[go: up one dir, main page]

WO1992000504A1 - Einrichtung zur sicheren ausfallerkennung und rauschspitzenunterdrückung bei einer potentiometerauswertung - Google Patents

Einrichtung zur sicheren ausfallerkennung und rauschspitzenunterdrückung bei einer potentiometerauswertung Download PDF

Info

Publication number
WO1992000504A1
WO1992000504A1 PCT/DE1991/000473 DE9100473W WO9200504A1 WO 1992000504 A1 WO1992000504 A1 WO 1992000504A1 DE 9100473 W DE9100473 W DE 9100473W WO 9200504 A1 WO9200504 A1 WO 9200504A1
Authority
WO
WIPO (PCT)
Prior art keywords
potentiometer
resistor
filter
analog
digital converter
Prior art date
Application number
PCT/DE1991/000473
Other languages
English (en)
French (fr)
Inventor
Helmut Denz
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO1992000504A1 publication Critical patent/WO1992000504A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D11/00Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated
    • F02D11/06Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance
    • F02D11/10Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type
    • F02D11/107Safety-related aspects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/16Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying resistance
    • G01D5/165Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying resistance by relative movement of a point of contact or actuation and a resistive track
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/16Measuring impedance of element or network through which a current is passing from another source, e.g. cable, power line
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/54Testing for continuity

Definitions

  • the invention relates to a device for safe execution and noise peak suppression in a potentiometer evaluation, in particular in a throttle valve potentiometer in an internal combustion engine.
  • the throttle valve potentiometer represents a mechanically changeable resistor, from whose slider the signal voltage is tapped.
  • the tapped signal voltage should lie within narrow tolerances and the wiper currents should be as small as possible ( ⁇ 20 .uA) for the best noise suppression. Fault detection for short circuits and cable drop at the potentiometer connections is also required.
  • a monitoring device for the throttle valve potentiometer is known from DE-OS 37 14 697. The throttle valve potentiometer, the wiper position of which is in a predetermined relationship to the position of the accelerator pedal, is connected on the one hand to the operating voltage via a measuring resistor and on the other hand to ground.
  • the invention has for its object to provide a device with which, when evaluating output signals of a potentiometer arrangement, on the one hand a failure of the potentiometer or a cable break at the wiper connection of the potentiometer is recognized and on the other hand the effect of noise peaks on the output signal of the potentiometer arrangement errors can be suppressed as best as possible.
  • the device according to the invention has the advantage that a missing output signal of the potentiometer, or. A cable break at the grinder connection of the potentiometer is reliably detected in normal operation despite the low potentiometer current.
  • Noise peaks which can occur when the potentiometer path is abraded, can be better suppressed or prevented by an appropriate choice of a filter from having an effect on the analog-digital converter.
  • FIG. 1 shows a basic illustration of a conventional evaluation circuit for a ratiometrically evaluated throttle valve potentiometer
  • FIG. 2 shows a device according to the invention for reliable failure detection and noise peak suppression for a throttle valve potentiometer
  • a throttle valve potentiometer 10 is located in the throttle valve generator DKG between the buffered positive supply voltage U, which is 5 volts, and ground switched.
  • the grinder S of the throttle valve potentiometer 10 there is possibly a short-term noise resistance, which is shown as resistor 11.
  • a protective resistor 18, the value of which is approximately 800 ohms, is connected downstream of the wiper S, the other connection of the protective resistor 18 leading to the output A of the throttle valve generator DKG and connected to a corresponding connection of the control unit SG is.
  • control unit SG The relevant connection of the control unit SG is connected via a filter resistor 12 to an analog-digital converter 13 which is also between the supply voltage and ground. Between the input of the analog-digital converter 13 and ground is a filter capacitor 14, at the input of the control unit SG there is a pull-down resistor 15 which is connected to ground and is used for potential definition in the event of a cable drop.
  • a protective circuit which consists of the Zener diodes 23 and 24, is arranged at the input of the analog-digital converter 13 in such a way that it protects it from excessive positive or negative voltage peaks.
  • the analog-to-digital converter 13 is represented in FIG. 1 by an equivalent circuit which is formed from a resistor 16 and a voltage of 2.5 volts connected to terminal 17.
  • the throttle valve potentiometer voltage U lies between the wiper S of the throttle valve potentiometer 10 and ground, the current I flows as the output signal of the throttle valve potentiometer via the wiper contact S.
  • the voltage U is at the pull-down resistor 15 and the voltage U at the filter capacitor 14. Depending on the voltage U flows into the analog-digital converter 13
  • the throttle valve potentiometer 10 lies between the buffered supply voltage U and ground.
  • the potentiometer voltage U changes depending on the position of the throttle valve.
  • the characteristic curve is usually designed in such a way that U reaches a maximum of 4.8 volts and a minimum of 0.2 volts, so that there is an implausible range for various types of faults in line shorts or interruptions.
  • a filter time constant TT 5 ms is implemented with a resistor 12 _ 12 KOh and a capacitor 14 with 440 Nannofarad.
  • the current I must be chosen to be as small as possible so that the voltage drop is kept as small as possible becomes relatively large.
  • the total resistance of the two resistors 12 and 15 must be less than 33 KOhm, with a value of 12 KOhm for the resistor 12, resistor 15 must be less than 21 KOhm. In normal operation, however, this results in a high wiper current I of 220 ⁇ A when the wiper track is tapped at the top, which leads to sharp voltage drops when the noise resistance 11 is increased.
  • FIG. 2 shows a circuit arrangement with which an improved noise peak suppression is possible while maintaining the failure detection during the potentiometer evaluation.
  • the throttle valve potentiometer 10 is connected to a buffered reference voltage U and to ground, as shown in FIG.
  • the higher voltage is generated via a series resistor 20, which is connected to a battery voltage terminal 21, and a Zener diode 22, which lies between the series resistor 20 and ground.
  • the pull-up resistor 19 can also be connected directly to the battery voltage, that is to say can be connected directly to the battery voltage terminal 21.
  • the input circuitry of the circuit arrangement according to FIG. 2, or the configuration of the throttle valve potentiometer transmitter DKG corresponds to the arrangement already known from FIG.
  • a calculation of the circuit arrangement according to FIG. 2 shows the advantages over the circuits according to FIG. 1.
  • the potential at the analog-digital converter input must be raised above a threshold of approximately 4.9 volts.
  • the total current from analog-digital converter 13 and protective circuit is: I - 3 uA.
  • FIGS. 1 and 2 can of course also be used for other potentiometer evaluations than for throttle valve potentiometer evaluations.
  • An airflow meter, which also contains a potentiometer, is given here as an example.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

Es wird eine Einrichtung zur sicheren ausfallerkennung und Rauschspitzenunterdrückung bei einer Potentiometerauswertung angegeben, bei dem der Signalausgang des Potentiometers über einen pull-up-Widerstand (19) an eine gegenüber der Referenzspannung erhöhte Spannung angeschlossen wird, so daß bei einer Unterbrechung der Signalleitung am nachfolgenden Analog-Digital-Wandler (13) ein gegenüber dem ungestörten Betrieb erhöhtes Potential anliegt, das zur Fehlererkennung verwendet wird. Durch eine geeignete Dimensionierung der Schaltung wird der Schleiferstrom des Potentiometers minimal gehalten und es werden Auswirkungen von Rauschspitzen bzw. Mikrounterbrechungen verringert.

Description

Einrichtung zur sicheren Ausfallerkennung und Rauschspitzenunter- drückuncr bei einer Potentiometerauswertunq
Stand der Technik
Die Erfindung betrifft eine Einrichtung zur sicheren Ausf llerken¬ nung und Rauschspitzenunterdrückung bei einer Potentiometerauswer¬ tung, insbesondere bei einem Drosselklappenpotentiometer bei einer Brennkraftmaschine.
Es ist allgemein bekannter Stand der Technik, die Drosselklappen¬ stellung, von der die Menge der vom Motor angesaugten Luft abhängig ist, mit Hilfe eines Drosselklappenpotentiometers zu bestimmen. Da¬ bei stellt das Drosselklappenpotentiometer einen mechanisch verän¬ derbaren Widerstand dar, an dessen Schleifer die SignalSpannung ab¬ gegriffen wird.
Die abgegriffene SignalSpannung soll innerhalb enger Toleranzen lie¬ gen und die Schleiferströme sollen zwecks bester Rauschunterdrückung möglichst klein (< 20 .uA) sein. Ferner ist eine Fehlererkennung für Kurzschlüsse und Kabelabfall an den Potentiometeranschlüssen er¬ forderlich. Eine Uberwachungseinrichtung für das Drosselklappenpotentiometer ist aus der DE-OS 37 14 697 bekannt. Dabei wird das Drosselklappenpoten¬ tiometer, dessen Schleiferstellung in einer vorgegebenen Beziehung zur Stellung des Fahrpedals steht, einerseits über einen Meßwider- stand mit der Betriebsspannung und andererseits an Masse angeschlos¬ sen. Zur Erkennung von unerwünschten Nebenschlußwiderständen, die besonders im gealterten Zustand des Potentiometers auftreten können und zu einem erhöhten Strom durch das Potentiometer und den Meßwert¬ widerstand führen, wird der am Meßwiderstand auftretende Spannungs¬ abfall gemessen. Bei Abweichung von einem vorgegebenen Wert wird ein Nebenschlußwiderstand erkannt.
Mit dieser Uberwachungseinrichtung für ein Drosselklappenpotentio¬ meter ist es jedoch nicht möglich, einen Ausfall des Potentiometers selbst oder einen Kabelbruch am Schleiferanschluß des Potentiometers zu erkennen. Außerdem können Rauschspitzen, die bei kurzfristigen WiderStandserhöhungen oder gar Unterbrechungen am Schleifer auftre¬ ten können, zu Störungen führen. Diese kurzzeitigen Widerstandser- höhungen treten insbesondere bei einem gealterten Potentiometer auf, bei dem durch Abrieb Kohlepartikel unter den Schleifer geraten.
Der Erfindung liegt die Aufgabe zugrunde, eine Einrichtung zu schaf¬ fen, mit der bei der Auswertung von Ausgangssignalen einer Potentio- meteranordnung einerseits ein Ausfall des Potentiometers oder ein Kabelbruch am Schleiferanschluß des Potentiometers erkannt wird und andererseits die Auswirkung von Rauschspitzen am Ausgangssignal der Potentiometeranordnung die zu Fehlern führen kann, bestmöglichst unterdrückt werden. Vorteile der Erfindung
Die erfindungsgemäße Einrichtung hat den Vorteil, daß ein fehlendes AusgangsSignals des Potentiometers, bwz. ein Kabelbruch am Schlei¬ feranschluß des Potentiometers trotz geringem Potentiometerstrom im Normalbetrieb sicher erkannt wird.
Rauschspitzen, die bei Abrieb der Potentiometerbahn auftreten kön¬ nen, können besser unterdrückt-werden, bzw. durch geeignete Wahl eines Filters an einer Auswirkung am Analog-Digital-Wandler gehin¬ dert werden.
Durch eine eindeutige hardwaremäßige Fehlererkennung sind aufwendige und fragwürdige Plausibilitätsabfragen der Software überflüssig.
Vorteilhafte Weiterbildungen und Verbesserungen der erfindungsgemä¬ ßen Einrichtung sind in den Unteransprüchen angegeben.
Zeichnung
Figur 1 zeigt eine Prinzipdarstellung einer herkömmlichen Auswerte¬ schaltung für ein ratiometrisch ausgewertetes Drosselklappenpoten¬ tiometer, in Figur 2 ist eine erfindungsgemäße Einrichtung zur si¬ cheren Ausfallerkennung und Rauschspitzenunterdrückung für ein Dros- selklappenpotentiometer angegeben
Beschreibung des Ausführungsbeispieles
In der Schaltungsanordnung nach Figur 1 ist im Drosselklappengeber DKG ein Drosselklappenpotentiometer 10 zwischen die gebufferte po¬ sitive VersorgungsSpannung U , die 5 Volt beträgt, und Masse geschaltet. Im Schleifer S des Drosselklappenpotentiometers 10 sei ein eventuell kurzzeitig auftretender Rauschwiderstand vorhanden, der als Widerstand 11 dargestellt ist. Weiterhin ist im Drosselklap¬ pengeber DKG ein Schutzwiderstand 18, dessen Wert ca. 800 Ohm be¬ trägt, dem Schleifer S nachgeschaltet, wobei der anderer Anschluß des Schutzwiderstandes 18 auf den Ausgang A des Drosselklappengebers DKG führt und mit einem entsprechenden Anschluß des Steuergeräts SG verbunden ist.
_Der betreffende Anschluß des Steuergeräts SG ist über einen Filter¬ widerstand 12 an einen, ebenfalls zwischen Versorgungsspannung und Masse liegenden Analog-Digital-Wandler 13 angeschlossen. Zwischen dem Eingang des Analog-Digital-Wandlers 13 und Masse liegt ein Fil¬ terkondensator 14, am Eingang des Steuergeräts SG liegt ein pull-down-Widerstand 15, der mit Masse verbunden ist und zur Poten¬ tialdefinition bei einem Kabelabfall dient.
Weiterhin ist eine Schutzbeschaltung, die aus den Zenerdioden 23 und 24 besteht, am Eingang des Analog-Digital-Wandlers 13 so angeordnet, daß sie diesen vor zu hohen positiven oder negativen Spannungsspit¬ zen schützt.
Der Analog-Digital-Wandler 13 ist in Figur 1 durch eine Ersatzschal¬ tung, die aus einem Widerstand 16 und eine an Klemme 17 liegende Spannung von 2,5 Volt gebildet wird, dargestellt.
Zwischen dem Schleifer S des Drosselklappenpotentiometers 10 und Masse liegt die Drosselklappenpotentiometerspannung U , über den Schleiferkontakt S fließt als Ausgangssignal des Drosselklappen¬ potentiometers der Strom I .. Am pull-down-Widerstand 15 liegt die Spannung U und am Filterkondensator 14 die Spannung U . Je nach Spannung U fließt in den Analog-Digital-Wandler 13 ein
Strom I,^„ von ca. +1 ,uA bis -1 ,uA und in die Schutzbeschal- ADW / / tung mit den Zenerdioden 23 und 24 ein Strom von ca. +2 uA bis
- 2 uA. Die Summe beider Ströme ist mit I bezeichnet. / SU
Das Drosselklappenpotentiometer 10 liegt im normalen Betrieb zwi¬ schen der gebufferten Versorgungsspannung U und Masse. Die Poten¬ tiometerspannung U verändert sich je nach Stellung der Drossel¬ klappe. Die Kennlinie wird üblicherweise so ausgeführt, daß U maximal 4,8 Volt und minimal 0,2 Volt erreicht, so daß ein nicht plausibler Bereich für verschiedene Fehlerarten von Leitungskurz¬ schlüssen oder -Unterbrechungen vorhanden ist.
Bei Alterung des Potentiometers treten im Schleifer Widerstände durch Abrieb der Widerstandsbahn auf, die sich insbesondere bei Be¬ wegung des Schleifers sprunghaft vergrößern. Insbesondere bei großem Strom I tritt durch den Spannungsabfall über den kurzzeitig ver¬ größerten Rauschwiderstand 18 ein hoher Spannungseinbruch am Eingang des RC-Glieds 12, 14 auf. Die Zeitkonstante dieses RC-Gliedes 12, 14 kann nur so groß gewählt werden, daß keine nennenswerte Verzögerung des Nutzsignales bei schnellster Änderung des Potentiometerschlei¬ fers im Normalbetrieb resultiert. Beispielsweise wird eine Filter- zeitkonstanteTT= 5 ms mit einem Widerstand 12 _ 12 KOh und einem Kondensator 14 mit 440 Nannofarad realisiert.
Damit eine möglichst geringe Fehlerauswirkung am Analog-Digi- tal-Wandler 13 entsteht, muß der Strom I möglichst klein gewählt werden, damit der Spannungseinbruch so gering wie möglich gehalten wwiirrdd.. DDiiee ffoollggeennddee BBeettrraacchhttuunngg zzeeiiggtt jjeeddeoch, daß I mit einer Schaltung nach Figur 1 relativ groß wird. Zur Erkennung des Kabelabfalls am Ausgang A des Drosselklappengebers muß der Widerstand 15 das Potential soweit absenken, daß sich am Eingang des Analog-Digital-Wandlers 13 ein unplausibel niedriges Potential von beispielsweise 0,1 Volt einstellt. Durch den Strom der Zenerdiode 23 der Schutzbeschaltung und es Analog-Digital-Wandlers 13, der zusammen I = - 3 mA betragen soll, tritt ein Spannungs¬ abfall über den Widerständen 12 und 15 auf. Damit dieser kleiner als 0,1 Volt bleibt, muß der Gesamtwiderstand der beiden Widerstände 12 und 15 kleiner als 33 KOhm sein, mit einem Wert von 12 KOhm für den Widerstand 12 muß Widerstand 15 kleiner als 21 KOhm sein. Dadurch resultiert jedoch im Normalbetrieb ein hoher Schleiferstrom I von 220 uA beim oberen Abgriff der Schleiferbahn, dieser führt bei der obengenannte Erhöhung des Rauschwiderstandes 11 zu starken Span¬ nungseinbrüchen.
Figur 2 zeigt eine Schaltungsanordnung, mit der eine verbesserte Rauschspitzenunterdrückung unter Beibehaltung der Ausfallerkennung bei der Potentiometerauswertung möglich ist.
Das Drosselklappenpotentiometer 10 ist entsprechend der Darstellung in Figur 1 an eine gebufferte Referenzspannung U sowie an Masse angeschlossen. Der Ausgang A des Drosselklappengebers DKG ist über einen pul1-up-Widerstand 19 auf eine höhere Spannung als U ge¬ legt, beispielsweise auf 8 Volt bei U = 5 Volt. Die höhere Span¬ nung wird über einen Vorwiderstand 20, der mit einer Batteriespan¬ nungsklemme 21 verbunden ist und eine Zenerdiode 22, die zwischen dem Vorwiderstand 20 und Masse liegt, erzeugt.
In einer vereinfachten Ausführungsform kann der pull-up-Widerstand 19 auch direkt auf Batteriespannung gelegt werden, also direkt an die Batteriespannungsklemme 21 angeschlossen werden. Die Eingangsbeschaltung der Schaltungsanordnung nach Figur 2, bzw. die Ausgestaltung des Drosselklappenpotentiometergebers DKG ent¬ spricht der bereits aus der Figur 1 bekannten Anordnung.
Eine Berechnung der Schaltungsanordnung nach Figur 2 zeigt die Vor¬ teile gegenüber Schaltungen nach Figur 1 auf. Um den Fehler "Kabel¬ abfall am Ausgang A des Drosselklappengebers DKG" zu erkennen, muß das Potential am Analog-Digital-Wandler-Eingang über eine Schwelle von etwa 4,9 Volt angehoben werden. In diesem Fall kann der Summen- strom von Analog-Digital-Wandler 13 und Schutzbeschaltung (Zener¬ diode 24) als I = + 3 mA angenommen werden. Der Spannungsabfall bU über den Widerständen 19 und 22 darf 8 Volt - 4,9 Volt = 3,1 Volt betragen. Damit kann der Gesamtwert der Widerstände 19 + 12 1 MOhm betragen. Da der Wert des Widerstandes 12 12 KOhm beträgt, ist er gegen den Wert des Widerstandes 19 vernachlässigbar klein, nähe¬ rungsweise gilt daß der Wert des Widerstandes 19 etwa 1 MOhm betra¬ gen darf.
Im Normalbetrieb ergibt sich der größte Schleiferstrom am unteren
Abgriff der Schleiferbahn für U 0 Volt. Über den pull-up-Wider- stand 19 fließt dann der Strom I = 7,8 Volt x 1 MOhm < 8 uA,
Pu wobei gilt, daß der Widerstand 18 viel kleiner als der Widerstand 19 ist. Der Summenstrom aus Analog-Digital-Wandler 13 und Schutzbe¬ schaltung (Zenerdiode 23 und Zenerdiode 24) beträgt: I - 3 uA.
SU
Der resultierende Schleiferstrom am Drosselklappenpotentiometer be¬ trägt also maximal I = - 12 uA.
Mit dieser Beschaltung ist also eine Diagnosefähigkeit möglich, bei ca. 20 mal geringerem Laststrom bzw. Schleiferstrom I als bei der bekannten Anordnung nach Figur 1. Die Auswirkung von Rauschspitzen, d.h. der Spannungsabfall durch Erhöhung von Rll ist somit ebenfalls etwa 20 mal geringer als bei einer Schaltungsanordnung nach Figur 1. Als Eingangsfilter kann neben den bereits beschriebenen einfachen RC-Glied 12, 14 auch ein anderes Filter verwendet werden. Insbeson¬ dere kann direkt am Eingang, vom Verbindungspunkt von Widerstand 19 und Widerstand 12 ein zusätzlicher Kondensator 30 nach Masse ge¬ schaltet und somit die Zeitkonstante des RC-Gliedes 12, 14 verklei¬ nert werden.
Bei kurzzeitig hohen Rauschwiderständen, also wenn der Wert des Wi¬ derstandes 11 gegen Unendlich geht, wird somit eine hohe Entlade- zeitkonstante über den hochohmigen Widerstand 19 erhalten, das be¬ deutet, daß auch die Sollspannung lange erhalten bleibt.
Verschwindet der Rauschwiderstand wieder, geht also der Widerstand 11 gegen Null, dann wirkt diese sehr kleine Aufladezeitkonstante über den niederohmigen Widerstand 18 auf den Sollwert U .
Die in den Figuren 1 und 2 dargestellten Schaltungen können selbst¬ verständlich auch für andere Potentiometerauswertungen als für Dros¬ selklappenpotentiometerauswertungen verwendet werden. Als Beispiel sei hier ein Luftmengenmesser, der ebenfalls ein Potentiometer ent¬ hält, angegeben.

Claims

Ansprüche
1. Einrichtung zur sicheren Ausfallerkennung und Rauschspitzenunter¬ drückung bei einer Potentiometerauswertung, bei der das Potentio¬ meter zwischen eine Referenzspannung und Masse geschaltet wird und das am Schleiferanschluß des Potentiometers abgegriffene Signal über einen Signalpfad einem Analog-Digital-Wandler zugeführt wird, da¬ durch gekennzeichnet, daß eine gegenüber der Referenzspannung
(U ) erhöhte Spannung (U ) über einen pul1-uρ-Widerstand (19) dem Schleiferanschluß S des Potentiometers (10) zugeführt wird.
2. Einrichtung nach Anspruch 1, dadurch gekennzeichnet, daß zwischen dem Schleiferanschluß S des Potentiometers (10) und dem Analog-Digi¬ tal-Wandler (13) ein Filter (12, 14) liegt.
3. Einrichtung nach Anspruch 2, 'dadurch gekennzeichnet, daß das Fil¬ ter (12, 14) ein RC-Filter ist.
4. Einrichtung nach Anspruch 2 oder 3, dadurch gekennzeichnet, daß die Dimensionierung des Filters (12, 14) so vorgenommen wird, daß bei der schnellstmöglichen Änderung des am Schleifer S abgegriffenen Signals durch das Filter (12, 14) keine weitere Zeitverzögerung auf¬ tritt.
5. Einrichtung nach einem der vorhergehenden Ansprüche, dadurch ge¬ kennzeichnet, daß das Potentiometer 10 ein Drosselklappenpotentio¬ meter oder ein Potentiometer eines Luftmengenmessers ist.
6. Einrichtung nach einem der vorhergehenden Ansprüche, dadurch ge¬ kennzeichnet, daß der pull-up-Widerstand (19) hochohmig ist.
7. Einrichtung nach einem der Ansprüche 1 bis 6, dadurch gekenn¬ zeichnet, daß bei einer Unterbrechnung des Signalpfades zwischen Potentiometer (10) und Analog-Digital-Wandler (13), insbesondere am Ausgang A des Potentiometers (10), das Potential am Eingang des Ana¬ log-Digital-Wandlers (13) über einen Wert, der im ungestörten Be¬ trieb möglich ist, ansteigt und eine Erkennung der Unterbrechung er¬ möglicht.
8. Einrichtung nach einem der vorhergehenden Ansprüche, dadurch ge¬ kennzeichnet, daß die Dimensionierung des Filters (12, 14) und des pull-up-Widerstandes (19) so erfolgt, daß die zulässige Dauer für Rauschspitzen möglichst groß wird.
9. Einrichtung nach einem der vorhergehenden Ansprüche, dadurch ge¬ kennzeichnet, daß ein zusätzlicher Filterkondensator (30) vom Ein¬ gang nach Masse geschaltet wird.
PCT/DE1991/000473 1990-06-23 1991-06-05 Einrichtung zur sicheren ausfallerkennung und rauschspitzenunterdrückung bei einer potentiometerauswertung WO1992000504A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4020106A DE4020106C2 (de) 1990-06-23 1990-06-23 Einrichtung zur sicheren Ausfallerkennung und Rauschspitzenunterdrückung bei einer Potentiometerauswertung
DEP4020106.6 1990-06-23

Publications (1)

Publication Number Publication Date
WO1992000504A1 true WO1992000504A1 (de) 1992-01-09

Family

ID=6408979

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1991/000473 WO1992000504A1 (de) 1990-06-23 1991-06-05 Einrichtung zur sicheren ausfallerkennung und rauschspitzenunterdrückung bei einer potentiometerauswertung

Country Status (2)

Country Link
DE (1) DE4020106C2 (de)
WO (1) WO1992000504A1 (de)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2735871A1 (fr) * 1995-06-23 1996-12-27 Renault Procede et dispositif de diagnostic du fonctionnement d'un capteur de type potentiometrique
EP0759558A3 (de) * 1995-08-18 1997-10-01 Siemens Ag Prüfverfahren für einen Analogeingabekanal einer Analogsignalerfassungsschaltung und zugehörige Analogsignalerfassungsschaltung
DE19818315C1 (de) * 1998-04-23 1999-09-16 Siemens Ag Einrichtung zum ratiometrischen Messen von Sensorsignalen
DE19833413A1 (de) * 1998-07-24 2000-02-10 Siemens Ag Schaltungsanordnung zum Auslesen mindestens eines potentiometrischen Gebers
DE19905071A1 (de) * 1999-02-08 2000-08-10 Siemens Ag Meßumformer sowie Verfahren zur Diagnose der Versorgung eines Meßumformers
US6580277B1 (en) 1998-04-23 2003-06-17 Siemens Aktiengesellschaft Device for the ratiometric measurement of sensor signals
US6990967B2 (en) 2003-08-28 2006-01-31 Pierburg Gmbh Potentiometer device for determination of valve positions
EP2602695A1 (de) * 2011-12-09 2013-06-12 Thales Dateneingabevorrichtung mit Potentiometer und Steuerknüppel zum Steuern eines Luftfahrzeugs, wobei der Steuerknüppel diese Dateneingabevorrichtung umfasst

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4204623C2 (de) * 1992-02-15 1993-11-25 Bosch Gmbh Robert Einrichtung zur Erfassung einer veränderlichen Größe in Fahrzeugen
DE19728596C2 (de) * 1997-07-04 2000-02-17 Bosch Gmbh Robert Verfahren zur Überwachung eines Potentiometers
DE19949623C1 (de) * 1999-10-14 2001-05-10 Asm Automation Sensorik Messte Störfester Meßumformer für Potentiometer und Verfahren zur Erhöhung der Störfestigkeit
JP3918614B2 (ja) * 2002-04-09 2007-05-23 富士電機デバイステクノロジー株式会社 断線故障検知回路
DE102004021620A1 (de) * 2004-05-03 2005-12-08 Jungheinrich Aktiengesellschaft Vorrichtung zur Erfassung eines Lenkwinkels in einer Lenksteuerung eines Flurförderzeugs
DE102004035945B3 (de) * 2004-07-23 2006-04-06 Samson Ag Verfahren zur Überwachung eines Schleifübergangswiderstandes
US8154305B2 (en) * 2010-07-16 2012-04-10 General Electric Company Systems, methods, and apparatus for connection fault self-monitoring with DC bias current
FR2973883B1 (fr) 2011-04-05 2013-05-10 Sagem Defense Securite Procede et systeme de detection d'un court-circuit affectant un capteur
CN114264225B (zh) * 2021-12-28 2024-11-12 石家庄数英仪器有限公司 电位器型转角传感器实时故障判别电路和判别方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2197179A1 (de) * 1972-08-21 1974-03-22 Motoda Electronics
FR2441852A1 (fr) * 1978-11-16 1980-06-13 Beckman Instruments Inc Ohmmetre numerique avec dispositif de verification de continuite electrique
JPS6357851A (ja) * 1986-08-29 1988-03-12 Japan Electronic Control Syst Co Ltd 絞り弁開度検出装置
EP0274767A1 (de) * 1986-10-07 1988-07-20 Philips Patentverwaltung GmbH Verfahren und Schaltungsanordnung zur Ermittlung der Stellung des Abgriffes eines Widerstandsferngebers

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2460079C3 (de) * 1974-12-19 1979-09-27 Schoppe & Faeser Gmbh, 4950 Minden Verfahren zur Bestimmung der Stellung des Schleifers eines Potentiometers und Schaltungsanordnung zur Durchführung des Verfahrens
DE3522775A1 (de) * 1985-06-26 1987-01-08 Daimler Benz Ag Vorrichtung zur bestimmung des rbergangswiderstandes am schleifer eines potentiometers
DE3714697A1 (de) * 1987-05-02 1988-11-10 Vdo Schindling Einrichtung zur ermittlung und/oder beeinflussung von betriebsdaten von kraftfahrzeugen mit verbrennungsmotor
DE3826937A1 (de) * 1988-08-09 1990-02-15 Vdo Schindling Verfahren und schaltungsanordnung zur ueberwachung des uebergangswiderstandes bei einem als stellungsgeber dienenden potentiometer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2197179A1 (de) * 1972-08-21 1974-03-22 Motoda Electronics
FR2441852A1 (fr) * 1978-11-16 1980-06-13 Beckman Instruments Inc Ohmmetre numerique avec dispositif de verification de continuite electrique
JPS6357851A (ja) * 1986-08-29 1988-03-12 Japan Electronic Control Syst Co Ltd 絞り弁開度検出装置
EP0274767A1 (de) * 1986-10-07 1988-07-20 Philips Patentverwaltung GmbH Verfahren und Schaltungsanordnung zur Ermittlung der Stellung des Abgriffes eines Widerstandsferngebers

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 12, no. 274 (M-725)(3121) 29. Juli 1988 & JP-A-63 57 851 (JAPAN ELECTRONIC CONTROL SYST CO LTD ) 12. März 1988 siehe das ganze Dokument *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2735871A1 (fr) * 1995-06-23 1996-12-27 Renault Procede et dispositif de diagnostic du fonctionnement d'un capteur de type potentiometrique
EP0759558A3 (de) * 1995-08-18 1997-10-01 Siemens Ag Prüfverfahren für einen Analogeingabekanal einer Analogsignalerfassungsschaltung und zugehörige Analogsignalerfassungsschaltung
DE19818315C1 (de) * 1998-04-23 1999-09-16 Siemens Ag Einrichtung zum ratiometrischen Messen von Sensorsignalen
US6580277B1 (en) 1998-04-23 2003-06-17 Siemens Aktiengesellschaft Device for the ratiometric measurement of sensor signals
WO1999056084A3 (de) * 1998-04-23 2000-02-24 Siemens Ag Einrichtung zum ratiometrischen messen von sensorsignalen
US6496772B1 (en) 1998-04-23 2002-12-17 Siemens Aktiengesellschaft Device for radiometric sensor signal measurement
DE19833413C2 (de) * 1998-07-24 2001-07-12 Siemens Ag Verfahren zum Auslesen mindestens eines potentiometrischen Gebers
DE19833413A1 (de) * 1998-07-24 2000-02-10 Siemens Ag Schaltungsanordnung zum Auslesen mindestens eines potentiometrischen Gebers
DE19905071A1 (de) * 1999-02-08 2000-08-10 Siemens Ag Meßumformer sowie Verfahren zur Diagnose der Versorgung eines Meßumformers
US6990967B2 (en) 2003-08-28 2006-01-31 Pierburg Gmbh Potentiometer device for determination of valve positions
EP2602695A1 (de) * 2011-12-09 2013-06-12 Thales Dateneingabevorrichtung mit Potentiometer und Steuerknüppel zum Steuern eines Luftfahrzeugs, wobei der Steuerknüppel diese Dateneingabevorrichtung umfasst
FR2983987A1 (fr) * 2011-12-09 2013-06-14 Thales Sa Dispositif d'entree de donnees a potentiometre et manche destine au pilotage d'un aeronef, le manche comprenant le dispositif d'entree de donnees
US9188614B2 (en) 2011-12-09 2015-11-17 Thales Data input device with a potentiometer, and joystick intended for piloting an aircraft, said joystick comprising the data input device

Also Published As

Publication number Publication date
DE4020106A1 (de) 1992-01-02
DE4020106C2 (de) 1999-12-09

Similar Documents

Publication Publication Date Title
WO1992000504A1 (de) Einrichtung zur sicheren ausfallerkennung und rauschspitzenunterdrückung bei einer potentiometerauswertung
DE4004086C2 (de)
EP0925512B1 (de) Verfahren und schaltung zur funktionsüberwachung einer sensorbrücke
EP0277955B1 (de) Überwachungseinrichtung für eine elektronische steuereinrichtung in einem kraftfahrzeug
DE4015415B4 (de) Vorrichtung zur Erfassung eines veränderlichen Betriebsparameters
EP0468007A1 (de) System zur steuerung und/oder regelung einer brennkraftmaschine.
EP0841219B1 (de) Schaltungsanordnung zur Erfassung der Position eines beweglichen Elements in einem Kraftfahrzeug
DE3826937A1 (de) Verfahren und schaltungsanordnung zur ueberwachung des uebergangswiderstandes bei einem als stellungsgeber dienenden potentiometer
DE102009027243A1 (de) Vorrichtung zur Aufbereitung eines Sensorsignals eines Fahrzeugsensors, Sensorvorrichtung und Verfahren zum Bestimmen einer Temperatur eines Getriebeöls eines Fahrzeuggetriebes
DE4244761C2 (de) Füllstand-Grenzschalter
DE4241822C2 (de) Schaltungsanordnung zur Fehlererkennung bei der Auswertung von Sensorsignalen
DE10356755B4 (de) Kraftstoffstand-System für ein Automobil
DE10036341A1 (de) Elektronische Einheit zur Erkennung des Ladezustands und/oder des Verschleißes einer Kraftfahrzeugbatterie
DE69314736T2 (de) Eingangsschaltung mit Statusüberwachung für einen Radgeschwindigkeitsmessaufnehmer
EP1329731B1 (de) Treiberschaltung
DE102013216899B4 (de) Verfahren und Vorrichtung zum Betrieb eines sammelnden Partikelsensors
EP0548533A2 (de) Einrichtung zur Erfassung einer veränderlichen Grösse bei einem Fahrzeug
DE19917594B4 (de) Zündeinheit und Zündsystem für Brennkraftmaschinen
DE3043255A1 (de) Diagnosegeraet
DE19833413C2 (de) Verfahren zum Auslesen mindestens eines potentiometrischen Gebers
DE10006958C2 (de) Verfahren zur Diagnose eines doppelpotentiometrischen Gebers
EP4106200B1 (de) Näherungsschalter mit funktionaler sicherheit
DE4338018C2 (de) Schaltungsanordnung zur Übertragung von Signalen
WO1999007995A1 (de) Mess- und diagnoseeinrichtung für ein zündsystem einer brennkraftmaschine
DE10357771B4 (de) Steuereinheit und Steuervorrichtung mit der Steuereinheit

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR SU US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LU NL SE