • FIG. 1 is a control system configuration diagram of a first embodiment.
  • FIG. 2 is a flowchart showing the operation of the braking control ECU of the first embodiment.
  • FIG. 3 is a diagram showing a braking pattern when the braking control ECU of the first embodiment has an empty product.
  • FIG. 4 is a diagram showing a braking pattern at the time of half product of the braking control ECU according to the first embodiment.
  • FIG. 5 is a diagram showing a braking pattern at the time of fixed product possessed by the braking control ECU of the first embodiment.
  • FIG. 6 is a diagram showing a full-scale braking pattern of the braking control ECU according to the first embodiment.
  • FIG. 7 is a control system configuration diagram of the second embodiment.
  • FIG. 8 is a diagram comparing a first braking pattern and a second braking pattern in the second embodiment.
  • FIG. 9 is a diagram showing a second braking pattern when the brake control ECU has an idle product in the second embodiment.
  • FIG. 10 is a control system configuration diagram of the third embodiment.
  • FIG. 11 is a diagram comparing a first braking pattern and a third braking pattern in the third embodiment.
  • FIG. 12 is a flow chart showing a braking pattern selection procedure in the braking control ECU of the third embodiment.
  • FIG. 13 is a control system configuration diagram of a fourth embodiment.
  • FIG. 14 is a flowchart showing a braking pattern selection procedure in the braking control ECU4 of the fourth embodiment.
  • FIG. 15 is a control system configuration diagram of a fifth embodiment.
  • FIG. 16 is a flowchart showing the operation of the braking control ECU of the fifth embodiment.
  • FIG. 17 is a diagram showing a braking pattern at the time of idle product that the braking control ECU of the fifth embodiment has.
  • FIG. 18 is a diagram showing a braking pattern at the time of half product of the braking control ECU of the fifth embodiment.
  • FIG. 19 is a diagram showing a braking pattern at the time of fixed product possessed by the braking control ECU of the fifth embodiment.
  • FIG. 20 is a flowchart showing the operation of the braking control ECU of the sixth embodiment.
  • FIG. 21 is a flowchart showing the operation of the braking control ECU of the sixth embodiment.
  • FIG. 22 is a flowchart showing an operation procedure of a braking pattern at the time of idle product according to the seventh embodiment.
  • FIG. 23 is a view for explaining a braking pattern # 1 of the seventh embodiment.
  • FIG. 24 is a view for explaining a braking pattern # 2 of the seventh embodiment.
  • FIG. 25 is a view for explaining a braking pattern # 3 of the seventh embodiment.
  • FIG. 26 is a view for explaining a braking pattern # 4 of the seventh embodiment.
  • FIG. 1 is a control system configuration diagram of this embodiment.
  • FIG. 2 is a flowchart showing the operation of the braking control ECU (Electric Control Unit) of this embodiment.
  • FIG. 3 is a diagram showing a braking pattern at the time of the idle control that the braking control ECU of the present embodiment has.
  • FIG. 4 is a diagram showing a half-product braking pattern of the braking control ECU of this embodiment.
  • FIG. 5 is a diagram illustrating a braking pattern at the time of constant product possessed by the braking control ECU of the present embodiment.
  • FIG. 6 is a diagram showing a full-scale braking pattern possessed by the braking control ECU of the present embodiment.
  • the brake control ECU 4, gateway ECU 5, meter ECU 6, engine ECU 8, axle weight 9, EBS (Electric Breaking System) —ECUlCH3 ⁇ 4VehicleCAN (jl93 9) 7 are connected to each other.
  • the steering sensor 2, the correct sensor 3, and the vehicle speed sensor 13 are connected to the VehicleCAN (jl939) 7 via the gateway ECU 5, and these sensor information is taken into the control ECU 4.
  • the brake control is performed by the EBS-ECU 10 driving the brake actuator 11.
  • the brake instruction to the EBS-ECU 10 is performed by the brake operation and braking control ECU 4 at the driver's seat (not shown).
  • EBS—ECU10 also provides brake information including information on brake operation by the driver. Force is taken into the braking control ECU4.
  • the engine ECU 8 controls the fuel injection amount of the engine 12 and other engine controls.
  • the injection amount control instruction for the engine ECU 8 is performed by operating the accelerator in the driver's seat.
  • the alarm display and buzzer sound output by the braking control ECU 4 are displayed on the display section (not shown) of the driver's seat by the meter ECU 6. Since the control system related to steering other than the steering sensor 2 is not directly related to the present invention, the illustration is omitted.
  • a millimeter wave radar 1 for measuring the distance from a preceding vehicle or a falling object such as a falling object in the traveling direction of the host vehicle, a steering for detecting a steering angle.
  • Brake control is provided with a control ECU 4 that automatically performs braking control without any driving operation based on sensor outputs such as the sensor 2, the speed sensor 3 for detecting the speed, and the vehicle speed sensor 13 for detecting the vehicle speed.
  • the ECU 4 automatically detects when the TTC derived based on the relative distance and relative speed between the object and the vehicle obtained from the sensor outputs from the millimeter wave radar 1 and the vehicle speed sensor 13 falls below the set value.
  • This is an automatic braking control device provided with stepwise braking control means for performing stepwise braking control.
  • the stepwise braking control means includes braking control means for gradually increasing the braking force over three stages in time series.
  • braking control means for gradually increasing the braking force over three stages in time series.
  • the so-called sudden braking is not yet strong, and the stop lamp lights up to inform the following vehicle that this sudden braking is being performed.
  • the second stage marked “enlarged area braking” apply braking of about 0.3G to TTC 1.6 seconds force to 0.8 seconds.
  • marked “full-scale braking” apply the maximum braking (approx. 0.5G) from TTCO. 8 seconds to 0 seconds.
  • the braking control ECU 4 includes a braking pattern selection unit 40 that changes the braking pattern in accordance with the weight of the loaded cargo or the passenger. It is a sign.
  • the braking pattern storage unit 41 of the braking control ECU 4 stores in advance a plurality of control patterns for “empty product”, “half product”, and “constant product” and brakes.
  • the non-turn selection unit 40 can be realized by selecting a braking pattern that matches (or approximates) these braking pattern forces according to the weight.
  • the weight information of the loaded cargo and passengers is obtained by the axle weight meter 9 shown in FIG. 1, and is taken into the braking control ECU 4.
  • the stepwise braking control performed by the automatic braking control device of the present embodiment is such that the vehicle speed before starting the braking control is 60 kmZh or more, and a large steering wheel operation such as when changing lanes or driving sharply Therefore, since it is assumed that it is used in a state, the start of the stepwise braking control can be restricted in other traveling states.
  • the vehicle speed before the start of braking control is less than 60 kmZh, the vehicle has little kinetic energy, so even if it is applied to a conventional power passenger vehicle, such a simple sudden braking control is not a problem. Since the usefulness of carrying out gradual braking control is low, the activation of gradual braking control is limited. Furthermore, if the steering angle before the start of braking control is +30 degrees or more or 30 degrees or less, this means that the vehicle is changing lanes or driving in a sharp curve. Limit the activation of braking control. In this case, you can use the correct instead of the steering angle.
  • stepwise braking control is performed.
  • full-scale braking control shown in Fig. 3 (b) to Fig. 5 (b) is performed.
  • braking control equivalent to the conventional automatic braking control used in passenger cars can be applied. Note that when applying such automatic braking control equivalent to the conventional one, there is no need to determine whether or not the vehicle is changing lanes or driving sharply.
  • the operation of the automatic braking control device of this embodiment will be described with reference to the flowchart of FIG. Figure 2 will be explained using the braking pattern in the empty product (Fig. 3) as an example.
  • Fig. 4 or fixed volume (Fig. 5)
  • the procedure in the flowchart of Fig. 2 is also followed.
  • the inter-vehicle distance from the preceding vehicle and the vehicle speed of the preceding vehicle are measured by the millimeter wave radar 1 and monitored.
  • the host vehicle speed is measured by the vehicle speed sensor 13 and monitored.
  • the weight of the loaded cargo and passengers is measured and monitored by the axle weight meter 9 (S1).
  • Braking control The braking pattern selection unit 40 of the ECU 4 selects in advance one of the braking patterns (FIGS. 3 to 5) based on the measurement result of the weight.
  • the following description is an example in which the braking pattern of FIG. 3 is selected.
  • TTC is calculated based on the inter-vehicle distance, the host vehicle speed, and the vehicle speed of the preceding vehicle (S2).
  • the calculation method is the distance between vehicles Z (the vehicle speed is the speed of the preceding vehicle)
  • the vehicle speed before the start of braking control is 60 kmZh or more (S3), the steering angle before starting braking control is +30 degrees or less and 30 degrees or more (S4), and TTC is shown in Fig. 3 (a) ( If it is in the area of 1) (S5), "alarm” braking control is executed using the auxiliary brake 14 (S8). If the TTC is in the area (2) shown in FIG. 3 (a) (S6), “enlarged area braking” control is executed (S9). If the TTC is in the region (3) shown in FIG. 3 (a) (S7), the “full-scale braking” control is executed (S10).
  • the short rate from the short rate sensor 3 can be used instead of the steering angle from the steering sensor 2.
  • the steering angle and the correct rate may be used in combination.
  • Figs. 3 to 5 will be described.
  • the straight lines c, f, and i in Figs. 3 to 5 are called steering avoidance limit straight lines.
  • Curves B, D, and F in Figs. 3 to 5 are called braking avoidance limit curves.
  • the steering avoidance limit straight line is a straight line indicating a limit at which a collision can be avoided by operating the steering wheel within a predetermined TTC in the relationship between one relative distance to the obstacle and one relative speed with the obstacle. It is.
  • the braking avoidance limit curve is a predetermined TTC or less in relation to one relative distance to the obstacle and one relative speed to the obstacle. It is a curve which shows the limit which can avoid a collision by braking operation inside.
  • the straight line c has TTC set to 0.8 seconds.
  • a straight line a when the TTC is 2.4 seconds is provided above the steering avoidance limit straight line c, and a straight line b when the TTC is 1.6 seconds is provided.
  • a curve A with a TTC set at 1.6 seconds is provided above the control avoidance limit curve B with a TTC set at 0.8 seconds.
  • the initial state of the vehicle has a relative distance and a relative speed with respect to the obstacle indicated by a black point G in FIG.
  • the alarm mode is entered (area (1)).
  • the alarm mode apply braking of about 0.1G from TTC 2. 4 seconds to 1.6 seconds. During this period, it is meaningful to turn on the stop lamp and inform the subsequent vehicle to brake.
  • the relative speed further decreases and reaches the position of the straight line b, it becomes the extended area braking mode (area (2)).
  • O In the extended area braking mode, braking of about 0.3G is applied from TTC 1.6 seconds to 0.8.
  • step S2 Take up to seconds. When it reaches the position of straight line c, it enters full braking mode (area (3)). In full-scale braking mode, apply maximum braking (approx. 0.5G) from TTCO. 8 seconds to 0 seconds. According to the calculation in step S2 in Fig. 2, a collision occurs at this time. However, in practice, the actual TTC is longer than the calculation result in step S2 because the vehicle speed is reduced by the control.
  • the preceding vehicle and the subject vehicle which are the target objects, are performing a constant acceleration motion by braking (deceleration), so the TTC calculation must also be calculated based on the uniform acceleration motion.
  • the TTC is calculated as if it were simply moving at a constant velocity.
  • precise distance measurement and complicated calculation processing can be omitted.
  • the calculated TTC value is smaller than the actual TTC value. There is no problem.
  • the notification mode is set (region (4)).
  • the driver is informed that the relative distance to the obstacle is shortening by an alarm display or buzzer sound.
  • the full braking mode area (5).
  • the maximum braking about 0.5G can be applied from T TCO.
  • Fig. 4 is an example when half-loading
  • Fig. 5 is an example when constant-loading.
  • the braking distance increases as the weight of loaded cargo and passengers increases.
  • the steering avoidance limit curve and the braking avoidance limit curve also move upward in the figure.
  • the areas of the regions (1), (2), (3), (4), and (5) increase according to the weight of the loaded cargo and passengers.
  • Lines a to c in FIG. 3 correspond to lines d to f in FIG. 4 and lines g to i in FIG. 5, and curves A and B in FIG. 3 are curves C and D in FIG. Correspond to curves E and F in Fig. 3, and black point G in Fig. 3 corresponds to black point H in Fig. 4 and black point I in Fig. 5.
  • FIG. 7 is a control system configuration diagram of this embodiment.
  • FIG. 8 is a diagram comparing two different braking patterns of this embodiment.
  • FIG. 9 is a diagram showing a second braking pattern when the braking control ECU of the present embodiment has an empty product.
  • the control system configuration of this embodiment shown in FIG. 7 is a configuration in which a braking pattern switching switch 14 is added to the control system configuration of the first embodiment shown in FIG. A description of the control system configuration diagram of this embodiment, which overlaps with the first embodiment, is omitted.
  • the brake control ECU 4, gateway ECU 5, meter ECU 6, engine ECU 8, axle weight meter 9, EBS (Electric Breaking System) —ECUlCH3 ⁇ 4VehicleCAN (jl93 9) 7 are connected to each other.
  • a braking pattern switching switch 14 is connected to the braking control ECU 4, and a plurality of braking patterns stored in the braking pattern storage unit 41 are connected. Force A braking no ⁇ turn switching instruction can be given to the braking pattern selection unit 40 so as to select a desired braking pattern.
  • the braking pattern storage unit 41 in the braking control ECU 4 stores the control patterns in "empty product", "half product", and "constant product” as described in the first example.
  • two different braking patterns for executing stepwise braking control are stored.
  • the braking pattern shown in FIGS. 3 to 6 of the first embodiment is a first braking pattern
  • the braking pattern shown in FIG. 9 is a second braking pattern.
  • the first braking pattern is superimposed on the second braking pattern with a broken line for comparison.
  • FIG. 9 is a second braking pattern corresponding to the first braking pattern selected at the time of the idle product shown in FIG.
  • a second braking pattern is also prepared for each of the first braking patterns in Fig. 4 (half product) or Fig. 5 (constant product), but for ease of explanation here, Fig. 3 Only the second braking pattern with respect to the first braking pattern (at the time of idle) will be described.
  • the first braking pattern shown in Figs. 4 and 5 shall be based on this description.
  • the braking pattern selection unit 40 of the ECU 4 selects whether the first or second braking pattern is shifted in response to an operation input from the braking pattern switching switch 14.
  • the integrated values of the first and second braking patterns are the same, and the braking force at the final stage in each braking pattern is different.
  • the braking G in the “full braking” is 0.5 G in the first braking pattern, but is 0.3 G in the second braking pattern. Since the integrated values in the first and second braking patterns are the same, the start timing of the “alarm” is inevitably earlier in the second braking pattern than in the first braking pattern (2.4 seconds ⁇ 3 seconds). In addition, for “extended area braking”, the start timing is 1.6 seconds in the first braking pattern and the braking G is 0.3 G, whereas the start timing is 2.5 seconds in the second braking pattern. And braking G is 0.2G. In addition, the start timing of “full-scale braking” is 0.8 seconds in the first braking pattern, but it is 1 second in the second braking pattern. It is.
  • the deceleration is slower in the second braking pattern than in the first braking pattern.
  • the driver can recognize the difference in the characteristics of the braking pattern and can select the braking pattern according to the type and weight of the passenger and the cargo. For example, when passengers include many elderly people and infants, or when the cargo is precision machinery or fine arts, a braking pattern that provides a relatively slow deceleration can be selected.
  • the vehicle can be kept highly stable by selecting a braking pattern in which the weight is small and relatively slow compared to the case and the vehicle is decelerated.
  • FIG. 10 is a block diagram of the control system of this embodiment.
  • FIG. 11 is a diagram comparing the first braking pattern and the third braking pattern.
  • FIG. 12 is a flowchart showing a braking pattern selection procedure in the braking control ECU 4 of this embodiment.
  • an auto-cruise ECU 18 is provided, and an inter-vehicle distance alarm unit 17 is provided in the auto-cruise ECU 18.
  • the auto-cruise function automatically maintains a set speed according to the driver's operation input until a brake operation or an accelerator operation is performed. It is a function.
  • the auto-cruise ECU 18 of the present embodiment includes an inter-vehicle distance alarm unit 17, which is configured to keep the inter-vehicle distance with the preceding vehicle below the set distance while the auto-cruise function is ON. When this happens, an alarm is issued to the driver to prompt the driver to cancel the auto cruise function, or the auto cruise function is automatically turned off.
  • the inter-vehicle distance alarm unit 17 can set the length of the inter-vehicle distance at which a warning is issued by the driver's operation using the auto-cruise function switching switch 16.
  • the braking control ECU 4 switches the braking pattern by this setting operation.
  • radar information of the millimeter wave radar 1 is input to the braking control ECU 4 and the auto cruise ECU 18, respectively.
  • the auto cruise function switch instruction from the auto cruise switch 16 is input to the braking control ECU 4 and the auto cruise ECU 18.
  • the inter-vehicle distance warning from the auto-cruise ECU 4 is displayed on the driver seat display section (not shown) via the meter ECU 6.
  • the braking control instead of performing the braking control at a stage other than the “full-scale braking” at the final stage in the staged braking control.
  • the third braking pattern is stored in the braking pattern storage unit 41.
  • the notification is performed at the timing just before “enlarged area braking” of the first braking pattern shown in FIG. 11 (a).
  • the “full-scale braking” in the third braking pattern starts from 0.6 seconds, which is smaller than the “full braking” in the first braking pattern.
  • the third braking pattern is a braking pattern based on the premise that the driver is alerted and the driver who has been alerted performs the driving operation of the vehicle by the driver himself / herself.
  • automatic braking control is an auxiliary means of driving operation by the driver himself.
  • the braking pattern selection unit 40 of the braking control ECU 4 monitors the auto cruise function switching instruction performed using the auto cruise function switching switch 16 (S21), and the auto cruise function is in the OFF state. In some cases (S22), the first braking pattern shown in FIG. 11 (a) is selected (S25). If the auto-cruise function is ON and the inter-vehicle distance setting is “near” (S23), this means that the driver is less dependent on the inter-vehicle distance alarm unit 17 as described above.
  • the psychological state is reflected and only the driver is notified at the stage of ⁇ alarm '' and ⁇ extended area braking '' in the first braking pattern.
  • Perform the third braking putter S26.
  • the auto-cruise function is ON and the inter-vehicle distance setting is ⁇ far '' (S23)
  • the driver's reliance on the inter-vehicle distance alarm unit 17 will be expressed, so the braking pattern
  • the psychological state of the selection is also reflected, and for example, the second braking pattern described in FIGS. 7 and 8 in the second embodiment is selected (S24).
  • the second braking pattern is a braking pattern in which automatic braking control is activated from an earlier stage where the TTC is longer than the first braking pattern, and is suitable for the psychological state.
  • FIG. 13 is a block diagram of the control system of this embodiment.
  • FIG. 14 is a flowchart showing a braking pattern selection procedure in the braking control ECU 4 of this embodiment. This example is an example in which the second and third examples are used in combination.
  • the braking pattern switching switch 14 used in the second embodiment is added to the control system configuration of the third embodiment. ing. Accordingly, as shown in FIG. 14, when the auto-cruise function is OFF, the braking pattern selected by the driver using the braking pattern switching switch 14 is selected (S35). Other operations are the same as those in the third embodiment.
  • the driver recognizes the difference in the characteristics of the braking pattern while selecting the braking pattern suitable for the driver's psychological state, as in the second example.
  • the braking pattern can be selected in advance according to the type and weight of passengers and cargo.
  • FIG. 15 is a control system configuration diagram of this embodiment.
  • FIG. 16 is a flowchart showing the operation of the braking control ECU of this embodiment.
  • FIG. 17 is a diagram showing a braking pattern at the time of the idle control that the braking control ECU of this embodiment has.
  • FIG. 18 is a diagram showing a braking pattern at the time of half product of the braking control ECU of this embodiment.
  • FIG. 19 is a diagram showing a braking pattern at the time of fixed volume possessed by the braking control ECU of this embodiment.
  • the control system configuration of this embodiment shown in FIG. 15 is a configuration in which an accelerator pedal sensor 19, a direction indicator switch sensor 20, and an accessory switch sensor 21 are added to the control system configuration of the first embodiment shown in FIG. It is. A description of the control system configuration diagram of this embodiment that overlaps with the first embodiment is omitted. [0089] As shown in FIG. 15, the accelerator pedal sensor 19, the direction indicator switch sensor 20, and the accessory switch sensor 21 are connected to the VehicleCAN (jl939) 7 via the gateway ECU 5, respectively. Is taken into the braking control ECU4.
  • the feature of this embodiment is that the steering sensor 2, the vehicle speed sensor 13, the accelerator pedal sensor 19, and the direction indicator switch sensor 20 as means for detecting the operation execution status of the driver with respect to the vehicle.
  • the braking control ECU 4 is to increase the set value of TTC.
  • the accessory switch sensor 21 does not detect the operation of the accessory switch by the driver, the driver can operate an accessory device such as an audio or car navigation system. Therefore, it can be predicted that the vehicle is operating normally because it focuses attention on driving.
  • the accelerator pedal sensor 19 detects the operation of the accelerator pedal by the driver within a predetermined time (for example, 10 minutes)
  • the driver can predict that he / she is driving normally without going to sleep.
  • the direction indicator switch sensor 20 detects the operation of the direction indicator switch by the driver within a predetermined time (for example, 10 minutes)
  • the driver performs normal driving to enter a drowsy driving state. You can predict that you are going.
  • the vehicle stop time is detected by the vehicle speed sensor 13 and the driver takes an appropriate break time without performing long continuous driving, it can be predicted that the driver is driving normally. .
  • the presence or absence of a brake instruction from the driver may be detected.
  • the logical sum of these detection results is taken, and when any of the detection results predicts the driver's normal driving, the driver satisfies the normal driving conditions. To do.
  • the normal operation detection unit 60 performs the satisfaction determination of the condition by the logical sum calculation of the prediction and the detection result as described above.
  • the vehicle speed before starting the braking control is 60 kmZh or more (S43), the steering angle before starting the braking control is +30 degrees or less and 30 degrees or more (S44), and the normal driving conditions described above by the driver Is satisfied (S45), and if the TTC is in the region (1) shown in FIG. 17 (a) (S47), “alarm” braking control is executed (S50). If the TTC is in the region (2) shown in FIG. 17 (a) (S48), “enlarged region braking” control is executed (S51). If the TTC is in the region (3) shown in FIG. 17 (a) (S49), "full-scale braking” control is executed (S52).
  • the vehicle speed before starting the braking control is 60 kmZh or more (S43)
  • the steering angle before starting the braking control is +30 degrees or less and 30 degrees or more (S44).
  • the regions (1) and (2) are enlarged as indicated by the alternate long and short dash line in FIG. 17 (b) (S46).
  • TTC2. 4 seconds straight line a and curve A are moved forward 0.5 seconds to TTC2.9 seconds.
  • straight line b and curve B which become TTC 1.6 seconds, are advanced 0.5 seconds to TTC 2.1 seconds.
  • the “full-scale braking” area in Fig. 17 (3) does not expand.
  • the range of the force applied for 0.5 seconds is between 0.2 seconds and 0.5 seconds, and the braking characteristics of the vehicle measured by test running or simulation. Is set in advance.
  • FIG. 20 is a flowchart showing the operation of the braking control ECU of this embodiment.
  • the control system configuration of this example is the same as that of the fifth example (Fig. 15).
  • the feature of the present embodiment is that, as in the fifth embodiment, the braking control ECU 4 uses the normal operation detecting unit 60 to determine whether or not the condition indicating the normality of the driving of the driver is satisfied. If this condition is satisfied, the number of steps in automatic braking control is reduced.
  • FIG. Fig. 20 the operation of the automatic braking control device of the present embodiment will be described with reference to the flowchart of FIG. Fig. 20 will be explained using the braking pattern at the time of empty product (Fig. 3) as an example.
  • Figure 2 As shown in 0, the distance between the preceding vehicle and the vehicle speed of the preceding vehicle are measured and monitored by the millimeter wave radar 1. In addition, the host vehicle speed is measured by the vehicle speed sensor 13 and monitored. Furthermore, the weight of the loaded cargo and passengers is measured and monitored by the axle weight 9 (S61). Braking Control The braking pattern selection unit 40 of the ECU 4 selects in advance one of the braking patterns (FIGS. 3 to 5) based on the measurement result of the weight. The following explanation is an example in which the braking pattern of FIG. 3 is selected.
  • the TTC is calculated from the inter-vehicle distance, the own vehicle speed, and the vehicle speed of the preceding vehicle (S62). The calculation method is as described above.
  • the vehicle speed before starting braking control is 60kmZh or more (S63)
  • the steering angle before starting braking control is +30 degrees or less and 30 degrees or more (S64)
  • the normal operation detection unit 60 is operated by the driver.
  • S65 When it is determined that the condition indicating normality of the vehicle is not satisfied (S65), if the TTC is in the area (1) shown in Fig. 3 ( & ) 66), "alarm" braking control is executed. (S69). If the TTC is in the area (2) shown in FIG.
  • the short rate from the short rate sensor 3 can be used.
  • the steering angle and the correct rate may be used in combination.
  • FIG. 21 is a flowchart showing the operation of the braking control ECU of this embodiment.
  • FIG. 22 is a flowchart showing the operation procedure of the braking pattern at the time of idle loading in this embodiment.
  • the feature of the present embodiment is that the braking control ECU4 sets the braking pattern according to the TTC. There is a place to change.
  • Figs. 23 to 26 are diagrams for explaining braking patterns # 1 to # 4 according to TTC, respectively, but the braking control ECU4 further reduces the number of steps in order to change the braking pattern.
  • the shape of the braking pattern applied when the number of steps is not reduced e.g., Fig. 3 is changed to a new braking pattern # 3 and # corresponding to the number of steps to be reduced, as shown in Fig. 25 and Fig. 26. Change to 4 shape.
  • braking patterns # 1 and # 2 shown in FIG. 23 and FIG. 24 only the braking pattern shape can be changed without reducing the number of steps.
  • braking pattern # 1 to # 4 corresponding to the braking patterns shown in FIG. 5 (constant product) are stored in advance in the braking pattern storage unit 41, and the braking pattern selection unit 40 By selecting a braking pattern that also adapts (or approximates) these braking pattern forces according to the value of the braking pattern, the braking pattern shown in Figs. 3, 4, and 5 is changed to the braking pattern # shown in Figs. It can be changed to 1 ⁇ # 4.
  • FIG. Fig. 21 shows an example of the braking pattern at the time of empty product (Fig. 3), but the procedure of the flowchart of Fig. 21 is also applied at the time of half product (Fig. 4) or constant product (Fig. 5).
  • the inter-vehicle distance from the preceding vehicle and the vehicle speed of the preceding vehicle are measured by the millimeter wave radar 1 and monitored.
  • the host vehicle speed is measured by the vehicle speed sensor 13 and monitored.
  • the weight of the loaded cargo and passengers are measured and monitored by the axle weight 9 (S81).
  • the braking pattern selection unit 40 of the ECU 4 selects in advance one of the braking patterns (FIGS. 3, 4, and 5) based on the measurement result of the weight.
  • the following explanation is an example in which the braking pattern of FIG. 3 is selected.
  • TTC is calculated based on the inter-vehicle distance, the own vehicle speed, and the vehicle speed of the preceding vehicle (S82). The calculation method is as described above. If the vehicle speed before the start of braking control is 60 kmZh or more (S83) and the steering angle before starting the braking control is +30 degrees or less and 30 degrees or more (S84), the TTC calculated in step S62 If the value force is greater than the threshold value # 1 (S85), the braking pattern # 1 shown in FIG. 23 is selected. The shape of braking pattern # 1 is shown in Fig. 3 (b). The shape of the brake pattern is the same. Therefore, threshold # 1 is 2.4 seconds in the example of Fig. 3 (b).
  • the braking pattern # 2 shown in Fig. 24 is selected.
  • the shape of the braking pattern # 2 is obtained by changing the shape of the braking pattern shown in FIG. 3 (b).
  • the shape of the control pattern before the change is shown by a broken line.
  • Threshold # 2 is set to around 1.6 seconds in the example of Fig. 3 (b). As a result, the change in braking pattern becomes gentler than when the number of steps is reduced, and the stability of the vehicle can be kept high.
  • braking pattern # 3 shown in FIG. 25 is selected.
  • the shape of the braking pattern # 3 is obtained by changing the shape of the braking pattern shown in FIG.
  • the shape of the control pattern before the change is shown by a broken line.
  • Threshold value # 3 is set to about 0.8 seconds in the example of Fig. 3 (b).
  • braking pattern # 4 shown in FIG. 26 is selected.
  • the shape of braking pattern # 4 is a modified version of the braking pattern shown in Fig. 3 (b).
  • the shape of the braking pattern before the change is indicated by a broken line. Compared to the shape of the braking pattern shown in Fig. 3 (b), only full-scale braking is available.
  • stepwise braking control is performed as much as possible according to the value of TTC, but sudden braking may be suddenly performed when the value of TTC is extremely small.
  • appropriate automatic braking control can be performed according to the value of TTC.
  • the "alarm” braking control is executed if the ditch is in the area (1) shown in FIG. 3 (&) (S101). (S104). If the TTC is in the region (2) shown in FIG. 3 (a) (S102), "enlarged region braking” control is executed (S105). If the TTC is in the area (3) shown in FIG. 3 ( & ) 103), the “full braking” control is executed (S106). The same applies to the braking patterns in Fig. 4 and Fig. 5.
  • automatic braking control in trucks and buses can be appropriately executed in accordance with changes in the weight of loaded cargo and passengers, or is executed in accordance with the driving conditions of the driver. Can contribute to road safety. In addition, even if the TTC is very short, appropriate braking control can be performed, so it is possible to deal with a wide range of unexpected situations.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Regulating Braking Force (AREA)

Abstract

 対象物と自車との相対距離および相対速度とに基づき導出されるTTCが設定値を下回ったときに自動的に段階的な制動制御を行う。また、積載貨物や乗客の重量に応じて制動パターンを変更する。あるいは、運転者が乗客や貨物の種別または重量に応じて減速の緩急の異なる制動パターンを選択する。さらに、運転者による車間距離警報の設定距離に応じて運転者の心理状態を把握し、これにより最適な制動パターンを選択する。あるいは、運転者の車両に対する操作実行状況を検出し、この検出結果が所定の条件を充足しないときには、TTCの設定値を引き上げる。例えば、所定の条件は、運転者の運転の正常性を示す条件である。あるいは、この運転者の運転の正常性を示す条件が充足されているときには、前記段階数を低減させる。さらに、衝突までに要する時間の程度によって、適応的に制動制御を行う。

Description

明 細 書
自動制動制御装置
技術分野
[0001] 本発明は、貨物や乗客を輸送するための大型車両(トラック、バス)に利用する。
背景技術
[0002] 自動車の電子制御化は、日進月歩で進歩し、これまでは運転者の判断のみに頼つ て 、た事象につ!ヽても車載したコンピュータによって行われるようになった。
[0003] その一つの例として、先行車と自車との間の距離 (車間距離)をレーダによって監視 し、車間距離が異常に接近した場合には、自動的に適切な制動制御を行い、万が一 の衝突時に、その被害を小さく抑えるという自動制動制御装置がある(例えば、特許 文献 1参照)。
[0004] 特許文献 1 :特開 2005— 31967号公報
発明の開示
発明が解決しょうとする課題
[0005] 上述した自動制動制御装置は、乗用車においては既に実用化されつつある力 同 様の機能を、貨物や乗客を輸送するための大型車両 (トラック、バス)に利用しようとし たときに、解決しなければならな 、問題がある。
[0006] すなわち、大型車両は乗用車と比較して質量がきわめて大きぐまた、運転者自身 の安全の他に、乗客や貨物の安全を確保しなければならず、乗用車の自動制動制 御で行われているような単純な急制動制御だけでは所期の目的を達成することは困 難であり、乗用車の場合と比較してより高度な自動制動制御を行う必要がある。しか し、そのような手段が確立されていないため、トラックやバスにおける自動制動制御装 置は未だ実用化されて 、な!/、。
[0007] 本発明は、このような背景の下に行われたものであって、トラックやバスにおける自 動制動制御を実現することができる自動制動制御装置を提供することを目的とする。 課題を解決するための手段
[0008] 本発明は、自車の進行方向に有る対象物との距離を含むセンサ出力に基づき運 転操作がなくとも自動的に制動制御を行う制御手段を備え、前記制御手段は、前記 センサ出力により得られた前記対象物と自車との相対距離および相対速度とに基づ き導出される前記対象物と自車とが所定距離以下となるまで要する時間の予測値が 設定値を下回ったときに自動的に段階的な制動制御を行う段階的制動制御手段を 備えた自動制動制御装置である。
[0009] 前記対象物と自車との相対距離および相対速度とに基づき導出される前記対象物 と自車とが所定距離以下となるまでに要する時間の予測値とは、例えば、対象物と自 車とが衝突するまでに要する時間の予測値(以下では、 TTC(Time To Collision)と呼 ぶ)である。
[0010] ここで、本発明の特徴とするところは、前記段階制動制御手段は、積載貨物や乗客 の重量に応じて制動パターンを変更する手段を含むところにある。
[0011] このように、いきなり最大の制動力を用いるのではなぐ徐々に段階的に制動力また は制動減速度を増大させていくことにより、トラックやバスの運転者が通常行っている 制動パターンに近い制動パターンとすることができるため、車両の安定性を保ちつつ 、車速を減速させることができる。このときに、積載貨物や乗客の重量に応じて制動 特性が変化するトラックやバスにおいて、自動制動制御を適切に実行することができ る。
[0012] あるいは、前記段階的な制動制御を実行するための異なる複数の制動パターンが 設けられ、前記段階的制動制御手段は、操作入力に応じて前記異なる複数の制動 ノターンのいずれかを選択する手段を備えることもできる。これによれば、段階的な 制動制御を実行するための制動パターンを複数用意し、積載貨物や乗客の重量に 関わらず、運転者が制動パターンを選択することができる。
[0013] これにより、運転者は、乗客や貨物の種別や重量に応じて制動パターンを選択する ことができる。例えば、乗客に老人や幼児などが多く含まれている場合、あるいは、貨 物が精密機械や美術品などの場合には、比較的緩い減速となる制動パターンを選 択することができる。または、乗客や貨物の重量が大きい場合には、重量が小さい場 合と比較して比較的緩い減速となる制動パターンを選択することにより、車両の安定 '性を高く保つことができる。 [0014] 例えば、この異なる複数の制動パターンの積分値はそれぞれ同一であり、それぞれ の制動パターンにおける最終段階の制動力または制動減速度がそれぞれ異なるよう にしておくことにより、減速の緩急の度合い応じて任意の制動パターンを選択するこ とがでさる。
[0015] また、前記制動パターンには、前記段階的な制動制御の内、最終段階以外の他の 段階では、制動制御を行う代わりに運転者に対して警告を報知するパターンを含む ことができる。
[0016] このようなパターンは、運転者に注意を促し、注意を促された運転者が運転者自身 により自車の運転操作を行うことを前提としたパターンであり、自動制動制御は、あく までも運転者自身による運転操作の補助的な手段であると 、う考え方に基づ 、て ヽ る。複数の制動パターンの選択肢の中に、このような考え方に基づいた制動パターン を含むことは、制動パターン選択の自由度を高める意味において有用である。
[0017] また、先行車と自車との間の車間距離に応じて警報を発出する車間距離警報手段 を備え、この車間距離警報手段には、警報を発出する車間距離の長さを運転者の操 作により設定する手段が設けられ、前記操作入力は、この設定する手段の設定操作 と連動することちでさる。
[0018] すなわち、前記車間距離警報手段が警報を発出する車間距離の長さを運転者が 短めに設定するという心理状態を分析してみると、それは運転者の前記車間距離警 報手段への依存心の低さを表している。反対に、前記車間距離警報手段が警報を 発出する車間距離の長さを運転者が長めに設定するという心理状態を分析してみる と、それは運転者の前記車間距離警報手段への依存心の高さを表して 、る。
[0019] よって、自動制動制御における制動パターン選択についても前記車間距離警報手 段への運転者の依存心の高低を反映させ、依存心が高い場合には、制動パターン の選択についても早期に起動する制動パターンを選択する。反対に、依存心が低い 場合には、制動パターンにつ ヽても運転者自身による運転操作を優先した制動バタ ーンを選択する。
[0020] 運転者自身による運転操作を優先した制動パターンとは、例えば、前述したような、 段階的な制動制御の内、最終段階以外の他の段階では、制動制御を行う代わりに 運転者に対して警告を報知するパターンを含む制動パターンである。
[0021] また、運転者の車両に対する操作実行状況を検出する手段と、この検出する手段 による検出結果が運転者の運転の正常性を示す条件を充足しないときには、前記設 定値を引き上げる手段とを備えることができる。
[0022] すなわち、運転者が居眠り運転や脇見運転などにより、正常な運転を行っていない ことが予測できる場合には、運転者が正常な運転を行っている場合と比較して自動 制動制御を開始するタイミングを早めることによって、自動制動制御装置の効果を高 めることができる。
[0023] また、本発明の自動制動制御装置は、運転者の居眠りや脇見などにより、全く制動 操作が行われていない状況を前提とした装置であるが、運転者によるブレーキ操作 が行われている状況下においても本発明装置を活用することにより、運転者のブレ ーキ操作を援助して衝突による被害を低減させることができる。
[0024] すなわち、上述したように、運転者の車両に対する操作実行状況を検出する手段と 、この検出する手段による検出結果が運転者の運転の正常性を示す条件を充足して いるときには、前記段階数を低減させる手段とを備える。
[0025] これにより、運転者が居眠りや脇見をしている状況下と、運転者が正常運転状態に あり、衝突の直前まで衝突回避操作を行っている状況下とで、異なる自動制動制御 を実行することができるため、運転者が衝突回避操作を行っている場合であっても、 本発明装置による自動制動制御を有効利用することができる。
[0026] また、前記低減させる手段は、前記複数段階における最終段階から自動制動制御 を開始する手段を備えることができる。すなわち、運転者が衝突回避操作を行ってい る状況下であれば、もはや、段階的な制動制御は必要としないため、本発明装置とし ては、最終段階から制動制御を開始してよい。
[0027] また、前記制動制御手段は、前記予測値に応じて制動パターンを変更する手段を 備えることができる。
[0028] すなわち、対象物との距離が十分にある状況下で、 TTCを余裕を持った時間とし て計算することができる場合には、当初の計画通りに、複数段階にわたり制動カを徐 々に増大させる制動制御を行うことができる。これにより、トラックやバスなどの大型車 両に適した制動制御を行うことができる。
[0029] しかし、突然、車両の前方に対象物が飛び出した、あるいは、先行車との車間距離 を測定するレーダが、先行車の特殊な形状により先行車を直前まで検出できなかつ た、あるいは、先行車が車線内の中央ではなぐ左右いずれかに偏った場所を走行 しており、レーダが先行車を見失った後に、先行車の直前で再び検出したなどの状 況下では、 TTCについても、当初の計画よりも大きく下回る短い時間となる場合があ る。本発明によれば、このような状況にも適切に対応することができる。
[0030] 前記制動パターンを変更する手段は、 TTCに応じて当初の計画における制動制 御の段階の数を減ずる手段を備えることにより、如何なる TTCにも対応することがで きる。
[0031] さらに、前記段階の数を減ずる手段は、前記段階の数を減じない場合に適用される 制動パターンの形状を、減ずる前記段階の数に応じた新たな制動パターンの形状に 変更する手段を含むことができる。
[0032] これによれば、単に、段階数を減ずる場合と比較してさらに有効な制動制御を実現 することができる。
[0033] あるいは、前記制動パターンを変更する手段は、前記段階の数を減ずることなく制 動パターンの形状を変更する手段を含むことができる。これによれば、制動パターン の急激な変化を回避することができ、車両の安定性を高く保つことができる。
[0034] また、自車速が所定値未満であり、操舵角あるいはョーレイトのとる値が所定範囲 外であるときには、前記段階的制動制御手段の起動を禁止する手段を備えることが できる。
[0035] すなわち、本発明の自動制動制御装置が行う段階的制動制御は、例えば、制動制 御開始以前の自車速が 60kmZh以上であり、車線変更中や急カーブ走行中などの ような大きなハンドル操作を行って 、な 、状態での使用を想定して 、るため、それ以 外の走行状態では、段階的制動制御の起動を制限することができる。
[0036] 例えば、制動制御開始以前の自車速が 60kmZh未満であれば、車両の有する運 動エネルギは少な 、ため、従来力 乗用車に適用されて 、るような単純な急制動制 御を行っても支障はないので、段階的制動制御の起動を制限する。また、例えば、 制動制御開始以前の操舵角が + 30度以上あるいは— 30度以下であれば、これは 車線変更中や急カーブ走行中であるので、段階的制動制御の適用事象外であり起 動を制限する。この場合には、操舵角の代わりにョーレイトを用いてもよい。
発明の効果
[0037] 本発明によれば、トラックやバスにおける自動制動制御を実現することができる。特 に、積載貨物や乗客の重量の変化に応じて適切な自動制動制御を行うことができる 。あるいは、減速の緩急に応じて任意の制動パターンを選択することができるため、 乗客や貨物の種別や重量に適合した自動制動制御を実現することができる。
[0038] さらに、運転者の心理状態に適した制動パターンの選択を行うことができる。あるい は、運転者の運転状況に応じて適切な自動制動制御を行うことができる。
[0039] さらに、 TTCがきわめて短い場合においても適切な制動制御を行うことができる。
図面の簡単な説明
[0040] [図 1]第一実施例の制御系統構成図。
[図 2]第一実施例の制動制御 ECUの動作を示すフローチャート。
[図 3]第一実施例の制動制御 ECUが有する空積時の制動パターンを示す図。
[図 4]第一実施例の制動制御 ECUが有する半積時の制動パターンを示す図。
[図 5]第一実施例の制動制御 ECUが有する定積時の制動パターンを示す図。
[図 6]第一実施例の制動制御 ECUが有する本格制動パターンを示す図。
[図 7]第二実施例の制御系統構成図。
[図 8]第二実施例における第一の制動パターンと第二の制動パターンとを比較する 図。
[図 9]第二実施例における制動制御 ECUが有する空積時の第二の制動パターンを 示す図。
[図 10]第三実施例の制御系統構成図。
[図 11]第三実施例における第一の制動パターンと第三の制動パターンとを比較する 図。
[図 12]第三実施例の制動制御 ECUにおける制動パターン選択手順を示すフローチ ヤート。 [図 13]第四実施例の制御系統構成図。
[図 14]第四実施例の制動制御 ECU4における制動パターン選択手順を示すフロー チャート
[図 15]第五実施例の制御系統構成図。
[図 16]第五実施例の制動制御 ECUの動作を示すフローチャート。
[図 17]第五実施例の制動制御 ECUが有する空積時の制動パターンを示す図。
[図 18]第五実施例の制動制御 ECUが有する半積時の制動パターンを示す図。
[図 19]第五実施例の制動制御 ECUが有する定積時の制動パターンを示す図。
[図 20]第六実施例の制動制御 ECUの動作を示すフローチャート。
[図 21]第六実施例の制動制御 ECUの動作を示すフローチャート。
[図 22]第七実施例の空積時の制動パターンの動作手順を示すフローチャート。
[図 23]第七実施例の制動パターン # 1を説明するための図。
[図 24]第七実施例の制動パターン # 2を説明するための図。
[図 25]第七実施例の制動パターン # 3を説明するための図。
[図 26]第七実施例の制動パターン #4を説明するための図。
符号の説明
1 ミリ波レーダ
2 ステアリングセンサ
3 ョーレイトセンサ
4 制動制御 ECU
5 ゲートウェイ ECU
6 メータ ECU
7 VehicleCAN
8 エンジン ECU
9 軸重計
10 EBS— ECU
11 ブレーキアクチユエータ
12 エンジン 13 車速センサ
14 制動パターン切替スィッチ
16 オートクルーズ機能切替スィッチ
17 車間距離警報部
18 オートクルーズ ECU
19 アクセルペダルセンサ
20 方向指示器スィッチセンサ
21 アクセサリスィッチセンサ
40 制動パターン選択部
41 制動パターン記憶部
60 正常運転検出部
発明を実施するための最良の形態
[0042] 第一実施例の自動制動制御装置を図 1ないし図 6を参照して説明する。図 1は本実 施例の制御系統構成図である。図 2は本実施例の制動制御 ECU(Electric Control Unit)の動作を示すフローチャートである。図 3は本実施例の制動制御 ECUが有する 空積時の制動パターンを示す図である。図 4は本実施例の制動制御 ECUが有する 半積時の制動パターンを示す図である。図 5は本実施例の制動制御 ECUが有する 定積時の制動パターンを示す図である。図 6は本実施例の制動制御 ECUが有する 本格制動パターンを示す図である。
[0043] 図 1に示すように、制動制御 ECU4、ゲートウェイ ECU5、メータ ECU6、エンジン E CU8、軸重計 9、 EBS(Electric Breaking System)— ECUlCH¾VehicleCAN (jl93 9) 7を介してそれぞれ接続される。
[0044] また、ステアリングセンサ 2、ョーレイトセンサ 3、車速センサ 13は、ゲートウェイ ECU 5を介して VehicleCAN (jl939) 7にそれぞれ接続され、これらのセンサ情報は、制 動制御 ECU4に取り込まれる。また、ブレーキ制御は、 EBS— ECU10がブレーキア クチユエータ 11を駆動することによって行われる。なお、 EBS— ECU10に対するブ レーキ指示は、運転席(図外)のブレーキ操作および制動制御 ECU4によって行わ れる。運転者によるブレーキ操作の情報を含むブレーキ情報も EBS—ECU10が出 力して制動制御 ECU4に取り込まれる。エンジン ECU8は、エンジン 12の燃料噴射 量制御その他のエンジン制御を行う。なお、エンジン ECU8に対する噴射量制御指 示は運転席のアクセル操作によって行われる。また、制動制御 ECU4により出力され た警報表示やブザー音がメータ ECU6により運転席の表示部(図示省略)に表示さ れる。ステアリングセンサ 2以外の操舵に関連する制御系統は本発明とは直接関係 が無 、ので図示を省略した。
[0045] 本実施例は、図 1に示すように、自車の進行方向に有る先行車あるいは落下物など の対象物との距離を測定するミリ波レーダ 1、操舵角を検出するためのステアリングセ ンサ 2、ョーレイトを検出するためのョーレイトセンサ 3、自車速を検出するための車速 センサ 13などのセンサ出力に基づき運転操作がなくとも自動的に制動制御を行う制 動制御 ECU4を備え、制動制御 ECU4は、ミリ波レーダ 1および車速センサ 13から のセンサ出力により得られた前記対象物と自車との相対距離および相対速度とに基 づき導出される TTCが設定値を下回ったときに自動的に段階的な制動制御を行う段 階的制動制御手段を備えた自動制動制御装置である。
[0046] 前記段階的制動制御手段は、図 3〜図 5に示すように、時系列的に三段階にわたり 制動力を徐々に増大させる制動制御手段を含む。図 3 (b)の例では、まず、「警報」と 記された第一段階で、 0. 1G程度の制動を TTC2. 4秒から 1. 6秒までかける。この 段階では、未だ、いわゆる急制動が力かった状態にはなっておらず、ストップランプ が点灯することにより後続車に対し、これ力 急制動が行われることを知らせることが できる。次に、「拡大領域制動」と記された第二段階で、 0. 3G程度の制動を TTC1. 6秒力も 0. 8秒までかける。最後に、「本格制動」と記された第三段階で、最大の制動 (0. 5G程度)を TTCO. 8秒から 0秒までかける。
[0047] なお、運転者が上記に示した制動力以上の強い制動操作を行った場合には、より 強 、制動力が優先して働くようにする。
[0048] ここで、本実施例では、図 3〜図 5に示すように、制動制御 ECU4は、積載貨物や 乗客の重量に応じて制動パターンを変更する制動パターン選択部 40を含むことを特 徴とする。変更する方法としては、制動制御 ECU4の制動パターン記憶部 41に、予 め「空積時」、「半積時」、「定積時」における制御パターンを複数記憶しておき、制動 ノターン選択部 40は、重量に応じてこれらの制動パターン力も適合 (または近似)す る制動パターンを選択することにより実現できる。積載貨物や乗客の重量情報は、図 1に示す軸重計 9によって得られ、制動制御 ECU4に取り込まれる。
[0049] なお、以下の説明では、先行車を対象として説明するが、本実施例の自動制動制 御装置は、道路上の落下物などに対しても有効である。
[0050] また、車両速度が 60kmZh未満であり、操舵角が + 30度以上あるいは— 30度以 下であるときには、前記段階的制動制御手段の起動を禁止する手段を備える。なお 、操舵角に代えてョーレイトを用いることもできる。
[0051] すなわち、本実施例の自動制動制御装置が行う段階的制動制御は、制動制御開 始以前の自車速が 60kmZh以上であり、車線変更中や急カーブ走行中などのよう な大きなハンドル操作を行って 、な 、状態での使用を想定して 、るため、それ以外 の走行状態では、段階的制動制御の起動を制限することができる。
[0052] また、制動制御開始以前の自車速が 60kmZh未満であれば、車両の有する運動 エネルギは少な 、ため、従来力 乗用車に適用されて 、るような単純な急制動制御 を行っても支障はなぐ段階的制動制御を実施する有用性は低いので、段階的制動 制御の起動を制限する。さらに、制動制御開始以前の操舵角が + 30度以上あるい は 30度以下であれば、これは車線変更中や急カーブ走行中であるので、段階的 制動制御の適用事象外であり段階的制動制御の起動を制限する。この場合には、操 舵角の代わりにョーレイトを用いてもょ ヽ。
[0053] 本実施例では、自車速が 60kmZh未満であり 15kmZh (自動制動制御(本格制 動制御のみ)の有用性が認められる最低速度)以上である場合には、段階的制動制 御は行わないが、図 6に示すように、図 3 (b)〜図 5 (b)に示す本格制動制御のみは 実施することとする。このような本格制動制御のみを実施する場合は、乗用車に用い られている従来の自動制動制御と同等の制動制御を適用することができる。なお、こ のような従来と同等の自動制動制御を適用する場合には車線変更中や急カーブ走 行中であるか否かを判断するステップは必要ない。
[0054] 次に、本実施例の自動制動制御装置の動作を図 2のフローチャートを参照しながら 説明する。図 2は空積時 (図 3)の制動パターンを例にとって説明を行うが、半積時( 図 4)または定積時(図 5)においても図 2のフローチャートの手順に準じる。図 2に示 すように、先行車との車間距離および先行車の車速をミリ波レーダ 1により測定して監 視する。また、自車速を車速センサ 13により測定して監視する。さらに、軸重計 9によ り積載貨物や乗客の重量を測定して監視する(S1)。制動制御 ECU4の制動パター ン選択部 40は、当該重量の測定結果に基づき制動パターン(図 3〜図 5)のいずれ かを予め選択する。以下の説明は、図 3の制動パターンが選択された例である。
[0055] 車間距離、自車速、先行車の車速により TTCを計算する(S2)。計算方法は、 車間距離 Z (自車速一先行車の車速)
である。制動制御開始以前の自車速が 60kmZh以上であり(S3)、制動制御開始以 前の操舵角が + 30度以下であり 30度以上であり (S4)、 TTCが図 3 (a)に示す(1 )の領域にあれば (S5)、「警報」制動制御を補助ブレーキ 14を用いて実行する(S8) 。また、 TTCが図 3 (a)に示す (2)の領域にあれば (S6)、「拡大領域制動」制御を実 行する(S9)。また、 TTCが図 3 (a)に示す(3)の領域にあれば (S7)、「本格制動」制 御を実行する(S 10)。
[0056] また、制動制御開始以前の自車速が 60kmZh未満 15kmZh以上であり(S3、 S1 1)、 TTCが図 3 (c)に示す (4)の領域にあれば (S 12)、運転者に対して先行車との 相対距離が近いことを報知する(S 13)。報知は、警報表示やブザー音により行う。さ らに、 TTCが図 3 (c)に示す(5)の領域にあれば (S 14)、「本格制動」制御を実行す る(S10)。
[0057] なお、ステアリングセンサ 2からの操舵角の代わりにョーレイトセンサ 3からのョーレイ トを利用することもできる。あるいは、操舵角とョーレイトを併用してもよい。
[0058] ここで、図 3〜図 5について説明する。図 3〜図 5における直線 c、 f、 iは、操舵回避 限界直線と呼ばれるものである。また、図 3〜図 5における曲線 B、 D、 Fは、制動回避 限界曲線と呼ばれるものである。
[0059] すなわち、操舵回避限界直線とは、障害物までの一つの相対距離および障害物と の一つの相対速度の関係において、所定の TTC以内にハンドル操作によって衝突 を回避可能な限界を示す直線である。また、制動回避限界曲線とは、障害物までの 一つの相対距離および障害物との一つの相対速度の関係において、所定の TTC以 内に制動操作によって衝突を回避可能な限界を示す曲線である。
[0060] 図 3〜図 5において、これらの直線または曲線の下側の領域の内、双方が共に関わ る領域では、もはやノヽンドル操作によってもブレーキ操作によっても衝突を回避する ことはできない。
[0061] 例えば、図 3の空積時の例では、直線 cは、 TTCが 0. 8秒に設定されている。本実 施例では、操舵回避限界直線 cの上側に、 TTCが 2. 4秒である場合の直線 aを設け 、 TTCが 1. 6秒である場合の直線 bを設ける。また、 TTCが 0. 8秒に設定された制 動回避限界曲線 Bの上側に TTCが 1. 6秒に設定された曲線 Aを設ける。
[0062] 当初の車両の状態は、図 3の黒点 Gに示す障害物との相対距離および相対速度を 有している。制動制御開始以前の自車速が 60kmZh以上であるときに、次第に相対 距離が短くなり、直線 aの位置に来たときには、警報モードとなる (領域(1) )。警報モ ードでは、 0. 1G程度の制動を TTC2. 4秒〜 1. 6秒までかける。この期間は、ストツ プランプを点灯させ、後続車にブレーキをかけることを知らせる意義がある。さらに相 対速度が下がり、直線 bの位置に来たときには、拡大領域制動モードとなる (領域 (2) ) o拡大領域制動モードでは、 0. 3G程度の制動を TTC1. 6秒〜 0. 8秒までかける 。直線 cの位置に来たときには、本格制動モードとなる (領域 (3) )。本格制動モード では、最大の制動(0. 5G程度)を TTCO. 8秒〜 0秒までかける。図 2のステップ S2 の計算によれば、このときに衝突が起こることになる。しかし、実際には、自車速が制 動制御によって小さくなるため、ステップ S2の計算結果よりも実際の TTCは長くなる
[0063] すなわち、本発明が対象とする自動制動制御装置における TTCの計算では、精密 な距離測定や複雑な演算処理を極力省き、汎用の簡易な距離測定装置 (例えば、ミ リ波レーダ)や演算装置を用いることを前提としている。このような配慮は、車両の製 造コストあるいは維持費を低く抑えるために有用である。
[0064] よって、厳密には、対象物である先行車と自車とは、制動 (減速)によって等加速度 運動を行っているのであるから、 TTC計算も等加速度運動に基づき計算しなければ ならないところを、単に等速運動を行っているものとして TTCを計算することにより、 精密な距離測定や複雑な演算処理を省 ヽて ヽる。 [0065] また、このような等速運動とみなした計算を行うことにより、計算された TTCの値は 実際の TTCの値よりも小さくなる力 これは安全側への誤差であるから容認しても何 ら支障はない。
[0066] さらに、制動制御開始以前の自車速が 15kmZh以上であり 60kmZh未満である ときには、次第に相対距離が短くなり、直線 bの位置に来たときには、報知モードとな る (領域 (4) )。報知モードでは、運転者に対して警報表示やブザー音によって、障 害物との相対距離が短くなつていることを知らせる。直線 cの位置に来たときには、本 格制動モードとなる (領域 (5) )。本格制動モードでは、最大の制動 (0. 5G程度)を T TCO. 8禾少〜 0禾少まで力ける。
[0067] また、図 4は半積時の例であり、図 5は定積時の例である力 等しい制動力同士で 比べれば、積載貨物や乗客の重量が増すにつれて制動距離も長くなるため、操舵 回避限界曲線および制動回避限界曲線も図の上方にそれぞれ移動する。これにより 、領域 (1)、(2)、(3)、(4)、(5)の面積は、積載貨物や乗客の重量に応じて大きくな る。
[0068] 図 3における直線 a〜cは、図 4における直線 d〜f、図 5における直線 g〜iに対応し 、図 3における曲線 A、 Bは、図 4における曲線 C、 D、図 5における曲線 E、 Fに対応 し、図 3における黒点 Gは、図 4における黒点 H、図 5における黒点 Iに対応する。
[0069] 第二実施例の自動制動制御装置を図 7ないし図 9を参照して説明する。図 7は本実 施例の制御系統構成図である。図 8は本実施例の異なる二つの制動パターンを比較 する図である。図 9は本実施例の制動制御 ECUが有する空積時の第二の制動バタ ーンを示す図である。
[0070] 図 7に示す本実施例の制御系統構成は、図 1に示す第一実施例の制御系統構成 に制動パターン切替スィッチ 14を追加した構成である。第一実施例と重複する本実 施例の制御系統構成図に関する説明は省略する。
[0071] 図 7に示すように、制動制御 ECU4、ゲートウェイ ECU5、メータ ECU6、エンジン E CU8、軸重計 9、 EBS(Electric Breaking System)— ECUlCH¾VehicleCAN (jl93 9) 7を介してそれぞれ接続される。また、制動制御 ECU4には、制動パターン切替ス イッチ 14が接続され、制動パターン記憶部 41に記憶されている複数の制動パターン 力 所望する制動パターンを選択するように、制動パターン選択部 40に対して制動 ノ《ターン切替指示を与えることができる。
[0072] 本実施例では、制動制御 ECU4内の制動パターン記憶部 41に、第一実施例で説 明したような「空積時」、「半積時」、「定積時」における制御パターンの他に、段階的 な制動制御を実行するための異なる二つの制動パターンが記憶されている。第一実 施例の図 3〜図 6に示した制動パターンを第一の制動パターンとし、図 9に示した制 動パターンを第二の制動パターンとする。なお、図 9 (b)には比較のために第一の制 動パターンを破線により第二の制動パターンに重ね合わせて図示した。
[0073] 図 3〜図 5に示した制動パターンは各段階の開始タイミングがそれぞれ異なるが、 図 9に示した制動パターンは各段階の開始タイミングと共に「拡大領域制動」および「 本格制動」における制動力(制動 G)が小さい。ただし、図 9は図 3に示した空積時に 選択される第一の制動パターンに対応する第二の制動パターンである。図 4 (半積時 )または図 5 (定積時)における第一の制動パターンについてもそれぞれ第二の制動 ノ ターンが用意されるが、ここでは説明をわ力りやすくするために、図 3 (空積時)の 第一の制動パターンに対する第二の制動パターンのみについて説明する。図 4、図 5の第一の制動パターンにつ 、ても当該説明に準ずるものとする。
[0074] 制動制御 ECU4の制動パターン選択部 40は、制動パターン切替スィッチ 14からの 操作入力に応じて第一または第二の制動パターンの 、ずれかを選択する。第一およ び第二の制動パターンの積分値はそれぞれ同一であり、それぞれの制動パターンに おける最終段階の制動力がそれぞれ異なる。
[0075] すなわち、図 8に示すように、「本格制動」における制動 Gは第一の制動パターンで は 0. 5Gであるのに対し、第二の制動パターンでは 0. 3Gである。第一および第二の 制動パターンにおける積分値は同じであるから、必然的に「警報」の開始タイミングは 、第一の制動パターンよりも第二の制動パターンの方が早期(2. 4秒→3秒)になつ ている。また、「拡大領域制動」についても第一の制動パターンでは開始タイミングは 1. 6秒であり制動 Gは 0. 3Gであるのに対し、第二の制動パターンでは開始タイミン グは 2. 5秒であり、制動 Gは 0. 2Gである。また「本格制動」における開始タイミングも 第一の制動パターンでは 0. 8秒であるのに対し、第二の制動パターンでは 1秒にな つている。
[0076] このように、第一の制動パターンと比較すると第二の制動パターンの方が減速が緩 くなつている。運転者はこのような制動パターンの特性の違いを認識し、乗客や貨物 の種別や重量に応じて制動パターンを選択することができる。例えば、乗客に老人や 幼児などが多く含まれている場合、あるいは、貨物が精密機械や美術品などの場合 には、比較的緩い減速となる制動パターンを選択することができる。または、乗客や 貨物の重量が大き 、場合には、重量が小さ 、場合と比較して比較的緩!、減速となる 制動パターンを選択することにより、車両の安定性を高く保つことができる。
[0077] また、重量に応じて制動パターンを切替える場合は、第一実施例で説明した図 3〜 図 5に示す「空積時」、「半積時」、「定積時」における制御パターンの自動切替と連動 させて併用することもできる。すなわち、図 3〜図 5に示した制動パターンと図 9に示し た制動パターンとを併用すると、併用しない場合と比較して各段階の開始タイミング が早くなると共に「警告」および「拡大領域制動」における制動力(制動 G)が小さくな る。また、貨物種別が固定的であれば、制動パターン切替スィッチ 14を設けず、初め 力も第二の制動パターンのみを採用することもできる。
[0078] 第三実施例を図 10ないし図 12を参照して説明する。図 10は本実施例の制御系統 構成図である。図 11は第一の制動パターンと第三の制動パターンとを比較する図で ある。図 12は本実施例の制動制御 ECU4における制動パターン選択手順を示すフ ローチャートである。
[0079] 本実施例では、図 10に示すように、オートクルーズ ECU18を備え、オートクルーズ ECU18内には車間距離警報部 17を備える。ここで、簡単にオートクルーズ機能に ついて説明を行うと、オートクルーズ機能は、運転者の操作入力に従って、設定され た一定の速度を、ブレーキ操作またはアクセル操作が行われるまで、自動的に維持 する機能である。本実施例のオートクルーズ ECU18には車間距離警報部 17が含ま れており、この車間距離警報部 17は、オートクルーズ機能が ON状態で走行中に、 先行車との車間距離が設定距離以下になったら運転者に対して警報を発出すること によって、運転者によるオートクルーズ機能の解除を促す、または、自動的にオートク ルーズ機能を OFF状態とする。 [0080] さらに、車間距離警報部 17には、オートクルーズ機能切替スィッチ 16を用いて、警 報を発出する車間距離の長さを運転者の操作により設定することができる。本実施例 では、制動制御 ECU4は、この設定操作により制動パターンの切替えを行う。
[0081] また、ミリ波レーダ 1のレーダ情報は、制動制御 ECU4およびオートクルーズ ECU1 8にそれぞれ入力される。また、オートクルーズ切替スィッチ 16からのオートクルーズ 機能切替指示は、制動制御 ECU4およびオートクルーズ ECU18に入力される。ま た、オートクルーズ ECU4からの車間距離警報は、メータ ECU6を介して運転席の表 示部(図示せず)に表示される。
[0082] 本実施例では、図 11 (b)および (c)に示すように、段階的な制動制御の内、最終段 階の「本格制動」以外の他の段階では、制動制御を行う代わりに運転者に対して警 告を報知する第三の制動パターンを含む。この第三の制動パターンは、制動パター ン記憶部 41に記憶される。図 11 (b)および (c)の例では、報知を行うのは、図 11 (a) に示した第一の制動パターンの「拡大領域制動」の直前あたりのタイミングである。ま た、第三の制動パターンにおける「本格制動」は、第一の制動パターンにおける「本 格制動」よりもさらに TTCが小さ 、0. 6秒くら 、から開始する。
[0083] 前述したように、第三の制動パターンは、運転者に注意を促し、注意を促された運 転者が運転者自身により自車の運転操作を行うことを前提とした制動パターンであり 、 自動制動制御は、あくまでも運転者自身による運転操作の補助的な手段であると V、う考え方に基づ!/、て!/、る。
[0084] 次に、本実施例の制動制御 ECU4の制動パターン選択手順を、図 12を参照して 説明する。制動制御 ECU4の制動パターン選択部 40は、図 12に示すように、オート クルーズ機能切替スィッチ 16を用いて行われるオートクルーズ機能切替指示を監視 しており(S21)、オートクルーズ機能が OFF状態であるときには(S22)、図 11 (a)に 示す第一の制動パターンを選択する(S25)。オートクルーズ機能が ON状態であり、 車間距離設定が「近」であれば (S23)、前述したように、運転者の車間距離警報部 1 7への依存心の低さを表して 、るので、制動パターン選択につ!、てもその心理状態 を反映させ、第一の制動パターンにおける「警報」および「拡大領域制動」の段階で は運転者に対する報知のみを行 ヽ、「本格制動」のみを実行する第三の制動パター ンを選択する(S26)。反対に、オートクルーズ機能が ON状態であり、車間距離設定 が「遠」であれば (S23)、運転者の車間距離警報部 17への依存心の高さを表して ヽ るので、制動パターン選択についてもその心理状態を反映させ、例えば、第二実施 例において図 7および図 8で説明した第二の制動パターンを選択する(S24)。第二 の制動パターンは、第一の制動パターンと比較して TTCが長めの早期段階から自動 制動制御が起動する制動パターンであり、当該心理状態に適している。
[0085] 第四実施例を図 13および図 14を参照して説明する。図 13は本実施例の制御系統 構成図である。図 14は本実施例の制動制御 ECU4における制動パターン選択手順 を示すフローチャートである。本実施例は、第二および第三実施例を併用した実施 例である。
[0086] 本実施例と第三実施例との差異のみについて説明すると、図 13において、第三実 施例の制御系統構成に、第二実施例で用いた制動パターン切替スィッチ 14が追カロ されている。これにより、図 14に示すように、オートクルーズ機能が OFF状態のときに は、運転者が制動パターン切替スィッチ 14を用いて選択した制動パターンが選択さ れる(S35)。その他の動作は、第三実施例と同じである。本実施例では、第三実施 例と同じように、運転者の心理状態に適した制動パターンの選択を行いながら、第二 実施例と同じように、運転者は制動パターンの特性の違いを認識し、乗客や貨物の 種別や重量に応じて制動パターンを予め選択することができる。
[0087] 第五実施例の自動制動制御装置を図 15な 、し図 19を参照して説明する。図 15は 本実施例の制御系統構成図である。図 16は本実施例の制動制御 ECUの動作を示 すフローチャートである。図 17は本実施例の制動制御 ECUが有する空積時の制動 パターンを示す図である。図 18は本実施例の制動制御 ECUが有する半積時の制動 パターンを示す図である。図 19は本実施例の制動制御 ECUが有する定積時の制動 パターンを示す図である。
[0088] 図 15に示す本実施例の制御系統構成は、図 1に示す第一実施例の制御系統構成 にアクセルペダルセンサ 19、方向指示器スィッチセンサ 20、アクセサリスィッチセン サ 21を追加した構成である。第一実施例と重複する本実施例の制御系統構成図に 関する説明は省略する。 [0089] 図 15に示すように、アクセルペダルセンサ 19、方向指示器スィッチセンサ 20、ァク セサリスイッチセンサ 21は、ゲートウェイ ECU5を介して VehicleCAN (jl939) 7に それぞれ接続され、これらのセンサ情報は、制動制御 ECU4に取り込まれる。
[0090] ここで、本実施例の特徴とするところは、運転者の車両に対する操作実行状況を検 出する手段としてのステアリングセンサ 2、車速センサ 13、アクセルペダルセンサ 19、 方向指示器スィッチセンサ 20、アクセサリスィッチセンサ 21による検出結果が運転者 の運転の正常性を示す条件を充足しないときには、制動制御 ECU4は、 TTCの設 定値を引き上げるところにある。
[0091] 運転者の運転の正常性を示す条件は、例えば、アクセサリスィッチセンサ 21が運 転者によるアクセサリスィッチの操作を検出していなければ、運転者は、オーディオ やカーナビなどのアクセサリ機器の操作を行っておらず、運転に注意力を集中させ ており、正常に運転を行っていると予測できる。あるいは、アクセルペダルセンサ 19 が運転者によるアクセルペダルの操作を所定時間(例えば 10分)以内に検出してい れば、運転者は、居眠り運転状態になぐ正常に運転を行っていると予測できる。ある いは、方向指示器スィッチセンサ 20が運転者による方向指示器スィッチの操作を所 定時間(例えば 10分)以内に検出していれば、運転者は、居眠り運転状態になぐ正 常に運転を行っていると予測できる。あるいは、車速センサ 13により車両の停車時間 を検出し、運転者が長時間の連続運転を行わずに適切な休憩時間をとつて ヽれば、 運転者は正常に運転を行っていると予測できる。その他に、運転者からのブレーキ 指示の有無を検出してもよい。
[0092] 本実施例では、これらの検出結果の論理和をとり、いずれかの検出結果が運転者 の正常な運転を予測したときには、運転者は正常な運転の条件を充足しているもの とする。上述したような予測および検出結果の論理和計算による条件の充足判定は 、正常運転検出部 60が行う。
[0093] 次に、本実施例の自動制動制御装置の動作を図 16のフローチャートを参照しなが ら説明する。図 16は空積時(図 17)の制動パターンを例にとって説明を行うが、半積 時(図 18)または定積時(図 19)においても図 16のフローチャートの手順に準じる。な お、第一実施例(図 2)のフローチャートと重複する部分の説明は省略し、主にステツ プ S45および S46に関連する手順について説明する。
[0094] 制動制御開始以前の自車速が 60kmZh以上であり(S43)、制動制御開始以前の 操舵角が + 30度以下であり 30度以上であり(S44)、運転者が上述した正常運転 条件を充足しており(S45)、TTCが図 17 (a)に示す(1)の領域にあれば (S47)、「 警報」制動制御を実行する(S50)。また、 TTCが図 17 (a)に示す (2)の領域にあれ ば (S48)、「拡大領域制動」制御を実行する(S51)。また、 TTCが図 17 (a)に示す( 3)の領域にあれば (S49)、「本格制動」制御を実行する(S52)。
[0095] また、制動制御開始以前の自車速が 60kmZh以上であり(S43)、制動制御開始 以前の操舵角が + 30度以下であり 30度以上であり (S44)、運転者が上述した正 常運転条件を充足して 、なければ (S45)、図 17 (b)に一点鎖線で示したように領域 (1)および(2)をそれぞれ拡大する(S46)。図 17の例では、 TTC2. 4秒となる直線 a および曲線 Aを 0. 5秒前出しして TTC2. 9秒とする。また、 TTC1. 6秒となる直線 b および曲線 Bを 0. 5秒前出しして TTC2. 1秒とする。なお、図 17 (3)の「本格制動」 領域は拡大しない。また、図 17〜図 19の例では、それぞれ 0. 5秒前出しした力 前 出しの範囲は 0. 2秒〜 0. 5秒の間で、テスト走行あるいはシミュレーションによって測 定した車両の制動特性を鑑みて予め設定する。
[0096] 第六実施例の自動制動制御装置を図 20を参照して説明する。図 20は本実施例の 制動制御 ECUの動作を示すフローチャートである。本実施例の制御系統構成は第 五実施例(図 15)と共通である。
[0097] ここで、本実施例の特徴とするところは、制動制御 ECU4は、第五実施例と同じよう に、運転者の運転の正常性を示す条件の充足状況を正常運転検出部 60により判定 し、この条件を充足しているときには、自動制動制御における段階数を低減させると ころにある。
[0098] 自動制動制御における段階数を低減させるときは、図 3〜図 5に示す「警報」、「拡 大領域制動」、「本格制動」における「本格制動」から自動制動制御を開始する。
[0099] 次に、本実施例の自動制動制御装置の動作を図 20のフローチャートを参照しなが ら説明する。図 20は空積時(図 3)の制動パターンを例にとって説明を行うが、半積 時(図 4)または定積時(図 5)においても図 20のフローチャートの手順に準じる。図 2 0に示すように、先行車との車間距離および先行車の車速をミリ波レーダ 1により測定 して監視する。また、自車速を車速センサ 13により測定して監視する。さらに、軸重 計 9により積載貨物や乗客の重量を測定して監視する(S61)。制動制御 ECU4の制 動パターン選択部 40は、当該重量の測定結果に基づき制動パターン(図 3〜図 5) のいずれかを予め選択する。以下の説明は、図 3の制動パターンが選択された例で ある。
[0100] 車間距離、自車速、先行車の車速により TTCを計算する(S62)。計算方法は、前 述したとおりである。制動制御開始以前の自車速が 60kmZh以上であり(S63)、制 動制御開始以前の操舵角が + 30度以下であり 30度以上であり (S64)、正常運転 検出部 60が運転者の運転の正常性を示す条件が充足されていないと判定したとき に(S65)、 TTCが図 3 (&)に示す(1)の領域にぁれば 66)、「警報」制動制御を実 行する(S69)。また、 TTCが図 3 (&)に示す(2)の領域にぁれば 67)、「拡大領域 制動」制御を実行する(S70)。また、丁丁じが図3 (&)に示す(3)の領域にあれば (S6 8)、「本格制動」制御を実行する(S71)。また、正常運転検出部 60が運転者の運転 の正常性を示す条件が充足されていると判定したときには(S65)、 TTCが図 3 (a)に 示す(3)の領域に入った時点で (S68)、「本格制動」制御を実行する(S71)。
[0101] また、制動制御開始以前の自車速が 60kmZh未満 15kmZh以上であり(S63、 S 72)、 TTCが図 3 (c)に示す (4)の領域にあれば (S73)、運転者に対して先行車との 相対距離が近いことを報知する(S74)。報知は、警報表示やブザー音により行う。さ らに、 TTCが図 3 (c)に示す(5)の領域にあれば (S75)、「本格制動」制御を実行す る(S71)。
[0102] なお、ステアリングセンサ 2からの操舵角の代わりにョーレイトセンサ 3からのョーレイ トを利用することもできる。あるいは、操舵角とョーレイトを併用してもよい。
[0103] 第七実施例の自動制動制御装置を図 21ないし図 26を参照して説明する。本実施 例の制御系統構成図は第一実施例(図 1)と共通である。図 21は本実施例の制動制 御 ECUの動作を示すフローチャートである。図 22は本実施例の空積時の制動パタ ーンの動作手順を示すフローチャートである。
[0104] 本実施例の特徴とするところは、制動制御 ECU4は、 TTCに応じて制動パターンを 変更するところにある。
[0105] 図 23〜図 26はそれぞれ TTCに応じた制動パターン # 1〜 #4を説明するための 図であるが、さらに、制動制御 ECU4は、制動パターンを変更するために段階数を減 ずる場合には、段階数を減じない場合に適用される制動パターンの形状 (例えば、 図 3)を、図 25および図 26に示すように、減ずる段階数に応じた新たな制動パターン # 3および #4の形状に変更する。また、図 23および図 24に示す制動パターン # 1 および # 2のように、段階数は減じることなく制動パターン形状のみを変更することも できる。
[0106] また、新たな制動パターン # 1〜#4の形状に変更する手段は、図 3 (空積時)、図 4
(半積時)、図 5 (定積時)に示す制動パターンにそれぞれ対応した制動パターン # 1 〜#4を制動パターン記憶部 41に予め複数記憶しておき、制動パターン選択部 40 は、 TTCの値に応じてこれらの制動パターン力も適合 (または近似)する制動パター ンを選択することにより、図 3、図 4、図 5に示す制動パターンを、それぞれ図 23〜図 26に示す制動パターン # 1〜#4に変更することができる。
[0107] 次に、本実施例の自動制動制御装置の動作を図 21のフローチャートを参照しなが ら説明する。図 21は空積時(図 3)の制動パターンを例にとって説明を行うが、半積 時(図 4)または定積時(図 5)においても図 21のフローチャートの手順に準じる。図 2 1に示すように、先行車との車間距離および先行車の車速をミリ波レーダ 1により測定 して監視する。また、自車速を車速センサ 13により測定して監視する。さらに、軸重 計 9により積載貨物や乗客の重量を測定して監視する(S81)。制動制御 ECU4の制 動パターン選択部 40は、当該重量の測定結果に基づき制動パターン(図 3、図 4、図 5)のいずれかを予め選択する。以下の説明は、図 3の制動パターンが選択された例 である。
[0108] 車間距離、自車速、先行車の車速により TTCを計算する(S82)。計算方法は、前 述したとおりである。制動制御開始以前の自車速が 60kmZh以上であり(S83)、制 動制御開始以前の操舵角が + 30度以下であり 30度以上である場合には(S84) 、ステップ S62により計算された TTCの値力 閾値 # 1よりも大きい場合には(S85)、 図 23に示す制動パターン # 1を選択する。制動パターン # 1の形状は、図 3 (b)に示 した制動パターンの形状と同じである。よって、閾値 # 1は、図 3 (b)の例では 2. 4秒 になる。
[0109] また、ステップ S82により計算された TTCの値力 閾値 # 2よりも大きぐ閾値 # 1以 下の場合には(S86)、図 24に示す制動パターン # 2を選択する。制動パターン # 2 の形状は、図 3 (b)に示した制動パターンの形状を変更したものである。変更前の制 動パターンの形状を破線により示した。 3段階の制動パターンは保っているが、警報 および拡大領域制動の領域を短縮した制動パターンとなっている。閾値 # 2は、図 3 (b)の例では 1. 6秒付近に設定される。これにより、段数を減ずる場合と比べて制動 ノ ターンの変化が緩やかになり、車両の安定性を高く保つことができる。
[0110] また、ステップ S82により計算された TTCの値力 閾値 # 3よりも大きぐ閾値 # 2以 下の場合には(S87)、図 25に示す制動パターン # 3を選択する。制動パターン # 3 の形状は、図 3 (b)に示した制動パターンの形状を変更したものである。変更前の制 動パターンの形状を破線により示した。図 3 (b)に示した制動パターンの形状と比較 すると、拡大領域制動が無くなっており、警報直後に本格制動に入る。閾値 # 3は、 図 3 (b)の例では、 0. 8秒付近に設定される。
[0111] また、ステップ S82により計算された TTCの値力 閾値 # 3以下の場合には(S88) 、図 26に示す制動パターン #4を選択する。制動パターン #4の形状は、図 3 (b)に 示した制動パターンの形状を変更したものである。変更前の制動パターンの形状を 破線により示した。図 3 (b)に示した制動パターンの形状と比較すると、本格制動のみ になっている。
[0112] このように、 TTCの値に応じて可能な限り、段階的な制動制御を行うが、 TTCの値 が極端に小さい場合には、いきなり急制動を行う場合もあり得る。これにより、 TTCの 値に応じて適切な自動制動制御を行うことができる。
[0113] また、制動制御開始以前の自車速が 60kmZh未満 15kmZh以上であり(S83、 S 93)、 TTCが図 3 (c)に示す (4)の領域にあれば (S94)、運転者に対して先行車との 相対距離が近いことを報知する(S95)。報知は、警報表示やブザー音により行う。さ らに、 TTCが図 3 (c)に示す(5)の領域にあれば (S96)、「本格制動」制御を実行す る(S97)。 [0114] なお、ステアリングセンサ 2からの操舵角の代わりにョーレイトセンサ 3からのョーレイ トを利用することもできる。あるいは、操舵角とョーレイトを併用してもよい。
[0115] また、図 22に示すように、図 3に示した制動パターンでは、丁丁じが図3 (&)に示す( 1)の領域にあれば (S101)、「警報」制動制御を実行する(S104)。また、 TTCが図 3 (a)に示す(2)の領域にあれば (S 102)、「拡大領域制動」制御を実行する(S 105) 。また、 TTCが図 3 (&)に示す(3)の領域にぁれば 103)、「本格制動」制御を実行 する(S106)。図 4、図 5の各制動パターンについてもこれに準ずる。
産業上の利用可能性
[0116] 本発明によれば、トラックやバスにおける自動制動制御を、積載貨物や乗客の重量 の変化に応じて適切に実行することができ、あるいは、運転者の運転状況に応じて実 行することができ、交通安全に寄与することができる。また、 TTCがきわめて短い場 合でも適切な制動制御を行うことができるため、不測の事態に幅広く対応することが できる。

Claims

請求の範囲
[1] 自車の進行方向に有る対象物との距離を含むセンサ出力に基づき運転操作がなく とも自動的に制動制御を行う制御手段を備え、
前記制御手段は、前記センサ出力により得られた前記対象物と自車との相対距離 および相対速度とに基づき導出される前記対象物と自車とが所定距離以下となるま で要する時間の予測値が設定値を下回ったときに自動的に段階的な制動制御を行 う段階的制動制御手段を備えた自動制動制御装置にお!/、て、
前記段階制動制御手段は、積載貨物や乗客の重量に応じて制動パターンを変更 する手段を含むことを特徴とする自動制動制御装置。
[2] 自車の進行方向に有る対象物との距離を含むセンサ出力に基づき運転操作がなく とも自動的に制動制御を行う制御手段を備えた自動制動制御装置にお!、て、 前記制御手段は、前記センサ出力により得られた前記対象物と自車との相対距離 および相対速度とに基づき導出される前記対象物と自車とが所定距離以下となるま でに要する時間の予測値が設定値を下回ったときに自動的に、時系列的に複数段 階にわたり制動力または制動減速度を徐々に増大させる段階的な制動制御を行う段 階的制動制御手段を備え、
前記段階的な制動制御を実行するための異なる複数の制動パターンが設けられ、 前記段階的制動制御手段は、操作入力に応じて前記異なる複数の制動パターン の!、ずれかを選択する手段を備えた
ことを特徴とする自動制動制御装置。
[3] 前記異なる複数の制動パターンの積分値はそれぞれ同一であり、それぞれの制動 ノターンにおける最終段階の制動力または制動減速度がそれぞれ異なる請求項 2 記載の自動制動制御装置。
[4] 前記制動パターンには、前記段階的な制動制御の内、最終段階以外の他の段階 では、制動制御を行う代わりに運転者に対して警告を報知するパターンを含む請求 項 2記載の自動制動制御装置。
[5] 先行車と自車との間の車間距離に応じて警報を発出する車間距離警報手段を備 え、 この車間距離警報手段には、警報を発出する車間距離の長さを運転者の操作によ り設定する手段が設けられ、
前記操作入力は、この設定する手段の設定操作と連動する
請求項 2記載の自動制動制御装置。
[6] 自車の進行方向に有る対象物との距離を含むセンサ出力に基づき運転操作がなく とも自動的に制動制御を行う制御手段を備え、
前記制御手段は、前記センサ出力により得られた前記対象物と自車との相対距離 および相対速度とに基づき導出される前記対象物と自車とが所定距離以下となるま でに要する時間の予測値が設定値を下回ったときに自動的に段階的な制動制御を 行う段階的制動制御手段を備え、
前記段階的制動制御手段は、時系列的に複数段階にわたり制動力または制動減 速度を徐々に増大させる制動制御手段を含む自動制動制御装置であって、 運転者の車両に対する操作実行状況を検出する手段と、
この検出する手段による検出結果が運転者の運転の正常性を示す条件を充足しな いときには、前記設定値を引き上げる手段と
を備えたことを特徴とする自動制動制御装置。
[7] 自車の進行方向に有る対象物との距離を含むセンサ出力に基づき運転操作がなく とも自動的に制動制御を行う制御手段を備え、
前記制御手段は、前記センサ出力により得られた前記対象物と自車との相対距離 および相対速度とに基づき導出される前記対象物と自車とが所定距離以下となるま でに要する時間の予測値が設定値を下回ったときに自動的に段階的な制動制御を 行う段階的制動制御手段を備え、
前記段階的制動制御手段は、時系列的に複数段階にわたり制動力または制動減 速度を徐々に増大させる制動制御手段を含む自動制動制御装置であって、 運転者の車両に対する操作実行状況を検出する手段と、
この検出する手段による検出結果が運転者の運転の正常性を示す条件を充足して いるときには、前記段階数を低減させる手段と
を備えたことを特徴とする自動制動制御装置。
[8] 前記低減させる手段は、前記複数段階における最終段階から自動制動制御を開 始する手段を備えた請求項 7記載の自動制動制御装置。
[9] 自車の進行方向に有る対象物との距離を含むセンサ出力に基づき運転操作がなく とも自動的に制動制御を行う制御手段を備え、
前記制御手段は、前記センサ出力により得られた前記対象物と自車との相対距離 および相対速度とに基づき導出される前記対象物と自車とが所定距離以下となるま でに要する時間の予測値が設定値を下回ったときに自動的に段階的な制動制御を 行う段階的制動制御手段を備えた自動制動制御装置にお!、て、
前記段階的制動制御手段は、時系列的に複数段階にわたり制動力または制動減 速度を徐々に増大させる制動制御手段を含み、
この制動制御手段は前記予測値に応じて制動パターンを変更する手段を備えた ことを特徴とする自動制動制御装置。
[10] 前記制動パターンを変更する手段は、前記段階の数を減ずる手段を備えた請求項
9記載の自動制動制御装置。
[11] 前記段階の数を減ずる手段は、前記段階の数を減じない場合に適用される制動パ ターンの形状を、減ずる前記段階の数に応じた新たな制動パターンの形状に変更す る手段を含む請求項 10記載の自動制動制御装置。
[12] 前記制動パターンを変更する手段は、前記段階の数は減ずることなく制動パターン 形状を変更する手段を含む請求項 9記載の自動制動制御装置。
[13] 自車速が所定値未満であり、操舵角あるいはョーレイトのとる値が所定範囲外であ るときには、前記段階的制動制御手段の起動を禁止する手段を備えた請求項 1記載 の自動制動制御装置。
PCT/JP2006/315646 2005-08-24 2006-08-08 自動制動制御装置 WO2007023668A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/064,609 US20090102277A1 (en) 2005-08-24 2006-08-08 Automatic Brake Control Device
DE112006002246T DE112006002246B4 (de) 2005-08-24 2006-08-08 Vorrichtung zur automatischen Bremsregelung

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP2005-242066 2005-08-24
JP2005-242068 2005-08-24
JP2005242053 2005-08-24
JP2005242078 2005-08-24
JP2005-242053 2005-08-24
JP2005242068 2005-08-24
JP2005-242078 2005-08-24
JP2005242066 2005-08-24
JP2005314607 2005-10-28
JP2005-314607 2005-10-28
JP2006-002025 2006-01-10
JP2006002025 2006-01-10

Publications (1)

Publication Number Publication Date
WO2007023668A1 true WO2007023668A1 (ja) 2007-03-01

Family

ID=37771419

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/315646 WO2007023668A1 (ja) 2005-08-24 2006-08-08 自動制動制御装置

Country Status (2)

Country Link
DE (1) DE112006002246B4 (ja)
WO (1) WO2007023668A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011148426A (ja) * 2010-01-22 2011-08-04 Toyota Motor Corp ドライバ状態確認装置
JP2018016248A (ja) * 2016-07-29 2018-02-01 日産自動車株式会社 制動制御方法及び制動制御装置
CN108189835A (zh) * 2017-12-28 2018-06-22 清华大学苏州汽车研究院(吴江) 一种自动驾驶的避撞控制方法及系统
CN109131277A (zh) * 2018-07-13 2019-01-04 金龙联合汽车工业(苏州)有限公司 一种自动紧急制动系统的人机协调控制系统
CN109910879A (zh) * 2019-04-03 2019-06-21 大连理工大学 一种结合安全距离与碰撞时间的车辆安全防撞控制方法
US11173835B2 (en) 2019-07-01 2021-11-16 International Business Machines Corporation Notifying passengers of imminent vehicle braking
US20220340106A1 (en) * 2019-08-09 2022-10-27 Toyota Jidosha Kabushiki Kaisha Drive assistance device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103841942A (zh) 2011-08-31 2014-06-04 美迪卡医学有限公司 治疗用的行走训练装置
KR101360683B1 (ko) 2011-12-06 2014-02-10 현대자동차주식회사 차량의 상태정보 기반 긴급제동 제어 장치 및 그 방법
DE102014200686B4 (de) 2014-01-16 2022-11-10 Robert Bosch Gmbh Hydraulisches Bremssystem, Dämpfereinrichtung
DE102017200376B4 (de) 2017-01-11 2022-09-08 Audi Ag Verfahren zum Durchführen einer Notbremsung, Fahrerassistenzsystem für ein Kraftfahrzeug und Kraftfahrzeug

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0769188A (ja) * 1993-09-02 1995-03-14 Toyota Motor Corp 自動ブレーキ装置
JPH10338111A (ja) * 1997-06-05 1998-12-22 Hitachi Ltd 緊急自動ブレーキ装置
JP2000326757A (ja) * 1999-05-18 2000-11-28 Mitsubishi Electric Corp 危険接近防止装置
JP2002025000A (ja) * 2000-07-11 2002-01-25 Mazda Motor Corp 車両の制御装置
JP2002163798A (ja) * 2000-11-22 2002-06-07 Michihiro Kannonji 車間距離警報装置ならびに表示装置
JP2003054394A (ja) * 2001-06-06 2003-02-26 Nissan Motor Co Ltd 車両用制動制御装置
JP2003118423A (ja) * 2001-10-11 2003-04-23 Nissan Motor Co Ltd 自動巡航制御装置
JP2003291685A (ja) * 2002-04-01 2003-10-15 Daihatsu Motor Co Ltd 追従走行装置及びその制御方法
JP2004142708A (ja) * 2002-10-28 2004-05-20 Nissan Diesel Motor Co Ltd トラックの速度制御機構
JP2004161099A (ja) * 2002-11-12 2004-06-10 Nissan Motor Co Ltd 車両用報知装置
JP2004210148A (ja) * 2003-01-06 2004-07-29 Hitachi Ltd 自動制動装置
JP2004524214A (ja) * 2001-04-12 2004-08-12 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング 車両衝突防止方法
JP2004224262A (ja) * 2003-01-24 2004-08-12 Hino Motors Ltd 自動ブレーキ制御装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19859743A1 (de) * 1998-12-23 2000-06-29 Man Nutzfahrzeuge Ag Verfahren und Vorrichtung zur Regelung der Fahrweise eines Kraftfahrzeuges
DE19952392A1 (de) * 1999-10-29 2001-05-31 Daimler Chrysler Ag Verfahren und Vorrichtung zur Bereitstellung von fahrstreckenabhängigen Fahrerinformationen
JP3835438B2 (ja) * 2003-07-11 2006-10-18 トヨタ自動車株式会社 衝突対応車両制御システム

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0769188A (ja) * 1993-09-02 1995-03-14 Toyota Motor Corp 自動ブレーキ装置
JPH10338111A (ja) * 1997-06-05 1998-12-22 Hitachi Ltd 緊急自動ブレーキ装置
JP2000326757A (ja) * 1999-05-18 2000-11-28 Mitsubishi Electric Corp 危険接近防止装置
JP2002025000A (ja) * 2000-07-11 2002-01-25 Mazda Motor Corp 車両の制御装置
JP2002163798A (ja) * 2000-11-22 2002-06-07 Michihiro Kannonji 車間距離警報装置ならびに表示装置
JP2004524214A (ja) * 2001-04-12 2004-08-12 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング 車両衝突防止方法
JP2003054394A (ja) * 2001-06-06 2003-02-26 Nissan Motor Co Ltd 車両用制動制御装置
JP2003118423A (ja) * 2001-10-11 2003-04-23 Nissan Motor Co Ltd 自動巡航制御装置
JP2003291685A (ja) * 2002-04-01 2003-10-15 Daihatsu Motor Co Ltd 追従走行装置及びその制御方法
JP2004142708A (ja) * 2002-10-28 2004-05-20 Nissan Diesel Motor Co Ltd トラックの速度制御機構
JP2004161099A (ja) * 2002-11-12 2004-06-10 Nissan Motor Co Ltd 車両用報知装置
JP2004210148A (ja) * 2003-01-06 2004-07-29 Hitachi Ltd 自動制動装置
JP2004224262A (ja) * 2003-01-24 2004-08-12 Hino Motors Ltd 自動ブレーキ制御装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011148426A (ja) * 2010-01-22 2011-08-04 Toyota Motor Corp ドライバ状態確認装置
JP2018016248A (ja) * 2016-07-29 2018-02-01 日産自動車株式会社 制動制御方法及び制動制御装置
CN108189835A (zh) * 2017-12-28 2018-06-22 清华大学苏州汽车研究院(吴江) 一种自动驾驶的避撞控制方法及系统
CN109131277A (zh) * 2018-07-13 2019-01-04 金龙联合汽车工业(苏州)有限公司 一种自动紧急制动系统的人机协调控制系统
CN109910879A (zh) * 2019-04-03 2019-06-21 大连理工大学 一种结合安全距离与碰撞时间的车辆安全防撞控制方法
CN109910879B (zh) * 2019-04-03 2020-07-14 大连理工大学 一种结合安全距离与碰撞时间的车辆安全防撞控制方法
US11173835B2 (en) 2019-07-01 2021-11-16 International Business Machines Corporation Notifying passengers of imminent vehicle braking
US20220340106A1 (en) * 2019-08-09 2022-10-27 Toyota Jidosha Kabushiki Kaisha Drive assistance device
US11993237B2 (en) * 2019-08-09 2024-05-28 Toyota Jidosha Kabushiki Kaisha Drive assistance device

Also Published As

Publication number Publication date
DE112006002246T5 (de) 2008-06-19
DE112006002246B4 (de) 2013-04-04

Similar Documents

Publication Publication Date Title
WO2007023668A1 (ja) 自動制動制御装置
US20090102277A1 (en) Automatic Brake Control Device
WO2007023666A1 (ja) 自動制動制御装置
JP4878945B2 (ja) 自動制動制御装置
JP4723429B2 (ja) 自動制動制御装置
JP2007210592A (ja) 自動制動制御装置
JP2004521027A (ja) 車両の減速を自動的に作動させる方法および装置
WO2007023667A1 (ja) 自動制動制御装置
JP2008024165A (ja) 負荷制御装置、負荷制御方法及び車両スリップ抑制装置
JP2007210595A (ja) 自動制動制御装置
JP2007223582A (ja) 自動制動制御装置
JP4869792B2 (ja) 自動制動制御装置
JP4877948B2 (ja) 自動制動制御装置
CN113291302A (zh) 车辆纵向安全控制方法、装置、设备及存储介质
JP4671926B2 (ja) 自動制動制御装置
JP4137960B2 (ja) 自動制動制御装置
JP4869812B2 (ja) 自動制動制御装置
JP2007196903A (ja) 自動制動制御装置
JP4121936B2 (ja) 居眠り検出方法および装置
JP4790520B2 (ja) 自動制動制御装置
JP3925642B2 (ja) 運転支援装置
JP5122097B2 (ja) 自動制動制御装置
JP4723428B2 (ja) 自動制動制御装置
JP4869791B2 (ja) 自動制動制御装置
JP2007196901A (ja) 自動制動制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 186407

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: 12064609

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120060022466

Country of ref document: DE

RET De translation (de og part 6b)

Ref document number: 112006002246

Country of ref document: DE

Date of ref document: 20080619

Kind code of ref document: P

WWE Wipo information: entry into national phase

Ref document number: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06782472

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: DE

Ref legal event code: 8607