[go: up one dir, main page]

WO1997010188A1 - Faserhaltiges aerogel-verbundmaterial - Google Patents

Faserhaltiges aerogel-verbundmaterial Download PDF

Info

Publication number
WO1997010188A1
WO1997010188A1 PCT/EP1996/003961 EP9603961W WO9710188A1 WO 1997010188 A1 WO1997010188 A1 WO 1997010188A1 EP 9603961 W EP9603961 W EP 9603961W WO 9710188 A1 WO9710188 A1 WO 9710188A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite material
binder
material according
airgel
fibers
Prior art date
Application number
PCT/EP1996/003961
Other languages
English (en)
French (fr)
Inventor
Dierk Frank
Andreas Zimmermann
Original Assignee
Hoechst Research & Technology Deutschland Gmbh & Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoechst Research & Technology Deutschland Gmbh & Co. Kg filed Critical Hoechst Research & Technology Deutschland Gmbh & Co. Kg
Priority to EP96931062A priority Critical patent/EP0850207A1/de
Priority to JP51164697A priority patent/JP4118331B2/ja
Publication of WO1997010188A1 publication Critical patent/WO1997010188A1/de
Priority to NO980991A priority patent/NO980991L/no

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B30/00Compositions for artificial stone, not containing binders
    • C04B30/02Compositions for artificial stone, not containing binders containing fibrous materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B26/00Compositions of mortars, concrete or artificial stone, containing only organic binders, e.g. polymer or resin concrete
    • C04B26/02Macromolecular compounds
    • C04B26/10Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B26/12Condensation polymers of aldehydes or ketones
    • C04B26/125Melamine-formaldehyde condensation polymers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/24Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing alkyl, ammonium or metal silicates; containing silica sols
    • C04B28/26Silicates of the alkali metals

Definitions

  • the invention relates to a composite material which contains 5 to 97% by volume of airgel particles, at least one binder and at least one fiber material, the particle diameter of the airgel particles being ⁇ 0.5 mm, a process for its production and its use.
  • Aerogieie especially those with porosities above 60% and densities below 0.4 g / cm 3 , have an extremely low thermal conductivity due to their very low density, high porosity and small pore diameter and are therefore used as heat insulation materials, such as. B. describe in EP-AO 171 722.
  • the high porosity also leads to a low mechanical stability of both the gel from which the airgel is dried and the dried airgel itself.
  • Aerogy in the broader sense i.e. in the sense of "gel with air as a dispersing agent" are produced by drying a suitable gel.
  • airgel includes aerogeies in the narrower sense, xerogels and cryogels.
  • a dried gel is referred to as an airgel in the narrower sense if the liquid of the gel is largely removed at temperatures above the critical temperature and starting from pressures above the critical pressure. If, on the other hand, the liquid of the gel is removed subcritically, for example with the formation of a liquid-vapor boundary phase, the resulting gel is also referred to as a xerogel.
  • aerogeie in the present application is aerogeie in the broader sense, i.e. in the sense of "gel with air as a dispersant".
  • the molding process of the airgel is completed during the sol-gel transition.
  • the outer shape can only still be changed by crushing, for example grinding.
  • the material is too fragile for another form of stress.
  • DE-A 33 46 180 describes rigid plates made of pressed bodies on the basis of silica airgel obtained from flame pyrolysis in connection with reinforcement by mineral long fibers.
  • this silica airgel obtained from flame pyrolysis is not an airgel in the above sense, since it is not produced by drying a gel and thus has a completely different pore structure. It is mechanically more stable and can therefore be pressed without destroying the microstructure, but has a higher thermal conductivity than typical aerogeies in the above sense.
  • the surface of such compacts is very sensitive and must therefore be hardened by using a binder on the surface or protected by lamination with a film.
  • EP-A-0 340 707 describes an insulating material with a density of 0.1 to 0.4 g / cm 3 , which consists of at least 50% by volume silica airgel particles with a diameter between 0.5 and 5 mm, which are connected by means of at least one organic and / or inorganic binder. If the airgel particles are only connected at the contact surfaces via the binder, the resulting insulation material is not very stable mechanically, since the mechanical part of the airgel particle covered by the binder tears off, the particle is then no longer bound and the insulation material cracks receives. Therefore, if possible, all gussets between the airgel particles should be filled with the binder.
  • the resulting material is more stable than pure aeroge, but cracks can easily occur if not all of the granules are adequately enclosed by the binder.
  • a high volume fraction of airgel which is favorable for a low thermal conductivity, only small volume fractions of binder remain in the gusset areas, which has a low mechanical stability, in particular in the case of porous binders such as foams with low thermal conductivity. Filling all gusset areas with binder also leads to a greatly reduced sound absorption in the material due to the reduced macroscopic porosity (between the particles).
  • EP-A-489 319 discloses a composite foam with low thermal conductivity which comprises 20 to 80% by volume of silica airgel particles, 20 to 80% by volume of a styrene polymer foam of density 0 which envelops and connects the airgel particles , 01 to 0.15 g / cm 3 and optionally Contains usual additives in effective amounts.
  • the composite foam produced in this way is pressure-resistant, but not very resistant to bending at high concentrations of airgel particles.
  • German patent applications DE-A-44 30 669 and DE-A-44 30 642 plates or mats made of a fiber-reinforced airgel are described. Although these plates or mats have a very low thermal conductivity due to the very high proportion of airgel, their manufacture requires relatively long production times due to the diffusion problems described above.
  • a nonwoven airgel composite material which has at least one layer of nonwoven fabric and airgel particles, which is characterized in that the nonwoven fabric contains at least one bicomponent fiber material, the fibers of which are mutually and are connected to the airgel particles by the low-melting shell material.
  • This composite material has a relatively low thermal conductivity as well as a high macroscopic porosity and associated good sound insulation, but the use of bicomponent fibers limits the temperature range in which the material can be used and the fire protection class. Furthermore, the corresponding composites, in particular more complicated moldings, are not easy to manufacture.
  • One of the objects of the present invention was therefore to provide a composite material based on airgel granules which has a low thermal conductivity, is mechanically stable and is easy to produce.
  • Another object of the present invention was to provide a composite material based on airgel granules which additionally has good sound absorption.
  • the object is achieved by a composite material which contains 5 to 97% by volume of airgel particles, at least one binder and at least one fiber material, the particle diameter of the airgel particles being> 0.5 mm.
  • the binder either binds the fibers or aerogeies to one another or to one another, or else the binder serves as a matrix material in which the fibers and the airgel particles are embedded.
  • the connection of the fibers and the airgel particles to one another and to one another by means of the binder and, if appropriate, the embedding in a binder matrix leads to a mechanically stable material with low thermal conductivity.
  • the fibers can be natural or artificial, inorganic or organic fibers, e.g. Cellulose, cotton or flax fibers, glass or mineral fibers, polyester, polyamide or polyaramid fibers.
  • the fibers can be new or from waste such as e.g. shredded glass fiber waste or rags. The use of bicomponent fibers is also possible.
  • the fibers can be smooth or crimped as individual fibers, as a bulk or as a non-woven or woven fabric.
  • Nonwovens and / or fabrics can be a coherent whole and / or in the form of several small pieces in the Composite may be included.
  • the fibers can have round, trilobal, pentalobal, octalobal, ribbon, fir tree, barbell or other star-shaped profiles. Hollow fibers can also be used.
  • the diameter of the fibers used in the composite should preferably be smaller than the average diameter of the airgel particles in order to be able to bind a high proportion of airgel in the composite.
  • the choice of very thin fibers makes the composite more flexible.
  • Fibers with a diameter between 1 ⁇ m and 1 mm are preferably used. With a fixed volume fraction of fibers, the use of narrow diameters typically leads to more break-resistant composite materials.
  • the length of the fibers is in no way limited. Preferably, however, the length of the fibers should be greater than the average diameter of the airgel particles, i.e. at least 0.5 mm.
  • the stability as well as the thermal conductivity of the composite material increases with increasing fiber content.
  • the volume fraction of the fibers should preferably be between 0.1 and 40% by volume, particularly preferably in the range between 0.1 and 15% by volume.
  • the fibers can also be coated with sizes or contact agents (coupling agents), e.g. usual for glass fibers.
  • Suitable aerogies for the composite materials according to the invention are those based on metal oxides which are suitable for the sol-gel technique (see, for example, CJ. Brinker, GW Scherer, Sol-Gel-Science, 1990, chap. 2 and 3), such as Si or Al compounds or those based on organic substances which are suitable for sol-gel technology, such as, for example, melamine formaldehyde condensates (US Pat. No. 5,086,085) or resorcinol formaldehyde condensates (US Pat. 4, 873.218). However, they can also be based on mixtures of the above materials. Aerogies containing Si compounds are preferably used, particularly preferably aerogies containing SiO 2 , in particular SiO 2 aerogels, which are optionally organically modified.
  • the airgel IR opacifier e.g. Contain carbon black, titanium dioxide, iron oxide, zirconium dioxide or mixtures thereof.
  • the thermal conductivity of the aerogeie decreases with increasing porosity and decreasing density, to a density in the range of 0.1 g / cm 3 .
  • aerogels with porosities above 60% and densities between 0.1 and 0.4 g / cm 3 are preferred.
  • the thermal conductivity of the airgel granules should preferably be less than 40 mW / mK, particularly preferably less than 25 mW / mK.
  • hydrophobic airgel particles are used, which can be obtained by introducing hydrophobic surface groups on the pore surfaces of the aerogie during or after the production of the aerogeie.
  • airgel particles is intended to refer to particles which are either monolithic, ie consist of one piece, or which essentially contain airgel particles with a diameter smaller than that of the particle, which can be replaced by a suitable Binders are connected and / or are pressed together to form a larger particle.
  • the size of the grains depends on the application of the material. In order to achieve high stability, the granules should not be too coarse-grained, preferably the diameter of the grains should be less than 1 cm and particularly preferably less than 5 mm.
  • the diameter of the airgel particles should be larger than 0.5 mm, in order to avoid the very difficult handling of a very fine, low-density powder during manufacture. Furthermore, during processing, liquid binder usually penetrates into the upper layers of the airgel, which loses its high insulating effect in this area. Therefore, the ratio of macroscopic particle surface to particle volume should be as small as possible, which would not be the case with too small particles.
  • the volume fraction of the airgel should preferably be between 20 and 97% by volume, particularly preferably between 40 and 95% by volume, high volume proportions resulting in lower thermal conductivity and Lead strength.
  • air pores should also be present in the material, for which purpose the volume fraction of the airgel should preferably be below 85% by volume.
  • Granules with a favorable bimodal grain size distribution can preferably be used to achieve high airgel volume fractions. Depending on the application, e.g. in the field of sound insulation, other distributions can also be used.
  • the fibers or airgel particles with one another and fibers and airgel particles with one another are connected by at least one binder.
  • the binder can either only connect the fibers and airgel particles to one another and to one another or serve as a matrix material.
  • all known binders are suitable for producing the composite materials according to the invention.
  • Inorganic binders such as water glass glue, or organic binders or mixtures thereof can be used.
  • the binder can additionally contain further inorganic and / or organic constituents.
  • Suitable organic binders are e.g. thermoplastics, e.g. Polyolefins or polyolefin waxes, styrene polymers, polyamides, ethylene-vinyl acetate copolymers or blends thereof, or thermosetting plastics such as phenol, resorcinol, urea or melamine resins.
  • Adhesives such as hot melt adhesives, dispersion adhesives (in aqueous form, e.g. styrene-butadiene and styrene-acrylic ester copolymers), solvent-based adhesives or plastisols can also be used; reaction adhesives are also suitable, e.g.
  • thermosetting epoxy resins such as thermosetting epoxy resins, formaldehyde condensates, polyimides, polybenzimidazoles, cyanoacrylates, polyvinyl butyrals, polyvinyl alcohols, anaerobic adhesives, polyurethane adhesives and moisture-curing silicones
  • two-component systems such as methacrylic and epoxy resins, cold curing, cold curing.
  • Polyvinyl butyrals and / or polyvinyl alcohols are preferably used.
  • the binder should preferably be chosen so that, if it is in liquid form in certain phases of processing, it cannot penetrate into this very porous airgel, or can penetrate it only insignificantly.
  • the penetration of the binder into the interior of the airgel particles can also be influenced by regulating the process conditions, such as pressure, temperature and mixing time.
  • porous materials are advantageously used because of their low thermal conductivity Densities less than 0.75 g / cm 3, such as foams, preferably polymer foams (eg polystyrene or polyurethane foams), are used.
  • the binder In order to achieve a good distribution of the binder in the gusset cavities with a high proportion of airgel and as good a bonding as possible, the binder should preferably be smaller than that of the airgel granules in the case that the binder is in solid form. Processing at elevated pressure may also be necessary.
  • the binder must be chosen so that its melting temperature does not exceed the melting temperature of the fibers.
  • the binder is generally used in an amount of 1 to 50% by volume of the composite material, preferably in an amount of 1 to 30% by volume.
  • the choice of binder depends on the mechanical and thermal requirements for the composite and the requirements with regard to fire protection.
  • the composite can contain other additives such as e.g. Contain dyes, pigments, fillers, flame retardants, synergists for flame retardants, antistatic agents, stabilizers, plasticizers and IR opacifiers.
  • additives such as e.g. Contain dyes, pigments, fillers, flame retardants, synergists for flame retardants, antistatic agents, stabilizers, plasticizers and IR opacifiers.
  • the composite material can contain additives which are used for its production or are produced during the production, e.g. Lubricants for pressing, such as zinc stearate, or the reaction products of acidic or acid-releasing hardening accelerators when using resins.
  • Lubricants for pressing such as zinc stearate
  • reaction products of acidic or acid-releasing hardening accelerators when using resins e.g.
  • the fire class of the composite material is determined by the fire class of the airgel, the fibers and the binder, as well as other substances which may be present.
  • non-flammable fiber types such as glass or mineral fibers, or flame-retardant fiber types such as TREVIRA CS® or melamine resin fibers
  • aerogels on an inorganic basis, particularly preferably on the basis of SiO 2 and flame-retardant binders should preferably be used such as inorganic binders or urea and melamine formaldehyde resins, silicone resin adhesives, polyimide and polybenzimidazole resins can be used.
  • the material is in the form of flat structures, e.g. Sheets or mats used, it can be laminated on at least one side with at least one cover layer to improve the properties of the surface, e.g. to increase the robustness, to design it as a vapor barrier or to protect it against easy contamination.
  • the cover layers can also improve the mechanical stability of the composite molding. If cover layers are used on both surfaces, they can be the same or different.
  • cover layers All materials known to the person skilled in the art are suitable as cover layers. They can be non-porous and thus act as a vapor barrier, e.g. Plastic foils, preferably metal foils or metallized plastic foils, which reflect thermal radiation. However, porous cover layers can also be used, which allow air to penetrate the material and thus lead to better sound absorption, e.g. porous foils, papers, fabrics or fleeces.
  • the cover layers themselves can also consist of several layers.
  • the cover layers can be fastened with the binder, by means of which the fibers and the airgel particles are connected to one another and to one another, but another adhesive can also be used.
  • the surface of the composite material can also be closed and solidified by introducing at least one suitable material into a surface layer.
  • suitable materials are, for example, thermoplastic polymers such as polyethylene and polypropylene, or resins such as melamine formaldehyde resins.
  • the composite materials according to the invention preferably have thermal conductivities between 10 and 100 mW / mK, particularly preferably in the range from 10 to 50 mW / mK, in particular in the range from 15 to 40 mW / mK.
  • Another object of the present invention was to provide a method for producing the composite material according to the invention.
  • the composite material can be obtained, for example, as follows: airgel particles, fiber material and binder are mixed with conventional mixing devices. This mixture is then shaped. Depending on the type of binder, the mixture is cured in the mold, if necessary under pressure by heating, for example in the case of reactive adhesives, or in the case of hotmelt adhesives by heating above the melting point of the binder.
  • a material that is porous on a macroscale can be obtained in particular by the following method: If the fibers are not already in a bulked form (for example small balls of cut fibers or small pieces of a fleece), they are processed into small balls using methods known to those skilled in the art. In this step, the airgel granulate can be placed between the fibers if necessary. These balls are then mixed together with the binder and, if appropriate, the airgel particles, for example in a mixer, until the binder and, if appropriate, airgel particles have distributed as evenly as possible between the fibers.
  • a bulked form for example small balls of cut fibers or small pieces of a fleece
  • the mass is then placed in a mold and optionally heated under pressure to a temperature which is above the melting temperature of the adhesive in the case of hot melt adhesives and above the temperature required for the reaction in the case of reactive adhesives. After the binder has melted is or has reacted, the material is cooled. Polyvinyl butyrals are preferably used here. The density of the composite material can be increased by using higher pressures.
  • the mixture is pressed. It is possible for the person skilled in the art to select the suitable press and the suitable pressing tool for the respective application. If necessary, lubricants known to the person skilled in the art, such as e.g. Zinc stearate in melamine formaldehyde resins can be added.
  • the use of vacuum presses is advantageous due to the high air content of the airgel-containing molding compounds.
  • the airgel-containing molding compounds are pressed into sheets.
  • the airgel-containing mixture to be compressed can be mixed with a separating aid, e.g. Release paper against which the ram is cut.
  • the mechanical strength of the airgel-containing plates can be improved by laminating screen fabrics, nonwovens or papers onto the plate surface.
  • the screen fabrics, nonwovens or papers can be applied subsequently to the airgel-containing plates, whereby the screen fabrics, nonwovens or papers can be impregnated beforehand, for example with a suitable binder or adhesive, and then bonded to the plate surfaces in a heatable press under pressure , as well as, in a preferred embodiment, in one working step by inserting the sieve cloth, nonwovens or papers, which can optionally be impregnated beforehand with a suitable binder or adhesive, into the mold and placing on the airgel-containing molding compound to be pressed and then pressing under pressure and temperature to an airgel-containing composite panel.
  • the pressing generally takes place in any form at pressures from 1 to 1000 bar and temperatures from 0 to 300 ° C.
  • the pressing preferably takes place at pressures from 5 to 50 bar, particularly preferably 10 to 20 bar and temperatures preferably from 100 to 200 ° C., particularly preferably 130 to 190 ° C. and in particular between 150 and 175 ° C in any shape.
  • the composite can be obtained, for example, as follows: the airgel particles and the fiber material are mixed with conventional mixing devices. The mixture thus obtained is then coated with the binder, e.g. by spraying, placed in a mold and cured in the mold. Depending on the type of binder, the mixture is cured, if appropriate under pressure, by heating and / or evaporating the solvent or dispersion medium used. The airgel particles are preferably swirled with the fibers in a gas stream. A mold is filled with the mixture, the binder being sprayed on during the filling process. A material that is porous on a macroscale can be obtained in particular by the following process: If the fibers are not already in bulk (e.g.
  • small balls of cut fibers or small pieces of a fleece they are processed into small balls using methods known to those skilled in the art.
  • the airgel granulate can be placed between the fibers if necessary. Otherwise, these balls are then together with the airgel granules e.g. mixed in a mixer until the airgel particles have spread as evenly as possible between the fibers.
  • the binder is sprayed as finely as possible onto the mixture, which is then brought in a mold, if necessary under pressure, to the temperature necessary for the binding.
  • the composite is then dried using conventional methods.
  • the composite material can also be produced as follows, depending on the type of foam. If the foam is produced by expanding expandable granules in a form as in the case of expanded polystyrene, all components are intimately mixed and then typically heated, advantageously by means of hot air or steam. The resulting expansion of the particles increases the pressure in the mold, as a result of which the gusset volume is filled by the foam and the airgel particles are fixed in the composite. After cooling, the composite molded part is removed from the mold and optionally dried.
  • the fibers can be mixed into the liquid.
  • the airgel particles are mixed with the resulting liquid, which then foams.
  • the material is to be provided with a cover layer, this can be inserted into the mold, for example, before or after filling, so that the lamination and shaping can take place in one work step, the composite binder preferably being the binding agent for the lamination is used. However, it is also possible to provide the composite with a cover layer afterwards.
  • the shape of the molded part, which consists of the composite material according to the invention, is in no way limited; in particular, the composite can be brought into sheet form.
  • the composites are very suitable for thermal insulation.
  • the composite can be used, for example in the form of plates, as sound absorption material directly or in the form of resonance absorbers for sound insulation.
  • macroscopic pores cause additional damping Air friction on these macroscopic pores in the composite material.
  • the macroscopic porosity can be influenced by changing the fiber proportion and diameter, grain size and proportion of the airgel particles and type of binder. The frequency dependence and size of the sound attenuation can be changed in a manner known to the person skilled in the art via the choice of the cover layer, the thickness of the plate and the macroscopic porosity.
  • the composite materials according to the invention are also suitable as adsorption materials for liquids, vapors and gases.
  • Moldings made of airgel, polyvinyl butyral and fibers
  • the hydrophobic airgel granulate has an average grain size in the range of 1 to 2 mm, a density of 120 kg / m 3 , a BET surface area of 620 m 2 / g and a thermal conductivity of 11 mW / mK.
  • the bottom of the mold with a base area of 30 cm x 30 cm is lined with release paper.
  • the airgel-containing molding compound is then evenly distributed and the whole thing is covered with a release paper. It is pressed at 220 ° C for 30 minutes to a thickness of 18 mm.
  • the molded body obtained has a density of 269 kg / m 3 and a thermal conductivity of 20 mW / mK.
  • Moldings made from airgel, polyvinyl butyral and recycled fibers
  • the bottom of the mold with a base area of 30 cm x 30 cm is lined with release paper.
  • the airgel-containing molding compound is then evenly distributed and the whole thing is covered with a release paper. It is pressed at 220 ° C for 30 minutes to a thickness of 18 mm.
  • the molded body obtained has a density of 282 kg / m 3 and a thermal conductivity of 25 mW / mK.
  • Moldings made from airgel, polyvinyl butyral and recycled fibers
  • the bottom of the mold with a base area of 30 cm x 30 cm is lined with release paper.
  • the airgel-containing molding compound is then evenly distributed and the whole thing is covered with a release paper. It is pressed at 220 ° C for 30 minutes to a thickness of 18 mm.
  • the molded body obtained has a density of 420 kg / m 3 and a thermal conductivity of 55 mW / mK.
  • Molded body made of airgel, polyethylene wax and fibers
  • the bottom of the mold with a base area of 12 cm x 12 cm is lined with release paper.
  • the airgel-containing molding compound is then evenly distributed and the whole thing is covered with a release paper. It is pressed at 170 C C with a pressure of 70 bar for 30 minutes.
  • the molded body obtained has a thermal conductivity of 25 mW / mK.
  • Shaped body made of airgel, polyethylene wax and fibers
  • hydrophobic airgel granules from Example 1 50% by weight of hydrophobic airgel granules from Example 1, 48% by weight of polyethylene wax powder from Hoechst wax PE 520 and 2% by volume of ®Trevira high-strength fibers are intimately mixed.
  • the bottom of the mold with a base area of 12 cm x 12 cm is lined with release paper.
  • the airgel-containing molding compound is then evenly distributed and the whole thing is covered with a release paper. It is pressed at 180 ° C with a pressure of 70 bar for 30 minutes.
  • the molded body obtained has a thermal conductivity of 28 mW / mK.
  • Molded body made of airgel, polyvinyl alcohol and fibers
  • the polyvinyl alcohol solution consists of 10% by weight ®Mowiol type 40-88, 45% by weight water and 45% by weight ethanol.
  • the bottom of the mold with a base area of 12 cm x 12 cm is lined with release paper.
  • the airgel-containing molding compound is then evenly distributed and the whole is pressed at 70 bar for 2 minutes and then dried.
  • the molded body obtained has a thermal conductivity of 24 mW / mK.
  • the thermal conductivity of the airgel granules was measured using a heating wire method (see, for example, O. Nielsson, G. Haischenpöhler, J. subject, J. Fricke, High Temperatures - High Pressures, Vol. 21, 274-274 (1989)).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Nonwoven Fabrics (AREA)
  • Laminated Bodies (AREA)
  • Silicon Compounds (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Thermal Insulation (AREA)
  • Paper (AREA)

Abstract

Die Erfindung betrifft ein Verbundmaterial, das 5 bis 97 Vol.-% Aerogel-Partikel, mindestens ein Bindemittel und mindestens ein Fasermaterial enthält, wobei der Teilchendurchmesser der Aerogel-Partikel ≥ 0,5 mm ist, ein Verfahren zu seiner Herstellung sowie seine Verwendung.

Description

Faserhaltiges Aerogel-Verbundmaterial
Die Erfindung betrifft ein Verbundmaterial, das 5 bis 97 Vol.-% Aerogel-Partikel, mindestens ein Bindemittel und mindestens ein Fasermaterial enthält, wobei der Teilchendurchmesser der Aerogel-Partikel ≥ 0,5 mm ist, ein Verfahren zu seiner Herstellung sowie seine Verwendung.
Aerogeie, insbesondere solche mit Porositäten über 60 % und Dichten unter 0,4 g/cm3, weisen aufgrund ihrer sehr geringen Dichte, hohen Porosität und geringen Porendurchmesser eine äußerst geringe thermische Leitfähigkeit auf und finden deshalb Anwendung als Wärmeisolationsmaterialien, wie z. B. in der EP-A-O 171 722 beschπeben.
Die hohe Porosität führt aber auch zu einer geringen mechanischen Stabilität sowohl des Gels, aus dem das Aerogel getrocknet wird, als auch des getrockneten Aerogels selbst.
Aerogeie im weiteren Sinne, d.h. im Sinne von "Gel mit Luft als Dispersionsmittel", werden durch Trocknung eines geeigneten Gels hergestellt. Unter den Begriff "Aerogel" in diesem Sinne fallen Aerogeie im engeren Sinn, Xerogele und Kryogele. Dabei wird ein getrocknetes Gel als Aerogel im engeren Sinne bezeichnet, wenn die Flüssigkeit des Gels bei Temperaturen oberhalb der kritischen Temperatur und ausgehend von Drücken oberhalb des kritischen Druckes weitgehend entfernt wird. Wird die Flüssigkeit des Gels dagegen unterkritisch, beispielsweise unter Bildung einer Flüssig-Dampf-Grenzphase, entfernt, bezeichnet man das entstandene Gel auch als Xerogel. Bei der Verwendung des Begriffs Aerogeie in der vorliegenden Anmeldung handelt es sich um Aerogeie im weiteren Sinn, d.h. im Sinn von "Gel mit Luft als Dispersionsmittel".
Der Formgebungsprozeß des Aerogels wird während des Sol-Gel-Übergangs abgeschlossen. Nach Ausbildung der festen Gelstruktur kann die äußere Form nur noch durch Zerkleinern, beispielsweise Mahlen, verändert werden. Für eine andere Form der Beanspruchung ist das Material zu brüchig.
Für viele Anwendungen ist es jedoch notwendig, die Aerogeie in Gestalt bestimmter Formkörper einzusetzen. Im Prinzip ist die Herstellung von Formkörpern schon während der Gelherstellung möglich. Jedoch würde der während der Herstellung typischerweise notwendige, diffusionsbestimmte Austausch von Lösungsmitteln (bzgl. Aerogeie: siehe z.B. US- A-4,610,863 und EP-A 0 396 076, bzgl. Aerogelverbundmaterial: siehe z.B. WO 93/06044) und die ebenfalls diffusionsbestimmte Trocknung zu unwirtschaftlich langen Produktionszeiten führen Daher ist es sinnvoll, im Anschluß an die Aerogel-Herstellung, also nach der Trocknung, einen Formgebungsschritt durchzuführen, ohne daß eine wesentliche Änderung der inneren Struktur des Aerogels im Hinblick auf die Anwendung stattfindet.
Für viele Anwendungen wird von einem Dämmstoff neben einer guten Wärmedämmung auch ein gutes Dämmvermögen für Luftschall gefordert. Eine gute Schalldämpfung tritt typischerweise bei porösen Materialien auf, deren Porosität auf einer makroskopischen Skala (> 0,1 μm) liegt, da dann die Geschwindigkeitswellen des Schalls durch Reibung der Luft an den Porenwänden gedämpft werden. Monolithische Materialien ohne makroskopische Porosität weisen daher eine nur geringe Schalldämpfung auf. Ist ein Material nur auf mikroskopischer Skala porös, wie z.B. monolithische Aerogeie, so kann die Luft nicht durch die Poren strömen, sondern die Schallwellen werden auf das Gerüst des Stoffes übertragen, das sie ohne starke Dämpfung weiterleitet.
In der DE-A 33 46 180 werden biegefeste Platten aus Preßkörpern auf der Basis von aus der Flammpyrolyse gewonnenem Kieselsäureaerogel in Verbindung mit einer Verstärkung durch mineralische Langfasern beschrieben. Bei diesem aus der Flammpyrolyse gewonnenem Kieselsäureaerogel handelt es sich jedoch nicht um ein Aerogel im obigen Sinne, da es nicht durch Trocknung eines Gels hergestellt wird und damit eine gänzlich andere Porenstruktur aufweist. Es ist mechanisch stabiler und kann daher ohne Zerstörung der MikroStruktur gepreßt werden, weist aber eine höhere Wärmeleitfähigkeit als typische Aerogeie im obigen Sinne auf. Die Oberfläche solcher Preßkörper ist sehr empfindlich und muß daher etwa durch den Einsatz eines Binders an der Oberfläche gehärtet oder durch Kaschierung mit einer Folie geschützt werden.
In der EP-A-0 340 707 wird ein Dämmstoff mit einer Dichte von 0,1 bis 0,4 g/cm3 beschrieben, der aus mindestens 50 Vol.-% Silica-Aerogel-Partikeln mit einem Durchmesser zwischen 0,5 und 5 mm besteht, die mittels mindestens einem organischen und/oder anorganischen Bindemittel verbunden sind. Sind die Aerogel- Partikel nur an den Berührungsflächen über das Bindemittel verbunden, so ist der resultierende Dämmstoff mechanisch nicht sehr stabil, da bei mechanischer Beanspruchung der vom Bindemittel bedeckte Teil des Aerogel-Partikels abreißt, das Partikel dann nicht mehr gebunden ist und der Dämmstoff Risse erhält. Daher sollten möglichst alle Zwickel zwischen den Aerogel-Partikeln mit dem Bindemittel ausgefüllt sein. Bei sehr geringen Bindemittelanteilen ist das resultierende Material zwar stabiler als reine Aerogeie, doch können leicht Risse auftreten, wenn nicht alle Granulatkörner von Bindemittel hinreichend umschlossen sind. Bei einem für eine geringe Wärmeleitfähigkeit günstigen hohen Volumenanteil von Aerogel bleiben nur geringe Volumenanteile von Binder in den Zwickelbereichen, was besonders bei porösen Bindern wie z.B. Schäumen mit geπnger Wärmeleitfähigkeit eine geringe mechanische Stabilität zur Folge hat. Das Ausfüllen aller Zwickelbereiche mit Binder führt weiterhin durch die reduzierte makroskopische Porosität (zwischen den Partikeln) zu einer stark reduzierten Schalldämpfung im Material.
In der EP-A- 489 319 wird ein Verbundschaumstoff mit niedriger Wärmeleitfähigkeit offenbart, der 20 bis 80 Vol.-% Silica-Aerogel-Partikel, 20 bis 80 Vol.-% eines die Aerogel-Partikel umhüllenden und miteinander verbindenden Styrolpolymerisatschaumstoffs der Dichte 0,01 bis 0,15 g/cm3 und gegebenenfalls übliche Zusatzstoffe in wirksamen Mengen enthält. Der so hergestellte Verbundschaumstoff ist zwar druckfest, aber bei hohen Konzentrationen an Aerogel- Partikeln nicht sehr biegefest.
In den deutschen Patentanmeldungen DE-A- 44 30 669 bzw. DE-A-44 30 642 werden Platten bzw. Matten aus einem faserverstärkten Aerogel beschrieben. Diese Platten oder Matten weisen zwar aufgrund des sehr hohen Aerogelanteils eine sehr geringe Wärmeleitfähigkeit auf, jedoch sind aufgrund der oben beschriebenen Diffusionsprobleme für ihre Herstellung relativ lange Herstellungszeiten notwendig.
In der noch nicht offengelegten deutschen Patentanmeldung P 44 45 771.5 wird ein Faservlies-Aerogel-Verbundmaterial offenbart, das mindestens eine Lage Faservlies und Aerogel-Partikel aufweist, das dadurch gekennzeichnet ist, daß das Faservlies mindestens ein Bikomponenten-Fasermaterial enthält, dessen Fasern untereinander und mit den Aerogel-Partikeln durch das niedrigschmelzende Mantelmaterial verbunden sind. Dieses Verbundmaterial weist eine relativ niedrige Wärmeleitfähigkeit sowie eine hohe makroskopische Porosität und damit verbunden eine gute Schalldämmung auf, jedoch werden durch die Verwendung von Bikomponentenfasern der Temperaturbereich, in dem das Material verwendet werden kann, sowie die Brandschutzklasse eingeschränkt. Weiter sind die entsprechenden Verbundstoffe, insbesondere kompliziertere Formkörper, nicht einfach herzustellen.
Eine der Aufgaben der vorliegenden Erfindung war es daher, ein Verbundmaterial auf der Basis von Aerogel-Granulat bereitzustellen, das eine niedrige Wärmeleitfähigkeit aufweist, mechanisch stabil und leicht herstellbar ist.
Eine weitere Aufgabe der vorliegenden Erfindung war es, ein Verbundmaterial auf der Basis von Aerogel-Granulat bereitzustellen, das zusätzlich noch eine gute Schalldämpfung aufweist. Die Aufgabe wird gelöst durch ein Verbundmaterial, das 5 bis 97 Vol.-% Aerogel- Partikel, mindestens ein Bindemittel und mindestens ein Fasermaterial enthält, wobei der Teilchendurchmesser der Aerogel-Partikel > 0,5 mm ist.
Durch das Bindemittel werden entweder die Fasern bzw. Aerogeie untereinander sowie miteinander verbunden oder aber das Bindemittel dient als Matrixmaterial, in das die Fasern und die Aerogel-Partikel eingebettet sind. Die Verbindung der Fasern und der Aerogel-Partikel untereinander sowie miteinander durch das Bindemittel sowie gegebenenfalls die Einbettung in eine Bindermatrix führt zu einem mechanisch stabilen Material mit geringer Wärmeleitfähigkeit.
Gegenüber einem Material, das nur aus Aerogel-Partikeln besteht, die über ihre Oberflächen verbunden oder in eine Bindermatrix eingelagert sind, führen überraschenderweise schon geringe Volumenanteile von Fasern bei gleichem Volumenanteil von Bindemittel zu einer wesentlichen mechanischen Verstärkung, da sie wesentliche Teile der Last übernehmen. Wird ein höherer Volumenanteil Fasern verwendet und nur wenig Bindemittel so kann ein poröses Material erhalten werden, bei dem die durch den Binder verbundenen Fasern ein mechanisch stabiles Gerüst bilden, in das die Aerogel-Partikel eingelagert sind. Die dann auftretenden Luftporen führen zu einer höheren Porosität und damit verbesserten Schalldämpfung.
Bei den Fasern kann es sich um natürliche oder künstliche, anorganische oder organische Fasern handeln, wie z.B. Cellulose-, Baumwolle- oder Flachsfasern, Glas- oder Mineralfasern, Polyester-, Polyamid-, oder Polyaramidfasem. Die Fasern können dabei neu sein oder aus Abfällen, wie z.B. geschredderten Glasfaserabfällen oder Lumpenresten, erzeugt werden. Auch ist die Verwendung von Bikomponentenfasern möglich.
Die Fasern können glatt oder gekräuselt als Einzelfasern, als Bausch oder als Faservlies oder -gewebe vorliegen. Faservliese und/oder -gewebe können dabei als zusammenhängendes Ganzes und/oder in Form mehrerer kleiner Stücke in dem Verbundstoff enthalten sein.
Die Fasern können runde, trilobale, pentalobale, oktalobale, bändchen-, tannenbaum-, hantel- oder andere sternförmige Profile aufweisen. Ebenso können auch Hohlfasern verwendet werden.
Der Durchmesser der im Verbundstoff verwendeten Fasern sollte vorzugsweise kleiner als der mittlere Durchmesser der Aerogel-Partikel sein, um einen hohen Anteil Aerogel im Verbundstoff binden zu können. Durch Wahl von sehr dünnen Fasern wird der Verbundstoff leichter biegsam.
Vorzugsweise werden Fasern mit einem Durchmesser zwischen 1 μm und 1 mm verwendet. Typischerweise führt bei festem Volumenanteil von Fasern die Verwendung geπnger Durchmesser zu bruchfesteren Verbundmaterialien.
Die Länge der Fasern ist in keinster Weise beschränkt. Vorzugsweise sollte jedoch die Länge der Fasern größer als der mittlere Durchmesser der Aerogel-Partikel sein, d.h. mindestens 0,5 mm.
Weiter können Mischungen der oben genannten Typen benutzt werden.
Die Stabilität wie auch die Wärmeleitfähigkeit des Verbundmaterials nimmt mit steigendem Faseranteil zu. Je nach Anwendung sollte der Volumenanteil der Fasern vorzugsweise zwischen 0,1 und 40 Vol.-% liegen, besonders bevorzugt im Bereich zwischen 0,1 und 15 Vol.-%.
Die Fasern können zur besseren Anbindung an die Matrix noch mit Schlichten oder Kontaktvermittlern (coupling agents) beschichtet sein, wie z.B. bei Glasfasern üblich.
Geeignete Aerogeie für die erfindungsgemäßen Verbundmaterialien sind solche auf der Basis von Metalloxiden, die für die Sol-Gel-Technik geeignet sind (s. z.B. CJ. Brinker, G.W. Scherer, Sol-Gel-Science, 1990, Kap. 2 und 3), wie beispielsweise Si- oder AI-Verbindungen oder solche auf der Basis organischer Stoffe, die für die Sol- Gel-Technik geeignet sind, wie zum Beispiel Melaminformaldehydkondensate (US- A-5,086,085) oder Resorcinformaldehydkondensate (US-A-4, 873,218). Sie können aber auch auf Mischungen der oben genannten Materialien basieren. Bevorzugt verwendet werden Aerogeie enthaltend Si-Verbindungen, besonders bevorzugt Aerogeie enthaltend SiO2, insbesondere SiO2-Aerogele, die gegebenenfalls organisch modifiziert sind.
Zur Reduktion des Strahlungsbeitrages zur Wärmeleitfähigkeit kann das Aerogel IR- Trübungsmittel, wie z.B. Ruß, Titandioxid, Eisenoxid, Zirkondioxid oder Mischungen derselben enthalten.
Darüber hinaus gilt, daß die thermische Leitfähigkeit der Aerogeie mit zunehmender Porosität und abnehmender Dichte abnimmt und zwar bis zu einer Dichte im Bereich von 0,1 g/cm3. Aus diesem Grund sind Aerogeie mit Porositäten über 60 % und Dichten zwischen 0,1 und 0,4 g/cm3 bevorzugt. Die Wärmeleitfähigkeit des Aerogel- Granulates sollte vorzugsweise weniger als 40 mW/mK, besonders bevorzugt weniger als 25 mW/mK betragen.
In einer bevorzugten Ausführungsform werden hydrophobe Aerogel-Partikel verwendet, die durch Einführen von hydrophoben Oberflächengruppen auf den Porenoberflächen der Aerogeie während oder nach der Herstellung der Aerogeie erhältlich sind.
Mit dem Begriff "Aerogel-Partikel" sollen in der vorliegenden Anmeldung Teilchen bezeichnet werden, die entweder monolithisch sind, d.h. aus einem Stück bestehen, oder aber die im wesentlichen Aerogel-Partikel mit einem Durchmesser kleiner als der des Teilchens enthalten, die durch ein geeignetes Bindemittel verbunden sind und/oder durch Pressen zu einem größeren Teilchen zusammengefügt sind. Die Größe der Körner richtet sich nach der Anwendung des Materials. Um eine hohe Stabilität zu erreichen, sollte das Granulat nicht zu grobkörnig sein, vorzugsweise sollte der Durchmesser der Körner kleiner 1 cm sein und besonders bevorzugt kleiner als 5 mm sein.
Andererseits soll der Durchmesser der Aerogelteilchen größer als 0,5 mm sein, um zum einen bei der Herstellung den sehr schwierigen Umgang mit einem sehr feinen Pulver geringer Dichte vermeiden zu können. Weiterhin dringt bei der Verarbeitung in der Regel flüssiges Bindemittel in die oberen Schichten des Aerogels ein, das in diesem Bereich seinen hohen Isolationswirkung verliert. Daher sollte das Verhältnis von makroskopischer Teilchenoberfläche zu Teilchenvolumen möglichst klein sein, was mit zu kleinen Teilchen nicht der Fall wäre.
Um einerseits eine geringe Wärmeleitfähigkeit andererseits aber eine ausreichende mechanische Stabilität des Verbundmaterials zu erreichen, sollte der Volumenanteil des Aerogels vorzugsweise zwischen 20 und 97 Vol.-%, besonders bevorzugt zwischen 40 und 95 Vol.-% liegen, wobei hohe Volumenanteile zu geringerer Wärmeleitfähigkeit und Festigkeit führen. Zur Erzielung einer hohen Porosität des Gesamtmaterials und damit erhöhten Schallabsorption sollten noch Luftporen im Material enthalten sein, wozu der Volumenanteil des Aerogels vorzugsweise unter 85 Vol.-% liegen sollte.
Zur Erreichung hoher Aerogel-Volumenanteile kann vorzugsweise Granulat mit einer günstigen bimodalen Korngrößenverteilung verwendet werden. Je nach Anwendung, z.B. im Bereich Schalldämmung, können auch andere Verteilungen Verwendung finden.
Die Fasern bzw. Aerogel-Partikel untereinander sowie Fasern und Aerogel-Partikel miteinander werden durch mindestens ein Bindemittel verbunden. Das Bindemittel kann entweder nur eine Verbindung der Fasern und Aerogel-Partikel untereinander und miteinander bewirken oder als Matrixmaterial dienen. Grundsätzlich sind alle bekannten Bindemittel zur Herstellung der erfindungsgemäßen Verbundmaterialien geeignet. Es können anorganische Bindemittel, wie z.B. Wasserglaskleber, oder organische Bindemittel oder Mischungen derselben verwendet werden. Das Bindemittel kann zusätzlich weitere anorganische und/oder organische Bestandteile enthalten.
Geeignete organische Bindemittel sind z.B. thermoplastische Kunststoffe, wie z.B. Polyolefine bzw. Polyolefin- Wachse, Styrolpolymerisate, Polyamide, Ethylenvinylacetat- Copolymere oder Blends derselben, oder duroplastische Kunststoffe wie Phenol-, Resorcin-, Harnstoff- oder Melaminharze. Es können auch Klebstoffe wie Schmelzkleber , Dispersionsklebstoffe (in wäßriger Form z.B. Styrol- Butadien- und Styrol- Acrylester- Copolymere), Lösemittelklebstoffe oder Plastisole verwendet werden ; weiter geeignet sind Reaktionsklebstoffe z.B. in Form von Einkomponentensystemen wie wärmehärtenden Epoxidharzen, Formaldehydkondensaten, Polyimiden, Polybenzimidazolen, Cyanacrylaten Polyvinylbutyralen, Polyvinylalkoholen, anaeroben Klebstoffen, Polyurethanklebstoffen und feuchtigkeitshärtenden Silikonen oder in Form von Zweikomponentensystemen wie Methacry laten, kalthärtenden Epoxidharzen, Zweikomponenten- Silikonen und kalthärtenden Polyurethanen.
Bevorzugt verwendet werden Polyvinylbutyrale und/oder Polyvinylalkohole.
Vorzugsweise sollte das Bindemittel so gewählt werden, daß es, wenn es in bestimmten Phasen der Verarbeitung in flüssiger Form vorliegt, in diesem Zeitraum nicht oder nur unwesentlich in dεs sehr poröse Aerogel eindringen kann. Das Eindringen des Bindemittels in das Innere der Aerogel-Partikel kann neben der Auswahl des Bindemittels auch über die Regelung der Prozeßbedingungen wie Druck, Temperatur und Mischzeit beeinflußt werden.
Bildet das Bindemittel eine Matrix, in die Aerogeie und Fasern eingebettet sind, so werden wegen ihrer geringen Wärmeleitfähigkeit vorteilhaft poröse Materialien mit Dichten kleiner als 0,75 g/cm3 wie z.B. Schäume, vorzugsweise Polymerschäume (z.B. Polystyrol- oder Polyurethan- Schäume), verwendet.
Um eine gute Verteilung des Bindemittels in den Zwickelhohlräumen bei hohem Aerogelanteil und möglichst guter Verklebung zu erreichen, sollten in dem Fall, daß man von Bindemitteln in fester Form ausgeht, die Körner des Bindemittels vorzugsweise kleiner als die des Aerogel-Granulates sein. Ebenso kann eine Verarbeitung bei erhöhtem Druck notwendig sein.
Muß das Bindemittel bei erhöhten Temperaturen wie z.B. im Fall von Schmelzklebern oder Reaktionsklebern wie z.B. Melaminformaldehydharzen, verarbeitet werden, so muß das Bindemittel so gewählt werden, daß dessen Schmelztemperatur die Schmelztemperatur der Fasern nicht überschreitet.
Das Bindemittel wird im allgemeinen in einer Menge von 1 bis 50 Vol.-% des Verbundmaterials verwendet, vorzugsweise in einer Menge von 1 bis 30 Vol.-%. Die Auswahl des Bindemittels richtet sich nach den mechanischen und thermischen Anforderungen an den Verbundstoff sowie den Anforderungen im Hinblick auf den Brandschutz.
Der Verbundstoff kann in wirksamen Mengen weitere Zusatzstoffe wie z.B. Farbstoffe, Pigmente, Füllstoffe, Flammschutzmittel, Synergisten für Flammschutzmittel, Antistatica, Stabilisatoren, Weichmacher und IR-Trübungsmittel enthalten.
Weiterhin kann der Verbundstoff Zusatzstoffe enthalten, die zu seiner Herstellung benutzt werden, bzw. bei der Herstellung entstehen, so z.B. Gleitmittel zum Verpressen, wie Zinkstearat, oder die Reaktionsprodukte von sauren bzw. säureabspaltenden Härtungsbeschleunigern bei der Verwendung von Harzen.
Die Brandklasse des Verbundmaterials wird durch die Brandklasse des Aerogels, der Fasern und des Bindemittels sowie weiterer gegebenenfalls enthaltener Stoffe bestimmt. Um eine möglichst günstige Brandklasse des Verbundmaterials zu erhalten, sollten vorzugsweise nichtentflammbare Fasertypen, wie z.B. Glas- oder Mineralfasern, oder schwerentflammbare Fasertypen wie z.B. TREVIRA CS® oder Melaminharzfasern, Aerogeie auf anorganischer Basis, besonders bevorzugt auf der Basis von SiO2, und schwerentflammbare Bindemittel wie z.B. anorganische Bindemittel oder Harnstoff- und Melaminformaldehydharze, Silikonharzklebstoffe, Polyimid- und Polybenzimidazolharze verwendet werden.
Wird das Material in Form von flächigen Gebilden, wie z.B. Platten oder Matten, verwendet, kann es auf mindestens einer Seite mit mindestens einer Deckschicht kaschiert sein, um die Eigenschaften der Oberfläche zu verbessern, so z.B. die Robustheit zu erhöhen, sie als Dampfsperre auszubilden oder gegen leichte Verschmutzbarkeit zu schützen. Die Deckschichten können auch die mechanische Stabilität des Verbundstoff-Formteils verbessern. Werden auf beiden Flächen Deckschichten verwendet, so können diese gleich oder verschieden sein.
Als Deckschichten eignen sich alle dem Fachmann bekannten Materialien. Sie können nicht-porös sein und damit als Dampfsperre wirken, wie z.B. Kunststoffolien, vorzugsweise Metallfolien oder metallisierte Kunststoffolien, die Wärmestrahlung reflektieren. Es können aber auch poröse Deckschichten verwendet werden, die ein Eindringen von Luft in das Material ermöglichen und damit zu einer besseren Schalldämpfung führen, wie z.B. poröse Folien, Papiere, Gewebe oder Vliese.
Die Deckschichten können selbst auch aus mehreren Schichten bestehen. Die Deckschichten können mit dem Bindemittel befestigt sein, durch das die Fasern und die Aerogel-Partikel untereinander und miteinander verbunden sind, es kann aber auch ein anderer Kleber Verwendung finden.
Die Oberfläche des Verbundmaterials kann auch durch Einbringen mindestens eines geeigneten Materials in eine Oberflächenschicht geschlossen und verfestigt werden. Als Materialien sind z.B. thermoplastische Polymere, wie z.B. Polyethylen und Polypropylen, oder Harze wie z.B. Melaminformaldehydharze geeignet.
Die erfindungsgemäßen Verbundmaterialien weisen vorzugsweise Wärmeleitfähigkeiten zwischen 10 und 100 mW/mK, besonders bevorzugt im Bereich von 10 bis 50 mW/mK, insbesondere im Bereich von 15 bis 40 mW/mK auf.
Eine weitere Aufgabe der vorliegenden Erfindung war es, ein Verfahren zur Herstellung des erfindungsgemäßen Verbundmaterials bereitzustellen.
Liegt das Bindemittel zunächst in Pulverform vor, das bei erhöhter Temperatur und gegebenenfalls erhöhtem Druck im Fall von Schmelzklebern schmilzt und im Fall von Reaktionsklebern reagiert, so kann das Verbundmaterial beispielsweise folgendermaßen erhalten werden: Mit üblichen Mischvorrichtungen werden Aerogel- Partikel, Fasermaterial und Bindemittel gemischt. Dieses Gemisch wird anschließend einer Formgebung unterzogen. Das Aushärten des Gemisches in der Form erfolgt je nach Art des Bindemittels gegebenenfalls unter Druck durch Erwärmen, z.B. bei Reaktionsklebern, oder bei Schmelzklebern durch Erhitzen über den Schmelzpunkt des Bindemittels. Ein auf einer Makroskala poröses Material kann insbesondere nach folgendem Verfahren erhalten werden: Falls die Fasern nicht schon in gebauschter Form (z.B. kleine Bäusche von Schnittfasern oder kleine Stücke eines Vlieses) vorliegen, werden sie mit dem Fachmann bekannten Methoden zu kleinen Bäuschen verarbeitet. Bereits in diesem Schritt kann gegebenenfalls das Aerogel-Granulat zwischen die Fasern gebracht werden. Danach werden diese Bäusche zusammen mit dem Bindemittel und gegebenenfalls den Aerogel-Partikeln z.B. in einem Mischer vermischt, bis sich Bindemittel und gegebenenfalls Aerogel-Partikel möglichst gleichmäßig zwischen den Fasern verteilt haben. Die Masse wird dann in eine Form gegeben und gegebenenfalls unter Druck auf eine Temperatur erhitzt, die im Fall von Schmelzklebern oberhalb der Schmelztemperatur des Klebers und im Fall von Reaktionsklebern oberhalb der für die Reaktion notwendigen Temperatur liegt. Nachdem das Bindemittel geschmolzen ist bzw. reagiert hat, wird das Material abgekühlt. Vorzugsweise werden hier Poiyvinylbutyrale verwendet. Durch die Anwendung höherer Drücke läßt sich die Dichte des Verbundmaterials erhöhen.
In einer bevorzugten Ausführungsform wird das Gemisch verpreßt. Dabei ist es dem Fachmann möglich, für den jeweiligen Anwendungszweck die geeignete Presse und das geeignete Preßwerkzeug auszuwählen. Gegebenenfalls können zum Verpressen dem Fachmann bekannte Gleitmittel, wie z.B. Zinkstearat bei Melaminformaldehydharzen, zugesetzt werden. Aufgrund des hohen Luftanteils der aerogelhaltigen Preßmassen ist der Einsatz von Vakuum-Pressen vorteilhaft. In einer bevorzugten Ausführungsform werden die aerogelhaltigen Preßmassen zu Platten verpreßt. Um ein Anbacken der Preßmasse an die Preßstempel zu vermeiden, kann das zu verpressende, aerogelhaltige Gemisch mit einem Trennhilfsmittel, z.B. Trennpapier, gegen die Preßstempel abgetrennt werden. Die mechanische Festigkeit der aerogelhaltigen Platten kann durch Aufiaminieren von Siebgeweben, Vliesen oder Papieren auf die Plattenoberfläche verbessert werden. Die Siebgewebe, Vliese bzw. Papiere können sowohl nachträglich auf die aerogelhaltigen Platten aufgebracht werden, wobei die Siebgewebe, Vliese bzw. Papiere zuvor beispielsweise mit einem geeigneten Bindemittel bzw. Kleber imprägniert werden können und dann in einer beheizbaren Presse unter Druck mit den Plattenoberflächen verbunden werden, als auch, in einer bevorzugten Ausführungsform, in einem Arbeitsschritt durch Einlegen der Siebgewebe, Vliese bzw. Papiere, die gegebenenfalls zuvor mit einem geeigneten Bindemittel bzw. Kleber imprägniert werden können, in die Preßform und Auflegen auf die zu verpressende aerogelhaltige Preßmasse und anschließendes Verpressen unter Druck und Temperatur zu einer aerogelhaltigen Verbundplatte.
Das Verpressen findet in Abhängigkeit vom verwendeten Bindemittel im allgemeinen bei Pressdrücken von 1 bis 1000 bar und Temperaturen von 0 bis 300°C in beliebigen Formen statt. Im Fall der Phenol-, Resorcin-, Harnstoff- und Melaminformaldehydharze findet das Verpressen vorzugsweise bei Drücken von 5 bis 50 bar, besonders bevorzugt 10 bis 20 bar und Temperaturen vorzugsweise von 100 bis 200 °C, besonders bevorzugt 130 bis 190°C und insbesondere zwischen 150 und 175°C in beliebigen Formen statt.
Liegt das Bindemittel zunächst in flüssiger Form vor, so kann der Verbundstoff beispielsweise folgendermaßen erhalten werden: Mit üblichen Mischvorrichtungen werden die Aerogel-Partikel und das Fasermaterial gemischt. Das so erhaltene Gemisch wird dann mit dem Bindemittel beschichtet, z.B durch Besprühen, in eine Form gebracht und in der Form ausgehärtet. Das Aushärten des Gemisches erfolgt je nach Art des Bindemittels gegebenenfalls unter Druck durch Erwärmen und/oder Verdampfen des verwendeten Lösungs- oder Dispersionsmittels. Bevorzugt werden die Aerogel-Partikel mit den Fasern in einem Gasstrom verwirbelt. Mit der Mischung wird eine Form gefüllt, wobei beim Füllvorgang das Bindemittel aufgesprüht wird. Ein auf einer Makroskala poröses Material kann insbesondere nach folgendem Verfahren erhalten werden: Falls die Fasern nicht schon in gebauschter Form (z.B. kleine Bäusche von Schnittfasern oder kleine Stücke eines Vlieses) vorliegen, werden sie mit dem Fachmann bekannten Methoden zu kleinen Bäuschen verarbeitet. Bereits in diesem Schritt kann gegebenenfalls das Aerogel-Granulat zwischen die Fasern gebracht werden. Andernfalls werden diese Bäusche danach zusammen mit dem Aerogel-Granulat z.B. in einem Mischer vermischt, bis sich die Aerogel-Partikel möglichst gleichmäßig zwischen den Fasern verteilt haben. In diesem Schritt oder danach wird das Bindemittel möglichst fein verteilt auf das Gemisch gesprüht, das dann in einer Form gegebenenfalls unter Druck auf die für das Binden notwendige Temperatur gebracht wird. Danach wird der Verbundstoff mit üblichen Verfahren getrocknet.
Wird als Bindemittel ein Schaum verwendet, so kann das Verbundmaterial je nach Art des Schaums auch folgendermaßen hergestellt werden. Wird der Schaum durch Expansion expandierbarer Granulatkörner in einer Form wie im Fall von expandiertem Polystyrol hergestellt, so werden alle Komponenten innig vermischt und dann typischerweise erhitzt, vorteilhaft mittels Heißluft oder Dampf. Durch die resultierende Ausdehnung der Partikel wird der Druck in der Form erhöht, wodurch das Zwickelvolumen von dem Schaumstoff ausgefüllt und die Aerogel- Partikel in dem Verbund fixiert werden. Nach dem Abkühlen wird das Verbundstoff- Formteil der Form entnommen und gegebenenfalls getrocknet.
Wird der Schaum durch Extrusion oder Expansion eines nicht zähflüssigen Gemisches mit nachfolgender Verfestigung erzeugt, können die Fasern der Flüssigkeit beigemischt werden. Die Aerogel-Partikel werden mit der entstandenen Flüssigkeit gemischt, die dann aufschäumt.
Soll das Material mit einer Deckschicht versehen werden, so kann diese beispielsweise vor bzw. nach dem Befüllen einer Form in diese eingelegt werden, so daß die Kaschierung und die Formgebung in einem Arbeitsschritt stattfinden können, wobei als Bindemittel für die Kaschierung vorzugsweise das Verbundstoff- Bindemittel benutzt wird. Es ist aber ebenso möglich, den Verbundstoff erst im nachhinein mit einer Deckschicht zu versehen.
Die Form des Formteils, das aus dem erfindungsgemäßen Verbundstoff besteht, ist in keiner Weise beschränkt; insbesondere kann der Verbundstoff in Plattenform gebracht werden.
Aufgrund des hohen Anteils an Aerogel und dessen geringer Wärmeleitfähigkeit eignen sich die Verbundstoffe sehr gut zur Wärmedämmung.
Der Verbundstoff kann, z.B. in Form von Platten, als Schallabsorptionsmaterial direkt oder in der Form von Resonanzabsorbern für die Schalldämmung verwendet werden. Zusätzlich zu der Dämpfung des Aerogel-Materials tritt nämlich je nach Porosität durch makroskopische Poren eine zusätzliche Dämpfung durch Luftreibung an diesen makroskopischen Poren im Verbundmaterial auf. Die makroskopische Porosität kann durch die Veränderung von Faseranteil und -durchmesser, Korngröße und Anteil der Aerogel-Partikel und Art des Binders beeinflußt werden. Die Schalldämpfung in ihrer Frequenzabhängigkeit und ihrer Größe kann über die Wahl der Deckschicht, der Dicke der Platte und der makroskopischen Porosität in dem Fachmann bekannter Weise verändert werden.
Die erfindungsgemäßen Verbundmaterialien eignen sich weiterhin aufgrund der makroskopischen Porosität und besonders der großen Porosität und spezifischen Oberfläche des Aerogels auch als Adsorptionsmaterialien für Flüssigkeiten, Dämpfe und Gase.
Die Erfindung wird im folgenden anhand von Ausführungsbeispielen näher beschrieben ohne dadurch jedoch beschränkt zu werden:
Beispiel 1
Formkörper aus Aerogel, Polyvinylbutyral und Fasern
Es werden 90 Vol.-% hydrophobes Aerogel-Granulat, 8 Vol.-% Polyvinylbutyralpulver ® Mowital (Polymer F) und 2 Vol.-% ®Trevira Hochfest Fasern innig vermischt.
Das hydrophobe Aerogelgranulat hat eine mittlere Korngröße im Bereich von 1 bis 2 mm, eine Dichte von 120 kg/m3, eine BET-Oberfläche von 620 m2/g und eine Wärmeleitfähigkeit von 11 mW/mK.
Der Boden der Preßform mit einer Grundfläche von 30 cm x 30 cm wird mit Trennpapier ausgelegt. Darauf wird die aerogelhaltige Preßmasse gleichmäßig verteilt und das ganze mit einem Trennpapier abgedeckt. Es wird bei 220 °C für 30 Minuten auf eine Dicke von 18 mm gepreßt. Der erhaltene Formkörper hat eine Dichte von 269 kg/m3 und eine Wärmeleitfähigkeit von 20 mW/mK.
Beispiel 2
Formkörper aus Aerogel, Polyvinylbutyral und Recyclingfasern
Es werden 80 Vol.-% hydrophobes Aerogel-Granulat aus Beispiel 1 , 10 Vol.-% Polyvinylbutyralpulver ®Mowital (Polymer F) und 10 Vol.-% grob aufgeschlossene Polyesterfaserreste als Recyclingfasern innig vermischt.
Der Boden der Preßform mit einer Grundfläche von 30 cm x 30 cm wird mit Trennpapier ausgelegt. Darauf wird die aerogelhaltige Preßmasse gleichmäßig verteilt und das ganze mit einem Trennpapier abgedeckt. Es wird bei 220°C für 30 Minuten auf eine Dicke von 18 mm gepreßt.
Der erhaltene Formkörper hat eine Dichte von 282 kg/m3 und eine Wärmeleitfähigkeit von 25 mW/mK.
Beispiel 3
Formkörper aus Aerogel, Polyvinylbutyral und Recyclingfasern
Es werden 50 Vol.-% hydrophobes Aerogel-Granulat aus Beispiel 1, 10 Vol.-% Polyvinylbutyralpulver ®Mowital (Polymer F) und 40 Vol.% grob aufgeschlossene Polyesterfaserreste als Recyclingfasern innig vermischt.
Der Boden der Preßform mit einer Grundfläche von 30 cm x 30 cm wird mit Trennpapier ausgelegt. Darauf wird die aerogelhaltige Preßmasse gleichmäßig verteilt und das ganze mit einem Trennpapier abgedeckt. Es wird bei 220°C für 30 Minuten auf eine Dicke von 18 mm gepreßt. Der erhaltene Formkörper hat eine Dichte von 420 kg/m3 und eine Wärmeleitfähigkeit von 55 mW/mK.
Beispiel 4
Formkörper aus Aerogel, Polyethylenwachs und Fasern
Es werden 60 Gew.-% hydrophobes Aerogel-Granulat aus Beispiel 1 , 38 Gew.-% Polyethylenwachspulver ®Ceridust 130 und 2 Vol.-% ®Trevira Hochfest Fasern innig vermischt.
Der Boden der Preßform mit einer Grundfläche von 12 cm x 12 cm wird mit Trennpapier ausgelegt. Darauf wird die aerogelhaltige Preßmasse gleichmäßig verteilt und das ganze mit einem Trennpapier abgedeckt. Es wird bei 170CC mit einem Druck von 70 bar für 30 Minuten gepreßt.
Der erhaltene Formkörper hat eine Wärmeleitfähigkeit von 25 mW/mK.
Beispiel 5
Formkorper aus Aerogel, Polyethylenwachs und Fasern
Es werden 50 Gew.-% hydrophobes Aerogel-Granulat aus Beispiel 1 , 48 Gew.-% Polyethylenwachspulver Hoechst-Wachs PE 520 und 2 Vol.-% ®Trevira Hochfest Fasern innig vermischt.
Der Boden der Preßform mit einer Grundfläche von 12 cm x 12 cm wird mit Trennpapier ausgelegt. Darauf wird die aerogelhaltige Preßmasse gleichmäßig verteilt und das ganze mit einem Trennpapier abgedeckt. Es wird bei 180°C mit einem Druck von 70 bar 30 Minuten gepreßt. Der erhaltene Formkörper hat eine Wärmeleitfähigkeit von 28 mW/mK.
Beispiel 6
Formkörper aus Aerogel, Polyvinylalkohol und Fasern
Es werden 90 Gew.-% hydrophobes Aerogel-Granulat aus Beispiel 1 , 8 Gew.-% einer Polyvinylalkohollösung und 2 Vol.-% ®Trevira Hochfest Fasern innig vermischt. Die Polyvinylalkohollösung besteht aus 10 Gew.-% ®Mowiol Typ 40-88, 45 Gew.-% Wasser und 45 Gew.-% Ethanol.
Der Boden der Preßform mit einer Grundfläche von 12 cm x 12 cm wird mit Trennpapier ausgelegt. Darauf wird die aerogelhaltige Preßmasse gleichmäßig verteilt und das ganze mit einem Druck von 70 bar für 2 Minuten gepreßt und anschließend getrocknet.
Der erhaltene Formkörper hat eine Wärmeleitfähigkeit von 24 mW/mK.
Die Wärmeleitfähigkeit des Aerogel-Granulates wurde mit einer Heizdrahtmethode (siehe z.B. O. Nielsson, G. Rüschenpöhler, J. Groß, J. Fricke, High Temperatures - High Pressures, Vol. 21 , 274 - 274 (1989)) gemessen.
Die Wärmeleitfähigkeiten der Formkörper wurden nach DIN 52612 gemessen.

Claims

Patentansprüche
1. Verbundmaterial, enthaltend 5 bis 97 Vol.-% Aerogel-Partikel, mindestens ein Bindemittel und mindestens ein Fasermaterial, wobei der Teilchendurchmesser der Aerogel-Partikel ≥ 0,5 mm ist.
2. Verbundmaterial gemäß Anspruch 1 , dadurch gekennzeichnet, daß der Volumenanteil des Fasermaterials 0,1 bis 40 Vol.-% beträgt.
3. Verbundmaterial gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, daß das Fasermaterial als Hauptbestandteil Glasfasern enthält.
4. Verbundmaterial gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, daß das Fasermaterial als Hauptbestandteil organische Fasern enthält.
5. Verbundmaterial gemäß mindestens einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß der Anteil der Aerogel-Partikel im Bereich von 20 bis 97 Vol.-% liegt.
6. Verbundmaterial gemäß mindestens einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Aerogel-Partikel Porositäten über 60 %, Dichten unter 0,4 g/cm3 und Wärmeleitfähigkeiten von weniger als 40 mW/mK aufweisen.
7. Verbundmaterial gemäß mindestens einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß das Aerogel ein SiO2-Aerogel ist, das gegebenenfalls organisch modifiziert ist.
8. Verbundmaterial gemäß mindestens einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß zumindest ein Teil der Aerogel-Partikel hydrophobe Oberflächengruppen aufweisen.
9. Verbundmaterial gemäß mindestens einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß das Bindemittel eine Dichte aufweist, die kleiner als 0,75 g/cm3 ist.
10. Verbundmaterial gemäß mindestens einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß das Bindemittel als Hauptbestandteil ein anorganisches Bindemittel enthält.
11. Verbundmaterial gemäß Anspruch 10, dadurch gekennzeichnet, daß das anorganische Bindemittel Wasserglas ist.
12. Verbundmaterial gemäß mindestens einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß das Bindemittel als Hauptbestandteil ein organisches Bindemittel enthält.
13. Verbundmaterial gemäß Anspruch 12, dadurch gekennzeichnet, daß das organische Bindemittel Polyvinylbutyral und/oder Polyvinylalkohol ist.
14. Verbundmaterial gemäß mindestens einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, daß zumindest ein Teil der Aerogel-Partikel und/oder das Bindemittel mindestens ein IR-Trübungsmittel enthalten.
15. Verbundmaterial gemäß mindestens einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, daß es eine flächige Form aufweist und auf mindestens einer Seite mit mindestens einer Deckschicht kaschiert ist.
16. Verfahren zur Herstellung eines Verbundmaterials gemäß mindestens einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, daß man die Aerogel- Partikel und das Fasermaterial mit dem Bindemittel mischt, die Mischung der Formgebung und der Härtung unterzieht.
17. Verwendung eines Verbundmaterials gemäß mindestens einem der Ansprüche 1 bis 15 zur Wärme- und/oder Schalldämmung.
18. Formkörper, enthaltend ein Verbundmaterial gemäß mindestens einem der Ansprüche 1 bis 15.
19. Formkörper, im wesentlichen bestehend aus einem Verbundmaterial gemäß mindestens einem der Ansprüche 1 bis 15.
20. Formkörper gemäß Anspruch 18 oder 19, dadurch gekennzeichnet, daß er die Form einer Platte aufweist.
PCT/EP1996/003961 1995-09-11 1996-09-10 Faserhaltiges aerogel-verbundmaterial WO1997010188A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP96931062A EP0850207A1 (de) 1995-09-11 1996-09-10 Faserhaltiges aerogel-verbundmaterial
JP51164697A JP4118331B2 (ja) 1995-09-11 1996-09-10 繊維を含有するエーロゲル複合材料
NO980991A NO980991L (no) 1995-09-11 1998-03-06 Fiberholdige aerogel-komposittmaterialer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19533564A DE19533564A1 (de) 1995-09-11 1995-09-11 Faserhaltiges Aerogel-Verbundmaterial
DE19533564.3 1995-09-11

Publications (1)

Publication Number Publication Date
WO1997010188A1 true WO1997010188A1 (de) 1997-03-20

Family

ID=7771835

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1996/003961 WO1997010188A1 (de) 1995-09-11 1996-09-10 Faserhaltiges aerogel-verbundmaterial

Country Status (8)

Country Link
EP (1) EP0850207A1 (de)
JP (1) JP4118331B2 (de)
KR (1) KR19990044531A (de)
CN (1) CN1104393C (de)
CA (1) CA2231428A1 (de)
DE (1) DE19533564A1 (de)
NO (1) NO980991L (de)
WO (1) WO1997010188A1 (de)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998050145A1 (de) * 1997-05-02 1998-11-12 Cabot Corporation Verfahren zur kompaktierung von aerogelen
WO1998050144A1 (de) * 1997-05-02 1998-11-12 Cabot Corporation Verfahren zur granulierung von aerogelen
JP2001517004A (ja) * 1997-09-05 2001-10-02 1… アイピーアール リミテッド 多泡凝集体、圧電気装置、及びその用途
US6378229B1 (en) 1997-12-19 2002-04-30 Cabot Corporation Method for the sub-critical drying of lyogels to produce aerogels
WO2007012618A3 (de) * 2005-07-27 2007-03-22 Basf Ag Aminoplastharzvliesfilm zur beschichtung von substraten
US7297718B2 (en) 1998-01-14 2007-11-20 Cabot Corporation Method of producing substantially spherical lyogels in water insoluble silylating agents
WO2012076506A1 (de) 2010-12-07 2012-06-14 Basf Se Polyurethan-verbundmaterial
WO2012076492A1 (de) 2010-12-07 2012-06-14 Basf Se Melaminharzschaumstoffe mit nanoporösen füllstoffen
WO2012076489A1 (de) 2010-12-07 2012-06-14 Basf Se Verbundmaterial enthaltend nanopröse partikel
WO2013182506A1 (de) 2012-06-04 2013-12-12 Basf Se Aerogel enthaltender polyurethan-verbundwerkstoff
US8937106B2 (en) 2010-12-07 2015-01-20 Basf Se Melamine resin foams with nanoporous fillers
EP2281962B1 (de) 2009-06-25 2017-04-05 Knauf Insulation Aerogelhaltige Verbundwerkstoffe
WO2019058185A1 (en) * 2017-09-19 2019-03-28 Mazrouei Sebdani Zahra FABRICATION OF ACOUSTIC ABSORBENT LAYERS
US11333288B2 (en) 2015-01-27 2022-05-17 Showa Denko Materials Co., Ltd. Aerogel laminate and thermal insulation material
US20220347967A1 (en) * 2019-11-07 2022-11-03 Ha Sangsun Heat insulation material comprising aerogel granules and manufacturing method therefor
US11547977B2 (en) 2018-05-31 2023-01-10 Aspen Aerogels, Inc. Fire-class reinforced aerogel compositions
US11787957B2 (en) 2017-10-04 2023-10-17 Resonac Corporation Coating solution, method for producing coating film, and coating film

Families Citing this family (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19702240A1 (de) * 1997-01-24 1998-07-30 Hoechst Ag Mehrschichtige Verbundmaterialien, die mindestens eine aerogelhaltige Schicht und mindestens eine weitere Schicht aufweisen, Verfahren zu ihrer Herstellung sowie ihre Verwendung
EP1093486B1 (de) 1998-06-05 2004-08-04 Cabot Corporation Nanoporöse interpenetrierende organisch-anorganische netzwerke
DE19950442C2 (de) * 1999-10-19 2002-02-28 Rubersteinwerk Gmbh Verwendung eines Verbundwerkstoffes als Füllmaterial in einem Wandputz
DE10057368A1 (de) * 2000-11-18 2002-05-23 Bayerische Motoren Werke Ag Isolationsschicht insbesondere für Kraftfahrzeug-Karosserieteile
DE10211331B4 (de) * 2002-03-14 2006-02-02 Sto Ag Verfahren zum Herstellen einer aerogelhaltigen Dämmschicht auf einer Außenwand eines Gebäudes
DE10259487A1 (de) * 2002-12-19 2004-07-08 Bayerische Motoren Werke Ag Isolationsschicht für ein thermisch belastetes Bauteil
DE10300979B4 (de) * 2003-01-14 2007-01-04 Deutsches Zentrum für Luft- und Raumfahrt e.V. Ultraleichte Verbundwerkstoffe, Verfahren zu deren Herstellung und deren Verwendung
DE10352574A1 (de) * 2003-11-11 2005-06-16 Deutsches Zentrum für Luft- und Raumfahrt e.V. Füllstoff enthaltende Aerogele
DE10357539A1 (de) * 2003-12-10 2005-07-21 Deutsches Zentrum für Luft- und Raumfahrt e.V. Herstellung von füllstoffhaltigen Aerogelen
DE10360749B3 (de) * 2003-12-23 2005-08-18 Mv Engineering Gmbh & Co.Kg Anorganische Brand- und Wärmedämmpaste und ihre Herstellung
KR100884781B1 (ko) * 2004-09-15 2009-02-23 카즈오 우에지마 음향기기용 매트
CN100398492C (zh) * 2005-08-01 2008-07-02 中国人民解放军国防科学技术大学 一种气凝胶绝热复合材料及其制备方法
CN100372603C (zh) * 2005-11-18 2008-03-05 上海市纺织科学研究院 吸附用SiO2气凝胶-双组分无纺毡复合材料及其制造方法
ITUD20070090A1 (it) * 2007-05-25 2008-11-26 Fincantieri Cantieri Navali It "materiale per isolamento termico e acustico"
SI2090621T1 (sl) 2008-02-18 2010-04-30 Preform Gmbh Sistem pen, ki absorbira zvok
KR101782624B1 (ko) 2010-02-12 2017-09-28 삼성전자주식회사 에어로젤 및 에어로젤의 제조방법
KR101666098B1 (ko) 2010-04-01 2016-10-14 삼성전자 주식회사 에어로젤, 에어로젤용 조성물 및 에어로젤의 제조방법
KR101660316B1 (ko) 2010-03-30 2016-09-28 삼성전자 주식회사 유기 에어로젤 및 유기 에어로젤용 조성물
US8691883B2 (en) 2009-02-11 2014-04-08 Samsung Electronics Co., Ltd. Aerogel-foam composites
KR101627127B1 (ko) 2009-09-24 2016-06-03 삼성전자 주식회사 유기 에어로젤 및 유기 에어로젤용 조성물
PL2424824T3 (pl) * 2009-04-27 2022-05-23 Rockwool A/S Sposób powlekania podłoża kompozytem
DE102009033367B4 (de) * 2009-07-16 2016-03-24 Deutsches Zentrum für Luft- und Raumfahrt e.V. Verfahren zur Herstellung eines Aerogel-Aerogel Verbundwerkstoffes
JP5591513B2 (ja) * 2009-10-16 2014-09-17 ニチアス株式会社 断熱材及びその製造方法
JP5591514B2 (ja) 2009-10-16 2014-09-17 ニチアス株式会社 断熱材及びその製造方法
DE102009053782A1 (de) * 2009-11-19 2011-06-01 BSH Bosch und Siemens Hausgeräte GmbH Poröses SiO2-Xerogel mit charakteristischer Porengröße, dessen trocknungsstabile Vorstufen und dessen Anwendung
US9102076B2 (en) 2009-11-25 2015-08-11 Cabot Corporation Methods for making aerogel composites
FI122693B (fi) * 2009-12-23 2012-05-31 Paroc Oy Ab Menetelmä mineraalivilla-komposiittimateriaalin valmistamiseksi, menetelmällä valmistettu tuote ja sen käyttö eristysmateriaalina
EP2368925B1 (de) 2010-03-27 2016-05-11 Samsung Electronics Co., Ltd. Aerogel, Zusammensetzung für das Aerogel und Verfahren zur Herstellung des Aerogels
EP2402150B1 (de) * 2010-07-02 2013-08-21 Rockwool International A/S Isolierendes Bauelement, Verwendung eines isolierenden Bauelements und Verfahren zur Herstellung eines isolierenden Bauelements
FI2598459T3 (fi) * 2010-07-30 2023-04-19 Rockwool As Menetelmä aerogeeliä sisältävän komposiitin valmistamiseksi
FI2598460T3 (fi) 2010-07-30 2023-03-02 Rockwool As Menetelmä aerogeeliä sisältävän komposiitin valmistamiseksi
US9370915B2 (en) 2010-12-07 2016-06-21 Basf Se Composite material
JP4860005B1 (ja) 2010-12-22 2012-01-25 ニチアス株式会社 断熱材及びその製造方法
PL2665876T3 (pl) * 2011-01-17 2015-08-31 Construction Research & Technology Gmbh System kompozytowej izolacji termicznej
DE202011002049U1 (de) 2011-01-28 2011-04-14 STADUR-Süd-GmbH Wärmedämmverbundsystem
FR2975691B1 (fr) * 2011-05-26 2014-02-07 Electricite De France Materiau super-isolant a pression atmospherique a base d'aerogel
FI126778B (fi) 2011-08-19 2017-05-31 Metsäliitto Osuuskunta Eristelevy ja menetelmä sen valmistamiseksi
CN104603344B (zh) * 2012-06-26 2020-03-31 卡博特公司 柔性绝缘结构及其制造和使用方法
JP6418733B2 (ja) * 2012-08-31 2018-11-07 ニチアス株式会社 断熱ユニット、断熱ユニットの製造方法および加熱炉
KR101436371B1 (ko) * 2012-11-23 2014-09-02 서울대학교산학협력단 계면을 이용한 에어로겔 복합 재료 제조 방법
PL2931677T3 (pl) 2012-12-11 2021-12-13 Empa Eidgenössische Materialprüfungs- Und Forschungsanstalt Termoizalacyjne materiały tynkarskie na bazie aerożelu
CN103073237B (zh) * 2013-01-18 2014-08-20 哈尔滨工程大学 一种玄武岩纤维与气凝胶粉体复合隔热材料及其制备方法
EP2799409A1 (de) * 2013-05-03 2014-11-05 EMPA Eidgenössische Materialprüfungs- und Forschungsanstalt Pütze auf Basis von wärmeisolierendem Aerogel
FR3007025B1 (fr) 2013-06-14 2015-06-19 Enersens Materiaux composites isolants comprenant un aerogel inorganique et une mousse de melamine
CN103723995A (zh) * 2013-07-23 2014-04-16 太仓派欧技术咨询服务有限公司 一种玻璃棉毡与二氧化硅气凝胶混合制毡的方法
KR101514038B1 (ko) 2013-08-16 2015-04-21 주식회사 관평기술 에어로젤 함유 복합재료의 제조방법과 제조장치 및 제조된 에어로젤 함유 복합재료
JP2015052210A (ja) * 2013-09-05 2015-03-19 パナソニックIpマネジメント株式会社 断熱パネル及びその製造方法
CN103936349B (zh) * 2014-03-26 2016-08-17 广州吉必盛科技实业有限公司 疏水型气相SiO2纳米孔绝热材料及其制备方法
CN104356568B (zh) * 2014-10-29 2017-07-18 正业包装(中山)有限公司 一种回收纸纤维‑pva‑羧甲基壳聚糖复合抗菌气凝胶的制备方法
DE102015101282A1 (de) 2015-01-29 2016-08-04 Rwth Aachen Verfahren und Vorrichtung zur Herstellung anorganischer Aerogel-Fasern
CN104876512B (zh) * 2015-05-28 2018-03-13 莱州明发隔热材料有限公司 一种高效绝热材料
DE102015215055A1 (de) 2015-08-06 2017-02-09 Basf Se Nanoporöses Verbundmaterial enthaltend anorganische Hohlpartikel
KR20170104914A (ko) * 2016-03-08 2017-09-18 주식회사 엘지화학 에어로겔 블랑켓의 제조방법 및 이로부터 제조된 에어로겔 블랑켓
CN107266774B (zh) * 2016-04-08 2021-04-30 南京唯才新能源科技有限公司 一种气凝胶复合材料及其制备方法
CN105965988A (zh) * 2016-05-03 2016-09-28 杭州歌方新材料科技有限公司 一种绝缘阻燃的复合材料及其制备方法
CN106753437A (zh) * 2016-12-09 2017-05-31 伊科纳诺(北京)科技发展有限公司 一种低热值二氧化硅气凝胶复合材料及其制备方法
CN108623325B (zh) * 2017-03-17 2020-10-27 长沙星纳气凝胶有限公司 一种气凝胶复合材料的制备方法
CN107376794A (zh) * 2017-08-25 2017-11-24 广东铂年节能环保科技有限公司 一种复合气凝胶与防火隔热毛毡以及制备方法
KR101912455B1 (ko) * 2018-04-10 2018-10-26 (주)아이피아이테크 폴리이미드 표면처리된 에어로젤 단열재 및 그 제조 방법
JP7129840B2 (ja) * 2018-07-27 2022-09-02 明星工業株式会社 断熱塗料
CN109433383B (zh) * 2018-08-22 2022-05-17 响水华夏特材科技发展有限公司 一种废旧气凝胶材料的回收利用方法
DE102018133508A1 (de) 2018-12-21 2020-06-25 Wobben Properties Gmbh Rotorblattform zur Herstellung eines Rotorblatts und Verfahren
CN110152904B (zh) * 2019-06-12 2024-07-09 薛德刚 一种喷射气凝胶、纤维与粘结剂混合料的系统装置及方法
CN110156336A (zh) * 2019-07-02 2019-08-23 山东聚源玄武岩纤维股份有限公司 一种玄武岩纤维废丝的回炉再利用方法
JP7621601B2 (ja) * 2019-09-10 2025-01-27 株式会社Kri 音響周波数選択透過フィルター
JP7584898B2 (ja) 2020-03-12 2024-11-18 住友理工株式会社 断熱材およびその製造方法
CN113563046B (zh) * 2020-04-29 2023-03-14 台湾气凝胶科技材料开发股份有限公司 耐高温、隔热、及防火的气凝胶/无机纤维复合胶材的制备方法及其产物的应用
EP4149753A1 (de) * 2020-05-15 2023-03-22 Blueshift Materials, Inc. Laminate mit niedriger dielektrizitätskonstante und niedrigem verlustfaktor mit aerogelschichten
GB202202736D0 (en) * 2022-02-28 2022-04-13 Kiss House Ltd Material and method
CN115322502B (zh) * 2022-07-14 2023-10-13 中国科学院上海硅酸盐研究所 一种二氧化硅气凝胶增强聚乙烯醇复合材料及其制备方法
CN115785671B (zh) * 2022-12-28 2024-02-02 中国科学院兰州化学物理研究所 一种气凝胶/聚苯硫醚自润滑摩擦材料及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2941606A1 (de) * 1979-10-13 1981-04-23 Grünzweig + Hartmann und Glasfaser AG, 6700 Ludwigshafen Waermeisolierkoerper sowie verfahren zu seiner herstellung
EP0057252A2 (de) * 1981-01-29 1982-08-11 Grünzweig + Hartmann und Glasfaser AG Vorrichtung zur wärmedämmenden Lagerung einer elektrischen Heizwendel, insbesondere für eine strahlungsbeheizte Kochplatte, sowie Wärmedämmplatte hierzu und Verfahren zu ihrer Herstellung
DE3346180A1 (de) * 1983-12-21 1985-08-29 Grünzweig + Hartmann und Glasfaser AG, 6700 Ludwigshafen Starrer waermedaemmkoerper
EP0340707A2 (de) * 1988-05-03 1989-11-08 BASF Aktiengesellschaft Dämmstoff der Dichte 0,1 bis 0,4 g/cm3
EP0618399A1 (de) * 1993-03-31 1994-10-05 Wacker-Chemie GmbH Mikroporöser Wärmedämmformkörper
EP0672635A1 (de) * 1994-03-18 1995-09-20 Basf Aktiengesellschaft Formkörper, enthaltend Silica-Aerogel-Partikel sowie Verfahren zu ihrer Herstellung

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2941606A1 (de) * 1979-10-13 1981-04-23 Grünzweig + Hartmann und Glasfaser AG, 6700 Ludwigshafen Waermeisolierkoerper sowie verfahren zu seiner herstellung
EP0057252A2 (de) * 1981-01-29 1982-08-11 Grünzweig + Hartmann und Glasfaser AG Vorrichtung zur wärmedämmenden Lagerung einer elektrischen Heizwendel, insbesondere für eine strahlungsbeheizte Kochplatte, sowie Wärmedämmplatte hierzu und Verfahren zu ihrer Herstellung
DE3346180A1 (de) * 1983-12-21 1985-08-29 Grünzweig + Hartmann und Glasfaser AG, 6700 Ludwigshafen Starrer waermedaemmkoerper
EP0340707A2 (de) * 1988-05-03 1989-11-08 BASF Aktiengesellschaft Dämmstoff der Dichte 0,1 bis 0,4 g/cm3
EP0618399A1 (de) * 1993-03-31 1994-10-05 Wacker-Chemie GmbH Mikroporöser Wärmedämmformkörper
EP0672635A1 (de) * 1994-03-18 1995-09-20 Basf Aktiengesellschaft Formkörper, enthaltend Silica-Aerogel-Partikel sowie Verfahren zu ihrer Herstellung

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998050145A1 (de) * 1997-05-02 1998-11-12 Cabot Corporation Verfahren zur kompaktierung von aerogelen
WO1998050144A1 (de) * 1997-05-02 1998-11-12 Cabot Corporation Verfahren zur granulierung von aerogelen
JP2001517004A (ja) * 1997-09-05 2001-10-02 1… アイピーアール リミテッド 多泡凝集体、圧電気装置、及びその用途
US6378229B1 (en) 1997-12-19 2002-04-30 Cabot Corporation Method for the sub-critical drying of lyogels to produce aerogels
US7297718B2 (en) 1998-01-14 2007-11-20 Cabot Corporation Method of producing substantially spherical lyogels in water insoluble silylating agents
WO2007012618A3 (de) * 2005-07-27 2007-03-22 Basf Ag Aminoplastharzvliesfilm zur beschichtung von substraten
EP2281962B1 (de) 2009-06-25 2017-04-05 Knauf Insulation Aerogelhaltige Verbundwerkstoffe
US8937106B2 (en) 2010-12-07 2015-01-20 Basf Se Melamine resin foams with nanoporous fillers
WO2012076489A1 (de) 2010-12-07 2012-06-14 Basf Se Verbundmaterial enthaltend nanopröse partikel
WO2012076492A1 (de) 2010-12-07 2012-06-14 Basf Se Melaminharzschaumstoffe mit nanoporösen füllstoffen
WO2012076506A1 (de) 2010-12-07 2012-06-14 Basf Se Polyurethan-verbundmaterial
WO2013182506A1 (de) 2012-06-04 2013-12-12 Basf Se Aerogel enthaltender polyurethan-verbundwerkstoff
US9944793B2 (en) 2012-06-04 2018-04-17 Basf Se Aerogel-containing polyurethane composite material
US11333288B2 (en) 2015-01-27 2022-05-17 Showa Denko Materials Co., Ltd. Aerogel laminate and thermal insulation material
WO2019058185A1 (en) * 2017-09-19 2019-03-28 Mazrouei Sebdani Zahra FABRICATION OF ACOUSTIC ABSORBENT LAYERS
US11787957B2 (en) 2017-10-04 2023-10-17 Resonac Corporation Coating solution, method for producing coating film, and coating film
US11547977B2 (en) 2018-05-31 2023-01-10 Aspen Aerogels, Inc. Fire-class reinforced aerogel compositions
US12005413B2 (en) 2018-05-31 2024-06-11 Aspen Aerogels, Inc. Fire-class reinforced aerogel compositions
US20220347967A1 (en) * 2019-11-07 2022-11-03 Ha Sangsun Heat insulation material comprising aerogel granules and manufacturing method therefor
US11897246B2 (en) * 2019-11-07 2024-02-13 Ha Sangsun Heat insulation material comprising aerogel granules and manufacturing method therefor

Also Published As

Publication number Publication date
JPH11513349A (ja) 1999-11-16
MX9801908A (es) 1998-10-31
JP4118331B2 (ja) 2008-07-16
CA2231428A1 (en) 1997-03-20
NO980991D0 (no) 1998-03-06
KR19990044531A (ko) 1999-06-25
EP0850207A1 (de) 1998-07-01
NO980991L (no) 1998-03-06
CN1104393C (zh) 2003-04-02
DE19533564A1 (de) 1997-03-13
CN1196036A (zh) 1998-10-14

Similar Documents

Publication Publication Date Title
WO1997010188A1 (de) Faserhaltiges aerogel-verbundmaterial
EP0850206B1 (de) Aerogel- und klebstoffhaltiges verbundmaterial, verfahren zu seiner herstellung sowie seine verwendung
EP0954438B1 (de) Mehrschichtige verbundmaterialien, die mindestens eine aerogelhaltige schicht und mindestens eine schicht, die polyethylenterephthalat-fasern enthält, aufweisen, verfahren zu ihrer herstellung sowie ihre verwendung
EP0799343B1 (de) Faservlies- aerogel- verbundmaterial enthaltend bikomponentenfasern, verfahren zu seiner herstellung, sowie seine verwendung
EP0963358B1 (de) Mehrschichtige verbundmaterialien, die mindestens eine aerogelhaltige schicht und mindestens eine weitere schicht aufweisen, verfahren zu ihrer herstellung sowie ihre verwendung
US6887563B2 (en) Composite aerogel material that contains fibres
EP0672635B1 (de) Formkörper, enthaltend Silica-Aerogel-Partikel sowie Verfahren zu ihrer Herstellung
DE19548128A1 (de) Faservlies-Aerogel-Verbundmaterial enthaltend mindestens ein thermoplastisches Fasermaterial, Verfahren zu seiner Herstellung, sowie seine Verwendung
EP0966411B1 (de) Verwendung von aerogelen zur körper- und/oder trittschalldämmung
EP2576929A1 (de) Dämmung mit schichtaufbau
DE3814968A1 (de) Daemmstoff der dichte 0,1 bis 0,4 g/cm(pfeil hoch)3(pfeil hoch)
EP2649118B1 (de) Verbundmaterial enthaltend nanopröse partikel
DE102011119029A1 (de) Dämmstoff sowie Verfahren zur Herstellung eines Dämmstoffs
DD153625A5 (de) Waermeisolierkoerper sowie verfahren zu seiner herstellung
WO2012019578A2 (de) Brandhemmende materialmischung
DE4215468C2 (de) Biegezugfester Verbunddämmstoffkörper und Verfahren zur Herstellung desselben
EP2873695B1 (de) Verfahren zur herstellung einer dämm- und drainageplatte sowie dämm- und drainageplatte
DE19533565A1 (de) Aerogel- und klebstoffhaltiges Verbundmaterial, Verfahren zu seiner Herstellung
DE19622865A1 (de) Aerogel- und klebstoffhaltiges Verbundmaterial, Verfahren zu seiner Herstellung sowie seine Verwendung
EP0920473A1 (de) Aerogel- und kunststoffhaltiges, transparentes verbundmaterial, verfahren zu seiner herstellung sowie seine verwendung
EP2864087B1 (de) Holzverbundwerkstoff mit aerogele und entsprechendes herstellungsverfahren und verwendung
DE10060875A1 (de) Mineralischer Formkörper und Verfahren zur Herstellung
MXPA98001908A (en) Aerogel mixed material that contains fib

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 96196880.X

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CA CN JP KR MX NO US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2231428

Country of ref document: CA

Ref document number: 2231428

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1019980701779

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 1997 511646

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: PA/a/1998/001908

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 1996931062

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1996931062

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019980701779

Country of ref document: KR

WWR Wipo information: refused in national office

Ref document number: 1996931062

Country of ref document: EP

WWR Wipo information: refused in national office

Ref document number: 1019980701779

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 1996931062

Country of ref document: EP