US20140310828A1 - Targeted modification of rat genome - Google Patents
Targeted modification of rat genome Download PDFInfo
- Publication number
- US20140310828A1 US20140310828A1 US14/254,715 US201414254715A US2014310828A1 US 20140310828 A1 US20140310828 A1 US 20140310828A1 US 201414254715 A US201414254715 A US 201414254715A US 2014310828 A1 US2014310828 A1 US 2014310828A1
- Authority
- US
- United States
- Prior art keywords
- rat
- nucleic acid
- locus
- cell
- acid sequence
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 230000004048 modification Effects 0.000 title claims description 40
- 238000012986 modification Methods 0.000 title claims description 40
- 150000007523 nucleic acids Chemical group 0.000 claims abstract description 596
- 210000004027 cell Anatomy 0.000 claims abstract description 501
- 238000000034 method Methods 0.000 claims abstract description 200
- 238000012239 gene modification Methods 0.000 claims abstract description 177
- 230000005017 genetic modification Effects 0.000 claims abstract description 177
- 235000013617 genetically modified food Nutrition 0.000 claims abstract description 177
- 230000008685 targeting Effects 0.000 claims abstract description 164
- 101100193633 Danio rerio rag2 gene Proteins 0.000 claims abstract description 136
- 101100193635 Mus musculus Rag2 gene Proteins 0.000 claims abstract description 136
- 239000013598 vector Substances 0.000 claims abstract description 133
- 102000010789 Interleukin-2 Receptors Human genes 0.000 claims abstract description 86
- 210000004602 germ cell Anatomy 0.000 claims abstract description 49
- 108091028043 Nucleic acid sequence Proteins 0.000 claims description 361
- 102000039446 nucleic acids Human genes 0.000 claims description 282
- 108020004707 nucleic acids Proteins 0.000 claims description 282
- 241000282414 Homo sapiens Species 0.000 claims description 231
- 230000014509 gene expression Effects 0.000 claims description 149
- 108090000623 proteins and genes Proteins 0.000 claims description 146
- 101710163270 Nuclease Proteins 0.000 claims description 122
- 239000003795 chemical substances by application Substances 0.000 claims description 106
- 238000012217 deletion Methods 0.000 claims description 97
- 230000037430 deletion Effects 0.000 claims description 97
- 239000002773 nucleotide Substances 0.000 claims description 68
- 125000003729 nucleotide group Chemical group 0.000 claims description 68
- 108010038453 Interleukin-2 Receptors Proteins 0.000 claims description 64
- 108700028369 Alleles Proteins 0.000 claims description 60
- 102000004169 proteins and genes Human genes 0.000 claims description 58
- 238000003780 insertion Methods 0.000 claims description 49
- 230000037431 insertion Effects 0.000 claims description 49
- 210000001161 mammalian embryo Anatomy 0.000 claims description 47
- 239000003550 marker Substances 0.000 claims description 42
- 238000002744 homologous recombination Methods 0.000 claims description 37
- 230000006801 homologous recombination Effects 0.000 claims description 37
- 108020005004 Guide RNA Proteins 0.000 claims description 32
- 230000000295 complement effect Effects 0.000 claims description 30
- 108700008625 Reporter Genes Proteins 0.000 claims description 29
- -1 Nanog Proteins 0.000 claims description 21
- 230000004568 DNA-binding Effects 0.000 claims description 18
- 101150007884 Gata6 gene Proteins 0.000 claims description 13
- 101710126211 POU domain, class 5, transcription factor 1 Proteins 0.000 claims description 13
- 108010052160 Site-specific recombinase Proteins 0.000 claims description 13
- 230000001537 neural effect Effects 0.000 claims description 12
- 238000010459 TALEN Methods 0.000 claims description 11
- 108091032973 (ribonucleotides)n+m Proteins 0.000 claims description 10
- 108091033409 CRISPR Proteins 0.000 claims description 10
- 101150032862 LEF-1 gene Proteins 0.000 claims description 9
- 102100021747 Leukemia inhibitory factor receptor Human genes 0.000 claims description 9
- 101710142062 Leukemia inhibitory factor receptor Proteins 0.000 claims description 9
- 101100310648 Mus musculus Sox17 gene Proteins 0.000 claims description 9
- 101100043062 Mus musculus Sox7 gene Proteins 0.000 claims description 9
- 102000007354 PAX6 Transcription Factor Human genes 0.000 claims description 9
- 101150081664 PAX6 gene Proteins 0.000 claims description 9
- 101100247004 Rattus norvegicus Qsox1 gene Proteins 0.000 claims description 9
- 108010026638 endodeoxyribonuclease FokI Proteins 0.000 claims description 9
- 108020001507 fusion proteins Proteins 0.000 claims description 9
- 102000037865 fusion proteins Human genes 0.000 claims description 9
- 108091092236 Chimeric RNA Proteins 0.000 claims description 8
- 108700021430 Kruppel-Like Factor 4 Proteins 0.000 claims description 8
- 101100446513 Mus musculus Fgf4 gene Proteins 0.000 claims description 8
- 102100038895 Myc proto-oncogene protein Human genes 0.000 claims description 8
- 101710135898 Myc proto-oncogene protein Proteins 0.000 claims description 8
- 102000008730 Nestin Human genes 0.000 claims description 8
- 108010088225 Nestin Proteins 0.000 claims description 8
- 101100127230 Rattus norvegicus Khdc3 gene Proteins 0.000 claims description 8
- 101710150448 Transcriptional regulator Myc Proteins 0.000 claims description 8
- 210000005055 nestin Anatomy 0.000 claims description 8
- 101150001847 Sox15 gene Proteins 0.000 claims description 7
- 101000929049 Xenopus tropicalis Derriere protein Proteins 0.000 claims description 7
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 7
- 101150111214 lin-28 gene Proteins 0.000 claims description 7
- 229910052725 zinc Inorganic materials 0.000 claims description 7
- 239000011701 zinc Substances 0.000 claims description 7
- 108091079001 CRISPR RNA Proteins 0.000 claims description 6
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 claims description 4
- 230000000644 propagated effect Effects 0.000 claims description 4
- 102000013918 Apolipoproteins E Human genes 0.000 claims 2
- 108010025628 Apolipoproteins E Proteins 0.000 claims 2
- 239000000203 mixture Substances 0.000 abstract description 41
- 101100379283 Rattus norvegicus Apoe gene Proteins 0.000 abstract description 28
- 101001043830 Rattus norvegicus Interleukin-2 Proteins 0.000 abstract description 22
- 241000700159 Rattus Species 0.000 description 672
- 102000040430 polynucleotide Human genes 0.000 description 148
- 108091033319 polynucleotide Proteins 0.000 description 148
- 239000002157 polynucleotide Substances 0.000 description 148
- 230000001105 regulatory effect Effects 0.000 description 78
- 102100029470 Apolipoprotein E Human genes 0.000 description 75
- 101710095339 Apolipoprotein E Proteins 0.000 description 75
- 210000001236 prokaryotic cell Anatomy 0.000 description 57
- 108020004414 DNA Proteins 0.000 description 55
- 235000018102 proteins Nutrition 0.000 description 55
- 241000699666 Mus <mouse, genus> Species 0.000 description 54
- 230000000694 effects Effects 0.000 description 46
- 108010042407 Endonucleases Proteins 0.000 description 42
- 108091026890 Coding region Proteins 0.000 description 38
- 230000005782 double-strand break Effects 0.000 description 35
- 108010091086 Recombinases Proteins 0.000 description 32
- 201000010099 disease Diseases 0.000 description 28
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 28
- 102000018358 immunoglobulin Human genes 0.000 description 28
- 108060003951 Immunoglobulin Proteins 0.000 description 27
- 102000018120 Recombinases Human genes 0.000 description 27
- 230000006798 recombination Effects 0.000 description 27
- 238000005215 recombination Methods 0.000 description 27
- 241000124008 Mammalia Species 0.000 description 26
- 241000283984 Rodentia Species 0.000 description 26
- 239000012634 fragment Substances 0.000 description 24
- 102000004533 Endonucleases Human genes 0.000 description 23
- 102000006496 Immunoglobulin Heavy Chains Human genes 0.000 description 23
- 108010019476 Immunoglobulin Heavy Chains Proteins 0.000 description 23
- 108010017070 Zinc Finger Nucleases Proteins 0.000 description 20
- 230000001404 mediated effect Effects 0.000 description 20
- 102100031780 Endonuclease Human genes 0.000 description 19
- 238000003556 assay Methods 0.000 description 19
- 230000001939 inductive effect Effects 0.000 description 18
- 108010032099 V(D)J recombination activating protein 2 Proteins 0.000 description 17
- 230000001580 bacterial effect Effects 0.000 description 17
- 230000010354 integration Effects 0.000 description 17
- 229920001184 polypeptide Polymers 0.000 description 17
- 102000004196 processed proteins & peptides Human genes 0.000 description 17
- 108090000765 processed proteins & peptides Proteins 0.000 description 17
- 238000012207 quantitative assay Methods 0.000 description 17
- 238000007792 addition Methods 0.000 description 16
- 230000027455 binding Effects 0.000 description 16
- 238000000338 in vitro Methods 0.000 description 15
- 241001465754 Metazoa Species 0.000 description 14
- 239000003814 drug Substances 0.000 description 14
- 210000004436 artificial bacterial chromosome Anatomy 0.000 description 13
- 229940079593 drug Drugs 0.000 description 13
- 239000013612 plasmid Substances 0.000 description 13
- 238000001890 transfection Methods 0.000 description 13
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 12
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 12
- 238000004520 electroporation Methods 0.000 description 12
- 230000004952 protein activity Effects 0.000 description 12
- 102100035423 POU domain, class 5, transcription factor 1 Human genes 0.000 description 11
- 210000001671 embryonic stem cell Anatomy 0.000 description 11
- 102000005962 receptors Human genes 0.000 description 11
- 108020003175 receptors Proteins 0.000 description 11
- 108010051219 Cre recombinase Proteins 0.000 description 10
- 102000000588 Interleukin-2 Human genes 0.000 description 10
- 108010002350 Interleukin-2 Proteins 0.000 description 10
- 108060006897 RAG1 Proteins 0.000 description 10
- 238000003776 cleavage reaction Methods 0.000 description 10
- 239000003623 enhancer Substances 0.000 description 10
- 210000000287 oocyte Anatomy 0.000 description 10
- 230000007017 scission Effects 0.000 description 10
- 241000894007 species Species 0.000 description 10
- 210000001519 tissue Anatomy 0.000 description 10
- 241000699800 Cricetinae Species 0.000 description 9
- 101000998953 Homo sapiens Immunoglobulin heavy variable 1-2 Proteins 0.000 description 9
- 108010065825 Immunoglobulin Light Chains Proteins 0.000 description 9
- 102000013463 Immunoglobulin Light Chains Human genes 0.000 description 9
- 102100036887 Immunoglobulin heavy variable 1-2 Human genes 0.000 description 9
- 101100451662 Mus musculus Prm1 gene Proteins 0.000 description 9
- 229930193140 Neomycin Natural products 0.000 description 9
- 108090000848 Ubiquitin Proteins 0.000 description 9
- 102000044159 Ubiquitin Human genes 0.000 description 9
- 125000003275 alpha amino acid group Chemical group 0.000 description 9
- 210000002459 blastocyst Anatomy 0.000 description 9
- 101150066555 lacZ gene Proteins 0.000 description 9
- 229960004927 neomycin Drugs 0.000 description 9
- 230000006780 non-homologous end joining Effects 0.000 description 9
- 108020004705 Codon Proteins 0.000 description 8
- 108010077850 Nuclear Localization Signals Proteins 0.000 description 8
- 108091008874 T cell receptors Proteins 0.000 description 8
- 102000016266 T-Cell Antigen Receptors Human genes 0.000 description 8
- 238000004458 analytical method Methods 0.000 description 8
- 210000001106 artificial yeast chromosome Anatomy 0.000 description 8
- 210000001185 bone marrow Anatomy 0.000 description 8
- 210000000349 chromosome Anatomy 0.000 description 8
- 108010082025 cyan fluorescent protein Proteins 0.000 description 8
- 108010048367 enhanced green fluorescent protein Proteins 0.000 description 8
- 210000003527 eukaryotic cell Anatomy 0.000 description 8
- 108010021843 fluorescent protein 583 Proteins 0.000 description 8
- 230000006870 function Effects 0.000 description 8
- 230000001965 increasing effect Effects 0.000 description 8
- 230000035772 mutation Effects 0.000 description 8
- 241000282693 Cercopithecidae Species 0.000 description 7
- 101001055227 Homo sapiens Cytokine receptor common subunit gamma Proteins 0.000 description 7
- 108010021466 Mutant Proteins Proteins 0.000 description 7
- 102000008300 Mutant Proteins Human genes 0.000 description 7
- 108700026244 Open Reading Frames Proteins 0.000 description 7
- 239000004098 Tetracycline Substances 0.000 description 7
- 101150036876 cre gene Proteins 0.000 description 7
- 210000002304 esc Anatomy 0.000 description 7
- 230000004927 fusion Effects 0.000 description 7
- 210000004962 mammalian cell Anatomy 0.000 description 7
- 210000000472 morula Anatomy 0.000 description 7
- 238000003753 real-time PCR Methods 0.000 description 7
- 239000000523 sample Substances 0.000 description 7
- 229930101283 tetracycline Natural products 0.000 description 7
- 229960002180 tetracycline Drugs 0.000 description 7
- 235000019364 tetracycline Nutrition 0.000 description 7
- 150000003522 tetracyclines Chemical class 0.000 description 7
- LRFVTYWOQMYALW-UHFFFAOYSA-N 9H-xanthine Chemical compound O=C1NC(=O)NC2=C1NC=N2 LRFVTYWOQMYALW-UHFFFAOYSA-N 0.000 description 6
- 102100039793 E3 ubiquitin-protein ligase RAG1 Human genes 0.000 description 6
- 102000004190 Enzymes Human genes 0.000 description 6
- 108090000790 Enzymes Proteins 0.000 description 6
- 108700024394 Exon Proteins 0.000 description 6
- 101000744443 Homo sapiens E3 ubiquitin-protein ligase RAG1 Proteins 0.000 description 6
- 101000687343 Mus musculus PR domain zinc finger protein 1 Proteins 0.000 description 6
- 101100285883 Rattus norvegicus Prm1 gene Proteins 0.000 description 6
- 102100029591 V(D)J recombination-activating protein 2 Human genes 0.000 description 6
- 210000003719 b-lymphocyte Anatomy 0.000 description 6
- 230000005540 biological transmission Effects 0.000 description 6
- 229940088598 enzyme Drugs 0.000 description 6
- 102000049902 human IL2RG Human genes 0.000 description 6
- 238000002347 injection Methods 0.000 description 6
- 239000007924 injection Substances 0.000 description 6
- 239000002609 medium Substances 0.000 description 6
- 238000010186 staining Methods 0.000 description 6
- 230000002103 transcriptional effect Effects 0.000 description 6
- 101150037123 APOE gene Proteins 0.000 description 5
- 241000894006 Bacteria Species 0.000 description 5
- 102000004127 Cytokines Human genes 0.000 description 5
- 108090000695 Cytokines Proteins 0.000 description 5
- 101150097493 D gene Proteins 0.000 description 5
- 230000033616 DNA repair Effects 0.000 description 5
- 102100025169 Max-binding protein MNT Human genes 0.000 description 5
- 206010028980 Neoplasm Diseases 0.000 description 5
- 102000001183 RAG-1 Human genes 0.000 description 5
- 108010073062 Transcription Activator-Like Effectors Proteins 0.000 description 5
- 108700019146 Transgenes Proteins 0.000 description 5
- 210000004556 brain Anatomy 0.000 description 5
- 238000013461 design Methods 0.000 description 5
- 230000014725 late viral mRNA transcription Effects 0.000 description 5
- 150000002632 lipids Chemical class 0.000 description 5
- 230000004807 localization Effects 0.000 description 5
- 210000000653 nervous system Anatomy 0.000 description 5
- 210000004940 nucleus Anatomy 0.000 description 5
- 230000008520 organization Effects 0.000 description 5
- 238000012216 screening Methods 0.000 description 5
- 108091006107 transcriptional repressors Proteins 0.000 description 5
- YMHOBZXQZVXHBM-UHFFFAOYSA-N 2,5-dimethoxy-4-bromophenethylamine Chemical compound COC1=CC(CCN)=C(OC)C=C1Br YMHOBZXQZVXHBM-UHFFFAOYSA-N 0.000 description 4
- 241000283690 Bos taurus Species 0.000 description 4
- 101100257359 Caenorhabditis elegans sox-2 gene Proteins 0.000 description 4
- 241000283707 Capra Species 0.000 description 4
- 108091005944 Cerulean Proteins 0.000 description 4
- 241000282994 Cervidae Species 0.000 description 4
- 241000579895 Chlorostilbon Species 0.000 description 4
- 108091005943 CyPet Proteins 0.000 description 4
- 241000588724 Escherichia coli Species 0.000 description 4
- 241000282326 Felis catus Species 0.000 description 4
- 102100037042 Forkhead box protein E1 Human genes 0.000 description 4
- 241000287828 Gallus gallus Species 0.000 description 4
- 102100039990 Hairy/enhancer-of-split related with YRPW motif protein 2 Human genes 0.000 description 4
- 101001029304 Homo sapiens Forkhead box protein E1 Proteins 0.000 description 4
- 101001035089 Homo sapiens Hairy/enhancer-of-split related with YRPW motif protein 2 Proteins 0.000 description 4
- 108010091358 Hypoxanthine Phosphoribosyltransferase Proteins 0.000 description 4
- 102000018251 Hypoxanthine Phosphoribosyltransferase Human genes 0.000 description 4
- 102000015696 Interleukins Human genes 0.000 description 4
- 108010063738 Interleukins Proteins 0.000 description 4
- 241000713666 Lentivirus Species 0.000 description 4
- 108060001084 Luciferase Proteins 0.000 description 4
- 239000005089 Luciferase Substances 0.000 description 4
- 241000282560 Macaca mulatta Species 0.000 description 4
- 101100257363 Mus musculus Sox2 gene Proteins 0.000 description 4
- 241000282341 Mustela putorius furo Species 0.000 description 4
- 241000283973 Oryctolagus cuniculus Species 0.000 description 4
- 101150049281 PRM1 gene Proteins 0.000 description 4
- 241001494479 Pecora Species 0.000 description 4
- 241000288906 Primates Species 0.000 description 4
- 101710168705 Protamine-1 Proteins 0.000 description 4
- 102000014450 RNA Polymerase III Human genes 0.000 description 4
- 108010078067 RNA Polymerase III Proteins 0.000 description 4
- 102100040435 Sperm protamine P1 Human genes 0.000 description 4
- 210000001744 T-lymphocyte Anatomy 0.000 description 4
- 241000545067 Venus Species 0.000 description 4
- 201000011510 cancer Diseases 0.000 description 4
- 210000000748 cardiovascular system Anatomy 0.000 description 4
- 210000002249 digestive system Anatomy 0.000 description 4
- 229910052876 emerald Inorganic materials 0.000 description 4
- 239000010976 emerald Substances 0.000 description 4
- 210000000750 endocrine system Anatomy 0.000 description 4
- 101150003286 gata4 gene Proteins 0.000 description 4
- 238000010363 gene targeting Methods 0.000 description 4
- 210000005260 human cell Anatomy 0.000 description 4
- 210000002865 immune cell Anatomy 0.000 description 4
- 239000010410 layer Substances 0.000 description 4
- 239000003446 ligand Substances 0.000 description 4
- 230000000670 limiting effect Effects 0.000 description 4
- 210000004072 lung Anatomy 0.000 description 4
- 210000004324 lymphatic system Anatomy 0.000 description 4
- 210000003794 male germ cell Anatomy 0.000 description 4
- 241001515942 marmosets Species 0.000 description 4
- 108020004999 messenger RNA Proteins 0.000 description 4
- 230000003387 muscular Effects 0.000 description 4
- 108010054624 red fluorescent protein Proteins 0.000 description 4
- 210000004994 reproductive system Anatomy 0.000 description 4
- 210000002345 respiratory system Anatomy 0.000 description 4
- 229910052594 sapphire Inorganic materials 0.000 description 4
- 239000010980 sapphire Substances 0.000 description 4
- 210000004989 spleen cell Anatomy 0.000 description 4
- 150000003431 steroids Chemical group 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 210000001541 thymus gland Anatomy 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- 241000701161 unidentified adenovirus Species 0.000 description 4
- 241001430294 unidentified retrovirus Species 0.000 description 4
- 230000002485 urinary effect Effects 0.000 description 4
- 108091005957 yellow fluorescent proteins Proteins 0.000 description 4
- OPIFSICVWOWJMJ-AEOCFKNESA-N 5-bromo-4-chloro-3-indolyl beta-D-galactoside Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1OC1=CNC2=CC=C(Br)C(Cl)=C12 OPIFSICVWOWJMJ-AEOCFKNESA-N 0.000 description 3
- 102100036475 Alanine aminotransferase 1 Human genes 0.000 description 3
- 101100004864 Arabidopsis thaliana ZFN1 gene Proteins 0.000 description 3
- 101100272917 Arabidopsis thaliana ZFN2 gene Proteins 0.000 description 3
- 201000001320 Atherosclerosis Diseases 0.000 description 3
- 108010045123 Blasticidin-S deaminase Proteins 0.000 description 3
- 208000019838 Blood disease Diseases 0.000 description 3
- 208000024172 Cardiovascular disease Diseases 0.000 description 3
- 102000053602 DNA Human genes 0.000 description 3
- 101001091269 Escherichia coli Hygromycin-B 4-O-kinase Proteins 0.000 description 3
- 108700028146 Genetic Enhancer Elements Proteins 0.000 description 3
- 101001008255 Homo sapiens Immunoglobulin kappa variable 1D-8 Proteins 0.000 description 3
- 101001047628 Homo sapiens Immunoglobulin kappa variable 2-29 Proteins 0.000 description 3
- 101001008321 Homo sapiens Immunoglobulin kappa variable 2D-26 Proteins 0.000 description 3
- 101001047619 Homo sapiens Immunoglobulin kappa variable 3-20 Proteins 0.000 description 3
- 101001008263 Homo sapiens Immunoglobulin kappa variable 3D-15 Proteins 0.000 description 3
- 101000634835 Homo sapiens M1-specific T cell receptor alpha chain Proteins 0.000 description 3
- 101000634836 Homo sapiens T cell receptor alpha chain MC.7.G5 Proteins 0.000 description 3
- 102100022964 Immunoglobulin kappa variable 3-20 Human genes 0.000 description 3
- 102100030703 Interleukin-22 Human genes 0.000 description 3
- 108091092195 Intron Proteins 0.000 description 3
- 108010025815 Kanamycin Kinase Proteins 0.000 description 3
- 102100029450 M1-specific T cell receptor alpha chain Human genes 0.000 description 3
- 102000018697 Membrane Proteins Human genes 0.000 description 3
- 108010052285 Membrane Proteins Proteins 0.000 description 3
- 208000029578 Muscle disease Diseases 0.000 description 3
- 208000012902 Nervous system disease Diseases 0.000 description 3
- 208000025966 Neurological disease Diseases 0.000 description 3
- 238000003559 RNA-seq method Methods 0.000 description 3
- 241000700584 Simplexvirus Species 0.000 description 3
- 241001481798 Stochomys longicaudatus Species 0.000 description 3
- 101001091268 Streptomyces hygroscopicus Hygromycin-B 7''-O-kinase Proteins 0.000 description 3
- 102000006601 Thymidine Kinase Human genes 0.000 description 3
- 108020004440 Thymidine kinase Proteins 0.000 description 3
- 108091023045 Untranslated Region Proteins 0.000 description 3
- 108010027570 Xanthine phosphoribosyltransferase Proteins 0.000 description 3
- 230000000692 anti-sense effect Effects 0.000 description 3
- 238000013459 approach Methods 0.000 description 3
- 210000004369 blood Anatomy 0.000 description 3
- 239000008280 blood Substances 0.000 description 3
- 230000002759 chromosomal effect Effects 0.000 description 3
- 239000002299 complementary DNA Substances 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 230000004069 differentiation Effects 0.000 description 3
- 210000002257 embryonic structure Anatomy 0.000 description 3
- 239000013613 expression plasmid Substances 0.000 description 3
- 238000010362 genome editing Methods 0.000 description 3
- 239000005090 green fluorescent protein Substances 0.000 description 3
- 208000014951 hematologic disease Diseases 0.000 description 3
- 208000018706 hematopoietic system disease Diseases 0.000 description 3
- 210000000688 human artificial chromosome Anatomy 0.000 description 3
- 210000003297 immature b lymphocyte Anatomy 0.000 description 3
- 208000026278 immune system disease Diseases 0.000 description 3
- 208000017169 kidney disease Diseases 0.000 description 3
- 210000004698 lymphocyte Anatomy 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 210000003519 mature b lymphocyte Anatomy 0.000 description 3
- 239000000178 monomer Substances 0.000 description 3
- 108010045647 puromycin N-acetyltransferase Proteins 0.000 description 3
- 230000022532 regulation of transcription, DNA-dependent Effects 0.000 description 3
- 108091008146 restriction endonucleases Proteins 0.000 description 3
- 230000011664 signaling Effects 0.000 description 3
- 238000012453 sprague-dawley rat model Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000013518 transcription Methods 0.000 description 3
- 230000035897 transcription Effects 0.000 description 3
- 229940075420 xanthine Drugs 0.000 description 3
- 101150008704 AJAP1 gene Proteins 0.000 description 2
- 101150038770 ARHGEF9 gene Proteins 0.000 description 2
- 208000024827 Alzheimer disease Diseases 0.000 description 2
- 102100026189 Beta-galactosidase Human genes 0.000 description 2
- 108010083123 CDX2 Transcription Factor Proteins 0.000 description 2
- 102000006277 CDX2 Transcription Factor Human genes 0.000 description 2
- 101150055874 CLDN5 gene Proteins 0.000 description 2
- 238000010453 CRISPR/Cas method Methods 0.000 description 2
- 101100518995 Caenorhabditis elegans pax-3 gene Proteins 0.000 description 2
- 102000004646 Calcium-Calmodulin-Dependent Protein Kinase Type 4 Human genes 0.000 description 2
- 102100022789 Calcium/calmodulin-dependent protein kinase type IV Human genes 0.000 description 2
- 101150093868 Camk4 gene Proteins 0.000 description 2
- 102000014914 Carrier Proteins Human genes 0.000 description 2
- 102100038446 Claudin-5 Human genes 0.000 description 2
- 108090000582 Claudin-5 Proteins 0.000 description 2
- 230000004544 DNA amplification Effects 0.000 description 2
- 102100032881 DNA-binding protein SATB1 Human genes 0.000 description 2
- 101150069723 Efna1 gene Proteins 0.000 description 2
- 102100021616 Ephrin type-A receptor 4 Human genes 0.000 description 2
- 102000020086 Ephrin-A1 Human genes 0.000 description 2
- 108010043945 Ephrin-A1 Proteins 0.000 description 2
- YQYJSBFKSSDGFO-UHFFFAOYSA-N Epihygromycin Natural products OC1C(O)C(C(=O)C)OC1OC(C(=C1)O)=CC=C1C=C(C)C(=O)NC1C(O)C(O)C2OCOC2C1O YQYJSBFKSSDGFO-UHFFFAOYSA-N 0.000 description 2
- 101150058491 FANK1 gene Proteins 0.000 description 2
- 102100027634 Fibronectin type 3 and ankyrin repeat domains protein 1 Human genes 0.000 description 2
- 102100039417 Gap junction beta-5 protein Human genes 0.000 description 2
- 101150115526 Gjb5 gene Proteins 0.000 description 2
- 208000009329 Graft vs Host Disease Diseases 0.000 description 2
- 102100031671 Homeobox protein CDX-2 Human genes 0.000 description 2
- 101000974816 Homo sapiens Calcium/calmodulin-dependent protein kinase type IV Proteins 0.000 description 2
- 101000655234 Homo sapiens DNA-binding protein SATB1 Proteins 0.000 description 2
- 101000898647 Homo sapiens Ephrin type-A receptor 4 Proteins 0.000 description 2
- 101000937169 Homo sapiens Fibronectin type 3 and ankyrin repeat domains protein 1 Proteins 0.000 description 2
- 101000889145 Homo sapiens Gap junction beta-5 protein Proteins 0.000 description 2
- 101000777812 Homo sapiens Homeobox protein CDX-2 Proteins 0.000 description 2
- 101000599613 Homo sapiens Interferon lambda receptor 1 Proteins 0.000 description 2
- 101000927773 Homo sapiens Rho guanine nucleotide exchange factor 9 Proteins 0.000 description 2
- 101000740180 Homo sapiens Sal-like protein 3 Proteins 0.000 description 2
- 101001087412 Homo sapiens Tyrosine-protein phosphatase non-receptor type 18 Proteins 0.000 description 2
- 208000031226 Hyperlipidaemia Diseases 0.000 description 2
- 101150002416 Igf2 gene Proteins 0.000 description 2
- 102000009786 Immunoglobulin Constant Regions Human genes 0.000 description 2
- 108010009817 Immunoglobulin Constant Regions Proteins 0.000 description 2
- 102000017727 Immunoglobulin Variable Region Human genes 0.000 description 2
- 108010067060 Immunoglobulin Variable Region Proteins 0.000 description 2
- 102100020781 Insulin-like growth factor-binding protein-like 1 Human genes 0.000 description 2
- 101710203697 Insulin-like growth factor-binding protein-like 1 Proteins 0.000 description 2
- 102100037971 Interferon lambda receptor 1 Human genes 0.000 description 2
- 108090000172 Interleukin-15 Proteins 0.000 description 2
- 102000003812 Interleukin-15 Human genes 0.000 description 2
- 108010032774 Interleukin-2 Receptor alpha Subunit Proteins 0.000 description 2
- 102000007351 Interleukin-2 Receptor alpha Subunit Human genes 0.000 description 2
- 108010060632 Interleukin-2 Receptor beta Subunit Proteins 0.000 description 2
- 102000008193 Interleukin-2 Receptor beta Subunit Human genes 0.000 description 2
- 108010002586 Interleukin-7 Proteins 0.000 description 2
- 102100021592 Interleukin-7 Human genes 0.000 description 2
- 108010002335 Interleukin-9 Proteins 0.000 description 2
- 102000000585 Interleukin-9 Human genes 0.000 description 2
- 101150008942 J gene Proteins 0.000 description 2
- 101150040658 LHX2 gene Proteins 0.000 description 2
- 108050009437 Left-Right Determination Factor Proteins 0.000 description 2
- 102100040508 Left-right determination factor 1 Human genes 0.000 description 2
- 101150071228 Lifr gene Proteins 0.000 description 2
- 102100022699 Lymphoid enhancer-binding factor 1 Human genes 0.000 description 2
- 108090001093 Lymphoid enhancer-binding factor 1 Proteins 0.000 description 2
- 102100040387 Lysophosphatidic acid receptor 2 Human genes 0.000 description 2
- 101710145714 Lysophosphatidic acid receptor 2 Proteins 0.000 description 2
- 108010000684 Matrix Metalloproteinases Proteins 0.000 description 2
- 102000002274 Matrix Metalloproteinases Human genes 0.000 description 2
- 101100396737 Mus musculus Il36b gene Proteins 0.000 description 2
- 101100518997 Mus musculus Pax3 gene Proteins 0.000 description 2
- 102100031789 Myeloid-derived growth factor Human genes 0.000 description 2
- 102100021877 Neuronal pentraxin receptor Human genes 0.000 description 2
- 102000007999 Nuclear Proteins Human genes 0.000 description 2
- 108010089610 Nuclear Proteins Proteins 0.000 description 2
- 102100033221 Rho guanine nucleotide exchange factor 9 Human genes 0.000 description 2
- 235000011449 Rosa Nutrition 0.000 description 2
- 102100037191 Sal-like protein 3 Human genes 0.000 description 2
- 208000012827 T-B+ severe combined immunodeficiency due to gamma chain deficiency Diseases 0.000 description 2
- 108010043645 Transcription Activator-Like Effector Nucleases Proteins 0.000 description 2
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 2
- 102100033018 Tyrosine-protein phosphatase non-receptor type 18 Human genes 0.000 description 2
- 101150117115 V gene Proteins 0.000 description 2
- 208000036142 Viral infection Diseases 0.000 description 2
- 241000700605 Viruses Species 0.000 description 2
- 208000023940 X-Linked Combined Immunodeficiency disease Diseases 0.000 description 2
- 201000007146 X-linked severe combined immunodeficiency Diseases 0.000 description 2
- 238000010171 animal model Methods 0.000 description 2
- 108010005774 beta-Galactosidase Proteins 0.000 description 2
- 108091008324 binding proteins Proteins 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000012258 culturing Methods 0.000 description 2
- 102000003675 cytokine receptors Human genes 0.000 description 2
- 108010057085 cytokine receptors Proteins 0.000 description 2
- 230000001086 cytosolic effect Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 108010050663 endodeoxyribonuclease CreI Proteins 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000007159 enucleation Effects 0.000 description 2
- 238000010195 expression analysis Methods 0.000 description 2
- 239000007850 fluorescent dye Substances 0.000 description 2
- 230000002068 genetic effect Effects 0.000 description 2
- 238000010353 genetic engineering Methods 0.000 description 2
- 238000003205 genotyping method Methods 0.000 description 2
- 208000024908 graft versus host disease Diseases 0.000 description 2
- 239000001963 growth medium Substances 0.000 description 2
- 238000009396 hybridization Methods 0.000 description 2
- 238000003119 immunoblot Methods 0.000 description 2
- 238000007901 in situ hybridization Methods 0.000 description 2
- 108010074108 interleukin-21 Proteins 0.000 description 2
- 238000005304 joining Methods 0.000 description 2
- 101150115794 lhx5 gene Proteins 0.000 description 2
- 230000013011 mating Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 108091079010 miR-632 stem-loop Proteins 0.000 description 2
- 108010001839 neuronal pentraxin receptor Proteins 0.000 description 2
- 230000007170 pathology Effects 0.000 description 2
- 230000007505 plaque formation Effects 0.000 description 2
- 210000001778 pluripotent stem cell Anatomy 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- RXWNCPJZOCPEPQ-NVWDDTSBSA-N puromycin Chemical compound C1=CC(OC)=CC=C1C[C@H](N)C(=O)N[C@H]1[C@@H](O)[C@H](N2C3=NC=NC(=C3N=C2)N(C)C)O[C@@H]1CO RXWNCPJZOCPEPQ-NVWDDTSBSA-N 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- 230000003584 silencer Effects 0.000 description 2
- 210000000130 stem cell Anatomy 0.000 description 2
- 238000003151 transfection method Methods 0.000 description 2
- 230000032258 transport Effects 0.000 description 2
- 102000003390 tumor necrosis factor Human genes 0.000 description 2
- 230000009385 viral infection Effects 0.000 description 2
- 210000005253 yeast cell Anatomy 0.000 description 2
- FWBHETKCLVMNFS-UHFFFAOYSA-N 4',6-Diamino-2-phenylindol Chemical compound C1=CC(C(=N)N)=CC=C1C1=CC2=CC=C(C(N)=N)C=C2N1 FWBHETKCLVMNFS-UHFFFAOYSA-N 0.000 description 1
- 108010072151 Agouti Signaling Protein Proteins 0.000 description 1
- 102000006822 Agouti Signaling Protein Human genes 0.000 description 1
- 241001136782 Alca Species 0.000 description 1
- 102000007698 Alcohol dehydrogenase Human genes 0.000 description 1
- 108010021809 Alcohol dehydrogenase Proteins 0.000 description 1
- 102000013455 Amyloid beta-Peptides Human genes 0.000 description 1
- 108010090849 Amyloid beta-Peptides Proteins 0.000 description 1
- 101150061877 Asic1 gene Proteins 0.000 description 1
- 208000023275 Autoimmune disease Diseases 0.000 description 1
- 108091008875 B cell receptors Proteins 0.000 description 1
- 101150061927 BMP2 gene Proteins 0.000 description 1
- 108010012236 Chemokines Proteins 0.000 description 1
- 102000019034 Chemokines Human genes 0.000 description 1
- 208000035473 Communicable disease Diseases 0.000 description 1
- 241000484025 Cuniculus Species 0.000 description 1
- 230000007018 DNA scission Effects 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- 238000002965 ELISA Methods 0.000 description 1
- 101000889905 Enterobacteria phage RB3 Intron-associated endonuclease 3 Proteins 0.000 description 1
- 101000889904 Enterobacteria phage T4 Defective intron-associated endonuclease 3 Proteins 0.000 description 1
- 101000889900 Enterobacteria phage T4 Intron-associated endonuclease 1 Proteins 0.000 description 1
- 101000889899 Enterobacteria phage T4 Intron-associated endonuclease 2 Proteins 0.000 description 1
- 102100038595 Estrogen receptor Human genes 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 241000206602 Eukaryota Species 0.000 description 1
- 108050001049 Extracellular proteins Proteins 0.000 description 1
- 229940123611 Genome editing Drugs 0.000 description 1
- 241000447437 Gerreidae Species 0.000 description 1
- MAJYPBAJPNUFPV-BQBZGAKWSA-N His-Cys Chemical compound SC[C@@H](C(O)=O)NC(=O)[C@@H](N)CC1=CN=CN1 MAJYPBAJPNUFPV-BQBZGAKWSA-N 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 101000771674 Homo sapiens Apolipoprotein E Proteins 0.000 description 1
- 101000854886 Homo sapiens Immunoglobulin iota chain Proteins 0.000 description 1
- 101001002470 Homo sapiens Interferon lambda-1 Proteins 0.000 description 1
- 101001057504 Homo sapiens Interferon-stimulated gene 20 kDa protein Proteins 0.000 description 1
- 101001002657 Homo sapiens Interleukin-2 Proteins 0.000 description 1
- 101001055144 Homo sapiens Interleukin-2 receptor subunit alpha Proteins 0.000 description 1
- 101000853002 Homo sapiens Interleukin-25 Proteins 0.000 description 1
- 101000853000 Homo sapiens Interleukin-26 Proteins 0.000 description 1
- 101000998139 Homo sapiens Interleukin-32 Proteins 0.000 description 1
- 101001043594 Homo sapiens Low-density lipoprotein receptor-related protein 5 Proteins 0.000 description 1
- 101001128431 Homo sapiens Myeloid-derived growth factor Proteins 0.000 description 1
- 101001123448 Homo sapiens Prolactin receptor Proteins 0.000 description 1
- 101000669447 Homo sapiens Toll-like receptor 4 Proteins 0.000 description 1
- 101000764872 Homo sapiens Transient receptor potential cation channel subfamily A member 1 Proteins 0.000 description 1
- 102000003839 Human Proteins Human genes 0.000 description 1
- 108090000144 Human Proteins Proteins 0.000 description 1
- 206010020772 Hypertension Diseases 0.000 description 1
- 206010061598 Immunodeficiency Diseases 0.000 description 1
- 208000029462 Immunodeficiency disease Diseases 0.000 description 1
- 108700005091 Immunoglobulin Genes Proteins 0.000 description 1
- 102100020744 Immunoglobulin iota chain Human genes 0.000 description 1
- 102100027268 Interferon-stimulated gene 20 kDa protein Human genes 0.000 description 1
- 102000018682 Interleukin Receptor Common gamma Subunit Human genes 0.000 description 1
- 108010066719 Interleukin Receptor Common gamma Subunit Proteins 0.000 description 1
- 102000000589 Interleukin-1 Human genes 0.000 description 1
- 108010002352 Interleukin-1 Proteins 0.000 description 1
- 102000003814 Interleukin-10 Human genes 0.000 description 1
- 108090000174 Interleukin-10 Proteins 0.000 description 1
- 108090000177 Interleukin-11 Proteins 0.000 description 1
- 102000003815 Interleukin-11 Human genes 0.000 description 1
- 108010065805 Interleukin-12 Proteins 0.000 description 1
- 102000013462 Interleukin-12 Human genes 0.000 description 1
- 102000003816 Interleukin-13 Human genes 0.000 description 1
- 108090000176 Interleukin-13 Proteins 0.000 description 1
- 102000049772 Interleukin-16 Human genes 0.000 description 1
- 101800003050 Interleukin-16 Proteins 0.000 description 1
- 102000013691 Interleukin-17 Human genes 0.000 description 1
- 108050003558 Interleukin-17 Proteins 0.000 description 1
- 102000003810 Interleukin-18 Human genes 0.000 description 1
- 108090000171 Interleukin-18 Proteins 0.000 description 1
- 102100039879 Interleukin-19 Human genes 0.000 description 1
- 108050009288 Interleukin-19 Proteins 0.000 description 1
- 102000013264 Interleukin-23 Human genes 0.000 description 1
- 108010065637 Interleukin-23 Proteins 0.000 description 1
- 102100036679 Interleukin-26 Human genes 0.000 description 1
- 108010066979 Interleukin-27 Proteins 0.000 description 1
- 108010002386 Interleukin-3 Proteins 0.000 description 1
- 102000000646 Interleukin-3 Human genes 0.000 description 1
- 101710181613 Interleukin-31 Proteins 0.000 description 1
- 108010067003 Interleukin-33 Proteins 0.000 description 1
- 101710181549 Interleukin-34 Proteins 0.000 description 1
- 108091007973 Interleukin-36 Proteins 0.000 description 1
- 102000004388 Interleukin-4 Human genes 0.000 description 1
- 108090000978 Interleukin-4 Proteins 0.000 description 1
- 108010002616 Interleukin-5 Proteins 0.000 description 1
- 102000000743 Interleukin-5 Human genes 0.000 description 1
- 102000004889 Interleukin-6 Human genes 0.000 description 1
- 108090001005 Interleukin-6 Proteins 0.000 description 1
- 108090001007 Interleukin-8 Proteins 0.000 description 1
- 102000004890 Interleukin-8 Human genes 0.000 description 1
- 101150088608 Kdr gene Proteins 0.000 description 1
- 241000143973 Libytheinae Species 0.000 description 1
- 102000004895 Lipoproteins Human genes 0.000 description 1
- 108090001030 Lipoproteins Proteins 0.000 description 1
- 102100021926 Low-density lipoprotein receptor-related protein 5 Human genes 0.000 description 1
- 108010063312 Metalloproteins Proteins 0.000 description 1
- 102000010750 Metalloproteins Human genes 0.000 description 1
- 241000711408 Murine respirovirus Species 0.000 description 1
- 101100060131 Mus musculus Cdk5rap2 gene Proteins 0.000 description 1
- 101100355655 Mus musculus Eras gene Proteins 0.000 description 1
- 101000942966 Mus musculus Leukemia inhibitory factor Proteins 0.000 description 1
- 241000699670 Mus sp. Species 0.000 description 1
- 108091092724 Noncoding DNA Proteins 0.000 description 1
- 108020005497 Nuclear hormone receptor Proteins 0.000 description 1
- 208000008589 Obesity Diseases 0.000 description 1
- 108091034117 Oligonucleotide Proteins 0.000 description 1
- 108091081548 Palindromic sequence Proteins 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 229920002873 Polyethylenimine Polymers 0.000 description 1
- 102100029000 Prolactin receptor Human genes 0.000 description 1
- 101710150336 Protein Rex Proteins 0.000 description 1
- 241000700157 Rattus norvegicus Species 0.000 description 1
- 101001023863 Rattus norvegicus Glucocorticoid receptor Proteins 0.000 description 1
- 102100029981 Receptor tyrosine-protein kinase erbB-4 Human genes 0.000 description 1
- 101710100963 Receptor tyrosine-protein kinase erbB-4 Proteins 0.000 description 1
- 108020004511 Recombinant DNA Proteins 0.000 description 1
- 108091028664 Ribonucleotide Proteins 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- 238000002105 Southern blotting Methods 0.000 description 1
- 108010018324 Surrogate Immunoglobulin Light Chains Proteins 0.000 description 1
- 102000002663 Surrogate Immunoglobulin Light Chains Human genes 0.000 description 1
- 108700042075 T-Cell Receptor Genes Proteins 0.000 description 1
- 208000035199 Tetraploidy Diseases 0.000 description 1
- 241000327799 Thallomys paedulcus Species 0.000 description 1
- 102100039360 Toll-like receptor 4 Human genes 0.000 description 1
- 102100026186 Transient receptor potential cation channel subfamily A member 1 Human genes 0.000 description 1
- 108010064978 Type II Site-Specific Deoxyribonucleases Proteins 0.000 description 1
- 108010067022 Type III Site-Specific Deoxyribonucleases Proteins 0.000 description 1
- 102000016549 Vascular Endothelial Growth Factor Receptor-2 Human genes 0.000 description 1
- 210000001766 X chromosome Anatomy 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 125000003158 alcohol group Chemical group 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 235000001014 amino acid Nutrition 0.000 description 1
- 229940024606 amino acid Drugs 0.000 description 1
- 125000000539 amino acid group Chemical group 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- PYMYPHUHKUWMLA-WDCZJNDASA-N arabinose Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)C=O PYMYPHUHKUWMLA-WDCZJNDASA-N 0.000 description 1
- PYMYPHUHKUWMLA-UHFFFAOYSA-N arabinose Natural products OCC(O)C(O)C(O)C=O PYMYPHUHKUWMLA-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- SRBFZHDQGSBBOR-UHFFFAOYSA-N beta-D-Pyranose-Lyxose Natural products OC1COC(O)C(O)C1O SRBFZHDQGSBBOR-UHFFFAOYSA-N 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 101150067309 bmp4 gene Proteins 0.000 description 1
- 210000002449 bone cell Anatomy 0.000 description 1
- 210000004899 c-terminal region Anatomy 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 229920006317 cationic polymer Polymers 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 235000012000 cholesterol Nutrition 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 108091036078 conserved sequence Proteins 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 239000000412 dendrimer Substances 0.000 description 1
- 229920000736 dendritic polymer Polymers 0.000 description 1
- 239000005547 deoxyribonucleotide Substances 0.000 description 1
- 125000002637 deoxyribonucleotide group Chemical group 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 206010012601 diabetes mellitus Diseases 0.000 description 1
- KAKKHKRHCKCAGH-UHFFFAOYSA-L disodium;(4-nitrophenyl) phosphate;hexahydrate Chemical compound O.O.O.O.O.O.[Na+].[Na+].[O-][N+](=O)C1=CC=C(OP([O-])([O-])=O)C=C1 KAKKHKRHCKCAGH-UHFFFAOYSA-L 0.000 description 1
- 108010057988 ecdysone receptor Proteins 0.000 description 1
- 230000002526 effect on cardiovascular system Effects 0.000 description 1
- 239000012636 effector Substances 0.000 description 1
- 210000002889 endothelial cell Anatomy 0.000 description 1
- 230000008753 endothelial function Effects 0.000 description 1
- 108010038795 estrogen receptors Proteins 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 210000002064 heart cell Anatomy 0.000 description 1
- 102000053020 human ApoE Human genes 0.000 description 1
- 102000055277 human IL2 Human genes 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 238000003018 immunoassay Methods 0.000 description 1
- 230000007813 immunodeficiency Effects 0.000 description 1
- 238000010166 immunofluorescence Methods 0.000 description 1
- 238000003364 immunohistochemistry Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000001976 improved effect Effects 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 102000004114 interleukin 20 Human genes 0.000 description 1
- 108090000681 interleukin 20 Proteins 0.000 description 1
- 102000002467 interleukin receptors Human genes 0.000 description 1
- 108010093036 interleukin receptors Proteins 0.000 description 1
- 108010074109 interleukin-22 Proteins 0.000 description 1
- 102000003898 interleukin-24 Human genes 0.000 description 1
- 108090000237 interleukin-24 Proteins 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 230000031146 intracellular signal transduction Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 210000003292 kidney cell Anatomy 0.000 description 1
- 229940043355 kinase inhibitor Drugs 0.000 description 1
- 208000032839 leukemia Diseases 0.000 description 1
- 239000002502 liposome Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 230000031864 metaphase Effects 0.000 description 1
- 108091070501 miRNA Proteins 0.000 description 1
- 239000002679 microRNA Substances 0.000 description 1
- 238000000520 microinjection Methods 0.000 description 1
- 210000000663 muscle cell Anatomy 0.000 description 1
- 238000002703 mutagenesis Methods 0.000 description 1
- 231100000350 mutagenesis Toxicity 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 210000004498 neuroglial cell Anatomy 0.000 description 1
- 230000000926 neurological effect Effects 0.000 description 1
- 210000002569 neuron Anatomy 0.000 description 1
- 102000006255 nuclear receptors Human genes 0.000 description 1
- 108020004017 nuclear receptors Proteins 0.000 description 1
- 235000020824 obesity Nutrition 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 210000001672 ovary Anatomy 0.000 description 1
- 210000003101 oviduct Anatomy 0.000 description 1
- 230000003076 paracrine Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 210000005259 peripheral blood Anatomy 0.000 description 1
- 239000011886 peripheral blood Substances 0.000 description 1
- 210000003819 peripheral blood mononuclear cell Anatomy 0.000 description 1
- 230000026731 phosphorylation Effects 0.000 description 1
- 238000006366 phosphorylation reaction Methods 0.000 description 1
- 239000003757 phosphotransferase inhibitor Substances 0.000 description 1
- 239000013600 plasmid vector Substances 0.000 description 1
- 230000008488 polyadenylation Effects 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 102000054765 polymorphisms of proteins Human genes 0.000 description 1
- 230000035935 pregnancy Effects 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 230000007026 protein scission Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 229950010131 puromycin Drugs 0.000 description 1
- 230000008707 rearrangement Effects 0.000 description 1
- 108091008598 receptor tyrosine kinases Proteins 0.000 description 1
- 102000027426 receptor tyrosine kinases Human genes 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000003757 reverse transcription PCR Methods 0.000 description 1
- 239000002336 ribonucleotide Substances 0.000 description 1
- 125000002652 ribonucleotide group Chemical group 0.000 description 1
- 230000003248 secreting effect Effects 0.000 description 1
- 238000002864 sequence alignment Methods 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 210000004894 snout Anatomy 0.000 description 1
- 238000003153 stable transfection Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000010809 targeting technique Methods 0.000 description 1
- 101150024821 tetO gene Proteins 0.000 description 1
- 229940124597 therapeutic agent Drugs 0.000 description 1
- 210000003014 totipotent stem cell Anatomy 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 230000005026 transcription initiation Effects 0.000 description 1
- 230000005030 transcription termination Effects 0.000 description 1
- 230000009261 transgenic effect Effects 0.000 description 1
- 238000003146 transient transfection Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 230000014621 translational initiation Effects 0.000 description 1
- 102000027257 transmembrane receptors Human genes 0.000 description 1
- 108091008578 transmembrane receptors Proteins 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- 210000004291 uterus Anatomy 0.000 description 1
- 229960005486 vaccine Drugs 0.000 description 1
- 230000003612 virological effect Effects 0.000 description 1
- 230000001018 virulence Effects 0.000 description 1
- 210000004340 zona pellucida Anatomy 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/85—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
- C12N15/8509—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells for producing genetically modified animals, e.g. transgenic
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K67/00—Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
- A01K67/027—New or modified breeds of vertebrates
- A01K67/0275—Genetically modified vertebrates, e.g. transgenic
- A01K67/0276—Knock-out vertebrates
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K67/00—Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
- A01K67/027—New or modified breeds of vertebrates
- A01K67/0275—Genetically modified vertebrates, e.g. transgenic
- A01K67/0278—Knock-in vertebrates, e.g. humanised vertebrates
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61D—VETERINARY INSTRUMENTS, IMPLEMENTS, TOOLS, OR METHODS
- A61D19/00—Instruments or methods for reproduction or fertilisation
- A61D19/04—Instruments or methods for reproduction or fertilisation for embryo transplantation
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/705—Receptors; Cell surface antigens; Cell surface determinants
- C07K14/715—Receptors; Cell surface antigens; Cell surface determinants for cytokines; for lymphokines; for interferons
- C07K14/7155—Receptors; Cell surface antigens; Cell surface determinants for cytokines; for lymphokines; for interferons for interleukins [IL]
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/775—Apolipopeptides
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/87—Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
- C12N15/90—Stable introduction of foreign DNA into chromosome
- C12N15/902—Stable introduction of foreign DNA into chromosome using homologous recombination
- C12N15/907—Stable introduction of foreign DNA into chromosome using homologous recombination in mammalian cells
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K2217/00—Genetically modified animals
- A01K2217/07—Animals genetically altered by homologous recombination
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K2227/00—Animals characterised by species
- A01K2227/10—Mammal
- A01K2227/105—Murine
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K2267/00—Animals characterised by purpose
- A01K2267/03—Animal model, e.g. for test or diseases
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K2267/00—Animals characterised by purpose
- A01K2267/03—Animal model, e.g. for test or diseases
- A01K2267/035—Animal model for multifactorial diseases
- A01K2267/0362—Animal model for lipid/glucose metabolism, e.g. obesity, type-2 diabetes
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K2267/00—Animals characterised by purpose
- A01K2267/03—Animal model, e.g. for test or diseases
- A01K2267/035—Animal model for multifactorial diseases
- A01K2267/0381—Animal model for diseases of the hematopoietic system
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/85—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
- C12N15/8509—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells for producing genetically modified animals, e.g. transgenic
- C12N2015/8527—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells for producing genetically modified animals, e.g. transgenic for producing animal models, e.g. for tests or diseases
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2800/00—Nucleic acids vectors
- C12N2800/30—Vector systems comprising sequences for excision in presence of a recombinase, e.g. loxP or FRT
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2810/00—Vectors comprising a targeting moiety
Definitions
- sequence listing is submitted electronically via EFS-Web as an ASCII formatted sequence listing with a file named 444253SEQLIST.TXT, created on Apr. 16, 2014, and having a size of 15 kilobytes, and is filed concurrently with the specification.
- sequence listing contained in this ASCII formatted document is part of the specification and is herein incorporated by reference in its entirety.
- Isolated non-human totipotent or pluripotent stem cells in particular rat embryonic stem cells, that are capable of sustaining pluripotency following one or more serial genetic modifications in vitro, and that are capable of transmitting the targeted genetic modifications to subsequent generations through germline.
- LTVEC large targeting vector
- Compositions and methods for producing a genetically modified rat comprising one or more targeted genetic modifications.
- rats have been regarded as an important animal model system that can recapitulate the pathology of various human diseases, including, but not limited to, cardiovascular (e.g., hypertension), metabolic (e.g., obesity, diabetes), neurological (e.g., pain pathologies), and a variety of cancers
- cardiovascular e.g., hypertension
- metabolic e.g., obesity, diabetes
- neurological e.g., pain pathologies
- the use of rats in modeling human diseases has been limited as compared to mice, due in part to unavailability of germline-transmittable pluripotent rat cells, which can sustain their pluripotency following a series of genetic modifications in vitro, e.g., one or more serial electroporations, and due in part to lack of efficient targeting technologies that allow introduction or deletion of large genomic DNA sequences, or replacement of large endogenous genomic DNA sequences with exogenous nucleic acid sequences in pluripotent rat cells.
- compositions and methods that allow precise targeted changes in the genome of a rat, which can open or expand current areas of target discovery and validate therapeutic agents more quickly and easily.
- Such a method comprises (a) introducing into the pluripotent cell a large targeting vector (LTVEC) comprising an insert nucleic acid flanked with a 5′ homology arm and a 3′ homology arm; and (b) identifying a genetically modified pluripotent cell comprising the targeted genetic modification at the genomic locus of interest, wherein the targeted genetic modification is capable of being transmitted through the germline.
- LTVEC large targeting vector
- the pluripotent cell is derived from a non-human animal, including, but not limited to, a rodent, a human, a rat, a mouse, a hamster, a rabbit, a pig, a bovine, a deer, a sheep, a goat, a chicken, a cat, a dog, a ferret, a primate (e.g., marmoset, rhesus monkey), a domesticated mammal or an agricultural mammal, or any other organism of interest.
- a non-human animal including, but not limited to, a rodent, a human, a rat, a mouse, a hamster, a rabbit, a pig, a bovine, a deer, a sheep, a goat, a chicken, a cat, a dog, a ferret, a primate (e.g., marmoset, rhesus monkey), a domesticated mammal or an agricultural mam
- the pluripotent cell is a non-human pluripotent cell.
- the non-human pluripotent cell is a mammalian pluripotent cell.
- the mammalian pluripotent cell is a rodent pluripotent cell.
- the rodent pluripotent cell is a rat or mouse pluripotent cell.
- the pluripotent cell is a human induced pluripotent stem (iPS) cell.
- iPS human induced pluripotent stem
- the pluripotent cell is a non-human fertilized egg at the single cell stage.
- the non-human fertilized egg is a mammalian fertilized egg.
- the mammalian fertilized egg is a rodent fertilized egg at the single cell stage.
- the mammalian fertilized egg is a rat or mouse fertilized egg at the single cell stage.
- the sum total of the 5′ and the 3′ homology arms of the LTVEC is at least 10 kb. In some embodiments, the sum total of the 5′ and the 3′ homology arms of the LTVEC is at least 10 kb but less than 100 kb or the sum total of the 5′ and the 3′ homology arms of the LTVEC is at least 10 kb but less than 150 kb.
- the size of the sum total of the total of the 5′ and 3′ homology arms of the LTVEC is about 10 kb to about 150 kb, about 10 kb to about 100 kb, about 10 kb to about 75 kb, about 20 kb to about 150 kb, about 20 kb to about 100 kb, about 20 kb to about 75 kb, about 30 kb to about 150 kb, about 30 kb to about 100 kb, about 30 kb to about 75 kb, about 40 kb to about 150 kb, about 40 kb to about 100 kb, about 40 kb to about 75 kb, about 50 kb to about 150 kb, about 50 kb to about 100 kb, or about 50 kb to about 75 kb, about 10 kb to about 30 kb, about 20 kb to about 40 kb, about 40 kb to about 60 kb, about 60 kb to about 80
- the targeted genetic modification is biallelic.
- the pluripotent cell is a pluripotent rat cell. In one embodiment, the pluripotent rat cell is a rat embryonic stem cell. In one embodiment, the pluripotent rat cell is derived from a DA strain or an ACI strain. In some embodiments, the pluripotent rat cell is characterized by expression of at least one pluripotency marker comprising Dnmt3L, Eras, Err-beta, Fbxo15, Fgf4, Gdf3, Klf4, Lef1, LIF receptor, Lin28, Nanog, Oct4, Sox15, Sox2, Utf1, or a combination thereof.
- the pluripotent rat cell is characterized by expression of at least one pluripotency marker comprising Dnmt3L, Eras, Err-beta, Fbxo15, Fgf4, Gdf3, Klf4, Lef1, LIF receptor, Lin28, Nanog, Oct4, Sox15, Sox2, Utf1, or a
- the pluripotent rat cell is characterized by one of more of the following characteristics: (a) lack of expression of one or more pluripotency markers comprising c-Myc, Ecat1, and/or Rexo1; (b) lack of expression of mesodermal markers comprising Brachyury and/or Bmpr2; (c) lack of expression of one or more endodermal markers comprising Gata6, Sox17 and/or Sox7; or (d) lack of expression of one or more neural markers comprising Nestin and/or Pax6.
- the sum total of the 5′ and the 3′ homology arms of the LTVEC is from about 10 kb to about 30 kb, from about 20 kb to about 40 kb, from about 40 kb to about 60 kb, from about 60 kb to about 80 kb, or from about 80 kb to about 100 kb, from about 100 kb to about 120 kb, from about 120 kb to about 150 kb, or from about 10 kb but less than about 150 kb.
- the sum total of the 5′ and the 3′ homology arms of the LTVEC is from about 16 Kb to about 100 Kb.
- the size of the sum total of the total of the 5′ and 3′ homology arms of the LTVEC is about 10 kb to about 150 kb, about 10 kb to about 100 kb, about 10 kb to about 75 kb, about 20 kb to about 150 kb, about 20 kb to about 100 kb, about 20 kb to about 75 kb, about 30 kb to about 150 kb, about 30 kb to about 100 kb, about 30 kb to about 75 kb, about 40 kb to about 150 kb, about 40 kb to about 100 kb, about 40 kb to about 75 kb, about 50 kb to about 150 kb, about 50 kb to about 100 kb, about 50 kb to about 75 kb, about 10 kb to about 30 kb, about 20 kb to about 40 kb, about 40 kb to about 60 kb, about 60 kb to about 80
- targeted genetic modification comprises a replacement of an endogenous rat nucleic acid sequence with a homologous or an orthologous mammalian nucleic acid sequence;
- (b) comprises a deletion of an endogenous rat nucleic acid sequence;
- (c) comprises a deletion of an endogenous rat nucleic acid sequence, wherein the deletion ranges from about 5 kb to about 10 kb, from about 10 kb to about 20 kb, from about 20 kb to about 40 kb, from about 40 kb to about 60 kb, from about 60 kb to about 80 kb, from about 80 kb to about 100 kb, from about 100 kb to about 150 kb, or from about 150 kb to about 200 kb, from about 200 kb to about 300 kb, from about 300 kb to about 400 kb, from about 400 kb to about 500 kb, from about 500 kb to about 1 Mb, from about 1 Mb
- genomic locus of interest comprises (i) a first nucleic acid sequence that is complementary to the 5′ rat homology arm; and (ii) a second nucleic acid sequence that is complementary to the 3′ rat homology arm.
- the first and the second nucleic acid sequence is separated by at least 5 kb. In some embodiments, the first and the second nucleic acid sequence is separated by at least 5 kb but less than 3 Mb.
- the first and the second nucleic acid sequence is separated by at least 5 kb but less than 10 kb, at least 10 kb but less than 20 kb, at least 20 kb but less than 40 kb, at least 40 kb but less than 60 kb, at least 60 kb but less than 80 kb, at least about 80 kb but less than 100 kb, at least 100 kb but less than 150 kb, or at least 150 kb but less than 200 kb, at least about 200 kb but less than about 300 kb, at least about 300 kb but less than about 400 kb, at least about 400 kb but less than about 500 kb, at least about 500 kb but less than about 1 Mb, at least about 1 Mb but less than about 1.5 Mb, at least about 1.5 Mb but less than about 2 Mb, at least about 2 Mb but less than about 2.5 Mb, at least about 2.5 Mb but less than about 3 Mb, at least about 1
- the introducing step further comprises introducing a second nucleic acid encoding a nuclease agent that promotes a homologous recombination between the targeting construct and the genomic locus of interest in the pluripotent rat cell.
- the nuclease agent comprises (a) a chimeric protein comprising a zinc finger-based DNA binding domain fused to a FokI endonuclease; or, (b) a chimeric protein comprising a Transcription Activator-Like Effector Nuclease (TALEN) fused to a FokI endonuclease.
- TALEN Transcription Activator-Like Effector Nuclease
- the introducing step further comprises introducing into the pluripotent rat cell: (i) a first expression construct comprising a first promoter operably linked to a first nucleic acid sequence encoding a Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-associated (Cas) protein, (ii) a second expression construct comprising a second promoter operably linked to a second nucleic acid sequence encoding a genomic target sequence operably linked to a guide RNA (gRNA), wherein the genomic target sequence is immediately flanked on the 3′ end by a Protospacer Adjacent Motif (PAM) sequence.
- the genomic locus of interest comprises the nucleotide sequence of SEQ ID NO: 1.
- the gRNA comprises a third nucleic acid sequence encoding a Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) RNA (crRNA) and a trans-activating CRISPR RNA (tracrRNA).
- the genome of the pluripotent rat cell comprises a target DNA region complementary to the genomic target sequence.
- the Cas protein is Cas9.
- the gRNA comprises (a) the chimeric RNA of the nucleic acid sequence of SEQ ID NO: 2; or, (b) the chimeric RNA of the nucleic acid sequence of SEQ ID NO: 3.
- the crRNA comprises the sequence set forth in SEQ ID NO: 4, SEQ ID NO: 5, or SEQ ID NO: 6.
- the tracrRNA comprises the sequence set forth in SEQ ID NO: 7 or SEQ ID NO: 8.
- a rat genomic locus comprising (i) an insertion of a homologous or orthologous human nucleic acid sequence; (ii) a replacement of an endogenous rat nucleic acid sequence with the homologous or orthologous human nucleic acid sequence; or (iii) a combination thereof, wherein the rat genomic locus is capable of being transmitted through the germline.
- the size of the insertion or replacement is from about 5 kb to about 400 kb.
- the size of the insertion or replacement is from about 5 kb to about 10 kb, from about 10 kb to about 20 kb, from about 20 kb to about 40 kb, from about 40 kb to about 60 kb, from about 60 kb to about 80 kb, from about 80 kb to about 100 kb, from about 100 kb to about 150 kb, from about 150 kb to about 200 kb, from about 200 kb to about 250 kb, from about 250 kb to about 300 kb, from about 300 kb to about 350 kb, from about 350 kb to about 400 kb, from about 400 kb to about 800 kb, from about 800 kb to 1 Mb, from about 1 Mb to about 1.5 Mb, from about 1.5 Mb to about 2 Mb, from about 2 Mb, to about 2.5 Mb, from about 2.5 Mb to about 2.8 Mb, from about 2.8 Mb to about 3 Mb
- a method for making a humanized rat comprising: (a) targeting a genomic locus of interest in a pluripotent rat cell with a targeting construct comprising a human insert nucleic acid to form a genetically modified pluripotent rat cell; (b) introducing the genetically modified pluripotent rat cell into a host rat embryo; and (c) gestating the host rat embryo in a surrogate mother; wherein the surrogate mother produces rat progeny comprising, a modified genomic locus that comprises: (i) an insertion of a human nucleic acid sequence; (ii) a replacement of the rat nucleic acid sequence at the genomic locus of interest with a homologous or orthologous human nucleic acid sequence; (iii) a chimeric nucleic acid sequence comprising a human and a rat nucleic acid sequence; or (iv) a combination thereof, wherein the modified genomic locus is capable of being transmitted through the germline.
- the targeting construct is a large targeting vector (LTVEC), and the sum total of the 5′ and the 3′ homology arms of the LTVEC is at least 10 kb but less than 100 kb or the sum total of the 5′ and the 3′ homology arms of the LTVEC is at least 10 kb but less than 150 kb.
- LTVEC large targeting vector
- the sum total of the 5′ and the 3′ homology arms of the targeting construct is from about 10 kb to about 30 kb, from about 20 kb to 40 kb, from about 40 kb to about 60 kb, from about 60 kb to about 80 kb, from about 80 kb to about 100 kb, from about 100 kb to about 120 kb, or from about 120 kb to about 150 kb.
- the human nucleic acid sequence is at least 5 kb but less than 400 kb.
- the human nucleic acid sequence is at least 5 kb but less than 10 kb, at least 10 kb but less than 20 kb, at least 20 kb but less than 40 kb, at least 40 kb but less than 60 kb, at least 60 kb but less than 80 kb, at least about 80 kb but less than 100 kb, at least 100 kb but less than 150 kb, at least 150 kb but less than 200 kb, at least 200 kb but less than 250 kb, at least 250 kb but less than 300 kb, at least 300 kb but less than 350 kb, or at least 350 kb but less than 400 kb.
- the size of the sum total of the total of the 5′ and 3′ homology arms of the LTVEC is about 10 kb to about 150 kb, about 10 kb to about 100 kb, about 10 kb to about 75 kb, about 20 kb to about 150 kb, about 20 kb to about 100 kb, about 20 kb to about 75 kb, about 30 kb to about 150 kb, about 30 kb to about 100 kb, about 30 kb to about 75 kb, about 40 kb to about 150 kb, about 40 kb to about 100 kb, about 40 kb to about 75 kb, about 50 kb to about 150 kb, about 50 kb to about 100 kb, about 50 kb to about 75 kb, about 10 kb to about 30 kb, about 20 kb to about 40 kb, about 40 kb to about 60 kb, about 60 kb to about 80
- the pluripotent rat cell is a rat embryonic stem (ES) cell.
- the pluripotent rat cell is derived from a DA strain or an ACI strain.
- the pluripotent rat cell is characterized by expression of at least one pluripotency marker comprises Dnmt3L, Eras, Err-beta, Fbxo15, Fgf4, Gdf3, Klf4, Lef1, LIF receptor, Lin28, Nanog, Oct4, Sox15, Sox2, Utf1, and/or a combination thereof.
- the pluripotent rat cell is characterized by one or more of the following features: (a) lack of expression of one or more pluripotency markers comprising c-Myc, Ecat1, and/or Rexo1; (b) lack of expression of one or more mesodermal markers comprising Brachyury and/or Bmpr2; (c) lack of expression of one or more endodermal markers comprising Gata6, Sox17, and/or Sox7; or (d) lack of expression of one or more neural markers comprising Nestin and/or Pax6.
- a genetically modified rat comprising a humanized genomic locus
- the genetically modified rat comprises: (i) an insertion of a homologous or orthologous human nucleic acid sequence; (ii) a replacement of a rat nucleic acid sequence with a homologous or orthologous human nucleic acid sequence at an endogenous genomic locus with a homologous or orthologous human nucleic acid sequence; (iii) a chimeric nucleic acid sequence comprising a human and a rat nucleic acid sequence; or, (iv) a combination thereof, wherein the humanized genomic locus is capable of being transmitted through the germline.
- the humanized genomic locus comprises a chimeric nucleic acid sequence comprising a human and a rat nucleic acid sequence.
- Methods for modifying a target genomic locus of a rat via bacterial homologous recombination comprise: introducing into a prokaryotic cell a large targeting vector (LTVEC) comprising an insert nucleic acid flanked with a 5′ rat homology arm and a 3′ rat homology arm, wherein the prokaryotic cell comprises a rat nucleic acid and is capable of expressing a recombinase that mediates the BHR at the target locus, and wherein the sum total of the 5′ and 3′ homology arms of the LTVEC is at least 10 kb but less than 100 kb or the sum total of the 5′ and the 3′ homology arms of the LTVEC is at least 10 kb but less than 150 kb.
- LTVEC large targeting vector
- the size of the sum total of the total of the 5′ and 3′ homology arms of the LTVEC is about 10 kb to about 150 kb, about 10 kb to about 100 kb, about 10 kb to about 75 kb, about 20 kb to about 150 kb, about 20 kb to about 100 kb, about 20 kb to about 75 kb, about 30 kb to about 150 kb, about 30 kb to about 100 kb, about 30 kb to about 75 kb, about 40 kb to about 150 kb, about 40 kb to about 100 kb, about 40 kb to about 75 kb, about 50 kb to about 150 kb, about 50 kb to about 100 kb, or about 50 kb to about 75 kb, about 10 kb to about 30 kb, about 20 kb to about 40 kb, about 40 kb to about 60 kb, about 60 kb to about 80
- the target locus of the rat nucleic acid comprises a first nucleic acid sequence that is complementary to the 5′ homology arm and a second nucleic acid sequence that is complementary to the 3′ homology arm.
- the first and the second nucleic acid sequence is separated by at least 5 kb but less than 10 kb, at least 10 kb but less than 20 kb, at least 20 kb but less than 40 kb, at least 40 kb but less than 60 kb, at least 60 kb but less than 80 kb, at least about 80 kb but less than 100 kb, at least 100 kb but less than 150 kb, or at least 150 kb but less than 200 kb, at least about 200 kb but less than about 300 kb, at least about 300 kb but less than about 400 kb, at least about 400 kb but less than about 500 kb, at least about 500 kb but less than about 1 Mb, at least about 1
- introducing the targeting vector into the prokaryotic cell leads to: (i) a deletion of an endogenous rat nucleic acid sequence from the target genomic locus; (ii) an addition of an exogenous nucleic acid sequence at the target genomic locus; (iii) a replacement of the endogenous rat nucleic acid sequence with the exogenous nucleic acid sequence at the target locus; or (iv) a combination thereof.
- the insert nucleic acid comprises (a) a polynucleotide that is homologous or orthologous to the rat nucleic acid sequence at the target genomic locus; or (b) a conditional allele flanked with site-specific recombination recognition sequences.
- a host prokaryotic cell comprising a targeting vector comprising an insert nucleic acid flanked with a 5′ rat homology arm and a 3′ rat homology arm, wherein the insert nucleic acid ranges from about 5 k to about 400 kb.
- the size of the insert nucleic acid is from about 5 kb to about 10 kb, from about 10 kb to about 20 kb, from about 20 kb to about 40 kb, from about 40 kb to about 60 kb, from about 60 kb to about 80 kb, from about 80 kb to about 100 kb, from about 100 kb to about 150 kb, from about 150 kb to about 200 kb, from about 200 kb to about 250 kb, from about 250 kb to about 300 kb, from about 300 kb to about 350 kb, or from 350 kb to about 400 kb.
- the prokaryotic cell comprises a recombinase gene operably linked to a constitutively active promoter or an inducible promoter.
- Methods are also provided for modifying a genomic locus of interest in a cell via targeted genetic modification comprising introducing into the cell
- a large targeting vector comprising an insert nucleic acid flanked with a 5′ homology arm and a 3′ homology arm, wherein the sum total of the 5′ and 3′ homology arms of the LTVEC is at least 10 kb;
- a first expression construct comprising a first promoter operably linked to a first nucleic acid sequence encoding a Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-associated (Cas) protein
- a second expression construct comprising a second promoter operably linked to a second nucleic acid sequence encoding a genomic target sequence operably linked to a guide RNA (gRNA); and identifying a genetically modified pluripotent cell comprising the targeted genetic modification at the genomic locus of interest.
- CRISPR Clustered Regularly Interspaced Short Palindromic Repeats
- the genomic locus of interest comprises the nucleotide sequence set forth in SEQ ID NO: 1, wherein the gRNA comprises a third nucleic acid sequence encoding a Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) RNA (crRNA) and a trans-activating CRISPR RNA (tracrRNA), and wherein the genome of the cell comprises a target DNA region complementary to the genomic target sequence.
- CRISPR Clustered Regularly Interspaced Short Palindromic Repeats
- crRNA Clustered Regularly Interspaced Short Palindromic Repeats
- tracrRNA trans-activating CRISPR RNA
- the genome of the cell comprises a target DNA region complementary to the genomic target sequence.
- the Cas protein is Cas9.
- the cell can be a pluripotent cell (such as an embryonic stem cell) or a prokaryotic cell.
- the pluripotent cell is from non-human animal, a non-human mammal, a rodent, a human, a rat, a mouse, a hamster a rabbit, a pig, a bovine, a deer, a sheep, a goat, a chicken, a cat, a dog, a ferret, a primate (e.g., marmoset, rhesus monkey), domesticated mammal or an agricultural mammal or any other organism of interest.
- the prokaryotic cell is from bacteria, such as, E. coli.
- the size of the sum total of the total of the 5′ and 3′ homology arms of the LTVEC is about 10 kb to about 150 kb, about 10 kb to about 100 kb, about 10 kb to about 75 kb, about 20 kb to about 150 kb, about 20 kb to about 100 kb, about 20 kb to about 75 kb, about 30 kb to about 150 kb, about 30 kb to about 100 kb, about 30 kb to about 75 kb, about 40 kb to about 150 kb, about 40 kb to about 100 kb, about 40 kb to about 75 kb, about 50 kb to about 150 kb, about 50 kb to about 100 kb, or about 50 kb to about 75 kb, about 10 kb to about 30 kb, about 20 kb to about 40 kb, about 40 kb to about 60 kb, about 60 kb to about 80
- the pluripotent cell is a non-human pluripotent cell.
- the non-human pluripotent cell is a mammalian pluripotent cell.
- the mammalian pluripotent cell is a rodent pluripotent cell.
- the rodent pluripotent cell is a rat or mouse pluripotent cell.
- the pluripotent cell is a human induced pluripotent stem (iPS) cell.
- iPS human induced pluripotent stem
- the pluripotent cell is a non-human fertilized egg at the single cell stage.
- the non-human fertilized egg is a mammalian fertilized egg.
- the mammalian fertilized egg is a rodent fertilized egg at the single cell stage.
- the mammalian fertilized egg is a rat or mouse fertilized egg at the single cell stage.
- a rat or rat cell comprising a targeted genetic modification in its genomic locus, wherein the genomic locus is an Interleukin-2 receptor gamma locus, an ApoE locus, a Rag1 locus, a Rag2 locus, or a Rag2/Rag1 locus, wherein the targeted genetic modification comprises: (a) a deletion of an endogenous rat nucleic acid sequence at the genomic locus; (b) an insertion of a homologous nucleic acid, an orthologous nucleic acid, or a chimeric nucleic acid comprising a human and a rat nucleic acid sequence; or (c) a combination thereof.
- the targeted genetic modification is transmissible through the germline of the rat or a rat propagated from the rat cell.
- the deletion of the endogenous rat nucleic acid at the genomic locus is at least about 10 kb, or the insertion of the exogenous nucleic acid sequence at the genomic locus is at least about 5 kb.
- a rat or rat cell wherein (a) the targeted genetic modification at the Interleukin-2 receptor gamma locus results in a decrease in or absence of Interleukin-2 receptor gamma protein activity; (b) the targeted genetic modification at the ApoE locus results in a decrease in or absence of ApoE protein activity; (c) the targeted genetic modification at the Rag1 locus results in a decrease in or absence of Rag1 protein activity; (d) the targeted genetic modification at the Rag2 locus results in a decrease in or absence of Rag2 protein activity; or, (e) the targeted genetic modification at the Rag2/Rag1 locus results in a decrease in or absence of Rag2 protein activity and Rag1 activity.
- the targeted genetic modification of the Interleukin-2 receptor gamma locus comprises: (a) a deletion of the entire rat Interleukin-2 receptor gamma coding region or a portion thereof; (b) a replacement of the entire rat Interleukin-2 receptor gamma coding region or a portion thereof with a human Interleukin-2 receptor gamma coding region or a portion thereof; (c) a replacement of an ecto-domain of the rat Interleukin-2 receptor gamma coding region with the ecto-domain of a human Interleukin-2 receptor gamma; or, (d) at least a 3 kb deletion of the Interleukin-2 receptor gamma locus.
- the targeted genetic modification of the ApoE locus comprises: (a) a deletion of the entire ApoE coding region or a portion thereof; or, (b) at least a 1.8 kb deletion of the ApoE locus comprising the ApoE coding region.
- the targeted genetic modification of the Rag2 locus comprises: (a) a deletion of the entire Rag2 coding region or a portion thereof; or (b) at least a 5.7 kb deletion of the Rag2 locus comprising the Rag2 coding region.
- the targeted genetic modification of the Rag2/Rag1 locus comprises: (a) a deletion of the entire Rag2 coding region or a portion thereof and a deletion of the entire Rag1 coding region or portion thereof; or, (b) a deletion of at least 16 kb of the Rag2/Rag1 locus comprising the Rag2 coding region.
- a rat or rat cell wherein the targeted genetic modification comprises an insertion of an expression cassette comprising a selective marker at the Interleukin-2 receptor gamma locus, the ApoE locus, the Rag1 locus, the Rag2 locus, or the Rag2/Rag1 locus.
- the expression cassette comprises a lacZ gene operably linked to the endogenous promoter at the genomic locus and a human ubiquitin promoter operably linked to a selective marker.
- the targeted genetic modification in the Interleukin-2 receptor gamma locus, the ApoE locus, the Rag1 locus, the Rag2 locus or the Rag2/Rag1 locus comprises the insertion of a self-deleting selection cassette.
- the self-deleting selection cassette comprises a selective marker gene operably linked to a promoter active in the rat cell and a recombinase gene operably linked to a male germ cell-specific promoter, wherein the self-deleting cassette is flanked by recombination recognition sites recognized by the recombinase.
- the male germ cell-specific promoter is a Protamine-1 promoter; the recombinase gene encodes Cre, and the recombination recognition sites are loxP sites.
- the Protamine-1 promoter is a mouse or a rat Protamine-1 promoter.
- a rat or rat cell wherein the insertion of the exogenous nucleic acid sequence at the genomic locus comprises a reporter nucleic acid operably linked to an endogenous Interleukin-2 receptor gamma promoter, an endogenous ApoE promoter, an endogenous Rag1 promoter, or an endogenous Rag2 promoter.
- the reporter nucleic acid encodes a reporter comprising ⁇ -galactosidase, mPlum, mCherry, tdTomato, mStrawberry, J-Red, DsRed, mOrange, mKO, mCitrine, Venus, YPet, enhanced yellow fluorescent protein (EYFP), Emerald, enhanced green fluorescent protein (EGFP), CyPet, cyan fluorescent protein (CFP), Cerulean, T-Sapphire, luciferase, alkaline phosphatase, or a combination thereof.
- a reporter comprising ⁇ -galactosidase, mPlum, mCherry, tdTomato, mStrawberry, J-Red, DsRed, mOrange, mKO, mCitrine, Venus, YPet, enhanced yellow fluorescent protein (EYFP), Emerald, enhanced green fluorescent protein (EGFP), CyPet, cyan fluorescent protein (CFP),
- the rat cell is a pluripotent rat cell or a rat embryonic stem (ES) cell.
- the pluripotent rat cell or the rat embryonic stem (ES) cell (a) is derived from a DA strain or an ACI strain; (b) is characterized by expression of at least one pluripotency marker comprising Dnmt3L, Eras, Err-beta, Fbxo15, Fgf4, Gdf3, Klf4, Lef1, LIF receptor, Lin28, Nanog, Oct4, Sox15, Sox2, Utf1, or a combination thereof; or (c) is characterized by one or more of the following characteristics: (i) lack of expression of one or more pluripotency markers comprising c-Myc, Ecat1, and Rexo1; (ii) lack of expression of mesodermal markers comprising Brachyury and Bmpr2; (iii) lack of expression of one or more end
- a method for modifying a target genomic locus in an Interleukin-2 receptor gamma locus, an ApoE locus, a Rag1 locus, a Rag2 locus or a Rag2/Rag1 locus in a pluripotent rat cell comprising: (a) introducing into the pluripotent rat cell a targeting vector comprising an insert nucleic acid flanked with 5′ and 3′ rat homology arms homologous to the target genomic locus; and (b) identifying a genetically modified pluripotent rat cell comprising a targeted genetic modification at the target genomic locus, wherein the targeted genetic modification is capable of being transmitted through the germline of a rat propagated from the pluripotent rat cell.
- the targeting vector is a large targeting vector (LTVEC), wherein the sum total of the 5′ and the 3′ rat homology arms is at least about 10 kb. In some embodiments, the sum total of the 5′ and the 3′ rat homology arms is at least 10 kb but less than 150 kb. In some embodiments, the sum total of the 5′ and the 3′ rat homology arms is at least about 10 kb but less than about 100 kb.
- LTVEC large targeting vector
- introducing the targeting vector into the pluripotent rat cell leads to: (i) a deletion of an endogenous rat nucleic acid sequence at the target genomic locus; (ii) an insertion of an exogenous nucleic acid sequence at the target genomic locus; or (iii) a combination thereof.
- the deletion of the endogenous rat nucleic acid at the genomic locus is at least about 10 kb; the deletion of an endogenous rat nucleic acid sequence at the genomic locus ranges from about 5 kb to about 10 kb, from about 10 kb to about 20 kb, from about 20 kb to about 40 kb, from about 40 kb to about 60 kb, from about 60 kb to about 80 kb, from about 80 kb to about 100 kb, from about 100 kb to about 150 kb, or from about 150 kb to about 200 kb, from about 200 kb to about 300 kb, from about 300 kb to about 400 kb, from about 400 kb to about 500 kb, from about 500 kb to about 1 Mb, from about 1 Mb to about 1.5 Mb, from about 1.5 Mb to about 2 Mb, from about 2 Mb to about 2.5 Mb, or from about 2.5 Mb to about 3 Mb; the deletion of an end
- the targeted genetic modification at the Interleukin-2 receptor gamma locus results in a decrease in or absence of Interleukin-2 receptor gamma protein activity
- the targeted genetic modification at the ApoE locus results in a decrease in or absence of ApoE protein activity
- the targeted genetic modification at the Rag1 locus results in a decrease in or absence of Rag1 protein activity
- the targeted genetic modification at the Rag2 locus results in a decrease in or absence of Rag2 protein activity
- the targeted genetic modification at the Rag2/Rag1 locus results in a decrease in or absence of Rag2 protein activity and Rag1 protein activity.
- the targeted genetic modification at the Interleukin-2 receptor gamma locus comprises (a) a deletion of the entire rat Interleukin-2 receptor gamma coding region or a portion thereof; (b) a replacement of the entire rat Interleukin-2 receptor gamma coding region or a portion thereof with a human Interleukin-2 receptor gamma coding region or a portion thereof; (c) a replacement of an ecto-domain of the rat Interleukin-2 receptor gamma coding region with the ecto-domain of a human Interleukin-2 receptor gamma; or, (d) at least a 3 kb deletion of the Interleukin-2 receptor gamma locus comprising the Interleukin-2 receptor gamma coding region.
- the targeted genetic modification at the ApoE locus comprises: (a) a deletion of the entire ApoE coding region or a portion thereof; or, (b) at least a 1.8 kb deletion of the ApoE locus comprising the ApoE coding region.
- the targeted genetic modification at the Rag2 locus comprises: (a) a deletion of the entire Rag2 coding region or a portion thereof; or, (b) at least a 5.7 kb deletion of the Rag2 locus comprising the Rag2 coding region.
- the targeted genetic modification of the Rag1/Rag2 locus comprises: (a) a deletion of the entire Rag2 coding region or a portion thereof and a deletion of the entire Rag1 coding region or portion thereof; or, (b) a deletion of at least 16 kb of the Rag2/Rag1 locus comprising the Rag2 and Rag1 coding regions.
- the insert nucleic acid comprises an expression cassette comprising a polynucleotide encoding a selective marker.
- the expression cassette comprises a lacZ gene operably linked to an endogenous promoter at the genomic locus and a human ubiquitin promoter operably linked to a selective marker gene.
- the insert nucleic acid comprises a self-deleting selection cassette.
- the self-deleting selection cassette comprises a selective marker operably linked to a promoter active in the rat pluripotent cell and a polynucleotide encoding a recombinase operably linked to a male germ cell-specific promoter, wherein the self-deleting cassette is flanked by recombination recognition sites recognized by the recombinase.
- the male germ cell-specific promoter is a Protamine-1 promoter; or, the recombinase gene encodes Cre and the recombination recognition sites are loxP sites.
- the Protamine-1 promoter is a mouse or a rat Protamine-1 promoter.
- the insertion of the exogenous nucleic acid sequence at the genomic locus comprises a reporter nucleic acid sequence operably linked to the endogenous Interleukin-2 receptor gamma promoter, the endogenous ApoE promoter, the endogenous Rag1 promoter, or the endogenous Rag2 promoter.
- the reporter nucleic acid sequence encodes a reporter comprising ⁇ -galactosidase, mPlum, mCherry, tdTomato, mStrawberry, J-Red, DsRed, mOrange, mKO, mCitrine, Venus, YPet, enhanced yellow fluorescent protein (EYFP), Emerald, enhanced green fluorescent protein (EGFP), CyPet, cyan fluorescent protein (CFP), Cerulean, T-Sapphire, luciferase, alkaline phosphatase, or a combination thereof.
- a reporter comprising ⁇ -galactosidase, mPlum, mCherry, tdTomato, mStrawberry, J-Red, DsRed, mOrange, mKO, mCitrine, Venus, YPet, enhanced yellow fluorescent protein (EYFP), Emerald, enhanced green fluorescent protein (EGFP), CyPet, cyan fluorescent protein (CFP
- the pluripotent rat cell is a rat embryonic stem (ES) cell.
- the pluripotent rat cell (a) is derived from a DA strain or an ACI strain; (b) is characterized by expression of a pluripotency marker comprising Oct-4, Sox-2, alkaline phosphatase, or a combination thereof; or, (c) is characterized by one or more of the following characteristics: (i) lack of expression of one or more pluripotency markers comprising c-Myc, Ecat1, and Rexo1; (ii) lack of expression of mesodermal markers comprising Brachyury and Bmpr2; (iii) lack of expression of one or more endodermal markers comprising Gata6, Sox17 and Sox7; or (iv) lack of expression of one or more neural markers comprising Nestin and Pax6.
- the method further comprises identifying the targeted genetic modification at the target genomic locus, wherein the identification step employs a quantitative assay for assessing a modification of allele (MOA) at the target genomic locus.
- MOA modification of allele
- the introducing step further comprises introducing a second nucleic acid encoding a nuclease agent that promotes a homologous recombination between the targeting vector and the target genomic locus in the pluripotent rat cell.
- the nuclease agent comprises a chimeric protein comprising a zinc finger-based DNA binding domain fused to a FokI endonuclease.
- the introducing step of the method further comprises introducing into the pluripotent rat cell: a first expression construct comprising a first promoter operably linked to a first nucleic acid sequence encoding a Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-associated (Cas) protein, and a second expression construct comprising a second promoter operably linked to a second nucleic acid sequence encoding a genomic target sequence operably linked to a guide RNA (gRNA), wherein the genomic target sequence is immediately flanked on the 3′ end by a Protospacer Adjacent Motif (PAM) sequence.
- the genomic target sequence comprises the nucleotide sequence set forth in SEQ ID NO: 1.
- the gRNA comprises a third nucleic acid sequence encoding a Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) RNA (crRNA) and a trans-activating CRISPR RNA (tacrRNA).
- CRISPR Clustered Regularly Interspaced Short Palindromic Repeats
- tacrRNA trans-activating CRISPR RNA
- the Cas protein is Cas9.
- the gRNA is the chimeric RNA of the nucleic acid sequence set forth in SEQ ID NO: 2;
- the gRNA is the chimeric RNA of the nucleic acid sequence set forth in SEQ ID NO: 3;
- the crRNA comprises a sequence set forth in SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6; or
- the tracrRNA comprises the sequence set forth in SEQ ID NO: 7 and/or SEQ ID NO: 8.
- FIG. 1 depicts rat ESCs, which grow as compact spherical colonies that routinely detach and float in the dish.
- FIG. 2A through D depict various pluripotency markers expressed by rat ESCs: A depicts Oct-4 (green); B depicts Sox-2 (red); C depicts DAPI (blue); D depicts an overlay of pluripotency markers expressed by rESCs.
- FIG. 3 depicts that the rat ESCs express light levels of alkaline phosphatase (a pluripotency marker) (left), and the karyotype for line DA.2B is 42X,Y (right).
- Karyotyping was done because rat ESCs often become tetraploid; lines were thus pre-screened by counting metaphase chromosome spreads, and lines with mostly normal counts were then formally karyotyped.
- FIG. 4A-B provides a photograph showing the analysis of the chromosome number of the ACI.G1 rat ES cell line.
- FIG. 5A-B provides a photograph showing the analysis of the chromosome number of the DA.2B rat ES cell line.
- FIG. 6A-B provides a photograph showing the analysis of the chromosome number of the DA.C2 rat ES cell line.
- FIG. 7 depicts a closer view of a rat ESC of FIG. 1 .
- FIG. 8 depicts production of chimeras by blastocyst injection and transmission of the rat ESC genome through the germline; chimeras produced by blastocyst injection using parental ACI.G1 rat ESCs; high percentage chimeras usually have albino snouts.
- FIG. 9 depicts F1 agouti pups with albino littermates, sired by ACI/SD chimera labeled with an asterisk (*) in FIG. 8 .
- FIG. 10 provides a schematic of the rat ApoE locus and denotes with grey bars the cutting site for zinc finger nucleases (ZFN1 and ZFN2).
- the genomic regions corresponding to the 5′ and 3′ homology arms (5 kb and 5.4 kb, respectively) are denoted by the dark grey boxes.
- Exon 1 of the ApoE gene is non-coding and is shown as an open box closest to the 5′ homology arm.
- the three introns of the ApoE gene are denoted as lines.
- Exons 2 and 3 comprise coding regions and are shown as stippled grey boxes.
- Exon 4 contains both coding and non-coding sequences as denoted by the stippled grey shading and the open box.
- FIG. 11 provides a summary of the ApoE targeting efficiency when performed in the presence of zinc finger nucleases (ZFN1 or ZFN2)
- FIG. 12 depicts targeting of the rat Rosa 26 locus, which lies between the Setd5 and Thumpd3 genes as in mouse, with the same spacing.
- Panel A shows the structure of the mouse Rosa 26 locus. Mouse Rosa26 transcripts consist of 2 or 3 exons.
- Panel B depicts the structure of the rat Rosa26 locus; the rat locus contains a second exon 1 (Ex1b) in addition to the homologous exon to mouse exon1 (Ex1a); no third exon has been identified in rat.
- Panel C depicts a targeted rat Rosa26 allele; homology arms of 5 kb each were cloned by PCR using genomic DNA from DA rESC; the targeted allele contains a Splicing Acceptor (SA)-lacZ-hUB-neo cassette replacing a 117 bp deletion in the rat Rosa26 intron.
- SA Splicing Acceptor
- FIG. 13A depicts a control brain of a 14-week-old wild type rat, which was stained with X-gal.
- the control brain showed a low level of background staining for LacZ (dorsal view).
- FIG. 13B depicts LacZ expression in the brain of an rRosa26 heterozygous rat (14-week old).
- the lacZ reporter was expressed ubiquitously throughout the brain of the rRosa26 heterozygote.
- FIG. 13C depicts a control heart and thymus (inset) of a 14-week-old wild type rat, which were treated with X-gal.
- the control heart and thymus showed a low level of background staining for LacZ.
- FIG. 13D depicts LacZ expression in the heart and thymus (inset) of a 14-week-old rRosa26 heterozygous rat.
- the lacZ reporter was expressed ubiquitously throughout the heart and thymus of the rROSA26 heterozygote.
- FIG. 13E depicts a control lung of a 14-week-old wild type rat, which was treated with X-gal.
- the control lung showed a low level of background staining for LacZ.
- FIG. 13F depicts LacZ expression in the lung of a 14-week-old rRosa26 heterozygote rat.
- the lacZ reporter was expressed ubiquitously throughout the lung of the rRosa26 heterozygote.
- FIGS. 13G and H depict LacZ expression in E12.5 rat embryos.
- the rRosa26 heterozygous embryo exhibited ubiquitous expression of the LacZ reporter throughout the embryo.
- FIGS. 13I and J depict LacZ expression in E14.5 rat embryos.
- the rRosa26 heterozygous rat embryo exhibited ubiquitous expression of the LacZ reporter throughout the embryo.
- FIG. 14 illustrates a homologous or non-homologous recombination event that occurs inside a rat ES cell following an electroporation of a targeting vector comprising a selection cassette (lacZ-neo cassette).
- FIG. 15 illustrates the mechanism by which genome-editing endonucleases (e.g., ZFNs and TALENs) introduce a double strand break (DSB) in a target genomic sequence and activate non-homologous end joining (NHEJ) in an ES cell.
- genome-editing endonucleases e.g., ZFNs and TALENs
- DSB double strand break
- NHEJ non-homologous end joining
- FIG. 16 illustrates a gene targeting technique that utilizes ZFN/TALENs to improve the efficiency of homologous recombination of a targeting vector.
- DSB represents double strand break.
- FIG. 17 provides a summary of the chimera production and germline transmission of the modified rat ApoE locus.
- the targeted modification was assisted by zinc finger nucleases.
- FIG. 18 provides a schematic of the IL2r- ⁇ targeting event in combination with zinc finger nucleases that target ZFN U and ZFN D. ZFN cut sites are noted in the figure.
- FIG. 19 provides the targeting efficiency when targeting IL2r- ⁇ in combination with the CRISPR/Cas9 system.
- FIG. 20 provides a schematic of the rat ApoE locus and a targeting plasmid.
- the upper schematic shows the genomic structure of the rat ApoE locus and the genomic regions corresponding to the 5′ and 3′ homology arms (5 kb and 5.4 kb respectively; dark grey boxes).
- Exon 1 of the ApoE gene is non-coding and is shown as an open box closest to the 5′ homology arm.
- the three introns of the ApoE gene are denoted as lines.
- Exons 2 and 3 comprise coding regions and are shown as stippled grey boxes.
- Exon 4 contains both coding and non-coding sequences as denoted by the stippled grey shading and the open box.
- the lower panel shows the targeting plasmid.
- the 5′ and 3′ homology arms (5 kb and 5.4 kb, respectively) are denoted by the dark grey boxes.
- the targeting vector comprises a reporter gene (lacZ) and a self-deleting cassette flanked by loxP sites (open arrows).
- the self-deleting cassette comprises a mouse Prm1 promoter operably linked to the Crei gene and a drug selection cassette comprising a human ubiquitin promoter operably linked to a neomycin resistance gene.
- FIG. 21 provides a schematic for targeting the ApoE locus in rat ES cells using zinc-finger nucleases and a targeting vector comprising a reporter gene (LacZ) and a self-deleting cassette comprising a mouse Prm1 promoter operably linked to the Crei gene and a drug selection cassette comprising a human ubiquitin promoter operably linked to a neomycin resistance gene.
- a targeting vector comprising a reporter gene (LacZ) and a self-deleting cassette comprising a mouse Prm1 promoter operably linked to the Crei gene and a drug selection cassette comprising a human ubiquitin promoter operably linked to a neomycin resistance gene.
- FIG. 22 provides a schematic of the rat ApoE locus and a large targeting vector (LTVEC).
- the upper panel shows the genomic organization of the rat ApoE locus and the genomic regions corresponding to the 5′ and 3′ homology arms (45 kb and 23 kb, respectively; the dark grey boxes).
- Exon 1 of ApoE is non-coding and is shown as an open box closet to the 5′ homology arm.
- the three introns of the ApoE gene are denoted as lines and exons 2 and 3 comprise coding regions and are shown as stippled grey boxes.
- Exon 4 contains both coding and non-coding sequences as denoted by the stippled grey shading and the open box.
- the lower panel shows the LTVEC for modifying the rat ApoE locus.
- the 5′ and 3′ homology arms (45 kb and 23 kb, respectively) are denoted by the dark grey boxes.
- the LTVEC comprises a reporter gene (lacZ) and a self-deleting cassette flanked by loxP sites (open arrows), which comprises a mouse Prm1 promoter operably linked to the Crei gene and a drug selection cassette comprising a human ubiquitin promoter operably linked to a neomycin resistance gene.
- FIG. 23 provides a schematic of the rat ApoE locus and denotes with grey bars the cutting sites for zinc finger nucleases (ZFN1 and ZFN2) used together with the large targeting vector (LTVEC) to enhance homologous recombination between the targeting vector and the target cognate chromosomal region.
- FIG. 24 depicts the rat IL2r- ⁇ locus that has been disrupted by a 3.2 kb deletion and the insertion of a reporter gene (eGFP) and a self-deleting cassette comprising a drug selection cassette (hUb-neo) and the Crei gene operably linked to a mouse Prm1 promoter.
- eGFP reporter gene
- hUb-neo drug selection cassette
- FIG. 25 provides a summary of the germ-line transmitting, targetable rat embryonic stem cell lines.
- FIG. 26 provides another depiction of the rat IL2r- ⁇ locus that has been disrupted by a 3.2 kb deletion and the insertion of a reporter gene (eGFP) and a self-deleting cassette comprising the Crei gene operably linked to a mouse Prm1 promoter and a drug selection cassette (hUb-Neo).
- eGFP reporter gene
- hUb-Neo drug selection cassette
- FIG. 27 provides a schematic of the rat Rag2 locus and a large targeting vector (LTVEC) for modifying the rat Rag2 locus.
- the upper panel shows the genomic organization of the rat Rag2 locus and the cognate genomic regions corresponding to the 5′ and 3′ homology arms (48 kb and 15 kb, respectively; dark grey boxes).
- Rag2 comprises single exon denoted by the stippled grey shading.
- the lower panel is the LTVEC.
- the 5′ and 3′ homology arms (48 kb and 15 kb, respectively) are denoted by the dark grey boxes.
- the LTVEC comprises a reporter gene (lacZ) and a self-deleting cassette flanked by loxP sites (open arrows) that contains a rat Prm1 promoter operably linked to the Crei gene and a drug selection cassette containing a human ubiquitin promoter operably linked to a neomycin resistance gene.
- FIG. 28 provides the genomic structure of the rat Rag1/Rag2 locus and the genomic regions deleted by either Rag2 targeting (Rag2 deletion) or Rag2/Rag1 double targeting (Rag2/Rag1 deletion).
- FIG. 29 provides a schematic of the rat Rag2 and Rag1 loci and a large targeting vector (LTVEC) used for modifying the loci.
- the upper panel shows the genomic organization of the Rag1 and Rag2 loci and the cognate genomic regions corresponding to the 5′ and 3′ homology arms (48 kb and 84 kb, respectively; dark grey boxes).
- Rag2 and Rag1 each comprise a single exon denoted by the stippled grey shading.
- the lower panel is the LTVEC.
- the 5′ and 3′ homology arms (48 kb and 84 kb, respectively) are denoted by the dark grey boxes.
- the LTVEC comprises a reporter gene (lacZ) and a self-deleting cassette flanked by loxP sites (open arrows), which comprises a rat Prm1 promoter operably linked to the Crei gene and a drug selection cassette comprising a human ubiquitin promoter operably linked to a neomycin resistance gene.
- FIG. 30 shows that II2rg ⁇ /y PBMC do not express mature lymphocyte markers. GFP-positive lymphocytes were detected in peripheral blood in 2 of the 3 chimeras.
- FIG. 31 provides a schematic of the rat IL-2rg locus and a targeting plasmid for the full humanization of the rat IL-2rg locus.
- the upper panel shows the genomic organization of the rat IL-2rg locus and the cognate genomic regions corresponding to the 5′ and 3′ homology arms (4.4 kb and 5.0 kb, respectively; dark grey boxes).
- the lower panel is the targeting plasmid.
- the 5′ and 3′ homology arms (4.4 kb and 5.0 kb, respectively) are denoted by the dark grey boxes.
- the targeting plasmid comprises the human IL-2rg genomic region, a reporter gene (GFP) and a self-deleting cassette flanked by loxP sites (open arrows) that contains a mouse Prm1 promoter operably linked to the Crei gene and a drug selection cassette containing a human ubiquitin promoter operably linked to a neomycin resistance gene.
- FIG. 32 provides a schematic of the rat IL-2rg locus and a targeting plasmid for the ecto-domain humanization of the rat IL-2rg locus.
- the upper panel shows the genomic organization of the rat IL-2rg locus and the cognate genomic regions corresponding to the 5′ and 3′ homology arms (4.4 kb and 5.0 kb, respectively; dark grey boxes).
- the lower panel is the targeting plasmid.
- the 5′ and 3′ homology arms (4.4 kb and 5.0 kb, respectively) are denoted by the dark grey boxes.
- the targeting plasmid comprises the human ecto-domain of the IL-2Rg genomic region, a reporter gene (GFP) and a self-deleting cassette flanked by loxP sites (open arrows) that contains a mouse Prm1 promoter operably linked to the Crei gene and a drug selection cassette a human ubiquitin promoter operably linked to a neomycin resistance gene.
- FIG. 33 provides a sequence alignment of the human IL-2rg protein (SEQ ID NO: 20; NP — 000197.1); the rat IL-2rg protein (SEQ ID NO: 21; NP — 543165.1); and the chimeric IL-2rg protein (SEQ ID NO: 22) comprising the human ecto-domain of IL-2rg fused to the remainder of the rat IL-2rg protein.
- the junction between the human and rat IL-2rg is noted by the vertical line.
- embryonic stem cell or “ES cell” as used herein includes an embryo-derived totipotent or pluripotent cell that is capable of contributing to any tissue of the developing embryo upon introduction into an embryo.
- pluripotent cell as used herein includes an undifferentiated cell that possesses the ability to develop into more than one differentiated cell types.
- homologous nucleic acid as used herein includes a nucleic acid sequence that is either identical or substantially similar to a known reference sequence.
- the term “homologous nucleic acid” is used to characterize a sequence having amino acid sequence that is at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or even 100% identical to a known reference sequence.
- orthologous nucleic acid includes a nucleic acid sequence from one species that is functionally equivalent to a known reference sequence in another species.
- LTVEC large targeting vector
- LTVEC large targeting vectors for eukaryotic cells that are derived from fragments of cloned genomic DNA larger than those typically used by other approaches intended to perform homologous gene targeting in eukaryotic cells.
- LTVEC include, but are not limited to, bacterial homologous chromosome (BAC) and yeast artificial chromosome (YAC).
- modification of allele includes the modification of the exact DNA sequence of one allele of a gene(s) or chromosomal locus (loci) in a genome.
- modification of allele (MOA) includes, but is not limited to, deletions, substitutions, or insertions of as little as a single nucleotide or deletions of many kilobases spanning a gene(s) or chromosomal locus (loci) of interest, as well as any and all possible modifications between these two extremes.
- recombination site includes a nucleotide sequence that is recognized by a site-specific recombinase and that can serve as a substrate for a recombination event.
- “Serial” genetic modifications include two or more modifications to, e.g., a rat ES cell, conducted independently.
- a first modification is made to a rat ES cell genome employing a suitable first nucleic acid construct.
- the first modification may be achieved by electroporation, or any other method known in the art.
- a second modification is made to the same rat ES cell genome employing a suitable second nucleic acid construct.
- the second modification may be achieved by a second electroporation, or any other method known in the art.
- serial genetic modifications following the first and the second genetic modifications of the same rat ES cell, a third, a fourth, a fifth, a sixth, and so on, serial genetic modifications (one following another) may be achieved using, e.g., serial electroporation or any other suitable method (serially) known in the art.
- site-specific recombinase includes a group of enzymes that can facilitate recombination between “recombination sites” where the two recombination sites are physically separated within a single nucleic acid molecule or on separate nucleic acid molecules.
- site-specific recombinase include, but are not limited to, Cre, Flp, and Dre recombinases.
- germline in reference to a nucleic acid sequence includes a nucleic acid sequence that can be passed to progeny.
- heavy chain or “immunoglobulin heavy chain” includes an immunoglobulin heavy chain sequence, including immunoglobulin heavy chain constant region sequence, from any organism.
- Heavy chain variable domains include three heavy chain CDRs and four FR regions, unless otherwise specified. Fragments of heavy chains include CDRs, CDRs and FRs, and combinations thereof.
- a typical heavy chain has, following the variable domain (from N-terminal to C-terminal), a C H 1 domain, a hinge, a C H 2 domain, and a C H 3 domain.
- a functional fragment of a heavy chain includes a fragment that is capable of specifically recognizing an epitope (e.g., recognizing the epitope with a K D in the micromolar, nanomolar, or picomolar range), that is capable of expressing and secreting from a cell, and that comprises at least one CDR.
- Heavy chain variable domains are encoded by variable region nucleotide sequence, which generally comprises V H , D H , and J H segments derived from a repertoire of V H , D H , and J H segments present in the germline. Sequences, locations and nomenclature for V, D, and J heavy chain segments for various organisms can be found in IMGT database, which is accessible via the internet on the world wide web (www) at the URL “imgt.org.”
- light chain includes an immunoglobulin light chain sequence from any organism, and unless otherwise specified includes human kappa ( ⁇ ) and lambda ( ⁇ ) light chains and a VpreB, as well as surrogate light chains.
- Light chain variable domains typically include three light chain CDRs and four framework (FR) regions, unless otherwise specified.
- FR framework
- a full-length light chain includes, from amino terminus to carboxyl terminus, a variable domain that includes FR1-CDR1-FR2-CDR2-FR3-CDR3-FR4, and a light chain constant region amino acid sequence.
- Light chain variable domains are encoded by the light chain variable region nucleotide sequence, which generally comprises light chain V L and light chain J L gene segments, derived from a repertoire of light chain V and J gene segments present in the germline. Sequences, locations and nomenclature for light chain V and J gene segments for various organisms can be found in IMGT database, which is accessible via the internet on the world wide web (www) at the URL “imgt.org.” Light chains include those, e.g., that do not selectively bind either a first or a second epitope selectively bound by the epitope-binding protein in which they appear. Light chains also include those that bind and recognize, or assist the heavy chain with binding and recognizing, one or more epitopes selectively bound by the epitope-binding protein in which they appear.
- operably linked comprises a relationship wherein the components operably linked function in their intended manner.
- a nucleic acid sequence encoding a protein may be operably linked to regulatory sequences (e.g., promoter, enhancer, silencer sequence, etc.) so as to retain proper transcriptional regulation.
- a nucleic acid sequence of an immunoglobulin variable region (or V(D)J segments) may be operably linked to a nucleic acid sequence of an immunoglobulin constant region so as to allow proper recombination between the sequences into an immunoglobulin heavy or light chain sequence.
- Target Locus Comprising a Rat Nucleic Acid
- genomic locus of interest comprises any segment or region of DNA within the genome that one desires to integrate an insert nucleic acid.
- genomic locus of interest and “target genomic locus of interest” can be used interchangeable.
- the genomic locus of interest can be native to the cell, or alternatively can comprise a heterologous or exogenous segment of DNA that was integrated into the genome of the cell.
- heterologous or exogenous segments of DNA can include transgenes, expression cassettes, polynucleotide encoding selection makers, or heterologous or exogenous regions of genomic DNA.
- locus is a defined herein as a segment of DNA within the genomic DNA. Genetic modifications as described herein can include one or more deletions from a locus of interest, additions to a locus of interest, replacement of a locus of interest, and/or any combination thereof.
- the locus of interest can comprise coding regions or non-coding regulatory regions.
- the genomic locus of interest can further comprise any component of a targeted integration system including, for example, a recognition site, a selection marker, a previously integrated insert nucleic acid, polynucleotides encoding nuclease agents, promoters, etc.
- the genomic locus of interest can be located within a yeast artificial chromosome (YAC), bacterial artificial chromosome (BAC), a human artificial chromosome, or any other engineered genomic region contained in an appropriate host cell.
- the targeted locus can comprise native, heterologous, or exogenous nucleic acid sequence from a prokaryote, a eukaryote, yeast, bacteria, a non-human mammal, a non-human cell, a rodent, a human, a rat, a mouse, a hamster, a rabbit, a pig, a bovine, a deer, a sheep, a goat, a chicken, a cat, a dog, a ferret, a primate (e.g., marmoset, rhesus monkey), domesticated mammal or an agricultural mammal or any other organism of interest or a combination thereof.
- the genomic locus of interest comprises a target locus of a “rat nucleic acid”.
- a region comprises a nucleic acid from a rat that is integrated within the genome of a cell.
- Non-limiting examples of the target locus include a genomic locus that encodes a protein expressed in a B cell, a genomic locus that expresses a polypeptide in an immature B cell, a genomic locus that expresses a polypeptide in a mature B cell, an immunoglobulin (Ig) loci, or a T cell receptor loci, including, for example, a T cell receptor alpha locus.
- a genomic locus that encodes a protein expressed in a B cell a genomic locus that expresses a polypeptide in an immature B cell, a genomic locus that expresses a polypeptide in a mature B cell, an immunoglobulin (Ig) loci, or a T cell receptor loci, including, for example, a T cell receptor alpha locus.
- Ig immunoglobulin
- target genomic locus examples include an FcER1a locus, a TLR4 locus, a PRLR locus, a Notch4 locus, an Accn2 locus, an Adamts5 locus, a TRPA1 locus, FolH1 locus, an LRP5 locus, an IL2 receptor locus, including, for example, an IL2 Receptor gamma (IL2Rg) locus, an ApoE locus, a Rag1 locus, a Rag2 locus, a Rag1/Rag2 locus, and an ERBB4 locus. Any such target locus can be from a rat.
- IL2Rg IL2 Receptor gamma
- the target locus encodes a mammalian immunoglobulin heavy chain variable region amino acid sequence. In one embodiment, the target locus encodes a rat immunoglobulin heavy chain variable region amino acid sequence. In one embodiment, the target locus comprises a genomic DNA sequence comprising an unrearranged rat, mouse, or human immunoglobulin heavy chain variable region nucleic acid sequence operably linked to an immunoglobulin heavy chain constant region nucleic acid sequence. In one embodiment, the immunoglobulin heavy chain constant region nucleic acid sequence is a rat, mouse, or human immunoglobulin heavy chain constant region nucleic acid sequence selected from a CH1, a hinge, a CH2, a CH3, and a combination thereof.
- the heavy chain constant region nucleic acid sequence comprises a CH1-hinge-CH2-CH3.
- the target locus comprises a rearranged rat, mouse, or human immunoglobulin heavy chain variable region nucleic acid sequence operably linked to an immunoglobulin heavy chain constant region nucleic acid sequence.
- the immunoglobulin heavy chain constant region nucleic acid sequence is a rat, mouse, or human immunoglobulin heavy chain constant region nucleic acid sequence selected from a CH1, a hinge, a CH2, a CH3, and a combination thereof.
- the heavy chain constant region nucleic acid sequence comprises a CH1-hinge-CH2-CH3.
- the target locus comprises a genomic DNA sequence that encodes a mammalian immunoglobulin light chain variable region amino acid sequence.
- the genomic DNA sequence comprises an unrearranged mammalian ⁇ and/or ⁇ light chain variable region nucleic acid sequence.
- the genomic DNA sequence comprises a rearranged mammalian ⁇ and/or ⁇ light chain variable region nucleic acid sequence.
- the unrearranged ⁇ or ⁇ light chain variable region nucleic acid sequence is operably linked to a mammalian immunoglobulin light chain constant region nucleic acid sequence selected from a ⁇ light chain constant region nucleic acid sequence and a ⁇ light chain constant region nucleic acid sequence.
- the mammalian immunoglobulin light chain constant region nucleic acid sequence is a rat immunoglobulin light chain constant region nucleic acid sequence.
- the mammalian immunoglobulin light chain constant region nucleic acid sequence is a mouse immunoglobulin light chain constant region nucleic acid sequence.
- the mammalian immunoglobulin light chain constant region nucleic acid sequence is a human immunoglobulin light chain constant region nucleic acid sequence.
- a rat ApoE locus, a rat interleukin-2 receptor gamma (Il-2rg) locus, a rat Rag2 locus, a rat Rag1 locus and/or a rat Rag2/Rag1 locus comprise the respective regions of the rat genome in which each of these genes or gene combinations are located.
- Modifying any one of the rat ApoE locus, the rat interleukin-2 receptor gamma locus, the rat Rag2 locus, the rat Rag1 locus and/or the combined rat Rag2/Rag1 locus can comprise any desired alteration to the given locus. Non-limiting examples of modification to the given rat locus are discussed in further detail herein.
- one or more of the rat ApoE locus, the rat interleukin-2 receptor gamma locus, the Rag2 locus, and/or the Rag2/Rag1 locus is modified such that the activity and/or level of the encoded ApoE protein or the interleukin-2 receptor gamma protein or the Rag1 protein or the Rag2 protein or a combination of the Rag1 and Rag2 proteins are decreased.
- the activity of the ApoE protein, the interleukin-2 receptor gamma protein, the Rag1 protein, or the Rag2 protein, or a combination of the Rag1 and Rag2 proteins is absent.
- a decrease in activity can comprise either (1) a statistically significant decrease in the overall level or activity of a given protein (i.e., ApoE, interleukin-2 receptor gamma, Rag2, Rag2 or a combination of Rag1 and Rag2) including, for example, a decreased level or activity of 0.5%, 1%, 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%, 120% or greater when compared to an appropriate control.
- Methods to assay for a decrease in the concentration and/or the activity of anyone of ApoE, interleukin-2 receptor gamma, Rag1 and Rag2 are known in the art.
- one or more of the rat ApoE locus, the rat interleukin-2 receptor gamma locus, the rat Rag2 locus, the rat Rag1 locus and/or rat Rag2/Rag1 locus comprise a modification such that the activity and/or level of the encoded ApoE polypeptide, the interleukin-2 receptor gamma polypeptide, the Rag2 polypeptide, the Rag1 polypeptide, or both the Rag1 and Rag2 polypeptide is increased.
- “increased” is intended any increase in the level or activity of the gene/polypeptide encoded at the locus of interest.
- an increase in activity can comprise either (1) a statistically significant increase in the overall level or activity of a given protein (i.e., ApoE, interleukin-2 receptor gamma, Rag1, Rag2 or Rag1 and Rag2) including, for example, an increased level or activity of 0.5%, 1%, 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%, 120% or greater when compared to an appropriate control.
- a statistically significant increase in the overall level or activity of a given protein i.e., ApoE, interleukin-2 receptor gamma, Rag1, Rag2 or Rag1 and Rag2
- an increased level or activity of 0.5%, 1%, 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%, 120% or greater when compared to an appropriate control.
- the genetic modification to the rat ApoE locus, the rat interleukin-2 receptor gamma locus, the rat Rag2 locus, the rat Rag1 locus and/or rat Rag2/Rag1 locus can comprise a deletion of an endogenous rat nucleic acid sequence at the genomic locus, an insertion of an exogenous nucleic acid at the genomic locus, or a combination thereof.
- the deletion and/or insertion can occur anywhere within the given locus as discussed elsewhere herein.
- FIG. 1 For embodiments provided herein comprise the modification of one or more of the rat ApoE locus, the rat interleukin-2 receptor gamma locus, the rat Rag2 locus, the rat Rag1 locus and/or the rat Rag2/Rag1 locus through the replacement of a portion of the rat ApoE locus, the interleukin-2 receptor gamma locus, Rag2 locus, Rag1 locus and/or Rag2/Rag1 locus with the corresponding homologous or orthologous portion of an ApoE locus, an interleukin-2 receptor gamma locus, a Rag2 locus, a Rag1 locus and/or a Rag2/Rag1 locus from another organism.
- the modification of one or more of the rat ApoE locus, the rat interleukin-2 receptor gamma locus, Rag2 locus, Rag1 locus, and/or Rag2/Rag1 locus is carried out through the replacement of a portion of the rat ApoE locus, the rat interleukin-2 receptor gamma locus and/or the rat Rag2 locus, and/or the Rag1 locus and/or Rag2/Rag1 locus with an insert polynucleotide sharing across its full length least 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% to a portion of an ApoE locus, an interleukin-2 receptor gamma locus, a Rag2 locus, a Rag1 locus and/or a Rag2/Rag1 locus it is replacing.
- the given insert polynucleotide and/or the corresponding region of the rat locus being deleted can be a coding region, an intron, an exon, an untranslated region, a regulatory region, a promoter, or an enhancer or any combination thereof or any portion thereof.
- the given insert polynucleotide and/or the region of the rat locus being deleted can be of any desired length, including for example, between 10-100 nucleotides in length, 100-500 nucleotides in length, 500-1 kb nucleotide in length, 1 Kb to 1.5 kb nucleotide in length, 1.5 kb to 2 kb nucleotides in length, 2 kb to 2.5 kb nucleotides in length, 2.5 kb to 3 kb nucleotides in length, 3 kb to 5 kb nucleotides in length, 5 kb to 8 kb nucleotides in length, 8 kb to 10 kb nucleotides in length or more.
- the size of the insertion or replacement is from about 5 kb to about 10 kb, from about 10 kb to about 20 kb, from about 20 kb to about 40 kb, from about 40 kb to about 60 kb, from about 60 kb to about 80 kb, from about 80 kb to about 100 kb, from about 100 kb to about 150 kb, from about 150 kb to about 200 kb, from about 200 kb to about 250 kb, from about 250 kb to about 300 kb, from about 300 kb to about 350 kb, from about 350 kb to about 400 kb, from about 400 kb to about 800 kb, from about 800 kb to 1 Mb, from about 300 kb to about 400 kb, from about 400 kb to about 500 kb, from about 500 kb to 1 Mb, from about 1 Mb to about 1.5 Mb, from about 1.5 Mb to about 2 Mb, from about 2 Mb,
- the given insert polynucleotide and/or the region of the rat locus being deleted is at least 100, 200, 300, 400, 500, 600, 700, 800, or 900 nucleotides or at least 1 kb, 2 kb, 3 kb, 4 kb, 5 kb, 6 kb, 7 kb, 8 kb, 9 kb, 10 kb, 11 kb, 12 kb, 13 kb, 14 kb, 15 kb, 16 kb or greater.
- the given insert polynucleotide can be from any organism, including, for example, a rodent, a rat, a mouse, a hamster, a mammal, a non-human mammal, a human, an agricultural animal or a domestic animal.
- rat locus of interest including for example, targeted modifications in the rat ApoE locus, the rat interleukin-2 receptor gamma locus, the rat Rag2 locus, the rat Rag1 locus, and/or the rat Rag2/Rag1 locus.
- genetically modified rats or genetically modified pluripotent rat cells which comprise a deletion, an insertion, a replacement and/or any combination thereof at the interleukin-2 receptor gamma locus, at the ApoE locus, at the rat Rag2 locus, at the rat Rag1 locus, and/or at the rat Rag2/Rag1 locus.
- Such genetic modifications include those that result in an absence, a decrease, an increase or a modulation in activity of the target locus) and are also capable of being transmitted through the germline.
- the genetic modifications result in a knockout of the desired target locus.
- Such rats find use in in a variety of experimental systems as discussed elsewhere herein.
- ApoE knockouts in rats offer an animal model to study endothelial function, including, but not limited to, plaque formation, transcriptional changes (Whole Transcriptome Shotgun Sequencing (RNA-Seq), and ex vivo function. Moreover, the larger size of rats facilitate all these assays and potentially improve the quality of the RNA-Seq data.
- ApoE is an important transport molecule and can transport lipids, such as cholesterol, through the bloodstream. ApoE can also function in the nervous system, for example, to clear ⁇ -amyloid from the brain. Modifications in ApoE have been implicated in various conditions, including, for example, atherosclerosis, hyperlipidemia, and Alzheimer's disease.
- ApoE knockout animals display impaired clearing of lipoproteins from the blood and develop atherosclerosis.
- ApoE knockout animals provide a model to study conditions and/or processes such as, for example, endothelia function, plaque formation, transcriptional changes (RNA-Seq), hyperlipidemia, atherosclerosis and Alzheimer's disease.
- Assays to measure ApoE activity are known in the art. For example, a decrease in ApoE activity can be measured by assaying for a decrease in the ApoE levels in a blood sample obtained from a subject by immunoassays, such as by ELISA or by Immunoblotting techniques. Moreover, the large size of rats facilitates all these assays and improves the quality of the data.
- RAG1 and RAG2 are enzymes that are part of a multi-subunit complex having VDJ recombination activity and play an important role in the rearrangement and recombination of immunoglobulin and T-cell receptor genes in lymphocytes.
- RAG1 and RAG2 induce a double stranded DNA cleavage to facilitate recombination and join of segments of the T cell receptor and B cell receptor (i.e. immunoglobulin) genes.
- Knockout of RAG1 and/or RAG2 causes a loss of B cells and T cells in the animal resulting in severe immunodeficiency.
- RAG1 and/or RAG2 knockout animals find use, for example, in studies of xenografts (i.e. human cell xenografts in rats), cancer, vaccine development, autoimmune disease, infectious disease and graft versus host disease (GVHD).
- xenografts i.e. human cell xenografts in rats
- cancer i.e. human cell xenografts in rats
- GVHD graft versus host disease
- assays to measure RAG1 and/or RAG2 activity include, for example, measuring recombination efficiency or assaying for the presence or absence of B cells and/or T cells in a subject.
- the large size of rats facilitates all these assays and potentially improves the quality of the data.
- the IL-2 receptor is expressed on the surface of certain immune cells and binds to the cytokine interleukin-2 (IL-2).
- the IL-2R is an integral membrane protein comprising at least three separate subunit chains, including, an alpha chain (IL-2Ra, CD25), a beta chain (IL-2Rb, CD122) and a gamma chain (IL2-Rg, CD132).
- the IL-2 receptor gamma (also referred to as IL2r- ⁇ or IL2Rg) chain is a common gamma chain that is shared by various cytokine receptors, including, for example, the receptors for IL-2, IL-4, IL-7, IL-9, IL-15 and IL-21.
- IL-2Rg comprises an ectodomain on the extracellular surface of the cell, which contributes to the binding of the ligand, a transmembrane domain, and an intracellular domain which can interact with various molecules to induce intracellular signal transduction pathways.
- the Il2rg gene is found on the X-chromosome in mammals and certain mutations in the gamma chain gene in humans can cause human X-linked severe combined immunodeficiency (XSCID) characterized by a profound T-cell defect.
- XSCID human X-linked severe combined immunodeficiency
- the gamma chain ecto-domain can be shed off of the transmembrane receptor and released as a soluble gamma chain receptor.
- the soluble gamma chain receptor can be detected in the blood of a subject and can function to regulate cytokine signaling.
- the rat IL-2Rg chain is replaced with the human IL2-Rg chain such that the rat expresses a fully human IL-2Rg chain.
- the resulting humanized IL-2Rg chain expressed in a rat comprises a human ectodomain, with the remainder of the molecule being from the rat.
- the full-length humanization of IL-2Rg is useful because rats having this modified locus will produce human IL-2Rg. This will allow for the detection of human IL-2Rg in rats with antibodies specific to human IL-2Rg.
- the ecto-humanization i.e., replacing the rat ecto-domain of IL-2Rg with the human ecto-domain of IL-2Rg
- the ecto-humanization i.e., replacing the rat ecto-domain of IL-2Rg with the human ecto-domain of IL-2Rg
- the “insert nucleic acid” comprises a segment of DNA that one desires to integrate at the target locus.
- the insert nucleic acid comprises one or more polynucleotides of interest.
- the insert nucleic acid can comprise one or more expression cassettes.
- a given expression cassette can comprise a polynucleotide of interest, a polynucleotide encoding a selection marker and/or a reporter gene along with the various regulatory components that influence expression.
- Non-limiting examples of polynucleotides of interest, selection markers, and reporter genes that can be included within the insert nucleic acid are discussed in detail elsewhere herein.
- the insert nucleic acid can comprise a nucleic acid from rat, which can include a segment of genomic DNA, a cDNA, a regulatory region, or any portion or combination thereof.
- the insert nucleic acid can comprise a nucleic acid from a non-human mammal, a rodent, a human, a rat, a mouse, a hamster a rabbit, a pig, a bovine, a deer, a sheep, a goat, a chicken, a cat, a dog, a ferret, a primate (e.g., marmoset, rhesus monkey), domesticated mammal or an agricultural mammal or any other organism of interest.
- the insert nucleic acid employed in the various methods and compositions can result in the “humanization” of the a target locus comprising a rat nucleic acid.
- the insert nucleic acid comprises a knock-in allele of at least one exon of an endogenous gene. In one embodiment, the insert nucleic acid comprises a knock-in allele of the entire endogenous gene (i.e., “gene-swap knock-in”).
- the insert nucleic acid comprises a regulatory element, including for example, a promoter, an enhancer, or a transcriptional repressor-binding element.
- the insert nucleic acid comprises a conditional allele.
- the conditional allele is a multifunctional allele, as described in US 2011/0104799, which is incorporated by reference in its entirety.
- the conditional allele comprises: (a) an actuating sequence in sense orientation with respect to transcription of a target gene, and a drug selection cassette in sense or antisense orientation; (b) in antisense orientation a nucleotide sequence of interest (NSI) and a conditional by inversion module (COIN, which utilizes an exon-splitting intron and an invertible genetrap-like module; see, for example, US 2011/0104799, which is incorporated by reference in its entirety); and (c) recombinable units that recombine upon exposure to a first recombinase to form a conditional allele that (i) lacks the actuating sequence and the DSC, and (ii) contains the NSI in sense orientation and the COIN in
- the insert nucleic acid ranges from about 5 kb to about 10 kb, from about 10 kb to about 20 kb, from about 20 kb to about 40 kb, from about 40 kb to about 60 kb, from about 60 kb to about 80 kb, from about 80 kb to about 100 kb, from about 100 kb to about 150 kb, from about 150 kb to about 200 kb, from about 200 kb to about 250 kb, from about 250 kb to about 300 kb, from about 300 kb to about 350 kb, or from about 350 kb to about 400 kb.
- the insert nucleic acid comprises a deletion of a rat genomic DNA sequence ranging from about 1 kb to about 200 kb, from about 2 kb to about 20 kb, or from about 0.5 kb to about 3 Mb. In one embodiment, the extent of the deletion of the genomic DNA sequence is greater than a total length of the 5′ homology arm and the 3′ homology arm.
- the extent of the deletion of the genomic DNA sequence ranges from about 5 kb to about 10 kb, from about 10 kb to about 20 kb, from about 20 kb to about 40 kb, from about 40 kb to about 60 kb, from about 60 kb to about 80 kb, from about 80 kb to about 100 kb, from about 100 kb to about 150 kb, from about 150 kb to about 200 kb, from about 20 kb to about 30 kb, from about 30 kb to about 40 kb, from about 40 kb to about 50 kb, from about 50 kb to about 60 kb, from about 60 kb to about 70 kb, from about 70 kb to about 80 kb, from about 80 kb to about 90 kb, from about 90 kb to about 100 kb, from about 100 kb to about 110 kb, from about 110 kb to about 120 kb, from about 120 k
- the insert nucleic acid comprises an insertion or a replacement of a rat nucleic acid sequence with a homologous or orthologous human nucleic acid sequence. In one embodiment, the insert nucleic acid comprises an insertion or replacement of a rat DNA sequence with a homologous or orthologous human nucleic acid sequence at an endogenous rat locus that comprises the corresponding rat DNA sequence.
- the genetic modification is an addition of a nucleic acid sequence.
- the added nucleotide sequence ranges from 5 kb to 200 kb.
- the insert nucleic acid comprises a genetic modification in a coding sequence.
- the genetic modification comprises a deletion mutation of a coding sequence.
- the genetic modification comprises a fusion of two endogenous coding sequences.
- the insert nucleic acid comprises an insertion or a replacement of a rat nucleic acid sequence with a homologous or orthologous human nucleic acid sequence. In one embodiment, the insert nucleic acid comprises an insertion or replacement of a rat DNA sequence with a homologous or orthologous human nucleic acid sequence at an endogenous rat locus that comprises the corresponding rat DNA sequence.
- the genetic modification comprises a deletion of a non-protein-coding sequence, but does not comprise a deletion of a protein-coding sequence. In one embodiment, the deletion of the non-protein-coding sequence comprises a deletion of a regulatory element. In one embodiment, the genetic modification comprises a deletion of a promoter. In one embodiment, the genetic modification comprises an addition of a promoter or a regulatory element. In one embodiment, the genetic modification comprises a replacement of a promoter or a regulatory element.
- the nucleic acid sequence of the targeting vector can comprise a polynucleotide that when integrated into the genome will produce a genetic modification of a region of the rat ApoE locus, wherein the genetic modification at the ApoE locus results in a decrease in ApoE activity, increase in ApoE activity, or a modulation of ApoE activity.
- an ApoE knockout (“null allele) is generated.
- the nucleic acid sequence of the targeting vector can comprise a polynucleotide that when integrated into the genome will produce a genetic modification of a region of the rat interleukin-2 receptor locus, wherein the genetic modification at the interleukin-2 receptor locus results in a decrease in interleukin-2 receptor activity.
- an interleukin-2 receptor knockout (“null allele”) is generated.
- the insert nucleic acid results in the replacement of a portion of the rat ApoE locus, the interleukin-2 receptor gamma locus and/or Rag2 locus, and/or Rag1 locus and/or Rag2/Rag1 locus with the corresponding homologous or orthologous portion of an ApoE locus, an interleukin-2 receptor gamma locus, a Rag2 locus, a Rag1 locus and/or a Rag2/Rag1 locus from another organism.
- the insert nucleic acid comprises a polynucleotide sharing across its full length least 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% to a portion of an ApoE locus, an interleukin-2 receptor gamma locus, a Rag2 locus, a Rag1 locus and/or a Rag2/Rag1 locus it is replacing.
- the given insert polynucleotide and the corresponding region of the rat locus being replaced can be a coding region, an intron, an exon, an untranslated region, a regulatory region, a promoter, or an enhancer or any combination thereof.
- the given insert polynucleotide and/or the region of the rat locus being deleted can be of any desired length, including for example, between 10-100 nucleotides in length, 100-500 nucleotides in length, 500-1 kb nucleotide in length, 1 Kb to 1.5 kb nucleotide in length, 1.5 kb to 2 kb nucleotides in length, 2 kb to 2.5 kb nucleotides in length, 2.5 kb to 3 kb nucleotides in length, 3 kb to 5 kb nucleotides in length, 5 kb to 8 kb nucleotides in length, 8 kb to 10 kb nucleotides in length or more.
- the size of the insertion or replacement is from about 5 kb to about 10 kb, from about 10 kb to about 20 kb, from about 20 kb to about 40 kb, from about 40 kb to about 60 kb, from about 60 kb to about 80 kb, from about 80 kb to about 100 kb, from about 100 kb to about 150 kb, from about 150 kb to about 200 kb, from about 200 kb to about 250 kb, from about 250 kb to about 300 kb, from about 300 kb to about 350 kb, from about 350 kb to about 400 kb, from about 400 kb to about 800 kb, from about 800 kb to 1 Mb, from about 1 Mb to about 1.5 Mb, from about 1.5 Mb to about 2 Mb, from about 2 Mb, to about 2.5 Mb, from about 2.5 Mb to about 2.8 Mb, from about 2.8 Mb to about 3 Mb.
- the given insert polynucleotide and/or the region of the rat locus being deleted is at least 100, 200, 300, 400, 500, 600, 700, 800, or 900 nucleotides or at least 1 kb, 2 kb, 3 kb, 4 kb, 5 kb, 6 kb, 7 kb, 8 kb, 9 kb, 10 kb, 11 kb, 12 kb, 13 kb, 14 kb, 15 kb, 16 kb or greater.
- the promoter is constitutively active promoter.
- the promoter is an inducible promoter. In one embodiment, the inducible promoter is a chemically-regulated promoter. In one embodiment, the chemically-regulated promoter is an alcohol-regulated promoter. In one embodiment, the alcohol-regulated promoter is an alcohol dehydrogenase (alcA) gene promoter. In one embodiment, the chemically-regulated promoter is a tetracycline-regulated promoter. In one embodiment, the tetracycline-regulated promoter is a tetracycline-responsive promoter. In one embodiment, the tetracycline-regulated promoter is a tetracycline operator sequence (tetO).
- tetO tetracycline operator sequence
- the tetracycline-regulated promoter is a tet-On promoter. In one embodiment, the tetracycline-regulated promoter a tet-Off promoter. In one embodiment, the chemically-regulated promoter is a steroid regulated promoter. In one embodiment, the steroid regulated promoter is a promoter of a rat glucocorticoid receptor. In one embodiment, the steroid regulated promoter is a promoter of an estrogen receptor. In one embodiment, the steroid-regulated promoter is a promoter of an ecdysone receptor. In one embodiment, the chemically-regulated promoter is a metal-regulated promoter.
- the metal-regulated promoter is a metalloprotein promoter.
- the inducible promoter is a physically-regulated promoter.
- the physically-regulated promoter is a temperature-regulated promoter.
- the temperature-regulated promoter is a heat shock promoter.
- the physically-regulated promoter is a light-regulated promoter.
- the light-regulated promoter is a light-inducible promoter.
- the light-regulated promoter is a light-repressible promoter.
- the promoter is a tissue-specific promoter. In one embodiment, the promoter is a neuron-specific promoter. In one embodiment, the promoter is a glia-specific promoter. In one embodiment, the promoter is a muscle cell-specific promoter. In one embodiment, the promoter is a heart cell-specific promoter. In one embodiment, the promoter is a kidney cell-specific promoter. In one embodiment, the promoter is a bone cell-specific promoter. In one embodiment, the promoter is an endothelial cell-specific promoter. In one embodiment, the promoter is an immune cell-specific promoter. In one embodiment, the immune cell promoter is a B cell promoter. In one embodiment, the immune cell promoter is a T cell promoter.
- the promoter is a developmentally-regulated promoter. In one embodiment, the developmentally-regulated promoter is active only during an embryonic stage of development. In one embodiment, the developmentally-regulated promoter is active only in an adult cell.
- the insert nucleic acid comprises a nucleic acid flanked with site-specific recombination target sequences. It is recognized the while the entire insert nucleic acid can be flanked by such site-specific recombination target sequences, any region or individual polynucleotide of interest within the insert nucleic acid can also be flanked by such sites.
- the site-specific recombinase can be introduced into the cell by any means, including by introducing the recombinase polypeptide into the cell or by introducing a polynucleotide encoding the site-specific recombinase into the host cell.
- the polynucleotide encoding the site-specific recombinase can be located within the insert nucleic acid or within a separate polynucleotide.
- the site-specific recombinase can be operably linked to a promoter active in the cell including, for example, an inducible promoter, a promoter that is endogenous to the cell, a promoter that is heterologous to the cell, a cell-specific promoter, a tissue-specific promoter, or a developmental stage-specific promoter.
- Site-specific recombination target sequences which can flank the insert nucleic acid or any polynucleotide of interest in the insert nucleic acid can include, but are not limited to, loxP, lox511, lox2272, lox66, lox71, loxM2, lox5171, FRT, FRT11, FRT71, attp, att, FRT, rox, and a combination thereof.
- the site-specific recombination sites flank a polynucleotide encoding a selection marker and/or a reporter gene contained within the insert nucleic acid. In such instances following integration of the insert nucleic acid at the targeted locus the sequences between the site-specific recombination sites can be removed.
- the insert nucleic acid comprises a polynucleotide encoding a selection marker.
- the selection marker can be contained in a selection cassette.
- selection markers include, but are not limited, to neomycin phosphotransferase (neo r ), hygromycin B phosphotransferase (hyg r ), puromycin-N-acetyltransferase (puro r ), blasticidin S deaminase (bsr r ), xanthine/guanine phosphoribosyl transferase (gpt), or herpes simplex virus thymidine kinase (HSV-k), or a combination thereof.
- the polynucleotide encoding the selection marker is operably linked to a promoter active in the cell, rat cell, pluripotent rat cell or the ES rat cell.
- the selection marker can comprise a recognition site for a nuclease agent, as outlined above.
- the polynucleotide encoding the selection marker is flanked with a site-specific recombination target sequences.
- the insert nucleic acid can further comprise a reporter gene operably linked to a promoter, wherein the reporter gene encodes a reporter protein selected from the group consisting of or comprising LacZ, mPlum, mCherry, tdTomato, mStrawberry, J-Red, DsRed, mOrange, mKO, mCitrine, Venus, YPet, enhanced yellow fluorescent protein (EYFP), Emerald, enhanced green fluorescent protein (EGFP), CyPet, cyan fluorescent protein (CFP), Cerulean, T-Sapphire, luciferase, alkaline phosphatase, and/or a combination thereof.
- a reporter gene operably linked to a promoter active in the cell.
- Such promoters can be an inducible promoter, a promoter that is endogenous to the reporter gene or the cell, a promoter that is heterologous to the reporter gene or to the cell, a cell-specific promoter, a tissue-specific promoter, or a developmental stage-specific promoter.
- nucleic acid insert can comprise a mammalian nucleic acid comprises a genomic locus that encodes a protein expressed in the nervous system, the skeletal system, the digestive system, the circulatory system, the muscular system, the respiratory system, the cardiovascular system, the lymphatic system, the endocrine system, the urinary system, the reproductive system, or a combination thereof.
- the mammalian nucleic acid comprises a genomic locus that encodes a protein expressed in a bone marrow or a bone marrow-derived cell.
- the nucleic acid comprises a genomic locus that encodes a protein expressed in a spleen cell.
- the mammalian nucleic acid comprises a genomic locus that encodes a protein expressed in the nervous system, the skeletal system, the digestive system, the circulatory system, the muscular system, the respiratory system, the cardiovascular system, the lymphatic system, the endocrine system, the urinary system, the reproductive system, or a combination thereof.
- the mammalian nucleic acid comprises a genomic locus that encodes a protein expressed in a bone marrow or a bone marrow-derived cell.
- the nucleic acid comprises a genomic locus that encodes a protein expressed in a spleen cell.
- the genomic locus comprises a mouse genomic DNA sequence, a rat genomic DNA sequence a human genomic DNA sequence, or a combination thereof. In one embodiment, the genomic locus comprises, in any order, rat and human genomic DNA sequences. In one embodiment, the genomic locus comprises, in any order, mouse and human genomic DNA sequences. In one embodiment, the genomic locus comprises, in any order, mouse and rat genomic DNA sequences. In one embodiment, the genomic locus comprises, in any order, rat, mouse, and human genomic DNA sequences.
- the genomic locus comprises a mouse genomic DNA sequence, a rat genomic DNA sequence a human genomic DNA sequence, or a combination thereof. In one embodiment, the genomic locus comprises, in any order, rat and human genomic DNA sequences. In one embodiment, the genomic locus comprises, in any order, mouse and human genomic DNA sequences. In one embodiment, the genomic locus comprises, in any order, mouse and rat genomic DNA sequences. In one embodiment, the genomic locus comprises, in any order, rat, mouse, and human genomic DNA sequences.
- the genetic modification comprises at least one human disease allele of a human gene.
- the human disease is a neurological disease.
- the human disease is a cardiovascular disease.
- the human disease is a kidney disease.
- the human disease is a muscle disease.
- the human disease is a blood disease.
- the human disease is a cancer.
- the human disease is an immune system disease.
- the human disease allele is a dominant allele. In one embodiment, the human disease allele is a recessive allele. In one embodiment, the human disease allele comprises a single nucleotide polymorphism (SNP) allele.
- SNP single nucleotide polymorphism
- the genetic modification produces a mutant form of a protein with an altered binding characteristic, altered localization, altered expression, and/or altered expression pattern.
- the insert nucleic acid comprises a selection cassette.
- the selection cassette comprises a nucleic acid sequence encoding a selective marker, wherein the nucleic acid sequence is operably linked to a promoter active in rat ES cells.
- the selective marker is selected from or comprises a hygromycin resistance gene or a neomycin resistance gene.
- the nucleic acid comprises a genomic locus that encodes a protein expressed in a B cell. In one embodiment, the nucleic acid comprises a genomic locus that encodes a protein expressed in an immature B cell. In one embodiment, the nucleic acid comprises a genomic locus that encodes a protein expressed in a mature B cell.
- the insert nucleic acid comprises a regulatory element.
- the regulatory element is a promoter.
- the regulatory element is an enhancer.
- the regulatory element is a transcriptional repressor-binding element.
- the genetic modification comprises a deletion of a non-protein-coding sequence, but does not comprise a deletion of a protein-coding sequence. In one embodiment, the deletion of the non-protein-coding sequence comprises a deletion of a regulatory element. In one embodiment, the genetic modification comprises a deletion of a regulatory element. In one embodiment, the genetic modification comprises an addition of a promoter or a regulatory element. In one embodiment, the genetic modification comprises a replacement of a promoter or a regulatory element.
- polynucleotides or nucleic acid molecules comprising the various components employed in a targeted genomic integration system provided herein (i.e. any one of or any combination of nuclease agents, recognition sites, insert nucleic acids, polynucleotides of interest, targeting vectors, selection markers, and other components).
- polynucleotide polynucleotide sequence
- nucleic acid sequence nucleic acid fragment
- a polynucleotide in the form of a polymer of DNA may be comprised of one or more segments of cDNA, genomic DNA, synthetic DNA, or mixtures thereof.
- Polynucleotides can comprise deoxyribonucleotides and ribonucleotides include both naturally occurring molecules and synthetic analogues, and any combination these.
- the polynucleotides provided herein also encompass all forms of sequences including, but not limited to, single-stranded forms, double-stranded forms, hairpins, stem-and-loop structures, and the like.
- recombinant polynucleotides comprising the various components of the targeted genomic integration system.
- the terms “recombinant polynucleotide” and “recombinant DNA construct” are used interchangeably herein.
- a recombinant construct comprises an artificial or heterologous combination of nucleic acid sequences, e.g., regulatory and coding sequences that are not found together in nature.
- a recombinant construct may comprise regulatory sequences and coding sequences that are derived from different sources, or regulatory sequences and coding sequences derived from the same source, but arranged in a manner different than that found in nature.
- Such a construct may be used by itself or may be used in conjunction with a vector.
- a vector is used, then the choice of vector is dependent upon the method that is used to transform the host cells as is well known to those skilled in the art.
- a plasmid vector can be used.
- Genetic elements required to successfully transform, select, and propagate host cells comprising any of the isolated nucleic acid fragments provided herein are also provided. Screening may be accomplished by Southern analysis of DNA, Northern analysis of mRNA expression, immunoblotting analysis of protein expression, or phenotypic analysis, among others.
- one or more of the components of the targeted genomic integration system described herein can be provided in an expression cassette for expression in a prokaryotic cell, a eukaryotic cell, a bacterial, a yeast cell, or a mammalian cell or other organism or cell type of interest.
- the cassette can include 5′ and 3′ regulatory sequences operably linked to a polynucleotide provided herein. “Operably linked” comprises a relationship wherein the components operably linked function in their intended manner. For example, an operable linkage between a polynucleotide of interest and a regulatory sequence (i.e., a promoter) is a functional link that allows for expression of the polynucleotide of interest.
- Operably linked elements may be contiguous or non-contiguous. When used to refer to the joining of two protein coding regions, operably linked means that the coding regions are in the same reading frame.
- a nucleic acid sequence encoding a protein may be operably linked to regulatory sequences (e.g., promoter, enhancer, silencer sequence, etc.) so as to retain proper transcriptional regulation.
- a nucleic acid sequence of an immunoglobulin variable region (or V(D)J segments) may be operably linked to a nucleic acid sequence of an immunoglobulin constant region so as to allow proper recombination between the sequences into an immunoglobulin heavy or light chain sequence.
- the cassette may additionally contain at least one additional polynucleotide of interest to be co-introduced into the organism.
- the additional polynucleotide of interest can be provided on multiple expression cassettes.
- Such an expression cassette is provided with a plurality of restriction sites and/or recombination sites for insertion of a recombinant polynucleotide to be under the transcriptional regulation of the regulatory regions.
- the expression cassette may additionally contain selection marker genes.
- the expression cassette can include in the 5′-3′ direction of transcription, a transcriptional and translational initiation region (i.e., a promoter), a recombinant polynucleotide provided herein, and a transcriptional and translational termination region (i.e., termination region) functional in mammalian cell or a host cell of interest.
- the regulatory regions (i.e., promoters, transcriptional regulatory regions, and translational termination regions) and/or a polynucleotide provided herein may be native/analogous to the host cell or to each other. Alternatively, the regulatory regions and/or a polynucleotide provided herein may be heterologous to the host cell or to each other.
- a promoter operably linked to a heterologous polynucleotide is from a species different from the species from which the polynucleotide was derived, or, if from the same/analogous species, one or both are substantially modified from their original form and/or genomic locus, or the promoter is not the native promoter for the operably linked polynucleotide.
- the regulatory regions and/or a recombinant polynucleotide provided herein may be entirely synthetic.
- the termination region may be native with the transcriptional initiation region, may be native with the operably linked recombinant polynucleotide, may be native with the host cell, or may be derived from another source (i.e., foreign or heterologous) to the promoter, the recombinant polynucleotide, the host cell, or any combination thereof.
- the various DNA fragments may be manipulated, so as to provide for the DNA sequences in the proper orientation.
- adapters or linkers may be employed to join the DNA fragments or other manipulations may be involved to provide for convenient restriction sites, removal of superfluous DNA, removal of restriction sites, or the like.
- in vitro mutagenesis, primer repair, restriction, annealing, resubstitutions, e.g., transitions and transversions may be involved.
- a number of promoters can be used in the expression cassettes provided herein.
- the promoters can be selected based on the desired outcome. It is recognized that different applications can be enhanced by the use of different promoters in the expression cassettes to modulate the timing, location and/or level of expression of the polynucleotide of interest.
- Such expression constructs may also contain, if desired, a promoter regulatory region (e.g., one conferring inducible, constitutive, environmentally- or developmentally-regulated, or cell- or tissue-specific/selective expression), a transcription initiation start site, a ribosome binding site, an RNA processing signal, a transcription termination site, and/or a polyadenylation signal.
- the expression cassette containing the polynucleotides provided herein can also comprise a selection marker gene for the selection of transformed cells. Selectable marker genes are utilized for the selection of transformed cells or tissues.
- the sequences employed in the methods and compositions may be optimized for increased expression in the cell. That is, the genes can be synthesized using codons preferred in a given cell of interest including, for example, mammalian-preferred codons, human-preferred codons, rodent-preferred codon, mouse-preferred codons, rat-preferred codons, etc. for improved expression.
- selection markers can be used in the methods and compositions disclosed herein. Such selection markers can, for example, impart resistance to an antibiotic such as G418, hygromycin, blastocidin, neomycin, or puromycin. Such selection markers include neomycin phosphotransferase (neo r ), hygromycin B phosphotransferase (hyg r ), puromycin-N-acetyltransferase (puro r ), and blasticidin S deaminase (bsr r ). In still other embodiments, the selection marker is operably linked to an inducible promoter and the expression of the selection marker is toxic to the cell.
- Non-limiting examples of such selection markers include xanthine/guanine phosphoribosyl transferase (gpt), hahypoxanthine-guanine phosphoribosyltransferase (HGPRT) or herpes simplex virus thymidine kinase (HSV-TK).
- gpt xanthine/guanine phosphoribosyl transferase
- HGPRT hahypoxanthine-guanine phosphoribosyltransferase
- HSV-TK herpes simplex virus thymidine kinase
- Targeting vectors are employed to introduce the insert nucleic acid into the target locus of the rat nucleic acid.
- the targeting vector comprises the insert nucleic acid and further comprises a 5′ and a 3′ homology arm, which flank the insert nucleic acid.
- the homology arms, which flank the insert nucleic acid correspond to regions within the target locus of the rat nucleic acid.
- target sites the corresponding cognate genomic regions within the targeted genomic locus are referred to herein as “target sites”.
- a targeting vector can comprise a first insert nucleic acid flanked by a first and a second homology arm complementary to a first and a second target site
- the targeting vector thereby aids in the integration of the insert nucleic acid into the target locus of the rat nucleic acid through a homologous recombination event that occurs between the homology arms and the complementary target sites within the genome of the cell.
- the target locus of the rat nucleic acid comprises a first nucleic acid sequence that is complementary to the 5′ homology arm and a second nucleic acid sequence that is complementary to the 3′ homology arm.
- the first and the second nucleic acid sequences are separated by at least 5 kb.
- the first and the second nucleic acid sequences are separated by at least 5 kb but less than 200 kb.
- the first and the second nucleic acid sequences are separated by at least 10 kb.
- the first and the second nucleic acid sequences are separated by at least 20 kb, at least 30 kb, at least 40 kb, at least 50 kb, at least 60 kb, at least 70 kb, at least 80 kb, at least 90 kb, at least 100 kb, at least 110 kb, at least 120 kb, at least 130 kb, at least 140 kb, at least 150 kb, at least 160 kb, at least 170 kb, at least 180 kb, at least 190 kb, or at least 200 kb.
- the first and the second nucleic acid sequence is separated by at least 5 kb but less than 10 kb, at least 5 kb but less than 3 Mb, at least 10 kb but less than 20 kb, at least 20 kb but less than 40 kb, at least 40 kb but less than 60 kb, at least 60 kb but less than 80 kb, at least about 80 kb but less than 100 kb, at least 100 kb but less than 150 kb, or at least 150 kb but less than 200 kb, at least about 200 kb but less than about 300 kb, at least about 300 kb but less than about 400 kb, at least about 400 kb but less than about 500 kb, at least about 500 kb but less than about 1 Mb, at least about 1.5 Mb but less than about 2 Mb, at least about 1 Mb but less than about 1.5 Mb, at least about 2 Mb but less than 2.5 Mb, at least about 2.5 Mb, at least about
- a homology arm of the targeting vector can be of any length that is sufficient to promote a homologous recombination event with a corresponding target site, including for example, at least 5-10 kb, 5-15 kb, 10-20 kb, 20-30 kb, 30-40 kb, 40-50 kb, 50-60 kb, 60-70 kb, 70-80 kb, 80-90 kb, 90-100 kb, 100-110 kb, 110-120 kb, 120-130 kb, 130-140 kb, 140-150 kb, 150-160 kb, 160-170 kb, 170-180 kb, 180-190 kb, 190-200 kb in length or greater.
- large targeting vectors can employ targeting arms of greater length.
- the sum total of the 5′ homology arm and the 3′ homology arm is at least 10 kb or the sum total of the 5′ homology arm and the 3′ homology arm is at least about 16 kb to about 100 kb or about 30 kb to about 100 kb.
- the size of the sum total of the total of the 5′ and 3′ homology arms of the LTVEC is about 10 kb to about 150 kb, about 10 kb to about 100 kb, about 10 kb to about 75 kb, about 20 kb to about 150 kb, about 20 kb to about 100 kb, about 20 kb to about 75 kb, about 30 kb to about 150 kb, about 30 kb to about 100 kb, about 30 kb to about 75 kb, about 40 kb to about 150 kb, about 40 kb to about 100 kb, about 40 kb to about 75 kb, about 50 kb to about 150 kb, about 50 kb to about 100 kb, or about 50 kb to about 75 kb, about 10 kb to about 30 kb, about 20 kb to about 40 kb, about 40 kb to about 60 kb, about 60 kb to about 80
- the cognate genomic regions corresponding to the 5′ and 3′ homology arms of a targeting vector are “located in sufficient proximity” to nuclease target sites so as to promote the occurrence of a homologous recombination event between the cognate genomic regions and the homology arms upon a nick or double-strand break at the recognition site.
- the nuclease target sites can be located anywhere between the cognate genomic regions corresponding to the 5′ and 3′ homology arms.
- the recognition site is immediately adjacent to at least one or both of the cognate genomic regions.
- a homology arm and a target site i.e., cognate genomic region
- a target site i.e., cognate genomic region
- a homology arm and a target site are “complementary” to one another when the two regions share a sufficient level of sequence identity to one another to act as substrates for a homologous recombination reaction.
- homology is meant DNA sequences that are either identical or share sequence identity to a corresponding or “complementary” sequence.
- the sequence identity between a given target site and the corresponding homology arm found on the targeting vector can be any degree of sequence identity that allows for homologous recombination to occur.
- the amount of sequence identity shared by the homology arm of the targeting vector (or a fragment thereof) and the target site (or a fragment thereof) can be at least 50%, 55%, 60%, 65%, 70%, 75%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% sequence identity, such that the sequences undergo homologous recombination.
- a complementary region of homology between the homology arm and the complementary target site can be of any length that is sufficient to promote homologous recombination at the cleaved recognition site.
- a given homology arm and/or complementary target site can comprise complementary regions of homology that are at least 5-10 kb, 5-15 kb, 10-20 kb, 20-30 kb, 30-40 kb, 40-50 kb, 50-60 kb, 60-70 kb, 70-80 kb, 80-90 kb, 90-100 kb, 100-110 kb, 110-120 kb, 120-130 kb, 130-140 kb, 140-150 kb, 150-160 kb, 160-170 kb, 170-180 kb, 180-190 kb, 190-200 kb in length or greater (such as described in the LTVEC vectors described elsewhere herein) such that the homology arm has sufficient homology to undergo homologous recombination with the corresponding target sites within the genome of the cell.
- the homology arms are referred to herein as a 5′ and a 3′ homology arm. This terminology relates to the relative position
- the homology arms of the targeting vector are therefore designed to be complementary to a target site with the targeted locus.
- the homology arms can be complementary to a locus that is native to the cell, or alternatively they can be complementary to a region of a heterologous or exogenous segment of DNA that was integrated into the genome of the cell, including, but not limited to, transgenes, expression cassettes, or heterologous or exogenous regions of genomic DNA.
- the homology arms of the targeting vector can be complementary to a region of a human artificial chromosome or any other engineered genomic region contained in an appropriate host cell.
- the homology arms of the targeting vector can be complementary to or be derived from a region of a BAC library, a cosmid library, or a P1 phage library.
- the homology arms of the targeting vector are complementary to a rat genomic locus that is native, heterologous or exogenous to a given cell.
- the homology arms are complementary to a rat genomic locus that is not targetable using a conventional method or can be targeted only incorrectly or only with significantly low efficiency, in the absence of a nick or double-strand break induced by a nuclease agent.
- the homology arms are derived from a synthetic DNA.
- the 5′ and 3′ homology arms are complementary to the same genome as the targeted genome.
- the homology arms are from a related genome, e.g., the targeted genome is a rat genome of a first strain, and the targeting arms are from a rat genome of a second strain, wherein the first strain and the second strain are different.
- the homology arms are from the genome of the same animal or are from the genome of the same strain, e.g., the targeted genome is a rat genome of a first strain, and the targeting arms are from a rat genome from the same rat or from the same strain.
- the targeting vector (such as a large targeting vector) can also comprise a selection cassette or a reporter gene as discussed elsewhere herein.
- the selection cassette can comprise a nucleic acid sequence encoding a selection marker, wherein the nucleic acid sequence is operably linked to a promoter.
- the promoter can be active in a prokaryotic cell of interest and/or active in a eukaryotic cell of interest.
- Such promoters can be an inducible promoter, a promoter that is endogenous to the reporter gene or the cell, a promoter that is heterologous to the reporter gene or to the cell, a cell-specific promoter, a tissue-specific promoter or a developmental stage-specific promoter.
- the selection marker is selected from or comprises neomycin phosphotransferase (neo r ), hygromycin B phosphotransferase (hyg r ), puromycin-N-acetyltransferase (puro r ), blasticidin S deaminase (bsr r ), xanthine/guanine phosphoribosyl transferase (gpt), and herpes simplex virus thymidine kinase (HSV-k), and/or a combination thereof.
- the selection marker of the targeting vector can be flanked by the 5′ and 3′ homology arms or found either 5′ or 3′ to the homology arms.
- the targeting vector (such as a large targeting vector) comprises a reporter gene operably linked to a promoter, wherein the reporter gene encodes a reporter protein selected from the group consisting of or comprises LacZ, mPlum, mCherry, tdTomato, mStrawberry, J-Red, DsRed, mOrange, mKO, mCitrine, Venus, YPet, enhanced yellow fluorescent protein (EYFP), Emerald, enhanced green fluorescent protein (EGFP), CyPet, cyan fluorescent protein (CFP), Cerulean, T-Sapphire, luciferase, alkaline phosphatase, and/or a combination thereof.
- a reporter protein selected from the group consisting of or comprises LacZ, mPlum, mCherry, tdTomato, mStrawberry, J-Red, DsRed, mOrange, mKO, mCitrine, Venus, YPet, enhanced yellow fluorescent protein (
- Such reporter genes can be operably linked to a promoter active in the cell.
- promoters can be an inducible promoter, a promoter that is endogenous to the report gene or the cell, a promoter that is heterologous to the reporter gene or to the cell, a cell-specific promoter, a tissue-specific promoter or a developmental stage-specific promoter.
- combined use of the targeting vector (including, for example, a large targeting vector) with the nuclease agent results in an increased targeting efficiency compared to use of the targeting vector alone.
- targeting efficiency of the targeting vector is increased at least by two-fold, at least three-fold, or at least 4-fold when compared to when the targeting vector is used alone.
- the vector design can be such as to allow for the insertion of a given sequence that is from about 5 kb to about 200 kb as described herein.
- the insertion is from about 5 kb to about 10 kb, from about 10 kb to about 20 kb, from about 20 kb to about 30 kb, from about 30 kb to about 40 kb, from about 40 kb to about 50 kb, from about 50 kb to about 60 kb, from about 60 kb to about 70 kb, from about 80 kb to about 90 kb, from about 90 kb to about 100 kb, from about 100 kb to about 110 kb, from about 110 kb to about 120 kb, from about 120 kb to about 130 kb, from about 130 kb to about 140 kb, from about 140 kb to about 150 kb, from about 150 kb to about 160 kb, from about 160 kb to
- the vector design can be such as to allow for the replacement of a given sequence that is from about 5 kb to about 200 kb or from about 5 kb to about 3.0 Mb as described herein.
- the replacement is from about 5 kb to about 10 kb, from about 10 kb to about 20 kb, from about 20 kb to about 30 kb, from about 30 kb to about 40 kb, from about 40 kb to about 50 kb, from about 50 kb to about 60 kb, from about 60 kb to about 70 kb, from about 80 kb to about 90 kb, from about 90 kb to about 100 kb, from about 100 kb to about 110 kb, from about 110 kb to about 120 kb, from about 120 kb to about 130 kb, from about 130 kb to about 140 kb, from about 140 kb to about 150 kb, from about 150 kb to about 160
- the targeting vector comprises a site-specific recombinase gene.
- the site-specific recombinase gene encodes a Cre recombinase.
- the Cre recombinase gene is Crei, wherein two exons encoding the Cre recombinase are separated by an intron to prevent its expression in a prokaryotic cell.
- the Cre recombinase gene further comprises a nuclear localization signal to facilitate localization of Cre (or any recombinase or nuclease agent) to the nucleus (e.g., the gene is an NL-Cre gene).
- the Cre recombinase gene further comprises a nuclear localization signal and an intron (e.g., NL-Crei).
- a suitable promoter for expression of the nuclease agent is selected from or comprises a Prm1, Blimp 1, Gata6, Gata4, Igf2, Lhx2, Lhx5, and/or Pax3.
- the promoter is the Gata6 or Gata4 promoter.
- the various promoters can be from any organism, including for example, a rodent such as a mouse or a rat.
- the promoter is a Prm1 promoter.
- the promoter is a rat Prm1 promoter.
- the promoter is a mouse Prm1 promoter.
- the promoter is a Blimp1 promoter or a fragment thereof, e.g., a 1 kb or 2 kb fragment of a Blimp1 promoter. See, for example, U.S. Pat. No. 8,697,851 and U.S. Application Publication 2013-0312129, both of which are herein incorporated by reference in their entirety.
- large targeting vector or “LTVEC” as used herein comprises large targeting vectors that comprise homology arms that correspond to and are derived from nucleic acid sequences larger than those typically used by other approaches intended to perform homologous targeting in cells and/or comprising insert nucleic acids comprising nucleic acid sequences larger than those typically used by other approaches intended to perform homologous recombination targeting in cells.
- the LTVEC make possible the modification of large loci that cannot be accommodated by traditional plasmid-based targeting vectors because of their size limitations.
- the homology arms and/or the insert nucleic acid of the LTVEC comprises genomic sequence of a eukaryotic cell.
- the size of the LTVEC is too large to enable screening of targeting events by conventional assays, e.g., southern blotting and long-range (e.g., 1 kb-5 kb) PCR.
- LTVEC include, but are not limited to, vectors derived from a bacterial artificial chromosome (BAC), a human artificial chromosome or a yeast artificial chromosome (YAC).
- BAC bacterial artificial chromosome
- YAC yeast artificial chromosome
- Non-limiting examples of LTVECs and methods for making them are described, e.g., in U.S. Pat. Nos. 6,586,251, 6,596,541, 7,105,348, and WO 2002/036789 (PCT/US01/45375), and US 2013/0137101, each of which is herein incorporated by reference.
- the LTVEC can be of any length, including, but not limited to, from about 20 kb to about 400 kb, from about 20 kb to about 30 kb, from about 30 kb to 40 kb, from about 40 kb to about 50 kb, from about 50 kb to about 75 kb, from about 75 kb to about 100 kb, from about 100 kb to 125 kb, from about 125 kb to about 150 kb, from about 150 kb to about 175 kb, about 175 kb to about 200 kb, from about 200 kb to about 225 kb, from about 225 kb to about 250 kb, from about 250 kb to about 275 kb or from about 275 kb to about 300 kb, from about 200 kb to about 300 kb, from about 300 kb to about 350 kb, from about 350 kb to about 400 kb, from about 350 kb to about 550
- the LTVEC comprises an insert nucleic acid ranging from about 5 kb to about 200 kb, from about 5 kb to about 10 kb, from about 10 kb to about 20 kb, from about 20 kb to about 30 kb, from about 0.5 kb to about 30 kb, from about 0.5 kb to about 40 kb, from about 30 kb to about 150 kb, from about 0.5 kb to about 150 kb, from about 30 kb to about 40 kb, from about 40 kb to about 50 kb, from about 60 kb to about 70 kb, from about 80 kb to about 90 kb, from about 90 kb to about 100 kb, from about 100 kb to about 110 kb, from about 120 kb to about 130 kb, from about 130 kb to about 140 kb, from about 140 kb to about 150 kb, from about 150 kb to about 160 kb, from
- the vector design can be such as to allow for the replacement of a given sequence that is from about 5 kb to about 200 kb or from about 5 kb to about 3 Mb as described herein.
- the replacement is from about 5 kb to about 10 kb, from about 10 kb to about 20 kb, from about 20 kb to about 30 kb, from about 30 kb to about 40 kb, from about 40 kb to about 50 kb, from about 50 kb to about 60 kb, from about 60 kb to about 70 kb, from about 80 kb to about 90 kb, from about 90 kb to about 100 kb, from about 100 kb to about 110 kb, from about 110 kb to about 120 kb, from about 120 kb to about 130 kb, from about 130 kb to about 140 kb, from about 140 kb to about 150 kb, from about 150 kb to about 160
- the homology arms of the LTVEC are derived from a BAC library, a cosmid library, or a P1 phage library. In other embodiments, the homology arms are derived from the targeted genomic locus of the cell and in some instances the target genomic locus, which the LTVEC is designed to target is not targetable using a conventional method. In still other embodiments, the homology arms are derived from a synthetic DNA.
- a sum total of the 5′ homology arm and the 3′ homology arm in the LTVEC is at least 10 kb.
- the sum total of the 5′ and the 3′ homology arms of the LTVEC is from about 10 kb to about 30 kb, from about 20 kb to about 40 kb, from about 40 kb to about 60 kb, from about 60 kb to about 80 kb, from about 80 kb to about 100 kb, from 100 kb to about 120 kb, from about 120 kb to about 140 kb, from about 140 kb to about 160 kb, from about 160 kb to about 180 kb, from about 180 kb to about 200 kb.
- the sum total of the 5′ and the 3′ homology arms of the LTVEC is from about 30 kb to about 100 kb.
- the size of the sum total of the total of the 5′ and 3′ homology arms of the LTVEC is about 10 kb to about 150 kb, about 10 kb to about 100 kb, about 10 kb to about 75 kb, about 20 kb to about 150 kb, about 20 kb to about 100 kb, about 20 kb to about 75 kb, about 30 kb to about 150 kb, about 30 kb to about 100 kb, about 30 kb to about 75 kb, about 40 kb to about 150 kb, about 40 kb to about 100 kb, about 40 kb to about 75 kb, about 50 kb to about 150 kb, about 50 kb to about 100 kb, or about 50 kb to about 75 kb, about 10 kb to about 30
- the 5′ homology arm ranges from about 5 kb to about 100 kb. In one embodiment, the 3′ homology arm ranges from about 5 kb to about 100 kb. In other embodiments, the sum total of the 5′ and 3′ homology arms are from about 5 kb to about 10 kb, from about 10 kb to about 20 kb, from about 20 kb to about 30 kb, from about 30 kb to about 40 kb, from about 40 kb to about 50 kb, from about 50 kb to about 60 kb, from about 60 kb to about 70 kb, from about 70 kb to about 80 kb, from about 80 kb to about 90 kb, from about 90 kb to about 100 kb, from about 100 kb to about 110 kb, from about 110 kb to about 120 kb, from about 120 kb to about 130 kb, from about 130 kb to about 140 kb, from about 140
- the LTVEC comprises an insert nucleic acid that is homologous or orthologous to a rat nucleic acid sequence flanked by the LTVEC homology arms.
- the insert nucleic acid sequence is from a species other than a rat.
- the insert nucleic acid that is homologous or orthologous to the rat nucleic acid sequence is a mammalian nucleic acid.
- the mammalian nucleic acid is a mouse nucleic acid.
- the mammalian nucleic acid is a human nucleic acid.
- the insert nucleic acid is a genomic DNA.
- the insert is from 5 kb to 200 kb as described above.
- the LTVEC comprises a selection cassette or a reporter gene.
- selection cassette and reporter gene Various forms of the selection cassette and reporter gene that can be employed are discussed elsewhere herein.
- the LTVEC can also be used in the methods provided herein in combination with a nuclease agent that promotes a homologous recombination between the targeting vector and the target locus of a rat nucleic acid in a pluripotent rat cell.
- the large targeting vector comprises a 1 specific recombinase gene.
- the site-specific recombinase gene encodes a Cre recombinase.
- the Cre recombinase gene is Crei, wherein two exons encoding the Cre recombinase are separated by an intron to prevent its expression in a prokaryotic cell.
- the Cre recombinase gene further comprises a nuclear localization signal to facilitate localization of Cre (or any recombinase or nuclease agent) to the nucleus (e.g., the gene is an NL-Cre gene).
- the Cre recombinase gene further comprises a nuclear localization signal and an intron (e.g., NL-Crei)
- a suitable promoter for expression of the nuclease agent is selected from or comprises a Prm1, Blimp1, Gata6, Gata4, Igf2, Lhx2, Lhx5, and/or Pax3.
- the promoter is the Gata6 or Gata4 promoter.
- the various promoters can be from any organism, including for example, a rodent such as a mouse or a rat.
- the promoter is a Prm1 promoter.
- the promoter is a rat Prm1 promoter.
- the promoter is a mouse Prm1 promoter.
- the promoter is a Blimp1 promoter or a fragment thereof, e.g., a 1 kb or 2 kb fragment of a Blimp1 promoter. See, for example, U.S. Pat. No. 8,697,851 and U.S. Application Publication 2013-0312129, both of which are herein incorporated by reference in their entirety.
- the LTVEC comprises an insert nucleic acid that can produce a deletion, addition, replacement or a combination thereof of a region of the rat ApoE locus, the IL-2Rg locus, the Rag2 locus, the Rag1 locus and/or the Rag2/Rag1 locus as discussed in detail elsewhere herein.
- the genetic modification at the ApoE locus results in a decrease, an increase or a modulation in ApoE activity, IL-2Rg activity, Rag2 activity, Rag1 activity and/or Rag2 and Rag1 activity.
- an ApoE knockout, and IL-2Rg knockout, a Rag2 knockout, a Rag1 knockout, a Rag2/Rag1 knockout is generated.
- nuclease agents can be employed with any of the LTVEC targeting systems to target any genomic locus of interest.
- nuclease agents may be utilized in the methods and compositions disclosed herein to aid in the modification of the target locus both in a prokaryotic cell or within a pluripotent rat cell. Such a nuclease agent may promote homologous recombination between the targeting vector and the target locus.
- the nuclease agent comprises an endonuclease agent.
- the term “recognition site for a nuclease agent” comprises a DNA sequence at which a nick or double-strand break is induced by a nuclease agent.
- the recognition site for a nuclease agent can be endogenous (or native) to the cell or the recognition site can be exogenous to the cell.
- the recognition site is exogenous to the cell and thereby is not naturally occurring in the genome of the cell.
- the recognition site is exogenous to the cell and to the polynucleotides of interest that one desired to be positioned at the target genomic locus.
- the exogenous or endogenous recognition site is present only once in the genome of the host cell.
- an endogenous or native site that occurs only once within the genome is identified. Such a site can then be used to design nuclease agents that will produce a nick or double-strand break at the endogenous recognition site.
- the length of the recognition site can vary, and includes, for example, recognition sites that are at least 4, 6, 8, 10, 12, 14, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70 or more nucleotides in length.
- each monomer of the nuclease agent recognizes a recognition site of at least 9 nucleotides.
- the recognition site is from about 9 to about 12 nucleotides in length, from about 12 to about 15 nucleotides in length, from about 15 to about 18 nucleotides in length, or from about 18 to about 21 nucleotides in length, and any combination of such subranges (e.g., 9-18 nucleotides).
- the recognition site could be palindromic, that is, the sequence on one strand reads the same in the opposite direction on the complementary strand. It is recognized that a given nuclease agent can bind the recognition site and cleave that binding site or alternatively, the nuclease agent can bind to a sequence that is the different from the recognition site.
- the term recognition site comprises both the nuclease agent binding site and the nick/cleavage site irrespective whether the nick/cleavage site is within or outside the nuclease agent binding site.
- the cleavage by the nuclease agent can occur at nucleotide positions immediately opposite each other to produce a blunt end cut or, in other cases, the incisions can be staggered to produce single-stranded overhangs, also called “sticky ends”, which can be either 5′ overhangs, or 3′ overhangs.
- nuclease agent that induces a nick or double-strand break into a desired recognition site can be used in the methods and compositions disclosed herein.
- a naturally-occurring or native nuclease agent can be employed so long as the nuclease agent induces a nick or double-strand break in a desired recognition site.
- a modified or engineered nuclease agent can be employed.
- An “engineered nuclease agent” comprises a nuclease that is engineered (modified or derived) from its native form to specifically recognize and induce a nick or double-strand break in the desired recognition site.
- an engineered nuclease agent can be derived from a native, naturally-occurring nuclease agent or it can be artificially created or synthesized.
- the modification of the nuclease agent can be as little as one amino acid in a protein cleavage agent or one nucleotide in a nucleic acid cleavage agent.
- the engineered nuclease induces a nick or double-strand break in a recognition site, wherein the recognition site was not a sequence that would have been recognized by a native (non-engineered or non-modified) nuclease agent.
- Producing a nick or double-strand break in a recognition site or other DNA can be referred to herein as “cutting” or “cleaving” the recognition site or other DNA.
- Active variants and fragments of the exemplified recognition sites are also provided.
- Such active variants can comprise at least 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more sequence identity to the given recognition site, wherein the active variants retain biological activity and hence are capable of being recognized and cleaved by a nuclease agent in a sequence-specific manner.
- Assays to measure the double-strand break of a recognition site by a nuclease agent are known in the art and generally measure the ability of a nuclease to cut the recognition site.
- the recognition site of the nuclease agent can be positioned anywhere in or near the target locus.
- the recognition site can be located within a coding region of a gene, or within regulatory regions, which influence expression of the gene.
- a recognition site of the nuclease agent can be located in an intron, an exon, a promoter, an enhancer, a regulatory region, or any non-protein coding region.
- the nuclease agent is a Transcription Activator-Like Effector Nuclease (TALEN).
- TAL effector nucleases are a class of sequence-specific nucleases that can be used to make double-strand breaks at specific target sequences in the genome of a prokaryotic or eukaryotic organism.
- TAL effector nucleases are created by fusing a native or engineered transcription activator-like (TAL) effector, or functional part thereof, to the catalytic domain of an endonuclease, such as, for example, FokI.
- TAL effector DNA binding domain allows for the design of proteins with potentially any given DNA recognition specificity.
- the DNA binding domains of the TAL effector nucleases can be engineered to recognize specific DNA target sites and thus, used to make double-strand breaks at desired target sequences. See, WO 2010/079430; Morbitzer et al. (2010) PNAS 10.1073/pnas.1013133107; Scholze & Boch (2010) Virulence 1:428-432; Christian et al. Genetics (2010) 186:757-761; Li et al. (2010) Nuc. Acids Res . (2010) doi:10.1093/nar/gkq704; and Miller et al. (2011) Nature Biotechnology 29:143-148; all of which are herein incorporated by reference.
- TAL effector nucleases are engineered that cut in or near a target nucleic acid sequence in, e.g., a genomic locus of interest, wherein the target nucleic acid sequence is at or near a sequence to be modified by a targeting vector.
- the TAL nucleases suitable for use with the various methods and compositions provided herein include those that are specifically designed to bind at or near target nucleic acid sequences to be modified by targeting vectors as described herein.
- each monomer of the TALEN comprises 12-25 TAL repeats, wherein each TAL repeat binds a 1 bp subsite.
- the nuclease agent is a chimeric protein comprising a TAL repeat-based DNA binding domain operably linked to an independent nuclease.
- the independent nuclease is a FokI endonuclease.
- the nuclease agent comprises a first TAL-repeat-based DNA binding domain and a second TAL-repeat-based DNA binding domain, wherein each of the first and the second TAL-repeat-based DNA binding domain is operably linked to a FokI nuclease, wherein the first and the second TAL-repeat-based DNA binding domain recognize two contiguous target DNA sequences in each strand of the target DNA sequence separated by about 6 bp to about 40 bp cleavage site, and wherein the FokI nucleases dimerize and make a double strand break at a target sequence.
- the nuclease agent comprises a first TAL-repeat-based DNA binding domain and a second TAL-repeat-based DNA binding domain, wherein each of the first and the second TAL-repeat-based DNA binding domain is operably linked to a FokI nuclease, wherein the first and the second TAL-repeat-based DNA binding domain recognize two contiguous target DNA sequences in each strand of the target DNA sequence separated by a 5 bp or 6 bp cleavage site, and wherein the FokI nucleases dimerize and make a double strand break.
- the nuclease agent employed in the various methods and compositions disclosed herein can further comprise a zinc-finger nuclease (ZFN).
- ZFN zinc-finger nuclease
- each monomer of the ZFN comprises 3 or more zinc finger-based DNA binding domains, wherein each zinc finger-based DNA binding domain binds to a 3 bp subsite.
- the ZFN is a chimeric protein comprising a zinc finger-based DNA binding domain operably linked to an independent nuclease.
- the independent endonuclease is a FokI endonuclease.
- the nuclease agent comprises a first ZFN and a second ZFN, wherein each of the first ZFN and the second ZFN is operably linked to a FokI nuclease, wherein the first and the second ZFN recognize two contiguous target DNA sequences in each strand of the target DNA sequence separated by about 6 bp to about 40 bp cleavage site or about a 5 bp to about 6 bp cleavage site, and wherein the FokI nucleases dimerize and make a double strand break.
- the nuclease agent comprises (a) a chimeric protein comprising a zinc finger-based DNA binding domain fused to a FokI endonuclease; or, (b) a chimeric protein comprising a Transcription Activator-Like Effector Nuclease (TALEN) fused to a FokI endonuclease.
- TALEN Transcription Activator-Like Effector Nuclease
- the nuclease agent is a meganuclease.
- Meganucleases have been classified into four families based on conserved sequence motifs, the families are the LAGLIDADG (SEQ ID NO: 16), GIY-YIG, H—N—H, and His-Cys box families. These motifs participate in the coordination of metal ions and hydrolysis of phosphodiester bonds. HEases are notable for their long recognition sites, and for tolerating some sequence polymorphisms in their DNA substrates. Meganuclease domains, structure and function are known, see for example, Guhan and Muniyappa (2003) Crit.
- any meganuclease can be used herein, including, but not limited to, I-SceI, I-SceII, I-SceIII, I-SceIV, I-SceV, I-SceVI, I-SceVII, I-CeuI, I-CeuAIIP, I-CreI, I-CrepsbIP, I-CrepsbIIP, I-CrepsbIIIP, I-CrepsbIVP, I-TliI, I-PpoI, PI-PspI, F-SceI, F-SceII, F-SuvI, F-TevI, F-TevII, I-AmaI, 1-Anil, I-ChuI, I-Cmoel, I-CpaI, I-CpaII, I-CsmI, I-CvuI, I-CvuAIP, I-DdiI, I-D
- the meganuclease recognizes double-stranded DNA sequences of 12 to 40 base pairs. In one embodiment, the meganuclease recognizes one perfectly matched target sequence in the genome. In one embodiment, the meganuclease is a homing nuclease. In one embodiment, the homing nuclease is a LAGLIDADG (SEQ ID NO: 16) family of homing nuclease. In one embodiment, the LAGLIDADG (SEQ ID NO: 16) family of homing nuclease is selected from I-SceI, I-CreI, and I-Dmol.
- Nuclease agents can further comprise restriction endonucleases, which include Type I, Type II, Type III, and Type IV endonucleases.
- Type I and Type III restriction endonucleases recognize specific recognition sites, but typically cleave at a variable position from the nuclease binding site, which can be hundreds of base pairs away from the cleavage site (recognition site).
- the restriction activity is independent of any methylase activity, and cleavage typically occurs at specific sites within or near to the binding site.
- Type II enzymes cut palindromic sequences, however Type IIa enzymes recognize non-palindromic recognition sites and cleave outside of the recognition site, Type IIb enzymes cut sequences twice with both sites outside of the recognition site, and Type IIs enzymes recognize an asymmetric recognition site and cleave on one side and at a defined distance of about 1-20 nucleotides from the recognition site.
- Type IV restriction enzymes target methylated DNA.
- Restriction enzymes are further described and classified, for example in the REBASE database (webpage at rebase.neb.com; Roberts et al., (2003) Nucleic Acids Res 31:418-20), Roberts et al., (2003) Nucleic Acids Res 31:1805-12, and Belfort et al., (2002) in Mobile DNA II , pp. 761-783, Eds. Craigie et al., (ASM Press, Washington, D.C.).
- the nuclease agent employed in the various methods and compositions can also comprise a CRISPR/Cas system.
- CRISPR/Cas system can employ, for example, a Cas9 nuclease, which in some instances, is codon-optimized for the desired cell type in which it is to be expressed.
- the system further employs a fused crRNA-tracrRNA construct that functions with the codon-optimized Cas9. This single RNA is often referred to as a guide RNA or gRNA.
- the crRNA portion is identified as the ‘target sequence’ for the given recognition site and the tracrRNA is often referred to as the ‘scaffold’.
- a short DNA fragment containing the target sequence is inserted into a guide RNA expression plasmid.
- the gRNA expression plasmid comprises the target sequence (in some embodiments around 20 nucleotides), a form of the tracrRNA sequence (the scaffold) as well as a suitable promoter that is active in the cell and necessary elements for proper processing in eukaryotic cells.
- Many of the systems rely on custom, complementary oligos that are annealed to form a double stranded DNA and then cloned into the gRNA expression plasmid.
- the gRNA expression cassette and the Cas9 expression cassette is then introduced into the cell. See, for example, Mali P et al. (2013) Science 2013 Feb.
- the method for modifying a genomic locus of interest in a pluripotent rat cell further comprises introducing into the pluripotent rat cell: (a) a first expression construct comprising a first promoter operably linked to a first nucleic acid sequence encoding a Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-associated (Cas) protein; (b) a second expression construct comprising a second promoter operably linked to a genomic target sequence linked to a guide RNA (gRNA), wherein the genomic target sequence is flanked on the 3′ end by a Protospacer Adjacent Motif (PAM) sequence.
- CRISPR Clustered Regularly Interspaced Short Palindromic Repeats
- Cas Clustered Regularly Interspaced Short Palindromic Repeats
- gRNA guide RNA
- the genomic target sequence comprises the nucleotide sequence of GNNNNNNNNNNNNNNNNNNNNNNNNGG (GN 1-20 GG; SEQ ID NO: 1). In one embodiment, the genomic target sequence comprises SEQ ID NO:23, wherein N is between 1 and 20 nucleotides in length. In another embodiment, the genomic target sequence comprises between 14 and 20 nucleotides in length of SEQ ID NO:1.
- the gRNA comprises a third nucleic acid sequence encoding a Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) RNA (crRNA) and a trans-activating CRISPR RNA (tracrRNA).
- CRISPR Clustered Regularly Interspaced Short Palindromic Repeats
- tracrRNA trans-activating CRISPR RNA
- the Cas protein is Cas9.
- the gRNA comprises (a) the chimeric RNA of the nucleic acid sequence 5′-GUUUUAGAGCUAGAAAUAGCAAGUUAAAAU AAGGCUAGUCCGUUAUCAACUUGAAAAAGUGGCACCGAGUCGGUGCUUUU-3′ (SEQ ID NO: 2); or, (b) the chimeric RNA of the nucleic acid sequence 5′-GUUUUAGAGCUAGAAAUAGCAAGUUAAAAUAAGGCUAGUCCG-3′ (SEQ ID NO: 3).
- the crRNA comprises 5′-GUUUUAGAGCUAGAAAUAGCAAGUUAAAAU-3′ (SEQ ID NO: 4); 5′-GUUUUAGAGCUAGAAAUAGCAAGUUAAAAUAAG (SEQ ID NO: 5); or 5′-GAGUCCGAGCAGAAGAAGAAGUUUUA-3′ (SEQ ID NO: 6).
- the tracrRNA comprises, 5′-AAGGCUAGUCCG-3′ (SEQ ID NO: 7) or 5′-AAGGCUAGUCCGU UAUCAACUUGAAAAAGUGGCACCGAGUCGGUGCUUUU-3′ (SEQ ID NO: 8)
- the Cas protein is a type I Cas protein. In one embodiment, the Cas protein is a type II Cas protein. In one embodiment, the type II Cas protein is Cas9. In one embodiment, the first nucleic acid sequence encodes a human codon-optimized Cas protein.
- the first nucleic acid comprises a mutation that disrupts at least one amino acid residue of nuclease active sites in the Cas protein, wherein the mutant Cas protein generates a break in only one strand of the target DNA region, and wherein the mutation diminishes nonhomologous recombination in the target DNA region.
- the first nucleic acid that encodes the Cas protein further comprises a nuclear localization signal (NLS).
- the nuclear localization signal is a SV40 nuclear localization signal.
- the second promoter that drives the expression of the genomic target sequence and the guide RNA is an RNA polymerase III promoter.
- the RNA polymerase III promoter is a human U6 promoter.
- the RNA polymerase III promoter is a rat U6 polymerase III promoter.
- the RNA polymerase III promoter is a mouse U6 polymerase III promoter.
- the nucleic acid sequences encoding crRNA and the tracrRNA are linked via a synthetic loop, wherein, upon expression, the crRNA and the tracrRNA forms a crRNA:tracrRNA duplex.
- the first expression construct and the second expression construct are expressed from a same plasmid.
- first and the second expression constructs are introduced together with the LTVEC. In one embodiment, the first and the second expression constructs are introduced separately from the LTVEC over a period of time.
- the method comprises introducing a plurality of the second construct and a plurality of the LTVEC for multiplex editing of distinct target loci as described herein.
- Active variants and fragments of nuclease agents are also provided.
- Such active variants can comprise at least 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more sequence identity to the native nuclease agent, wherein the active variants retain the ability to cut at a desired recognition site and hence retain nick or double-strand-break-inducing activity.
- any of the nuclease agents described herein can be modified from a native endonuclease sequence and designed to recognize and induce a nick or double-strand break at a recognition site that was not recognized by the native nuclease agent.
- the engineered nuclease has a specificity to induce a nick or double-strand break at a recognition site that is different from the corresponding native nuclease agent recognition site.
- Assays for nick or double-strand-break-inducing activity are known and generally measure the overall activity and specificity of the endonuclease on DNA substrates containing the recognition site.
- the nuclease agent may be introduced into the cell by any means known in the art.
- the polypeptide encoding the nuclease agent may be directly introduced into the cell.
- a polynucleotide encoding the nuclease agent can be introduced into the cell.
- the nuclease agent can be transiently, conditionally or constitutively expressed within the cell.
- the polynucleotide encoding the nuclease agent can be contained in an expression cassette and be operably linked to a conditional promoter, an inducible promoter, a constitutive promoter, or a tissue-specific promoter. Such promoters of interest are discussed in further detail elsewhere herein.
- the nuclease agent is introduced into the cell as an mRNA encoding or comprising a nuclease agent.
- the cRNA and the tracrRNA are expressed as separate RNA transcripts.
- the polynucleotide encoding the nuclease agent is stably integrated in the genome of the cell and operably linked to a promoter active in the cell.
- the polynucleotide encoding the nuclease agent is in the same targeting vector comprising the insert nucleic acid, while in other instances the polynucleotide encoding the nuclease agent is in a vector or a plasmid that is separate from the targeting vector comprising the insert nucleic acid.
- nuclease agent When the nuclease agent is provided to the cell through the introduction of polynucleotide encoding the nuclease agent, such a polynucleotide encoding a nuclease agent can be modified to substitute codons having a higher frequency of usage in the cell of interest, as compared to the naturally occurring polynucleotide sequence encoding the nuclease agent.
- the polynucleotide encoding the nuclease agent can be modified to substitute codons having a higher frequency of usage in a given prokaryotic or eukaryotic cell of interest, including a bacterial cell, a yeast cell, a human cell, a non-human cell, a mammalian cell, a rodent cell, a mouse cell, a rat cell or any other host cell of interest, as compared to the naturally occurring polynucleotide sequence.
- the endonuclease agent is introduced together with the LTVEC. In one embodiment, the endonuclease agent is introduced separately from the LTVEC over a period of time. In one embodiment, the endonuclease agent is introduced prior to the introduction of the LTVEC. In one embodiment, the endonuclease agent is introduced into the rat ES cell following introduction of the LTVEC.
- the endonuclease agent is an expression construct comprising a nucleic acid sequence encoding an endonuclease, wherein the nucleic acid sequence is operably linked to a promoter.
- the promoter is a constitutively active promoter.
- the promoter is an inducible promoter.
- the promoter is active in the pluripotent rat cell.
- the endonuclease agent is an mRNA encoding an endonuclease.
- a target locus in a pluripotent rat cell is targeted for genetic modification.
- Such a method comprises: (a) introducing into the pluripotent rat cell a targeting vector comprising an insert nucleic acid flanked with a 5′ rat homology arm and a 3′ rat homology arm; and (b) identifying a genetically modified pluripotent rat cell comprising the targeted genetic modification at the target locus, wherein the targeted genetic modification is capable of being transmitted through the germline.
- the sum total of the 5′ homology arm and the 3′ homology arm is at least 10 kb and/or a large targeting vector is employed.
- the size of the sum total of the total of the 5′ and 3′ homology arms of the LTVEC is about 10 kb to about 150 kb, about 10 kb to about 100 kb, about 10 kb to about 75 kb, about 20 kb to about 150 kb, about 20 kb to about 100 kb, about 20 kb to about 75 kb, about 30 kb to about 150 kb, about 30 kb to about 100 kb, about 30 kb to about 75 kb, about 40 kb to about 150 kb, about 40 kb to about 100 kb, about 40 kb to about 75 kb, about 50 kb to about 150 kb, about 50 kb to about 100 kb, or about 50 kb to about 75 kb, about 10 kb to about 30 kb, about 20 kb to about 40 kb, about 40 kb to about 60 kb, about 60 kb to about 80
- the pluripotent rat cell can be a rat embryonic stem cell.
- the rat ES cell is derived from a DA strain or an ACI strain; or, (b) the rat ES cell is characterized by expression of a pluripotency marker comprising Oct-4, Sox-2, alkaline phosphatase, or a combination thereof.
- the rat embryonic stem cell employed comprises a rat ES cell as described in U.S.
- the insert nucleic acid can be any nucleic acid sequence.
- the insert nucleic acid comprises a replacement of an endogenous rat nucleic acid sequence with a homologous or a orthologous mammalian nucleic acid sequence;
- the insert nucleic acid comprises a deletion of an endogenous rat nucleic acid sequence;
- the insert nucleic acid comprises a deletion of an endogenous rat nucleic acid sequence, wherein the deletion ranges from 5 kb to 200 kb or from 5 kb to 3 Mb (as discussed in detail elsewhere herein);
- the insert nucleic acid comprises an addition of an exogenous nucleic acid sequence (including for example an exogenous nucleic acid sequence ranging from about 5 kb to about 10 kb, from about 10 kb to about 20 kb, from about 20 kb to about 40 kb, from about 40 kb to about 60 kb, from about 60
- the insert nucleic acid comprises one or more functional human V H gene segments comprising V H 1-2, V H 1-3, V H 1-8, V H 1-18, V H 1-24, V H 1-45, V H 1-46, V H 1-58, V H 1-69, V H 2-5, V H 2-26, V H 2-70, V H 3-7, V H 3-9, V H 3-11, V H 3-13, V H 3-15, V H 3-16, V H 3-20, V H 3-21, V H 3-23, V H 3-30, V H 3-30-3, V H 3-30-5, V H 3-33, V H 3-35, V H 3-38, V H 3-43, V H 3-48, V H 3-49, V H 3-53, V H 3-64, V H 3-66, V H 3-72, V H 3-73, V H 3-74, V H 4-4, V H 4-28, V H 4-30-1, V H 4-30-2, V H 4-30-4, V H 4-31, V H 4-34, V H 4-39, V H 4-59, V H H 1-2,
- the insert nucleic acid comprises one or more functional human D gene segments comprising D1-1, D1-7, D1-14, D1-20, D1-26, D2-2, D2-8, D2-15, D2-21, D3-3, D3-9, D3-10, D3-16, D3-22, D4-4, D4-11, D4-17, D4-23, D5-12, D5-5, D5-18, D5-24, D6-6, D6-13, D6-19, D6-25, D7-27, or a combination thereof.
- the insert nucleic acid comprises one or more functional J H gene segments comprising J H 1, J H 2, J H 3, J H 4, J H 5, J H 6, or a combination thereof.
- the insert nucleic acid comprises one or more human V ⁇ gene segments comprising V ⁇ 4-1, V ⁇ 5-2, V ⁇ 7-3, V ⁇ 2-4, V ⁇ 1-5, V ⁇ 1-6, V ⁇ 3-7, V ⁇ 1-8, V ⁇ 1-9, V ⁇ 2-10, V ⁇ 3-11, V ⁇ 1-12, V ⁇ 1-13, V ⁇ 2-14, V ⁇ 3-15, V ⁇ 1-16, V ⁇ 1-17, V ⁇ 2-18, V ⁇ 2-19, V ⁇ 3-20, V ⁇ 6-21, V ⁇ 1-22, V ⁇ 1-23, V ⁇ 2-24, V ⁇ 3-25, V ⁇ 2-26, V ⁇ 1-27, V ⁇ 2-28, V ⁇ 2-29, V ⁇ 2-30, V ⁇ 3-31, V ⁇ 1-32, V ⁇ 1-33, V ⁇ 3-34, V ⁇ 1-35, V ⁇ 2-36, V ⁇ 1-37, V ⁇ 2-38, V ⁇ 1-39, V ⁇ 2-40, or
- the insert nucleic acid comprises one or more human V ⁇ gene segments comprising V ⁇ 3-1, V ⁇ 4-3, V ⁇ 2-8, V ⁇ 3-9, V ⁇ 3-10, V ⁇ 2-11, V ⁇ 3-12, V ⁇ 2-14, V ⁇ 3-16, V ⁇ 2-18, V ⁇ 3-19, V ⁇ 3-21, V ⁇ 2-22, V ⁇ 2-23, V ⁇ 3-25, V ⁇ 3-27, or a combination thereof.
- the insert nucleic acid comprises one or more human J ⁇ gene segments comprising J ⁇ 1, J ⁇ 2, J ⁇ 3, J ⁇ 4, J ⁇ 5, or a combination thereof.
- the genetic modification upon modification of the target locus in a pluripotent rat cell, is transmitted through the germline.
- the insert nucleic acid sequence comprises a polynucleotide that when integrated into the genome will produce a genetic modification of a region of the rat ApoE locus, wherein the genetic modification at the ApoE locus results in a decrease in ApoE activity, an increase in ApoE activity or a modulation of ApoE activity.
- an ApoE knockout is generated.
- the insert nucleic acid sequence comprises a polynucleotide that when integrated into the genome will produce a genetic modification of a region of the rat interleukin-2 receptor gamma locus, wherein the genetic modification at the interleukin-2 receptor gamma locus results in a decrease in interleukin-2 receptor activity, an increase in interleukin-2 receptor gamma activity, or a modulation of interleukin-2 receptor activity.
- an interleukin-2 receptor knockout is generated.
- the insert nucleic acid sequence comprises a polynucleotide that when integrated into the genome will produce a genetic modification of a region of the rat Rag1 locus, the rat Rag2 locus and/or the rat Rag2/Rag1 locus, wherein the genetic modification at the rat Rag1, Rag2 and/or Rag2/Rag1 locus results in a decrease in Rag1, Rag2 or Rag1 and Rag2 protein activity, an increase in Rag1, Rag2 or Rag1 and Rag2 protein activity, or a modulation in Rag1, Rag2 or Rag1 and Rag2 protein activity.
- a Rag1, Rag2 or Rag2/Rag1 knockout is generated.
- the insert nucleic acid results in the replacement of a portion of the rat ApoE locus, the interleukin-2 receptor gamma locus and/or Rag2 locus, and/or Rag1 locus and/or Rag2/Rag1 locus with the corresponding orthologous portion of an ApoE locus, an interleukin-2 receptor gamma locus, a Rag2 locus, a Rag1 locus and/or a Rag2/Rag1 locus from another organism.
- the insert nucleic acid comprises a polynucleotide sharing across its full length least 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% to a portion of an ApoE locus, an interleukin-2 receptor gamma locus, a Rag2 locus, a Rag1 locus and/or a Rag2/Rag1 locus it is replacing.
- the given insert polynucleotide and the corresponding region of the rat locus being replaced can be a coding region, an intron, an exon, an untranslated region, a regulatory region, a promoter, or an enhancer or any combination thereof.
- the given insert polynucleotide and/or the region of the rat locus being replaced can be of any desired length, including for example, between 10-100 nucleotides in length, 100-500 nucleotides in length, 500-1 kb nucleotide in length, 1 Kb to 1.5 kb nucleotide in length, 1.5 kb to 2 kb nucleotides in length, 2 kb to 2.5 kb nucleotides in length, 2.5 kb to 3 kb nucleotides in length, 3 kb to 5 kb nucleotides in length, 5 kb to 8 kb nucleotides in length, 8 kb to 10 kb nucleotides in length or more.
- the size of the insertion or replacement is from about 5 kb to about 10 kb, from about 10 kb to about 20 kb, from about 20 kb to about 40 kb, from about 40 kb to about 60 kb, from about 60 kb to about 80 kb, from about 80 kb to about 100 kb, from about 100 kb to about 150 kb, from about 150 kb to about 200 kb, from about 200 kb to about 250 kb, from about 250 kb to about 300 kb, from about 300 kb to about 350 kb, from about 350 kb to about 400 kb, from about 400 kb to about 800 kb, from about 800 kb to 1 Mb, from about 1 Mb to about 1.5 Mb, from about 1.5 Mb to about 2 Mb, from about 2 Mb, to about 2.5 Mb, from about 2.5 Mb to about 2.8 Mb, from about 2.8 Mb to about 3 Mb.
- the given insert polynucleotide and/or the region of the rat locus being replaced is at least 100, 200, 300, 400, 500, 600, 700, 800, or 900 nucleotides or at least 1 kb, 2 kb, 3 kb, 4 kb, 5 kb, 6 kb, 7 kb, 8 kb, 9 kb, 10 kb, 11 kb, 12 kb, 13 kb, 14 kb, 15 kb, 16 kb or greater.
- Methods and compositions are provided for modifying a target locus of a rat nucleic acid via bacterial homologous recombination (BHR) in a prokaryotic cell.
- BHR bacterial homologous recombination
- Such methods find use in utilizing bacterial homologous recombination in a prokaryotic cell to genetically modify a target locus of a rat nucleic acid in order to create a targeting vector.
- a targeting vector comprising the genetically modified target locus can be introduced into a eukaryotic cell, for example, a pluripotent rat cell.
- “Homologous recombination” includes the exchange of DNA fragments between two DNA molecules at cross-over sites within regions of homology.
- bacterial homologous recombination” or “BHR” includes homologous recombination that occurs in bacteria.
- Methods for modifying a target locus of a rat nucleic acid via bacterial homologous recombination comprise introducing into a prokaryotic cell a targeting vector comprising an insert nucleic acid flanked with a 5′ rat homology arm and a 3′ rat homology arm, wherein the prokaryotic cell comprises a rat nucleic acid and is capable of expressing a recombinase that mediates the BHR at the target locus.
- targeting vectors can include any of the large targeting vectors described herein.
- the method comprises introducing into a prokaryotic cell: (i) a first construct comprising a rat nucleic acid having a DNA sequence of interest; (ii) a second targeting construct comprising an insert nucleic acid flanked with a rat 5′ homology arm and a rat 3′ homology arm, and (iii) a third construct encoding a recombinase that mediates bacterial homologous recombination.
- the first, the second, and the third construct are introduced into the prokaryotic cell separately over a period of time.
- the prokaryotic cell comprises a nucleic acid that encodes the recombinase, and the method does not require introduction of the third construct.
- the recombinase is expressed under the control of an inducible promoter.
- the first construct comprising the rat nucleic acid is derived from a bacterial artificial chromosome (BAC) or yeast artificial chromosome (YAC).
- BAC bacterial artificial chromosome
- YAC yeast artificial chromosome
- a prokaryotic cell comprising the insert nucleic acid at the target genomic locus can be selected. This method can be serially repeated as disclosed herein to allow the introduction of multiple insert nucleic acids at the targeted rat locus in the prokaryotic cell.
- a targeting vector comprising the modified rat target locus can be isolated from the prokaryotic cell and introduced into a target genomic locus within a mammalian cell (i.e, a rat cell, a pluripotent rat cell, or a rat embryonic stem cell).
- Preferred rat cells for receiving targeting vectors are described in U.S. application Ser. No. 14/185,703, filed Feb. 20, 2014, the contents of which are summarized herein. These rat cells are pluripotent rat cells capable of sustaining their pluripotency following one or more targeted genetic modifications in vitro, and are capable of transmitting the targeted genetic modifications through the germline.
- Electroporated pluripotent rat cells are plated at a high density for the selection of drug-resistant cells comprising the targeting vector.
- the drug selection process removes the majority of the plated cells ( ⁇ 99%), leaving behind individual colonies, each of which is a clone derived from a single cell. Of the remaining cells, most cells ( ⁇ 80-100%) contain the targeting vector (comprising a drug selection cassette) integrated at a random location in the genome. Therefore, the colonies are picked individually and genotyped to identify rat ES cells harboring the targeting vector at the correct genomic location (e.g., using the modification of allele assay described below).
- a high-throughput quantitative assay namely, modification of allele (MOA) assay
- MOA modification of allele
- the MOA assay can be carried out via various analytical techniques, including, but not limited to, a quantitative PCR, e.g., a real-time PCR (qPCR).
- a quantitative PCR e.g., a real-time PCR (qPCR).
- qPCR real-time PCR
- the real-time PCR comprises a first primer set that recognizes the target locus and a second primer set that recognizes a non-targeted reference locus.
- the primer set comprises a fluorescent probe that recognizes the amplified sequence.
- the quantitative assay is carried out via Invader Probes®.
- the quantitative assay is carried out via MMP Assays®. In one embodiment, the quantitative assay is carried out via TaqMan® Molecular Beacon. In one embodiment, the quantitative assay is carried out via EclipseTM probe technology. (See, for example, US2005/0144655, which is incorporated by reference herein in its entirety).
- the selected pluripotent rat cell or the rat ES cells comprising the targeted genetic modification can then be introduced into a host rat embryo, for example, a pre-morula stage or blastocyst stage rat embryo, and implanted in the uterus of a surrogate mother to generate a founder rat (F0 rat). Subsequently, the founder rat can be bred to a wild-type rat to create F1 progeny heterozygous for the genetic modification. Mating of the heterozygous F1 rat can produce progeny homozygous for the genetic modification. Mating of the heterozygous F1 rat can produce progeny homozygous for the genetic modification.
- LTVEC large targeting vector
- an LTVEC can be derived from Bacterial Artificial Chromosome (BAC) DNA using VELOCIGENE® genetic engineering technology (see, e.g., U.S. Pat. No. 6,586,251 and Valenzuela, D. M. et al. (2003), High-throughput engineering of the mouse genome coupled with high-resolution expression analysis, Nature Biotechnology 21(6): 652-659, which is incorporated herein by reference in their entireties).
- BAC Bacterial Artificial Chromosome
- An exemplary LTVEC produced in the prokaryotic cell can comprises an insert nucleic acid that carries a rat genomic sequence with one or more genetic modifications or an exogenous nucleic acid (e.g., a homolog or ortholog of a rat nucleic acid), which is flanked by rat homologous arms complementary to specific genomic regions.
- a host prokaryotic cell comprising the various targeting vectors described herein are also provided.
- Such prokaryotic cells include, but are not limited to, bacteria such as E. coli .
- a host prokaryotic cell comprises a targeting vector comprising an insert nucleic acid flanked with a 5 rat homology arm and a 3′ rat homology arm, wherein the insert nucleic acid ranges from about 5 kb to about 200 kb.
- the host prokaryotic cell can further comprise a nucleic acid that encodes a recombinase polypeptide or the nucleic acid that encodes the recombinase polypeptide is operably linked to an inducible promoter.
- compositions which employ the LTVEC as described herein in combination with a prokaryotic cell in order to produce targeted genetic modifications. Such compositions and methods are discussed elsewhere herein.
- Methods for modifying a target locus of a nucleic acid via bacterial homologous recombination comprise introducing into a prokaryotic cell a targeting vector comprising an insert nucleic acid flanked with a 5′ homology arm and a 3′ homology arm, wherein the prokaryotic cell comprises nucleic acids corresponding to the 5′ and 3′ homology arms and the prokaryotic cell is capable of expressing a recombinase that mediates the BHR at the target locus.
- targeting vectors can include any of the large targeting vectors described herein.
- Such methods can employ a LTVEC as discussed in detail herein and further employ the CRISPR/Cas system as discussed elsewhere herein.
- a method for modifying a target locus of interest in a pluripotent rat cell via targeted genetic modification comprising (a) introducing into the pluripotent rat cell a targeting vector comprising an insert nucleic acid flanked with a 5′ rat homology arm and a 3′ rat homology arm, wherein the sum total of the 5′ homology arm and the 3′ homology arm is at least 10 kb; and (b) identifying a genetically modified pluripotent rat cell comprising the targeted genetic modification at the target locus of interest.
- the sum total of the 5′ homology arm and the 3′ homology arm is at least about 16 kb to about 30 kb.
- the targeted genetic modification is capable of being transmitted through the germline.
- Such targeting vectors can include any of the large targeting vectors described herein.
- a method for modifying a genomic locus of interest in a pluripotent rat cell via targeted genetic modification comprising: (a) providing a pluripotent rat cell that is able to sustain its pluripotency following at least one targeted genetic modification of its genome and is able to transmit the targeted modification to a germline of an F1 generation; (b) introducing a large targeting vector (LTVEC) into the pluripotent rat cell, wherein the LTVEC comprises an insert nucleic acid flanked with a 5′ homology arm and a 3′ homology arm, wherein the 5′ homology arm and the 3′ homology arm comprise a rat genomic DNA fragment; and (c) identifying a genetically modified pluripotent rat cell comprising the targeted genetic modification.
- LTVEC large targeting vector
- a method for modifying a genomic locus of interest in a pluripotent rat cell via endonuclease-mediated gene targeting comprising: (a) providing an isolated pluripotent rat cell that is able to transmit the genetically modified genome to a germline of an F1 generation; (b) introducing into the pluripotent rat cell an endonuclease agent; wherein the endonuclease agent makes a nick or a double strand break at a target DNA sequence located in the genomic locus of interest, and wherein the nick or the double strand break at the target DNA sequence in the rat ES cell induces: (i) non-homologous end joining (NHEJ)-mediated DNA repair of the nick or the double strand break, wherein the NHEJ-mediated DNA repair generates a mutant allele comprising an insertion or a deletion of a nucleic acid sequence at the target DNA sequence; or (ii) homologous recombination
- NHEJ non-hom
- a method for modifying a genomic locus of interest in an isolated rat embryonic stem cell (ES) via a nuclease agent comprising: (a) providing an isolated rat ES cell that is able to transmit the targeted genetic modification to a germline of an F1 generation; (b) introducing into the rat ES cell: (i) a large targeting vector (LTVEC) comprising an insert nucleic acid flanked with a rat 5′ homology arm and a rat 3′ homology arm, wherein the insert is a nucleic acid sequence that is at least 5 kb; and (ii) an endonuclease agent, wherein the endonuclease agent makes a nick or a double strand break at a target DNA sequence located in the genomic locus of interest, and wherein the target sequence is not present in the insert nucleic acid; and (c) identifying the targeted genetic modification in the rat embryonic stem (ES) cell.
- LTVEC large targeting vector
- LTVEC large
- a method for modifying a genomic locus of interest in a pluripotent rat cell via RNA-guided genome engineering comprising: (a) providing a pluripotent rat cell that is able to transmit the genetically modified genome to a germline of an F1 generation; (b) introducing into the pluripotent rat cell: (i) a first expression construct comprising a first promoter operably linked to a first nucleic acid sequence encoding a Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-associated (Cas) protein, (ii) a second expression construct comprising a second promoter operably linked to a genomic target sequence linked to a guide RNA (gRNA), wherein the genomic target sequence is flanked on the 3′ end by a Protospacer Adjacent Motif (PAM) sequence.
- CRISPR Clustered Regularly Interspaced Short Palindromic Repeats
- gRNA guide RNA
- the genomic target sequence comprises the nucleotide sequence of GNNNNNNNNNNNNNNNNNNNNGG (GN 1-20 GG; SEQ ID NO: 1). In one embodiment, the genomic target sequence comprises SEQ ID NO:1, wherein N is between 14 and 20 nucleotides in length.
- the gRNA comprises a third nucleic acid sequence encoding a Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) RNA (crRNA) and a fourth nucleic acid sequence encoding a trans-activating CRISPR RNA (tracrRNA).
- CRISPR Clustered Regularly Interspaced Short Palindromic Repeats
- tracrRNA trans-activating CRISPR RNA
- the Cas protein upon expression, forms a CRISPR-Cas complex comprising the crRNA and the tracrRNA, and the CRISPR-Cas complex makes a nick or a double strand break at a target DNA sequence located in the genomic locus of interest, and wherein the nick or the double strand break at the target DNA sequence in the pluripotent rat cell induces: (i) non-homologous end joining (NHEJ)-mediated DNA repair of the nick or the double strand break created by the CRISPR-Cas complex, wherein the NHEJ generates a mutant allele comprising an insertion or a deletion of a nucleic acid sequence at the target DNA sequence; or (ii) homologous recombination-mediated DNA repair that results in restoration of a wild-type nucleic acid sequence; and (c) identifying the modified the genomic locus of interest.
- NHEJ non-homologous end joining
- the pluripotent rat cell is an induced rat pluripotent stem cell (iPS). In one embodiment, the pluripotent rat cell is a developmentally restricted progenitor cell.
- iPS induced rat pluripotent stem cell
- the presence of a nick or a double-strand break in the recognition site within the selection marker increases the efficiency and/or frequency of recombination between a targeting vector (such as a LTVEC) and the targeted locus of interest.
- a targeting vector such as a LTVEC
- the recombination is homologous recombination.
- the recombination is an insertion by non-homologous end joining.
- targeting efficiency of a targeting vector at the target genomic locus is at least about 2-fold higher, at least about 3-fold higher, at least about 4-fold higher than in the absence of the nick or double-strand break (using, e.g., the same targeting vector and the same homology arms and corresponding target sites at the genomic locus of interest but in the absence of an added nuclease agent that makes the nick or double strand break).
- the targeted genetic modification at the target locus is biallelic.
- Biallelic is meant that both alleles of a gene comprise the targeted genetic modification.
- the combined use of a targeting vector (including, for example, an LTVEC) with a nuclease agent results in biallelic targeted genetic modification of the genomic locus of interest in a cell as compared to use of the targeting vector alone.
- blanche targeting efficiency is increased at least by two-fold, at least three-fold, at least 4-fold or more as compared to when the targeting vector is used alone.
- the bialleic targeting efficiency is at least 0.2%, 0.3%, 0.4%, 0.5%, 0.6%, 0.7%, 0.8%, 0.9%, 1%, 2%, 3%, 4% or 5% or higher.
- compositions which comprise a genetically modified rat having a targeted genetic modification in the interleukin-2 receptor gamma locus or in the ApoE locus.
- the various methods and compositions provided herein allows for these modified loci to be transmitted through the germline.
- a genetically modified rat or a genetically modified pluripotent rat cell comprises a genomic locus having a targeted genetic modification in the interleukin-2 gamma receptor locus or having a targeted genetic modification in the ApoE locus, wherein the interleukin-2 gamma receptor genomic locus or the ApoE locus comprise: (i) a deletion of at least a portion of the interleukin-2 gamma receptor locus or at least a portion of the ApoE locus; (ii) an insertion of a heterologous nucleic acid sequence into the ApoE locus or into the interleukin-2 gamma receptor locus; or (iii) a combination thereof, wherein the genetically modified genomic locus is capable of being transmitted through the germline.
- Such methods include a method for modifying an ApoE genomic locus or a interleukin-2 gamma receptor locus in a pluripotent rat cell via targeted genetic modification.
- the method comprises (a) introducing into the pluripotent rat cell a targeting vector comprising an insert nucleic acid flanked with a 5′ rat homology arm to the ApoE locus and a 3′ rat homology arm to the ApoE locus, (b) identifying a genetically modified pluripotent rat cell comprising the targeted genetic modification at the ApoE genomic locus of interest, wherein the targeted genetic modification is capable of being transmitted through germline.
- Additional methods include (a) introducing into the pluripotent rat cell a targeting vector comprising an insert nucleic acid flanked with a 5′ rat homology arm to the interleukin-2 receptor gamma locus and a 3′ rat homology arm to the interleukin-2 receptor gamma locus, (b) identifying a genetically modified pluripotent rat cell comprising the targeted genetic modification at the interleukin-2 receptor gamma locus, wherein the targeted genetic modification is capable of being transmitted through germline.
- the various methods and compositions provided herein allow for the targeted integration of multiple polynucleotides of interest with a given target locus.
- the various methods set forth above can be sequentially repeated to allow for the targeted integration of any number of insert nucleic acids into a given targeted locus.
- the various methods provide for the insertion of at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 or more insert nucleic acids into the target locus.
- such sequential stacking methods allow for the reconstruction of large genomic regions from a mammalian cell (i.e., a human, a non-human, a rodent, a mouse, a monkey, a rat, a hamster, a domesticated mammal or an agricultural animal) into a targeted locus.
- a mammalian cell i.e., a human, a non-human, a rodent, a mouse, a monkey, a rat, a hamster, a domesticated mammal or an agricultural animal
- genomic regions that include both coding and non-coding regions allow for the complexity of a given region to be preserved by retaining, at least in part, the coding regions, the non-coding regions and the copy number variations found within the native genomic region.
- the various methods provide, for example, methods to generate “heterologous” or “exogenous” genomic regions within any mammalian cell or animal of interest, particularly within a prokaryotic host cell or within a pluripotent rat cell or a rat ES cell.
- a “humanized” genomic region within a non-human animal i.e., within a rat is generated.
- humanized genomic locus is meant a region of a non-human genome comprising at least one human nucleic acid sequence.
- a “humanized rat locus” comprises a region of rat DNA that has a human DNA sequence inserted therein.
- the human DNA sequence can be a naturally occurring human DNA sequence or it can be modified from its native form. In specific embodiments, the human DNA shares at least 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% sequence identity to a native human sequence.
- a human sequence is not a native human sequence it at least has greater sequence identity to a native human sequence than it does to an orthologous rat sequence.
- the human DNA sequence can comprise a cDNA, a region of human genomic DNA, a non-coding regulatory region, or any portion of a coding, genomic, or regulatory region of the human DNA.
- the human DNA sequence inserted into the rat locus can comprise any of the insert polynucleotides described elsewhere herein.
- the human DNA sequence is orthologous to the rat target locus, while in other instances, the human DNA sequence is homologous to the rat target locus.
- the targeted genetic modification is an insertion or a replacement of an endogenous rat nucleic acid sequence with a homologous or orthologous human nucleic acid sequence. In one embodiment, the targeted genetic modification comprises an insertion or replacement of an endogenous rat nucleic acid sequence with a homologous or orthologous human nucleic acid sequence at an endogenous rat locus that comprises the corresponding rat nucleic acid sequence.
- Methods for making a humanized rat locus comprise introducing into the target locus comprising a rat nucleic acid a human nucleic acid sequence.
- a method of making a humanized rat comprises (a) modifying a genome of a pluripotent rat cell with a targeting vector comprising an insert nucleic acid that comprises a human nucleic acid sequence to form a donor cell; (b) introducing the donor cell into a host rat embryo; and (c) gestating the host rat embryo in a surrogate mother; wherein the surrogate mother produces a rat progeny that comprises the human nucleic acid sequence.
- the humanized rat locus is capable of being transmitted through the germline.
- the targeting vector comprises a large targeting vector (LTVEC) and the insert nucleic acid that comprises a human nucleic acid sequence is at least 5 kb.
- the humanized rat locus is made by modifying a target locus of a rat nucleic acid via bacterial homologous recombination (BHR).
- BHR bacterial homologous recombination
- the method comprises introducing into a prokaryotic cell a targeting vector comprising an insert nucleic acid flanked with a 5′ rat homology arm and u3′ rat homology arm, wherein the insert nucleic acid comprises a human nucleic acid sequence, and wherein the prokaryotic cell comprises a rat nucleic acid and is capable of expressing a recombinase that mediates the BHR at the target locus.
- the humanized rat genomic locus can comprise (a) an insertion of a homologous or orthologous human nucleic acid sequence; (b) a replacement of an endogenous rat nucleic acid sequence with a homologous or orthologous human nucleic acid sequence; or (c) a combination thereof.
- the humanized rat genomic locus is capable of being transmitted through the germline.
- the human orthologous sequence replaces the corresponding sequence found in the rat.
- Any human nucleic acid sequence can be used in the methods and compositions provided herein.
- Non-limiting examples of human nucleic acid sequences that can be used in the methods and compositions are discussed in detail elsewhere herein.
- the human nucleic acid sequence for insertion into the rat locus of interest can be any size.
- the human nucleic acid sequence can be from about 500 nucleotides to about 200 kb, from about 500 nucleotides to about 5 kb, from about 5 kb to about 200 kb, from about 5 kb to about 10 kb, from about 10 kb to about 20 kb, from about 20 kb to about 30 kb, from about 30 kb to about 40 kb, from about 40 kb to about 50 kb, from about 60 kb to about 70 kb, from about 80 kb to about 90 kb, from about 90 kb to about 100 kb, from about 100 kb to about 11.0 kb, from about 120 kb to about 130 kb, from about 130 kb to about 140 kb, from about 140 kb to about 150 kb, from about 150 kb to about 160 kb, from about 160 kb
- a rat genomic locus wherein the homologous or orthologous human nucleic acid sequence comprises (a) one or more unrearranged human immunoglobulin heavy chain V H gene segments, one or more unrearranged human immunoglobulin heavy chain D gene segments, and one or more unrearranged human immunoglobulin heavy chain J H gene segments, which are operably linked to a mammalian heavy chain constant region nucleic acid sequence; (b) a rearranged human immunoglobulin heavy chain variable region nucleic acid sequence operably linked to a mammalian immunoglobulin heavy chain constant region nucleic acid sequence; (c) one or more unrearranged human immunoglobulin V ⁇ or V ⁇ gene segments and one or more unrearranged human immunoglobulin J ⁇ or J ⁇ gene segments, which are operably linked to a mammalian, immunoglobulin ⁇ or ⁇ light chain light chain constant region nucleic acid sequence; or, (d) a rearranged human immunoglobulin ⁇ or ⁇ light
- a rat genomic locus wherein (a) the mammalian immunoglobulin heavy chain constant region nucleic acid sequence is a rat constant region nucleic acid sequence, a human constant region nucleic acid sequence, or a combination thereof; or, (b) the mammalian immunoglobulin ⁇ or ⁇ light chain light chain constant region nucleic acid sequence is a rat constant region nucleic acid sequence, a human constant region nucleic acid sequence, or a combination thereof.
- a rat genomic locus wherein the immunoglobulin heavy chain constant region nucleic acid sequence is selected from or comprises a CH1, a hinge, a CH2, a CH3, and/or a combination thereof.
- the rat genomic locus comprises one or more functional human V H gene segments comprising V H 1-2, V H 1-3, V H 1-8, V H 1-18, V H 1-24, V H 1-45, V H 1-46, V H 1-58, V H 1-69, V H 2-5, V H 2-26, V H 2-70, V H 3-7, V H 3-9, V H 3-11, V H 3-13, V H 3-15, V H 3-16, V H 3-20, V H 3-21, V H 3-23, V H 3-30, V H 3-30-3, V H 3-30-5, V H 3-33, V H 3-35, V H 3-38, V H 3-43, V H 3-48, V H 3-49, V H 3-53, V H 3-64, V H 3-66, V H 3-72, V H 3-73, V H 3-74, V H 4-4, V H 4-28, V H 4-30-1, V H 4-30-2, V H 4-30-4, V H 4-31, V H 4-34, V H 4-39, V H 4-59, V H H 1-2,
- the rat genomic locus comprises one or more functional human D gene segments comprising D1-1, D1-7, D1-14, D1-20, D1-26, D2-2, D2-8, D2-15, D2-21, D3-3, D3-9, D3-10, D3-16, D3-22, D4-4, D4-11, D4-17, D4-23, D5-12, D5-5, D5-18, D5-24, D6-6, D6-13, D6-19, D6-25, D7-27, or a combination thereof.
- the rat genomic locus comprises one or more functional J H gene segments comprising J H 1, J H 2, J H 3, J H 4, J H 5, J H 6, and/or a combination thereof.
- the insert nucleic acid comprises one or more human V ⁇ gene segments comprises V ⁇ 4-1, V ⁇ 5-2, V ⁇ 7-3, V ⁇ 2-4, V ⁇ 1-5, V ⁇ 1-6, V ⁇ 3-7, V ⁇ 1-8, V ⁇ 1-9, V ⁇ 2-10, V ⁇ 3-11, V ⁇ 1-12, V ⁇ 1-13, V ⁇ 2-14, V ⁇ 3-15, V ⁇ 1-16, V ⁇ 1-17, V ⁇ 2-18, V ⁇ 2-19, V ⁇ 3-20, V ⁇ 6-21, V ⁇ 1-22, V ⁇ 1-23, V ⁇ 2-24, V ⁇ 3-25, V ⁇ 2-26, V ⁇ 1-27, V ⁇ 2-28, V ⁇ 2-29, V ⁇ 2-30, V ⁇ 3-31, V ⁇ 1-32, V ⁇ 1-33, V ⁇ 3-34, V ⁇ 1-35, V ⁇ 2-36, V ⁇ 1-37, V ⁇ 2-38, V ⁇ 1-39, V ⁇ 2-40,
- the rat genomic locus comprises one or more human V ⁇ gene segments comprising V ⁇ 3-1, V ⁇ 4-3, V ⁇ 2-8, V ⁇ 3-9, V ⁇ 3-10, V ⁇ 2-11, V ⁇ 3-12, V ⁇ 2-14, V ⁇ 3-16, V ⁇ 2-18, V ⁇ 3-19, V ⁇ 3-21, V ⁇ 2-22, V ⁇ 2-23, V ⁇ 3-25, V ⁇ 3-27, or a combination thereof.
- the rat genomic locus comprises one or more human J ⁇ gene segments comprising J ⁇ 1, J ⁇ 2, J ⁇ 3, J ⁇ 4, J ⁇ 5, or a combination thereof.
- the rat genomic locus comprises a humanized genomic locus comprising a human interleukin-2 receptor (IL2R) nucleic acid sequence or a variant or a fragment thereof is provided.
- IL2R nucleic acid sequence comprises an interleukin-2 receptor alpha, an interleukin-2 receptor beta, or an interleukin-2 receptor gamma nucleic acid sequence or variants or fragments thereof.
- a rat genomic locus comprises a humanized genomic locus comprising of a portion of the human ApoE locus, the human interleukin-2 receptor gamma locus, the human Rag2 locus, the human Rag1 locus and/or the human Rag2/Rag1 locus replacing the corresponding homologous or orthologous portion of the rat ApoE locus, the rat interleukin-2 receptor gamma locus, the rat Rag2 locus, the rat Rag1 locus and/or the rat Rag2/Rag1 locus.
- the rat ecto-domain of IL-2Rg is replaced with the ecto-domain of human IL-2Rg, with the remainder of the molecule being from the rat.
- a genetically modified rat comprising a humanized genomic locus.
- Such genetically modified rats comprise (a) an insertion of a homologous or orthologous human nucleic acid sequence; (b) a replacement of rat nucleic acid sequence with a homologous or orthologous human nucleic acid sequence at an endogenous genomic locus; or (c) a combination thereof, wherein the humanized genomic locus is capable of being transmitted through the germline.
- Any polynucleotide of interest may be contained in the various insert nucleic acids and thereby integrated at the target locus.
- the methods disclosed herein provide for at least 1, 2, 3, 4, 5, 6 or more polynucleotides of interest to be integrated into the targeted genomic locus.
- the polynucleotide of interest within the insert nucleic acid when integrated at the target genomic locus can introduce one or more genetic modifications into the cell.
- the genetic modification can comprise a deletion of an endogenous nucleic acid sequence and/or the addition of an exogenous or heterologous or orthologous polynucleotide into the target genomic locus.
- the genetic modification comprises a replacement of an endogenous nucleic acid sequence with an exogenous polynucleotide of interest at the target genomic locus.
- methods provided herein allow for the generation of a genetic modification comprising a knockout, a deletion, an insertion, a replacement (“knock-in”), a point mutation, a domain swap, an exon swap, an intron swap, a regulatory sequence swap, a gene swap, or a combination thereof.
- knock-in a replacement
- Such modifications may occur upon integration of the first, second, third, fourth, fifth, six, seventh, or any subsequent insert nucleic acids into the target genomic locus.
- the polynucleotide of interest within the insert nucleic acid and/or integrated at the target locus can comprise a sequence that is native to the cell it is introduced into; the polynucleotide of interest can be heterologous to the cell it is introduced to; the polynucleotide of interest can be exogenous to the cell it is introduced into; the polynucleotide of interest can be orthologous to the cell it is introduced into; or the polynucleotide of interest can be from a different species than the cell it is introduced into.
- native in reference to a sequence inserted at the target locus is a sequence that is native to the cell having the target locus or native to the cell from which the target locus was derived (i.e., from a rat).
- heterologous in reference to a sequence includes a sequence that originates from a foreign species, or, if from the same species, is substantially different or modified from its native form in composition and/or genomic locus by deliberate human intervention.
- exogenous in reference to a sequence is a sequence that originates from a foreign species.
- the polynucleotide of interest can be from any organism of interest including, but not limited to, non-human, a rodent, a hamster, a mouse, a rat, a human, a monkey, an agricultural mammal or a non-agricultural mammal.
- the polynucleotide of interest can further comprise a coding region, a non-coding region, a regulatory region, or a genomic DNA.
- the 1st, 2nd, 3rd, 4th, 5th, 6th, 7th, and/or any of the subsequent insert nucleic acids can comprise such sequences.
- the polynucleotide of interest within the insert nucleic acid and/or integrated at the target locus is native to a mouse nucleic acid sequence, a human nucleic acid, a non-human nucleic acid, a rodent nucleic acid, a rat nucleic acid, a hamster nucleic acid, a monkey nucleic acid, an agricultural mammal nucleic acid, or a non-agricultural mammal nucleic acid.
- the polynucleotide of interest integrated at the target locus is a fragment of a genomic nucleic acid.
- the genomic nucleic acid is a mouse genomic nucleic acid, a human genomic nucleic acid, a non-human nucleic acid, a rodent nucleic acid, a rat nucleic acid, a hamster nucleic acid, a monkey nucleic acid, an agricultural mammal nucleic acid or a non-agricultural mammal nucleic acid or a combination thereof.
- the polynucleotide of interest can range from about 500 nucleotides to about 200 kb as described above.
- the polynucleotide of interest can be from about 500 nucleotides to about 5 kb, from about 5 kb to about 200 kb, from about 5 kb to about 10 kb, from about 10 kb to about 20 kb, from about 20 kb to about 30 kb, from about 30 kb to about 40 kb, from about 40 kb to about 50 kb, from about 60 kb to about 70 kb, from about 80 kb to about 90 kb, from about 90 kb to about 1.00 kb, from about 100 kb to about 110 kb, from about 120 kb to about 130 kb, from about 130 kb to about 140 kb, from about 140 kb to about 150 kb, from about 150 kb to about 160 kb, from about 160 kb to about 170 k
- the polynucleotide of interest within the insert nucleic acid and/or inserted at the target genomic locus can encode a polypeptide, can encode an miRNA, or it can comprise any regulatory regions or non-coding regions of interest including, for example, a regulatory sequence, a promoter sequence, an enhancer sequence, a transcriptional repressor-binding sequence, or a deletion of a non-protein-coding sequence, but does not comprise a deletion of a protein-coding sequence.
- the polynucleotide of interest within the insert nucleic acid and/or inserted at the target genomic locus can encode a protein expressed in the nervous system, the skeletal system, the digestive system, the circulatory system, the muscular system, the respiratory system, the cardiovascular system, the lymphatic system, the endocrine system, the urinary system, the reproductive system, or a combination thereof.
- the polynucleotide of interest within the insert nucleic acid and/or inserted at the target genomic locus encodes a protein expressed in a bone marrow or a bone marrow-derived cell.
- the polynucleotide of interest within the insert nucleic acid and/or integrated at the target locus encodes a protein expressed in a spleen cell.
- the polynucleotide of interest within the insert nucleic acid and/or inserted at the target locus encodes a protein expressed in a B cell, encodes a protein expressed in an immature B cell or encodes a protein expressed in a mature B cell.
- the polynucleotide of interest within the insert polynucleotide can comprise a portion of an ApoE locus, an IL-2-Rg locus, a Rag1 locus, a Rag2 locus and/or a Rag2/Rag1 locus. Such portions of these given loci are discussed elsewhere herein, as are the various homologous and orthologous regions from any organism of interest that can be employed.
- polynucleotide of interest within the insert nucleic acid and/or inserted at the target locus comprises a genomic nucleic acid sequence that encodes an immunoglobulin heavy chain variable region amino acid sequence.
- the phrase “heavy chain,” or “immunoglobulin heavy chain” are described elsewhere herein.
- the polynucleotide of interest within the insert nucleic acid and/or integrated at the target locus comprises a genomic nucleic acid sequence that encodes a human immunoglobulin heavy chain variable region amino acid sequence.
- the genomic nucleic acid sequence comprises one or more unrearranged human immunoglobulin heavy chain V H gene segments, one or more unrearranged human immunoglobulin heavy chain D gene segments, and one or more unrearranged human immunoglobulin heavy chain J H gene segments, which are operably linked to a mammalian heavy chain constant region nucleic acid sequence.
- the genomic nucleic acid sequence comprises a rearranged human immunoglobulin heavy chain variable region nucleic acid sequence operably linked to a mammalian heavy chain constant region nucleic acid sequence.
- the genomic nucleic acid sequence comprises one or more unrearranged human immunoglobulin V ⁇ or V ⁇ gene segments and one or more unrearranged human immunoglobulin J ⁇ or J ⁇ gene segments, which are operably linked to a mammalian immunoglobulin ⁇ or ⁇ light chain light chain constant region nucleic acid sequence.
- the genomic nucleic acid sequence comprises a rearranged human immunoglobulin ⁇ or ⁇ light chain variable region nucleic acid sequence operably linked to a mammalian immunoglobulin ⁇ or ⁇ light chain light chain constant region nucleic acid sequence.
- the heavy chain constant region nucleic acid sequence comprises a rat constant region nucleic acid sequence, a human constant region nucleic acid sequence, or a combination thereof.
- the immunoglobulin ⁇ or ⁇ light chain constant region nucleic acid comprises a rat constant region nucleic acid sequence, a human constant region nucleic acid sequence, or a combination thereof.
- the immunoglobulin heavy chain constant region nucleic acid sequence is selected from or comprises a CH1, a hinge, a CH2, a CH3, and/or a combination thereof. In one embodiment, the heavy chain constant region nucleic acid sequence comprises a CH1-hinge-CH2-CH3.
- the polynucleotide of interest within the insert nucleic acid and/or integrated at the target locus comprises a genomic nucleic acid sequence that encodes an immunoglobulin light chain variable region amino acid sequence.
- the phrase “light chain” includes an immunoglobulin light chain sequence from any organism, and is described elsewhere herein.
- the polynucleotide of interest within the insert nucleic acid and/or integrated at the target genomic locus comprises a genomic nucleic acid sequence that encodes a human immunoglobulin light chain variable region amino acid sequence.
- the genomic nucleic acid sequence comprises one or more unrearranged human immunoglobulin V ⁇ or V ⁇ gene segments and one or more unrearranged human immunoglobulin J ⁇ or J ⁇ gene segments, which are operably linked to a rodent immunoglobulin ⁇ or ⁇ light chain light chain constant region nucleic acid sequence.
- the genomic nucleic acid sequence comprises a rearranged human immunoglobulin ⁇ or ⁇ light chain variable region nucleic acid sequence operably linked to a rodent immunoglobulin ⁇ or ⁇ light chain light chain constant region nucleic acid sequence.
- the light chain constant region nucleic acid sequence comprises a rat constant region nucleic acid sequence, a human constant region nucleic acid sequence, or a combination thereof.
- the immunoglobulin ⁇ or ⁇ light chain constant region nucleic acid comprises a rat constant region nucleic acid sequence, a human constant region nucleic acid sequence, or a combination thereof.
- the polynucleotide of interest within the insert nucleic acid and/or integrated at the target locus can encode an extracellular protein or a ligand for a receptor.
- the encoded ligand is a cytokine.
- Cytokines of interest includes chemokine selected from or comprising CCL, CXCL, CX3CL, and/or XCL.
- the cytokine can also comprise a tumor necrosis factor (TNF).
- TNF tumor necrosis factor
- the cytokine is an interleukin (IL).
- the interleukin is selected from or comprises IL-1, IL-2, IL-3, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-11, IL-12, IL-13, IL-14, IL-15, IL-16, IL-17, IL-18, IL-19, IL-20, IL-21, IL-22, IL-23, IL-24, IL-25, IL-26, IL-27, IL-28, IL-29, IL-30, IL-31, IL-32, IL-33, IL-34, IL-35, and/or IL-36.
- the interleukin is IL-2.
- such polynucleotides of interest within the insert nucleic acid and/or integrated at the target genomic locus are from a human and, in more specific embodiments, can comprise human genomic sequence.
- the polynucleotide of interest within the insert nucleic acid and/or integrated at the target genomic locus can encode Apolipoprotein E (ApoE).
- the polynucleotide of interest within the insert nucleic acid and/or integrated at the target locus can encode a cytoplasmic protein or a membrane protein.
- the membrane protein is a receptor, such as, a cytokine receptor, an interleukin receptor, an interleukin 2 receptor-alpha, an interleukin-2 receptor beta, an interleukin-2 receptor gamma or receptor tyrosine kinase.
- the polynucleotide of interest within the insert nucleic acid and/or integrated at the target locus can comprise an orthologous or homologous region of the target locus.
- the polynucleotide of interest within the insert nucleic acid and/or integrated at the target locus can comprise a polynucleotide encoding at least a region of a T cell receptor, including the T cell receptor alpha.
- each of the insert nucleic acids comprise a genomic region of the T cell receptor locus (i.e. the T cell receptor alpha locus) such that upon completion of the serial integration, a portion or the entirety of the genomic T cell receptor locus has been integrated at the target locus.
- Such insert nucleic acids can comprise at least one or more of a variable segment or a joining segment of a T cell receptor locus (i.e. of the T cell receptor alpha locus).
- the polynucleotide of interest encoding the region of the T cell receptor can be from, for example, a mammal, a non-human mammal, rodent, mouse, rat, a human, a monkey, an agricultural mammal or a domestic mammal polynucleotide encoding a mutant protein.
- the polynucleotide of interest integrated at the target locus encodes a nuclear protein.
- the nuclear protein is a nuclear receptor.
- such polynucleotides of interest within the insert nucleic acid and/or integrated at the target locus are from a human and, in more specific embodiments, can comprise human genomic sequence.
- the polynucleotide of interest within the insert nucleic acid and/or integrated at the target genomic locus can comprise a genetic modification in a coding sequence.
- Such genetic modifications include, but are not limited to, a deletion mutation of a coding sequence or the fusion of two coding sequences.
- the polynucleotide of interest within the insert nucleic acid and/or integrated at the target locus can comprise a polynucleotide encoding a mutant protein, including, for example, a human mutant protein.
- the mutant protein is characterized by an altered binding characteristic, altered localization, altered expression, and/or altered expression pattern.
- the polynucleotide of interest within the insert nucleic acid and/or integrated at the target locus comprises at least one disease allele, including for example, an allele of a neurological disease, an allele of a cardiovascular disease, an allele of a kidney disease, an allele of a muscle disease, an allele of a blood disease, an allele of a cancer-causing gene, or an allele of an immune system disease.
- the disease allele can be a dominant allele or the disease allele is a recessive allele.
- the disease allele can comprises a single nucleotide polymorphism (SNP) allele.
- the polynucleotide of interest encoding the mutant protein can be from any organism, including, but not limited to, a mammal, a non-human mammal, rodent, mouse, rat, a human, a monkey, an agricultural mammal or a domestic mammal polynucleotide encoding a mutant protein.
- the genetic modification produces a mutant form of a protein with an altered binding characteristic, altered localization, altered expression, and/or altered expression pattern.
- the genetic modification produces a deletion, addition, replacement or a combination thereof of a region of the rat ApoE locus, wherein the genetic modification at the ApoE locus results in a decrease in ApoE activity.
- an ApoE knockout is generated.
- the genetic modification produces a deletion, addition, replacement or a combination thereof of a region of the rat Rag1 locus, wherein the genetic modification at the Rag1 locus results in a decrease in Rag1 activity.
- a Rag1 knockout is generated.
- the genetic modification produces a deletion, addition, replacement or a combination thereof of a region of the rat Rag2 locus, wherein the genetic modification at the Rag2 locus results in a decrease in Rag2 activity.
- a Rag2 knockout is generated.
- the genetic modification produces a deletion, addition, replacement or a combination thereof of a region of the rat Rag1/Rag2 locus, wherein the genetic modification at the Rag1/Rag2 locus results in a decrease in Rag1 activity and a decrease in Rag2 activity.
- a Rag1/Rag2 knockout is generated.
- the genetic modification produces a deletion, addition, replacement or a combination thereof of a region of the rat interleukin-2 receptor gamma locus, wherein the genetic modification at the interleukin-2 receptor gamma locus results in a decrease in interleukin-2 receptor gamma.
- a interleukin-2 receptor gamma knockout is generated.
- further embodiments provided herein comprises one or more of the rat ApoE locus, the rat interleukin-2 receptor gamma locus, the Rag2 locus, the Rag1 locus and/or the Rag2/Rag1 locus is modified through the replacement of a portion of the rat ApoE locus, the interleukin-2 receptor gamma locus, the Rag2 locus, the Rag1 locus and/or Rag2/Rag1 locus with the corresponding orthologous portion of an ApoE locus, an interleukin-2 receptor gamma locus, a Rag2 locus, a Rag1 locus and/or a Rag2/Rag1 locus from another organism.
- multiple genetic modifications are generated.
- a genetic modification produces a deletion, addition, replacement or a combination thereof of a region of the rat interleukin-2 receptor gamma locus, wherein the genetic modification at the interleukin-2 receptor gamma locus results in a decrease in interleukin-2 receptor gamma and a second genetic modification produces a deletion, addition, replacement or a combination thereof of a region of the rat Rag2 locus, wherein the genetic modification at the Rag2 locus results in a decrease in Rag2 activity.
- an interleukin-2 receptor gamma/Rag2 knockout is generated.
- Such a rat has a SCID phenotype.
- the mammalian nucleic acid comprises a genomic locus that encodes a protein expressed in the nervous system, the skeletal system, the digestive system, the circulatory system, the muscular system, the respiratory system, the cardiovascular system, the lymphatic system, the endocrine system, the urinary system, the reproductive system, or a combination thereof.
- the mammalian nucleic acid comprises a genomic locus that encodes a protein expressed in a bone marrow or a bone marrow-derived cell.
- the nucleic acid comprises a genomic locus that encodes a protein expressed in a spleen cell.
- the genomic locus comprises a mouse genomic DNA sequence, a rat genomic DNA sequence a human genomic DNA sequence, or a combination thereof. In one embodiment, the genomic locus comprises, in any order, rat and human genomic DNA sequences. In one embodiment, the genomic locus comprises, in any order, mouse and human genomic DNA sequences. In one embodiment, the genomic locus comprises, in any order, mouse and rat genomic DNA sequences. In one embodiment, the genomic locus comprises, in any order, rat, mouse, and human genomic DNA sequences.
- the insert nucleic acid comprises a genetic modification in a coding sequence of a gene.
- the genetic modification comprises a deletion mutation in the coding sequence.
- the genetic modification comprises a fusion of two endogenous coding sequences.
- the genetic modification comprises a deletion of a non-protein-coding sequence, but does not comprise a deletion of a protein-coding sequence.
- the deletion of the non-protein-coding sequence comprises a deletion of a regulatory element.
- the genetic modification comprises an addition of a promoter.
- the genetic modification comprises a replacement of a promoter or regulatory element.
- the regulatory element is an enhancer.
- the regulatory element is a transcriptional repressor-binding element.
- the genetic modification comprises placement of a human nucleic acid sequence encoding a mutant human protein. In one embodiment, the genetic modification comprises at least one human disease allele of a human gene. In one embodiment, the human disease is a neurological disease. In one embodiment, the human disease is a cardiovascular disease. In one embodiment, the human disease is a kidney disease. In one embodiment, the human disease is a muscle disease. In one embodiment, the human disease is a blood disease. In one embodiment, the human disease is a cancer. In one embodiment, the human disease is an immune system disease. In one embodiment, the human disease allele is a dominant allele. In one embodiment, the human disease allele is a recessive allele. In one embodiment, the human disease allele comprises a single nucleotide polymorphism (SNP) allele.
- SNP single nucleotide polymorphism
- the polynucleotide of interest within the insert nucleic acid and/or integrated at the target locus can also comprise a regulatory sequence, including for example, a promoter sequence, an enhancer sequence, or a transcriptional repressor-binding sequence.
- the polynucleotide of interest within the insert nucleic acid and/or integrated at the target genomic locus comprises a polynucleotide having a deletion of a non-protein-coding sequence, but does not comprise a deletion of a protein-coding sequence.
- the deletion of the non-protein-coding sequence comprises a deletion of a regulatory sequence.
- the deletion of the regulatory element comprises a deletion of a promoter sequence.
- the deletion of the regulatory element comprises a deletion of an enhancer sequence.
- a polynucleotide of interest can be from any organism, including, but not limited to, a mammal, a non-human mammal, rodent, mouse, rat, a human, a monkey, an agricultural mammal or a domestic mammal polynucleotide encoding a mutant protein.
- target integration system generically comprises all the components required for an integration event (i.e. in non-limiting examples, the various nuclease agents, recognition sites, insert DNA polynucleotides, targeting vectors, target genomic locus, and/or polynucleotides of interest).
- the methods provided herein comprise introducing into a cell one or more polynucleotides or polypeptide constructs comprising the various components of the targeted genomic integration system.
- “Introducing” means presenting to the cell the sequence (polypeptide or polynucleotide) in such a manner that the sequence gains access to the interior of the cell.
- the methods provided herein do not depend on a particular method for introducing any component of the targeted genomic integration system into the cell, only that the polynucleotide gains access to the interior of a least one cell.
- Methods for introducing polynucleotides into various cell types are known in the art and include, but are not limited to, stable transfection methods, transient transfection methods, and virus-mediated methods.
- the cells employed in the methods and compositions have a DNA construct stably incorporated into their genome.
- “Stably incorporated” or “stably introduced” means the introduction of a polynucleotide into the cell such that the nucleotide sequence integrates into the genome of the cell and is capable of being inherited by progeny thereof. Any protocol may be used for the stable incorporation of the DNA constructs or the various components of the targeted genomic integration system.
- Transfection protocols as well as protocols for introducing polypeptides or polynucleotide sequences into cells may vary.
- Non-limiting transfection methods include chemical-based transfection methods include the use of liposomes; nanoparticles; calcium phosphate (Graham et al. (1973). Virology 52 (2): 456-67, Bacchetti et al. (1977) Proc Natl Acad Sci USA 74 (4): 1590-4 and, Kriegler, M (1991), Transfer and Expression: A Laboratory Manual. New York: W. H. Freeman and Company. pp.
- Non chemical methods include electroporation; Sono-poration; and optical transfection.
- Particle-based transfection include the use of a gene gun, magnet assisted transfection (Bertram, J. (2006) Current Pharmaceutical Biotechnology 7, 277-28). Viral methods can also be used for transfection.
- the introducing one or more of the polynucleotides into a cell is mediated by electroporation, by intracytoplasmic injection, by a viral infection, by an adenovirus, by lentivirus, by retrovirus, by transfection, by lipid-mediated transfection or is mediated via NucleofectionTM.
- introduction one or more of the polynucleotides into a cell further comprises: introducing an expression construct comprising a nucleic acid sequence of interest operably linked to a promoter.
- the promoter is a constitutively-active promoter.
- the promoter is an inducible promoter.
- the promoter is active in the rat embryonic stem cell.
- the expression construct is introduced together with the LTVEC. In one embodiment, the expression construct is introduced separately from the LTVEC over a period of time.
- the introduction of the one or more polynucleotides into the cell can be performed multiple times over a period of time. In one embodiment, the introduction of the one or more polynucleotides into the cell are performed at least two times over a period of time, at least three times over a period of time, at least four times over a period of time, at least five times over a period of time, at least six times over a period of time, at least seven times over a period of time, at least eight times over a period of time, at least nine times over a period of times, at least ten times over a period of time, at least eleven times, at least twelve times over a period of time, at least thirteen times over a period of time, at least fourteen times over a period of time, at least fifteen times over a period of time, at least sixteen times over a period of time, at least seventeen times over a period of time, at least eighteen times over a period of time, at least nineteen times over a period of time, or at least
- the nuclease agent is introduced into the cell simultaneously with the targeting vector or the large targeting vector (LTVEC). Alternatively, the nuclease agent is introduced separately front the targeting vector or the LTVEC over a period of time. In one embodiment, the nuclease agent is introduced prior to the introduction of the targeting vector or the LTVEC, while in other embodiments, the nuclease agent is introduced following introduction of the targeting vector or the LTVEC.
- screening step comprises a quantitative assay for assessing modification of allele (MOA) of a parental chromosome.
- the quantitative assay is carried out via a quantitative PCR.
- the quantitative PCR is a real-time PCR (qPCR).
- the real-time PCR comprises a first primer set that recognizes the target locus and a second primer set that recognizes a non-targeted reference locus.
- the primer set comprises a fluorescent probe that recognizes the amplified sequence.
- the quantitative assay is carried out via fluorescence-mediated in situ hybridization (FISH).
- FISH fluorescence-mediated in situ hybridization
- the quantitative assay is carried out via comparative genomic hybridization.
- the quantitative assay is carried out via isothermic DNA amplification. In one embodiment, the quantitative assay is carried out via isothermic DNA amplification. In one embodiment, the quantitative assay is carried out via quantitative hybridization to an immobilized probe(s). In one embodiment, the quantitative assay is carried out via Invader Probes®. In one embodiment, the quantitative assay is carried out via MMP Assays®. In one embodiment, the quantitative assay is carried out via TaqMan® Molecular Beacon. In one embodiment, the quantitative assay is carried out via EclipseTM probe technology. (See, for example, US2005/0144655, which is incorporated by reference herein in its entirety).
- a method for making a humanized rat comprising: (a) modifying a genome of a pluripotent rat cell with a targeting vector comprising an insert nucleic acid that comprises a human nucleic acid sequence to form a donor cell; (b) introducing the donor cell into a host rat embryo; and (c) gestating the host rat embryo in a surrogate mother; wherein the surrogate mother produces a rat progeny that comprises the human nucleic acid sequence.
- the donor cell is introduced into a host rat embryo that is at the blastocyst stage or at a pre-morula stage (i.e., a 4 cell stage or an 8 cell stage).
- step (a) can also be performed with a large targeting vector (LTVEC) and/or a human nucleic acid sequence at least 5 Kb in length.
- the genetic modification is capable of being transmitted through the germline.
- Genetically modified rats can be generated employing the various methods disclosed herein. Such methods comprise (1) integrating one or more polynucleotide of interest at the target locus of a pluripotent rat cell to generate a genetically modified pluripotent rat cell comprising the insert nucleic acid in the targeted genomic locus employing the methods disclosed herein; (2) selecting the genetically modified pluripotent rat cell having the one or more polynucleotides of interest at the target genomic locus; (3) introducing the genetically modified pluripotent rat cell into a rat host embryo; and (4) implanting the host rat embryo comprising the genetically modified pluripotent rat cell into a surrogate mother. A progeny from the genetically modified pluripotent rat cell is generated.
- the donor cell is introduced into a rat host embryo at the blastocyst stage or at the pre-morula stage (i.e., the 4 cell stage or the 8 cell stage). Progeny that are capable of transmitting the genetic modification though the germline are generated.
- the pluripotent rat cell can be a rat ES cell as discussed elsewhere herein.
- Nuclear transfer techniques can also be used to generate the genetically modified rats.
- methods for nuclear transfer include the steps of: (1) enucleating an oocyte; (2) isolating a donor cell or nucleus to be combined with the enucleated oocyte; (3) inserting the cell or nucleus into the enucleated oocyte to form a reconstituted cell; (4) implanting the reconstituted cell into the womb of an animal to form an embryo; and (5) allowing the embryo to develop.
- oocytes are generally retrieved from deceased animals, although they may be isolated also from either oviducts and/or ovaries of live animals. Oocytes can be matured in a variety of medium known to those of ordinary skill in the art prior to enucleation.
- Enucleation of the oocyte can be performed in a number of manners well known to those of ordinary skill in the art. Insertion of the donor cell or nucleus into the enucleated oocyte to form a reconstituted cell is usually by microinjection of a donor cell under the zona pellucida prior to fusion. Fusion may be induced by application of a DC electrical pulse across the contact/fusion plane (electrofusion), by exposure of the cells to fusion-promoting chemicals, such as polyethylene glycol, or by way of an inactivated virus, such as the Sendai virus. A reconstituted cell is typically activated by electrical and/or non-electrical means before, during, and/or after fusion of the nuclear donor and recipient oocyte.
- Activation methods include electric pulses, chemically induced shock, penetration by sperm, increasing levels of divalent cations in the oocyte, and reducing phosphorylation of cellular proteins (as by way of kinase inhibitors) in the oocyte.
- the activated reconstituted cells, or embryos are typically cultured in medium well known to those of ordinary skill in the art and then transferred to the womb of an animal. See, for example, US20080092249, WO/1999/005266A2, US20040177390, WO/2008/017234A1, and U.S. Pat. No. 7,612,250, each of which is herein incorporated by reference.
- a method for making a genetically modified rat comprising modifying a genomic locus of interest in a pluripotent rat cell employing endonuclease-mediated gene targeting to introduce a modification at a rat genomic locus of interest to form a modified pluripotent rat cell, maintaining the modified pluripotent rat cell under conditions sufficient to maintain pluripotency, employing the modified pluripotent rat cell as a donor cell in a rat host embryo, and gestating the host embryo comprising the modified pluripotent rat cell in a surrogate mother, wherein the host embryo is gestated by the surrogate mother and a genetically modified rat progeny is born.
- the target sequence is located in an intron. In one embodiment, the target sequence is located in an exon. In one embodiment, the target sequence is located in a promoter. In one embodiment, the target sequence is located in a promoter regulatory region. In one embodiment, the target sequence is located in an enhancer region.
- introducing step is performed multiple times over a period of time using a plurality of endonucleases that recognize distinct target sequences.
- step is performed at least two times over a period of time using a plurality of endonucleases that recognize distinct target sequences, at least three times over a period of time using a plurality of endonucleases that recognize distinct target sequences, at least four times over a period of time using a plurality of endonucleases that recognize distinct target sequences, at least five times over a period of time using a plurality of endonucleases that recognize distinct target sequences, at least six times over a period of time using a plurality of endonucleases that recognize distinct target sequences, at least seven times over a period of time using a plurality of endonucleases that recognize distinct target sequences, at least eight times over a period of time using a plurality of endonucleases that recognize distinct target sequences, at least nine times over a period of
- introducing step is mediated by electroporation, by intracytoplasmic injection, by an adenovirus, by lentivirus, by retrovirus, by transfection, by lipid-mediated transfection or is mediated via NucleofectionTM
- the method further comprises introducing an exogenous nucleic acid into the genetically modified pluripotent rat cell.
- the exogenous nucleic acid is a transgene.
- the exogenous nucleic acid is introduced into an endogenous locus.
- the exogenous nucleic acid is introduced ectopically (e.g., at a locus different from its endogenous locus).
- a method for making a genetically modified rat comprising modifying a genomic locus of interest in a pluripotent rat cell employing RNA-guided genome engineering to introduce a modification at a rat genomic locus of interest to form a modified pluripotent rat cell, maintaining the modified pluripotent rat cell under conditions sufficient to maintain pluripotency, employing the modified pluripotent rat cell as a donor cell in a rat host embryo, and gestating the host embryo comprising the modified pluripotent rat cell in a surrogate mother, wherein the host embryo is gestated by the surrogate mother and a genetically modified rat progeny is born.
- the method has a targeting rate ranging from about 2% to about 80%.
- the method comprises co-introducing a plurality of the second expression construct comprising distinct genomic target sequences for multiplex editing of distinct genomic loci. In on embodiment, the method comprises introducing a plurality of the second expression construct comprising distinct genomic target sequences for multiplex editing of distinct genomic loci over a period of time.
- introducing step is performed multiple times over a period of time.
- introducing step (b) is performed at least two times over a period of time, at least three times over a period of time, at least four times over a period of time, at least five times over a period of time, at least six times over a period of time, at least seven times over a period of time, at least eight times over a period of time, at least nine times over a period of time, at least ten times over a period of time, at least eleven times over a period of time, at least twelve times over a period of time, at least thirteen times over a period of time, at least fourteen times over a period of time, at least fifteen times over a period of time, at least sixteen times over a period of time, at least seventeen times over a period of time, at least eighteen times over a period of time, at least nineteen times over a period of time, at least twenty times over a period of time.
- the first expression construct and the second expression construct are expressed from a same plasmid.
- introducing step is mediated by electroporation, by intracytoplasmic injection, by an adenovirus, by lentivirus, by retrovirus, by transfection, by lipid-mediated transfection or is mediated via NucleofectionTM
- the method further comprises introducing an exogenous nucleic acid into the pluripotent rat cell comprising the mutant allele.
- the exogenous nucleic acid is a transgene. In one embodiment, the exogenous nucleic acid is introduced into an endogenous locus. In one embodiment, the exogenous nucleic acid is placed ectopically (e.g., at a locus different from its endogenous locus).
- the method further comprises introducing an exogenous nucleic acid into the genetically modified pluripotent rat cell.
- the exogenous nucleic acid is a transgene.
- the exogenous nucleic acid is introduced into an endogenous locus.
- the exogenous nucleic acid is introduced ectopically (e.g., at a locus different from its endogenous locus).
- a method for making a humanized rat comprising modifying a genome of a pluripotent rat cell with an LTVEC comprising an insert that comprises a human sequence of at least 5 kb, and employing the pluripotent rat cell as a donor cell, introducing the donor cell into a host embryo, and gestating the host embryo in a surrogate mother, wherein the surrogate mother births a rat progeny that comprises the humanization.
- the targeting vector can comprise a large targeting vector.
- the pluripotent rat cell can be a rat ES cell.
- the isolating step (c) further comprises (c1) linearizing the genetically modified targeting vector (i.e., the genetically modified LTVEC).
- the introducing step (d) further comprises (d1) introducing a nuclease agent as described herein into the pluripotent rat cell.
- selecting steps (b) and/or (e) are carried out by applying a selectable agent as described herein to the prokaryotic cell or the pluripotent rat cell.
- selecting steps (b) and/or (e) are carried out via a modification of allele (MOA) assay as described herein.
- Further methods for modifying a target genomic locus of a mammalian cell via bacterial homologous recombination (BHR) in a prokaryotic cell comprise: (a) providing a prokaryotic cell comprising a target locus comprising a rat nucleic acid, (b) introducing into the prokaryotic cell a targeting vector comprising an insert nucleic acid flanked with a 5′ rat homology arm and a 3′ rat homology arm, wherein the insert nucleic acid comprises a mammalian region (including, for example, a DNA insert from a human), and (c) selecting a targeted prokaryotic cell comprising the insert nucleic acid at the target rat locus, wherein the prokaryotic cell is capable of expressing a recombinase that mediates the BHR.
- Step (a1) can comprise providing a prokaryotic cell comprising a target locus comprising a rat nucleic acid comprising a first polynucleotide comprising a first recognition site thr a first nuclease agent, and step (b1) can further comprise expressing in the prokaryotic cell a nuclease agent that makes a nick or double-strand break at or near the first recognition site, Steps (a)-(c) can be serially repeated as disclosed herein to allow the introduction of multiple insert nucleic acids at the targeted rat locus in the prokaryotic cell.
- various genetic modifications of the target genomic loci described herein can be carried out by a series of homologous recombination reactions (BHR) in bacterial cells using an LTVEC derived from Bacterial Artificial Chromosome (BAC) DNA using VELOCIGENE® genetic engineering technology (see, e.g., U.S. Pat. No. 6,586,251 and Valenzuela, D. M. et al. (2003), High-throughput engineering of the mouse genome coupled with high-resolution expression analysis, Nature Biotechnology 21(6): 652-659, which is incorporated herein by reference in their entireties).
- BHR homologous recombination reactions
- LTVEC derived from Bacterial Artificial Chromosome
- targeted rat ES cells comprising various genetic modifications as described herein are used as insert ES cells and introduced into a pre-morula stage embryo from a corresponding organism, e.g., an 8-cell stage mouse embryo, via the VELOCIMOUSE® method (see, e.g., U.S. Pat. No. 7,576,259, U.S. Pat. No. 7,659,442, U.S. Pat. No. 7,294,754, and US 2008-0078000 A1, all of which are incorporated by reference herein in their entireties).
- the rat embryo comprising the genetically modified rat ES cells is incubated until the blastocyst stage and then implanted into a surrogate mother to produce F0.
- Rats bearing the genetically modified genomic locus can be identified modification of allele (MOA) assay as described herein.
- MOA allele
- the resulting F0 generation rat derived from the genetically modified ES rat cells is crossed to a wild-type rat to obtain F1 generation offspring.
- F1 rats that are heterozygous for the genetically modified genomic locus are crossed to each other to produce rats that are homozygous for the genetically modified genomic locus.
- an F0 female rat and an F0 male rat each having the genetic modification can be crossed to obtain an F1 rat homozygous for the genetic modification.
- a genetically modified rat genome comprising a targeted modification of an endogenous rat nucleic acid sequence with a homologous or orthologous non-rat nucleic acid sequence.
- the homologous or orthologous non-rat nucleic acid sequence is of a length from about 5 kb to about 200 kb. In one embodiment, the homologous or orthologous non-rat nucleic acid sequence ranges from about 5 kb to about 10 kb. In one embodiment, the homologous or orthologous non-rat nucleic acid sequence ranges from about 10 kb to about 20 kb. In one embodiment, the homologous or orthologous non-rat nucleic acid sequence ranges from about 20 kb to about 30 kb. In one embodiment, the homologous or orthologous non-rat nucleic acid sequence ranges from about 30 kb to about 40 kb.
- the homologous or orthologous non-rat nucleic acid sequence ranges from about 40 kb to about 50 kb. In one embodiment, the homologous or orthologous non-rat nucleic acid sequence ranges from about 50 kb to about 60 kb. In one embodiment, the homologous or orthologous non-rat nucleic acid sequence ranges from about 60 kb to about 70 kb. In one embodiment, the homologous or orthologous non-rat nucleic acid sequence ranges from about 70 kb to about 80 kb. In one embodiment, the homologous or orthologous non-rat nucleic acid sequence ranges from about 80 kb to about 90 kb.
- the homologous or orthologous non-rat nucleic acid sequence ranges from about 90 kb to about 100 kb. In one embodiment, the homologous or orthologous non-rat nucleic acid sequence ranges from about 100 kb to about 110 kb. In one embodiment, the homologous or orthologous non-rat nucleic acid sequence ranges from about 110 kb to about 120 kb. In one embodiment, the homologous or orthologous non-rat nucleic acid sequence ranges from about 120 kb to about 130 kb. In one embodiment, the homologous or orthologous non-rat nucleic acid sequence ranges from about 140 kb to about 150 kb.
- the cell is a pluripotent cell.
- the pluripotent cell is a non-human pluripotent cell.
- the non-human pluripotent cell is a mammalian pluripotent cell.
- the pluripotent cell is a human induced pluripotent stem (iPS) cell.
- the pluripotent cell is a pluripotent rat cell.
- the pluripotent rat cell is a rat embryonic stem (ES) cell.
- the pluripotent rat cell is an induced pluripotent stem (iPS) cell or is a developmentally restricted progenitor cell.
- the pluripotent rat cell is able to sustain its pluripotency following at least one targeted genetic modification of its genome and is able to transmit the targeted modification to a germline of an F1 generation.
- the pluripotent cell is a non-human fertilized egg at the single cell stage.
- the non-human fertilized egg is a mammalian fertilized egg.
- the mammalian fertilized egg is a rodent fertilized egg at the single cell stage.
- the mammalian fertilized egg is a rat or mouse fertilized egg at the single cell stage.
- the various cells employed in the method and compositions disclosed herein can also comprise prokaryotic cells, such as a bacterial cell, including E. coli .
- the prokaryotic cell is a recombination-competent strain of E. coli .
- the prokaryotic cell comprises a nucleic acid that encodes the recombinase, while in other instances, the prokaryotic cell does not comprise the nucleic acid that encodes the recombinase, and the nucleic acid encoding the recombinase is introduced into the prokaryotic cell.
- the nucleic acid encoding the recombinase comprises a DNA or an mRNA.
- the nucleic acid encoding the recombinase is pABG.
- the recombinase is expressed under the control of an inducible promoter. In one embodiment, expression of the recombinase is controlled by arabinose.
- the various compositions and methods provided herein can employ embryonic stem (ES) cells from rat.
- the pluripotent rat cell is a rat ES cell.
- the rat ES cell is derived from a rat strain is a Wistar rat, an LEA strain, a Sprague Dawley strain, a Fischer strain, F344, F6, and Dark Agouti or ACI.
- the rat strain is a mix of two or more of a strain selected from the group consisting of Wistar, LEA, Sprague Dawley, Fischer, F344, F6, and Dark Agouti
- the rat ES cell is derived from an inbred strain.
- the rat ES cell is characterized by expression of at least one pluripotency marker.
- the rat ES cell is characterized by expression of a pluripotency marker comprising Oct-4, Sox-2, alkaline phosphatase, or a combination thereof.
- the rat ES cell is a male (XY) rat ES cell or a female (XX) rat ES cell.
- the genetically modified rat ES cells upon exposure to differentiation medium are capable of differentiation into a plurality of cell types.
- the rat ES cell maintains its pluripotency to develop into a plurality of cell types following the one or more serial genetic modifications in vitro (e.g., two, three, four, five, or six or more serial genetic modifications).
- the genetic modification is mediated by an electroporation, by intracytoplasmic injection, by a viral infection, by an adenovirus, by lentivirus, by retrovirus, by transfection, by lipid-mediated transfection, or by NucleofactionTM
- the rat ES cell maintains its pluripotency to develop into a plurality of cell types following a single round of electroporation with an exogenous nucleic acid. In one embodiment, the rat ES cell maintains its pluripotency to develop into a plurality of cell types following a 2 nd , 3 rd , 4 th , 5 th , 6 th , 7 th , 8 th , 9 th , 10 th , 11 th , 12 th , 13 th , 14 th , or 15 th round of electroporation with an exogenous nucleic acid.
- the rat ES cells employed are those described in U.S. application Ser. No. 14/185,703, filed Feb. 20, 2014 and herein incorporated by reference in its entirety.
- the pluripotent rat cell employed in the various methods and compositions disclosed herein can be characterized by expression of at least one pluripotency marker comprising Dnmt3L, Eras, Err-beta, Fbxo15, Fgf4, Gdf3, Klf4, Lef1, LIF receptor, Lin28, Nanog, Oct4, Sox15, Sox2, Utf1, and/or a combination thereof.
- the pluripotent rat cell employed in the various methods and compositions disclosed herein is characterized by one or more of the following features: (a) lack of expression of one or more pluripotency markers comprising c-Myc, Ecat1, and/or Rexo1; (b) lack of expression of one or more mesodermal markers comprising Brachyury and/or Bmpr2; (c) lack of expression of one or more endodermal markers comprising Gata6, Sox17, and/or Sox7; or (d) lack of expression of one or more neural markers comprising Nestin and/or Pax6.
- “lack of expression” as it relates to expression of a pluripotency marker means that the expression of the pluripotency marker is at or below the experimental background as determined for each individual experiment.
- the rat ES cells provided herein have one or more of any of the following properties:
- (b) have germ-line competency following at least one targeted genetic modification, meaning when the rat ES cell having the targeted genetic modification is implanted into a rat host embryo, the targeted genetic modification within the genome of the rat ES cell line is transmitted into an offspring;
- (k) are capable of being subcultured and maintaining the undifferentiated state
- the rat ES cells express at least one pluripotency marker comprising Dnmt3L, Eras, Err-beta, Fbxo15, Fgf4, Gdf3, Klf4, Lef1, LIF receptor, Lin28, Nanog, Oct4, Sox15, Sox2, Utf1, and/or a combination thereof;
- the rat ES cells do not express one or more differentiation markers comprising c-Myc, Ecat1, and/or Rexo1;
- the rat ES cells do not express one or more mesodermal markers comprising Brachyury, Bmpr2, and/or a combination thereof;
- the rat ES cells do not express one or more endodermal markers comprising Gata6, Sox17, Sox7, and/or combination thereof; and/or
- the rat ES cells do not express one or more neural markers comprising Nestin, Pax6, and/or combination thereof.
- One or more of the characteristics outlined in (a)-(s) can be present in a rat ES cell, a rat ES cell population or a rat ES cell line employed in the methods and compositions provided herein, wherein the rat ES cells have not undergone a targeted genetic modification. Moreover, following the one or more genetic modification to the rat target locus as described in detail above, the one or more of the characteristics outlined in (a)-(s) can be retained in the rat ES cell following the genetic modification of the target locus.
- the rat ES cell exhibits a homologous recombination efficiency of at least 2%, at least 3%, at least 4%, at least 5%, at least 6%, at least 7%, at least 8%, at least 9%, at least 10%, at least 11%, at least 12%, at least 13%, at least 14%, at least 15%, at least 20%, at least 25%, at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, or at least 80%.
- the homologous recombination efficiency employing the rat ES cell is greater than 4%.
- the rat ES cell has a doubling time ranging from 24 hours to 36 hours. In one embodiment, the rat ES cell has a doubling time of 25 hours.
- the rat ES cell can be passaged up to at least 15 times in 2i medium (Millipore Cat. SF016-200). In one embodiment, the rat ES cell can be passaged at least 14 times in 2i medium (Millipore Cat. No. SF016-200). In one embodiment, the rat ES cell can be passaged at least 13, 12, 11, 10, 9, 8, 7, 6, or 5 times in 2i medium.
- the rat ES cell when transplanted into a pre-morula stage rat embryo, can contribute to at least 90% of the cells in an F0 generation. In one embodiment, when transplanted into a pre-morula stage rat embryo, the rat ES cell can contribute to at least 95%, 96%, 97%, 98%, or 99% of the cells in an F0 generation.
- the various rat ES cells and cell lines employed in the various methods and compositions provided herein are used to generate a targeted modification at a target locus.
- the rat ES cell having these targeted genetic modifications can be germ-line competent, meaning when the rat ES cell having the targeted genetic modification is implanted into a rat host embryo, the targeted genetic modification of the rat ES cell is transmitted to the offspring (i.e., the F1 population).
- the rat ES cells in the various methods and compositions are employed to obtain a high frequency, or high efficiency, of germline transmission of a rat cell genome from rat ES cells that have undergone a targeted genetic modification.
- the frequency of germline transmission is greater than 1:600, greater than 1:500, greater than 1:400, greater than 1:300, greater than 1:200, and greater than 1:100. In various embodiments, the frequency of germline transmission is greater than 1%, greater than 2%, greater than 3%, greater than 4%, greater than 5%, greater than 6%, greater than 7%, greater than 8%, greater than 9%, greater than 10%, up to about 16%, greater than 25%, greater than 50%, greater than 60%, greater than 65%, greater than 70%, greater than 75% or greater. In various embodiments, the frequency of germline transmission ranges from 9% to 16%.
- percent of donor rESC-derived progeny in the F1 generation is 1% or more, 2% or more, 3% or more, 10% or more, 20% or more, 30% or more, 40% or more, 50% or more, 60% or more, from 3% to about 10% or more; from 3% or more to about 63%, from about 10% to about 30%, from about 10% to about 50%, from about 30% to about 70%, from about 30% to about 60%, from about 20% to about 40%, from about 20% to 65%, or from about 40% to 70%.
- a rat ES cell that has a targeted genetic modification have the ability to transmit their genome into the F1 population.
- a rat ES cell that has a targeted genetic modification can be pluripotent and/or totipotent.
- Various methods can be used to determine if a rat ES cell is pluripotent.
- the ES cell can be assayed for the expression of various pluripotent markers including, but not limited to, Oct-4, Sox2, alkaline phosphatase, or a combination thereof. See, for example, Okamoto, K. et al., Cell, 60: 461-472 (1990), Scholer, H. R. et al., EMBO J. 9: 2185-2195 (1990)) and Nanog (Mitsui, K. et al., Cell, 113: 631-642 (2003), Chambers, I.
- pluripotency markers include, for example, the presence of at least 1, 2, 3, 4, or 5 pluripotency marker comprising Nanog, Klf4, Dppa2, Fgf4, Rex1, Eras, Err-beta and/or Sall3.
- pluripotency markers include, for example, the absence of at least 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 pluripotency marker comprising T/Brachyury, Flk1, Nodal, Bmp4, Bmp2, Gata6, Sox17, Hhex1, Sox7, and/or Pax6.
- the expression and/or the level of expression of these markers can be determined using RT-PCR.
- kits are available to determine the level and/or presence of alkaline phosphatase, including, for example, an ALP tissue staining kit (Sigma) and Vector Red Alkaline Phosphatase Substrate Kit I (Funakoshi) and the like. Additional assays include in situ hybridization, immunohistochemistry, immunofluorescence.
- the rat ES cell is characterized by expression of at least one pluripotency marker, including for example expression of Oct-4, Sox2, alkaline phosphatase, or a combination thereof, and preferably all three of these markers.
- the various rat ES cells employed in the method and compositions provided herein are capable of maintaining pluripotency and/or totipotency while being maintained in in vitro culturing conditions.
- the various rat ES cells provided herein can, in some embodiments, be subcultured while still maintaining the undifferentiated state.
- Various methods of culturing the rat ES cells are discussed in further detail elsewhere herein and in U.S. patent application Ser. No. 14/185,103, filed on Feb. 20, 2014, herein incorporated by reference in its entirety.
- the rat embryonic stem cells employed herein have been isolated from the rat embryo employing various isolation, purification, and culture expansion techniques which are discussed in detail in U.S. patent application Ser. No. 14/185,103, filed on Feb. 20, 2014, herein incorporated by reference in its entirety.
- rat ES cell line comprises a population of isolated rat cells that were developed from a single rat ES cell and therefore the population of cells within a given cell line have a uniform genetic makeup other than for mutations or karyotypic changes occurring during propagation or during targeted genetic modifications.
- rat ES cells can be characterized by a high level of euploidy.
- a given population of rat ES cells can comprise at least 1 ⁇ 10 3 , 1 ⁇ 10 4 , 1 ⁇ 10 5 , 1 ⁇ 10 6 , 1 ⁇ 10 7 , 1 ⁇ 10 8 , 1 ⁇ 10 9 , or 1 ⁇ 10 10 cells or greater.
- Some cell populations have sufficient cells to permit selection of a desired modified cell but not an excessively greater number so as to reduce the possibility of mutations or karyotypic changes developing in the cell line. For example, some cell populations have 1 ⁇ 10 3 to 1 ⁇ 10 6 cells.
- rat ES cell lines having one or more desired targeted genetic modifications are produced.
- a rat ES cell, a population of rat ES cell or a rat ES cell line are euploid, and thus have a chromosome number that is an exact multiple of the haploid number.
- a rat ES cell, a population of rat ES cells or a rat ES cell line are diploid, and thus have two haploid sets of homologous chromosomes.
- a rat ES cell population or a population of cells from a given population of rat ES cells or a rat ES cell line that have not undergone a targeted genetic modification and/or have a targeted genetic modification
- at least about 50%, 60%, 65%, 70%, 75%, 80%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% of the cells with the given population are euploid and/or diploid.
- a rat ES cell population or a population of cells from a given rat ES cell line that have not undergone a targeted genetic modification and/or have a targeted genetic modification
- a rat ES cell, a population of rat ES cells or a rat ES cell line have 42 chromosomes.
- a rat ES cell population or a population of cells from a given rat ES cell line at least about 50%, 60%, 65%, 70%, 75%, 80%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% of the cells with the given population have 42 chromosomes.
- a rat ES cell population or a population of cells from a given rat ES cell line that have not undergone a targeted genetic modification and/or have a targeted genetic modification
- a rat ES cell, a population of rat ES cells or a rat ES cell line (that have not undergone a targeted genetic modification and/or have a targeted genetic modification) provided herein form sphere-like colonies when plated on a feeder cell layer in vitro.
- the “sphere-like” morphology refers to the shape of rat ES cell colonies in culture, rather than the shape of individual ES cells.
- the rat ES cell colonies are spherical-like. Colonies, which are loosely attached to the feeder cells appear circular (have a circular-like morphology). Free-floating colonies are spherical-like.
- the rat ES cell colonies are spherical-like and very compact, meaning: the boundaries between cells are very hard to see. The edge of the colony appears bright and sharp. Individual nuclei are difficult to distinguish because the cells are very small (so that the nucleus takes up most of the volume of the cell).
- Mouse ES Cells form elongated colonies and attach strongly to feeder cells. mESC morphology can vary with strain; e.g. B6 colonies are rounder and more domed than F1H4 colonies but are still more elongated than rESC. Human ES cell colonies are flatter and more spread out than mESC colonies. The instant rat ES colonies are not flat and do not resemble human ES cell colonies.
- a rat ES cell, a population of rat ES cells or a rat ES cell line (that have not undergone a targeted genetic modification and/or have a targeted genetic modification) have a circular morphology.
- a morphology scale for a circle is provided below, where a score of a 10 represents a perfect circle and a score of a 1 represents an ellipse.
- 10 A circle with a structure having a longitudinal axis and a vertical axis that run through the center of the structure and are of equal length.
- 9 A structure having a longitudinal axis and vertical axis that run through the center of the structure, wherein one of the axis is between 0.9999 to 0.9357 the length of the other axis.
- 8 A structure having a longitudinal axis and vertical axis that run through the center of the structure, wherein one of the axis is between 0.9357 to 0.875 the length of the other axis.
- 6 A structure having a longitudinal axis and vertical axis that run through the center of the structure, wherein one of the axis is between 0.8125 to 0.750 the length of the other axis.
- 5 A structure having a longitudinal axis and vertical axis that run through the center of the structure, wherein one of the axis is between 0.750 to 0.6875 the length of the other axis.
- 4 A structure having a longitudinal axis and vertical axis that run through the center of the structure, wherein one of the axis is between 0.6875 to 0.625 the length of the other axis.
- 3 A structure having a longitudinal axis and vertical axis that run through the center of the structure, wherein one of the axis is between 0.625 to 0.5625 the length of the other axis.
- 2 A structure having a longitudinal axis and vertical axis that run through the center of the circle, wherein one of the axis is between 0.5625 to 0.523 the length of the other axis.
- 1 An ellipse is defined as having a longitudinal axis and vertical axis that run through the center of the structure, wherein one of the axis is between 0.523 to 0.500 the length of the other axis.
- the rat ES cell population or a population of cells from a given rat ES cell line (that have not undergone a targeted genetic modification and/or have a targeted genetic modification) have at least about 50%, 60%, 65%, 70%, 75%, 80%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% of the cells with the given population have a circular morphology score of a 10, 9 or 8.
- the rat ES cell population or a population of cells from a given rat ES cell line (that have not undergone a targeted genetic modification and/or have a targeted genetic modification) have at least about 50% to 95%, about 60% to 90%, about 60% to 95%, about 60% to 85%, about 60% to 80%, about 70% to 80%, about 70% to 85%, about 70% to about 90%, about 70% to about 95%, about 70% to about 100%, about 80% to about 100%, about 80% to about 95%, about 80% to about 90%, about 90% to about 100%, about 90% to about 99%, about 90% to about 98%, about 90% to about 97%, about 90% to about 95% of the cells within the given population have a circular morphology score of a 10, 9, or 8.
- the rat ES cell population or a population of cells from a given rat ES cell line (that have not undergone a targeted genetic modification and/or have a targeted genetic modification) have at least about 50%, 60%, 65%, 70%, 75%, 80%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% of the cells with the given population have a circular morphology score of a 7, 6, 5, 4 or 3.
- the rat ES cell population or a population of cells from a given rat ES cell line (that have not undergone a targeted genetic modification and/or have a targeted genetic modification) have at least about 50% to 95%, about 60% to 90%, about 60% to 95%, about 60% to 85%, about 60% to 80%, about 70% to 80%, about 70% to 85%, about 70% to about 90%, about 70% to about 95%, about 70% to about 100%, about 80% to about 100%, about 80% to about 95%, about 80% to about 90%, about 90% to about 100%, about 90% to about 99%, about 90% to about 98%, about 90% to about 97%, about 90% to about 95% of the cells within the given population have a circular morphology score of a 7, 6, 5, 4, or 3.
- sphere-like colonies form when the rat ES cells (that have not undergone a targeted genetic modification and/or have a targeted genetic modification) are plated on a feeder cell layer in vitro.
- a morphology scale for a sphere is provided below, where a score of a 10 represents a perfect sphere and a score of a 1 represents a three dimensional elliptical structure.
- Morphology scale of a sphere-like structure
- a sphere is a structure having an X-axis and a Y-axis and a Z-axis each of which runs through the center of the structure and are of equal length.
- 9 A structure having an X axis and a Y-axis and a Z-axis that run through the center of the structure, wherein one of the axis is between 0.9999 to 0.9357 the length of at least one of the other axes.
- 6 A structure having an X axis and a Y-axis and a Z-axis that run through the center of the structure, wherein one of the axis is between 0.8125 to 0.750 the length of at least one or both of the other axes.
- 5 A structure having an X axis and a Y-axis and a Z-axis that run through the center of the structure, wherein one of the axis is 0.750 to 0.6875 the length of at least one or both of the other axes.
- 3 A structure having an X axis and a Y-axis and a Z-axis that run through the center of the structure, wherein one of the axis is between 0.625 to 0.5625 the length of at least one or both of the other axes.
- 2 A structure having an X axis and a Y-axis and a Z-axis that run through the center of the structure, wherein one of the axis is between 0.5625 to 0.523 the length of at least one or both of the other axes.
- 1 A structure having an X axis and a Y-axis and a Z-axis that run through the center of the structure, wherein one of the axis is between 0.523 to 0.500 the length of at least one or both of the other axes.
- the rat ES cell population or a population of cells from a given rat ES cell line (that have not undergone a targeted genetic modification and/or have a targeted genetic modification) have at least about 50%, 60%, 65%, 70%, 75%, 80%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% of the colonies that form when the cells are plated on a feeder cell layer in vitro have a sphere-like morphology of a 10, 9 or 8.
- the rat ES cell population or a population of cells from a given rat ES cell line (that have not undergone a targeted genetic modification and/or have a targeted genetic modification) have at least about 50% to 95%, about 60% to 90%, about 60% to 95%, about 60% to 85%, about 60% to 80%, about 70% to 80%, about 70% to 85%, about 70% to about 90%, about 70% to about 95%, about 70% to about 100%, about 80% to about 100%, about 80% to about 95%, about 80% to about 90%, about 90% to about 100%, about 90% to about 99%, about 90% to about 98%, about 90% to about 97%, about 90% to about 95% of the colonies that form when the cells are plated on a feeder cell layer in vitro have a sphere-like morphology of a 10, 9 or 8.
- the rat ES cell population or a population of cells from a given rat ES cell line have at least about 50%, 60%, 65%, 70%, 75%, 80%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% of the colonies that form when the cells are plated on a feeder cell layer in vitro have a sphere-like morphology of a 7, 6, 5, 4, or 3.
- the rat ES cell population or a population of cells from a given rat ES cell line (that have not undergone a targeted genetic modification and/or have a targeted genetic modification) have at least about 50% to 95%, about 60% to 90%, about 60% to 95%, about 60% to 85%, about 60% to 80%, about 70% to 80%, about 70% to 85%, about 70% to about 90%, about 70% to about 95%, about 70% to about 100%, about 80% to about 100%, about 80% to about 95%, about 80% to about 90%, about 90% to about 100%, about 90% to about 99%, about 90% to about 98%, about 90% to about 97%, about 90% to about 95% of the colonies that form when the cells are plated on a feeder cell layer in vitro have a sphere-like morphology of a 7, 6, 5, 4, or 3.
- a given rat ES cell employed in the various methods and compositions provided herein can be a male (XY) rat ES cell, a male (XY) population of rat ES cells, or a male (XY) rat ES cell line.
- a population of rat ES cells or a rat ES cell line employed herein can be a female (XX) rat ES cell, a female (XX) population of rat ES cells, or a female (XX) rat ES cell line. Any such rat ES cell, population of rat ES cells or rat ES cell line can comprise the euploidy and/or diploidy as described above.
- the various rat ES cells employed in the methods and compositions can be from any rat strain, including but not limited to, an ACI rat strain, a Dark Agouti (DA) rat strain, a Wistar rat strain, a LEA rat strain, a Sprague Dawley (SD) rat strain, or a Fischer rat strain such as Fisher F344 or Fisher F6.
- the various rat ES cells can also be obtained from a strain derived from a mix of two or more strains recited above.
- the rat ES cell is derived from a strain selected from a DA strain and an ACI strain.
- the rat ES cell is derived from an ACI strain.
- the ACI rat strain is are characterized as having black agouti, with white belly and feet and an RT1av1 haplotype. Such strains are available from a variety of sources including Harlan Laboratories.
- the various rat ES cells are from a Dark Agouti (DA) rat strain, which is characterized as having an agouti coat and an RT1av1 haplotype. Such rats are available from a variety of source including Charles River and Harlan Laboratories.
- the various rat ES cells employed herein are from an inbred rat strain.
- the rat ES cell line is from an ACI rat and comprises the ACI.G1 rat ES cell as described in detail in U.S. patent application Ser. No. 14/185,103, filed on Feb. 20, 2014, herein incorporated by reference in its entirety.
- the rat ES cell line is from a DA rat and comprises the DA.2B rat ES cell line or the DA.2C rat ES cell line as described in detail in U.S. patent application Ser. No. 14/185,103, filed on Feb. 20, 2014, herein incorporated by reference in its entirety.
- a given rat ES cell provided herein can be obtained from a rat embryo at various stages of rat embryo development.
- the rat embryos employed to derive the rat ES cells can be a morula-stage embryo, a blastocyst-stage embryo, or a rat embryo at a developmental stage between a morula-stage embryo and a blastocyst-stage embryo.
- the rat embryo employed is at or between the Witschi stages of 5 and 7. In other embodiments, the rat embryo employed is at the Witschi stage 5, 6, or 7.
- the rat ES cell is obtained from a rat blastocyst. In other embodiments, the rat ES cell is obtained from a blastocyst from a superovulated rat. In other embodiments, the rat ES cells are obtained from an 8-cell stage embryo, which is then cultured in vitro until it develops into a morula-stage, blastocyst stage, an embryo between the Witschi stages 5 and 7, or into an embryo at the Witschi stage 5, 6, or 7. At which time the embryos are then plated. Morula-stage embryos comprise a compact ball of cells with no internal cavity. Blastocyst-stage embryos have a visible internal cavity (the blastocoel) and contain an inner cell mass (ICM). The ICM cells form ES cells.
- rat embryonic stem cells Methods of derivation and propagation of rat embryonic stem cells are known in the art and are disclosed, for example, in U.S. patent application Ser. No. 14/185,103, filed on Feb. 20, 2014, herein incorporated by reference in its entirety.
- such methods comprise (a) providing an in vitro culture comprising a feeder cell layer and a population of isolated rat embryonic stem (ES) cells; (b) culturing in vitro under conditions which are sufficient to maintain pluipotency and/or totipotency of the isolated rat ES cell.
- ES rat embryonic stem
- Methods for culturing a rat embryonic stem cell line comprise culturing in vitro a feeder cell layer and a rat ES cell line, wherein the culture conditions maintain pluripotency of the rat ES cells and comprise a media having mouse leukemia inhibitor factor (LIF) or an active variant or fragment thereof.
- the methods can further comprise passaging and culturing in vitro the cells of the rat ES cell line, wherein each subsequent in vitro culturing comprises culturing the rat ES cells on the feeder cell layer under conditions that maintain pluripotency of the rat ES cells and comprises a media having mouse LIF or an active variant or fragment thereof.
- LIF mouse leukemia inhibitor factor
- the culture media employed in the various methods and compositions can maintain the rat ES cells.
- the terms “maintaining” and “maintenance” refer to the stable preservation of at least one or more of the characteristics or phenotypes of the rat ES cells outline herein. Such phenotypes can include maintaining pluripotency and/or totipotency, cell morphology, gene expression profiles and the other functional characteristics of the rat stem cells described herein.
- the term “maintain” can also encompass the propagation of stem cells, or an increase in the number of stem cells being cultured. The term further contemplates culture conditions that permit the stem cells to remain pluripotent, while the stem cells may or may not continue to divide and increase in number.
- feeder cell or “feeder cell layer” comprises a culture of cells that grow in vitro and secrete at least one factor into the culture medium that is used to support the growth of another cell of interest in the culture.
- the feeder cells employed herein aid in maintaining the pluripotency of the rat ES cells, and in specific embodiments, one or more of the other characteristics or phenotypes described herein.
- Various feeder cells can be used including, for example, mouse embryonic fibroblasts, including mouse embryonic fibroblasts obtained between the 12 th and 16 th day of pregnancy.
- feeder cell layer comprises a monolayer of mitotically inactivated mouse embryonic fibroblasts (MEFs).
- the in vitro cultures of the rat ES cells further comprise an effective amount of Leukemia Inhibitor Factor (LIF) or an active variant or fragment thereof.
- Leukemia inhibitory factor (LIF) belongs to the IL-6 receptor family. LIF binds to a heterodimeric membrane receptor made up of a LIF-specific subunit, gp190 or LIFR, and the subunit gp130, which is shared with the other members of the IL-6 family. LIF inhibits the differentiation of embryonic stem cells in mice and contribute to stem cell self-renewal. Human and mouse LIF share 79% sequence homology and exhibit cross-species activity.
- Rat LIF is a 22.1 kDa protein containing 202 amino acid residues that exhibits 91% amino acid sequence identity with murine LIF (Takahama et al. 1998).
- the tertiary structure of the mouse LIF and its function is described in further detail in Aikawa et al. (1998) Biosci. Biotechnol. Biochem. 62 1318-1325 and Senturk et al. (2005) Immunology of Pregnancy, editor Gil Mor., U.S. Pat. No. 5,750,654 and D P Gearing (1987) EMBO Journal 1987-12-20, each of which is herein incorporated by reference in their entirety.
- a partial mouse LIF sequence is reported on the SwissProt website under the accession number P09056.
- Mouse LIF activity is assessed by its ability to induce differentiation of M1 myeloid leukemia cells.
- the specific activity is 1 ⁇ 10 6 units/ml (Cat. No. 03-0011 from Stemgent) and 1 ⁇ 10 7 units/ml (Cat. No. 03-0011-100 from Stemgent), where 50 units is defined as the amount of mouse LIF required to induce differentiation in 50% of the M1 colonies in 1 ml of medium.
- 50 units is defined as the amount of mouse LIF required to induce differentiation in 50% of the M1 colonies in 1 ml of medium.
- an “effective amount of LIF” comprises a concentration of LIF that allows the rat ES cells of an in vitro culture to remain in an undifferentiated pluripotent state.
- Various markers that can be used to assay for the cells remaining in a pluripotent state are discussed elsewhere herein.
- the LIF polypeptide employed in the various methods and compositions provided herein can be from any organism, including from a mammal, a rodent, a human, a rat or a mouse.
- the LIF polypeptide is from a mouse.
- the mouse LIF polypeptide comprises the amino acid sequence set forth in SwissProt Accession number: P09056, which is herein incorporated by reference in its entirety and is also set forth in SEQ ID NO: 9.
- an active variant or fragment of the mouse LIF polypeptide as set forth in SEQ ID NO: 9 or in SwissProt Accession number: P09056 can be used.
- Such active variants and fragments including active variants having at least 75%, 80%, 85% 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% sequence identity to SEQ ID NO: 9 are discussed in further detail elsewhere herein.
- LIF polypeptide or the active variant or fragment thereof can be provided to the in vitro culture in a variety of ways.
- the effective amount of the LIF polypeptide or the active variant or fragment thereof is added to the culture media.
- the feeder cells have been genetically modified to overexpress the LIF polypeptide or the active variant or fragment thereof.
- Such feeder cells include feeder cells prepared from gamma-irradiated or mitornycin-C treated DIA-M mouse fibroblasts that express matrix-associated LIF. Method of generating and using such genetically modified feeder cells can be found, for example, in See, Buehr et al. (2003) Biol Reprod 68:222-229, Rathjen et al.
- the heterologous LIF expressed in the feeder cells can be from the same organism as the feeder cells or from an organism that is different from that of the feeder cell.
- the heterologous LIF expressed in the feeder cells can be from the same or from a different organism than the ES cells the feeder layer is supporting.
- the feeder cells employed in the various methods disclosed herein are not genetically modified to express a heterologous LIF polypeptide or an active variant or fragment thereof.
- the monolayer of mitotically inactivated mouse embryonic fibroblast employed in the methods has not been genetically modified to express a heterologous LIF polypeptide.
- the LIF polypeptide or the active variant or fragment thereof is added to the culture media.
- the LIF can be from any organism, including from a mammal, a rodent, a human, a rat or a mouse.
- the LIF present in the culture media is from a mouse.
- the mouse LIF polypeptide comprises the amino acid sequence set forth in SEQ ID NO:9.
- an active variant or fragment of the mouse LIF polypeptide as set forth in SEQ ID NO:9 can be used.
- active variants and fragments including active variants having at least 75%, 80%, 85% 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% sequence identity to SEQ ID NO: 9) are discussed in further detail elsewhere herein.
- the rat ES cells and rat ES cell lines provided herein maintain pluripotency in vitro without requiring paracrine LIF signaling.
- LIF or an active variant or fragment thereof is present in the culture media at any concentration that maintains the rat ES cells.
- LIF polypeptide or active variant or fragment thereof is present in the culture media at about 25 U/ml to about 50 U/ml, at about 50 U/ml to about 100 U/ml, at about 100 U/ml to about 125 U/ml, at about 125 U/ml to about 150 U/ml, at about 150 U/ml to about 175 U/ml, at about 175 U/ml to about 200 U/ml, at about 200 U/ml to about 225 U/ml, at about 225 U/ml to about 250 U/ml, at about 250 U/ml to about 300 U/ml, to about 300 U/ml to about 325 U/ml, at about 325 U/ml to about 350 U/ml, at about 350 U/ml to about 400 U/ml, at about 400 U/ml to about 425 U/ml, at about 25
- LIF polypeptide or active variant or fragment thereof is present in the culture media at about 25 U/ml to about 50 U/ml, at about 25 U/ml to about 100 U/ml, at about 75 U/ml to about 125 U/ml, at about 50 U/ml to about 150 U/ml, at about 90 U/ml to about 125 U/ml, at about 90 U/ml to about 110 U/ml, at about 80 U/ml to about 150 U/ml, or at about 80 U/ml to about 125 U/ml.
- LIF polypeptide or active variant or fragment thereof is present in the culture media at about 100 U/ml.
- mouse LIF polypeptide or active variant or fragment thereof is present in the culture media at any concentration that maintains the rat ES cells.
- Mouse LIF polypeptide or active variant or fragment thereof is present at about 25 U/ml to about 50 U/ml, at about 50 U/ml to about 100 U/ml, at about 100 U/ml to about 125 U/ml, at about 125 U/ml to about 150 U/ml, at about 150 U/ml to about 175 U/ml, at about 175 U/ml to about 200 U/ml, at about 200 U/ml to about 225 U/ml, at about 225 U/ml to about 250 U/ml, at about 250 U/ml to about 300 U/ml, to about 300 U/ml to about 325 U/ml, at about 325 U/ml to about 350 U/ml, at about 350 U/ml to about 400 U/ml, at about 400 U/ml to about 425 U/m
- mouse LIF polypeptide or active variant or fragment thereof is present at about 25 U/ml to about 50 U/ml, at about 25 U/ml to about 100 U/ml, at about 75 U/ml to about 125 U/ml, at about 50 U/ml to about 150 U/ml, at about 90 U/ml to about 125 U/ml, at about 90 U/ml to about 110 U/ml, at about 80 U/ml to about 150 U/ml, or at about 80 U/ml to about 125 U/ml.
- mouse LIF polypeptide or active variant or fragment thereof is present in the culture media at about 100 U/ml.
- the culture media employed maintains rat ES cells.
- the culture media employed in the various method and compositions will maintain the pluripotency of all or most of (i.e., over 50%) of the rat ES cells in a cell line for a period of a at least 5, 10 or 15 passages.
- the culture media comprises one or more compounds that assist in maintaining pluripotency.
- the culture media comprises a MEK pathway inhibitor and a glycogen synthase kinase-3 (GSK-3) inhibitor.
- the media can further comprise additional components that aid in maintaining the ES cells, including for example, FGF receptor inhibitors, ROCK inhibitors, and/or ALK (TGFb receptor) inhibitors.
- a non-limiting example of an FGF receptor inhibitors includes PD184352.
- a non-limiting example of a ROCK inhibitor includes Y-27632, and non-limiting example of an ALK (TGFb receptor) inhibitor includes A-83-01.
- 2i media is used with 10 uM ROCKi when thawing cryopreserved rESC or when re-plating rESC after dissociation with trypsin.
- the media comprises a combination of inhibitors consisting of a MEK pathway inhibitor and a glycogen synthase kinase-3 (GSK-3) inhibitor.
- GSK-3 glycogen synthase kinase-3
- the culture media comprises a GSK-3 inhibitor comprising CHIR99021 and/or comprises a MEK inhibitor comprising PD0325901.
- the media comprises a combination of inhibitors consisting of CHIR99021 and PD0325901. Either of these compounds can be obtained, for example, from Stemgent.
- CHIR99021 is present in the culture media at a concentration of about 0.5 ⁇ to about 3 ⁇ M, about 0.5 ⁇ to about 3.5 ⁇ M, about 0.5 ⁇ M to about 4 ⁇ M, about 0.5 ⁇ M to about 1 ⁇ M, about 1 ⁇ M to about 1.5 ⁇ M, about 1.5 ⁇ M to about 2 ⁇ M, about 2 ⁇ M to about 2.5 ⁇ M, about 2.5 to about 3 ⁇ M, 3 ⁇ M to about 3.5 ⁇ M. In further embodiments, CHIR99021 is present in the culture media at a concentration of about 3 ⁇ M.
- PD0325901 is present in the culture media at a concentration of about 0.4 ⁇ M to about 1 uM, about 0.4 ⁇ M to about 1.5 uM, about 0.4 ⁇ M to about 2 ⁇ M, about 0.4 ⁇ M to about 0.8 ⁇ M, 0.8 ⁇ M to about 1.2 ⁇ M, about 1.2 to about 1.5 ⁇ M.
- PD0325901 is present in the culture media at a concentration of about 1 ⁇ M.
- CHIR99021 is present in the culture media at a concentration of about 3 ⁇ M and PD0325901 is present at a concentration of about 1 ⁇ M.
- the culture media employed in the various methods and compositions disclosed herein is a 2i media which comprises: DMEM/F12 basal media (at a concentration of 1 ⁇ (50%)); Neurobasal media (at a concentration of 1 ⁇ (50%)); Penicillin/streptomycin (at a concentration of 1%); L-Glutamine (at a concentration of 4 mM); 2-Mercaptoethanol (at a concentration of 0.1 mM); N2 supplement (at a concentration of 1 ⁇ ); B27 supplement (at a concentration 1 ⁇ ); LIF (at a concentration of 100 U/ml); PD0325901 (MEK inhibitor) (at a concentration of 1 ⁇ M) and CHIR99021 (GSK inhibitor) (at a concentration of 3 ⁇ M).
- DMEM/F12 basal media at a concentration of 1 ⁇ (50%)
- Neurobasal media at a concentration of 1 ⁇ (50%)
- Penicillin/streptomycin at a concentration of 1%
- L-Glutamine at a
- Additional media that can be employed include those disclosed in Li et al. (2008) Cell 135:1299-1310, Yamamoto et al. (2012) Transgenic Rats 21:743-755, Ueda et al. (2008) PLoS ONE 3(6):e2800, Meek et al. (2010) PLoS ONE 4 (12): e14225; Tong et al. (2010) Nature 467:211-213; US Patent Publication 2012/0142092, Buehr et al. (2008) Cell 135:1287-1298, Li et al. (135) Cell 1299-1310, each of which is herein incorporated by reference in their entirety.
- the concentration and the source of LIF can be modified as outlined herein.
- the various culture medias are used in combination with mouse LIF or an active variant or fragment thereof, and in even further embodiments, the various culture medias comprise a mouse LIF or an active variant or fragment thereof at a concentration of about 50 U/ml to about 100 U/ml, about 50 U/ml to about 150 U/ml, or about 100 U/ml.
- the temperature of the cultures of rat ES cells both for the production of the ES cell line and for the culturing and maintaining of the ES line it typically carried out at about 35° C. to about 37.5° C. In specific embodiment, the temperature is 37.0° C.
- the culture is typically carried out at 7.5% CO 2 .
- the methods and compositions provided herein employ a variety of different components of the targeted genomic integration system (i.e. nuclease agents, recognition sites, insert nucleic acids, polynucleotides of interest, targeting vectors, selection markers and other components). It is recognized throughout the description that some components of the targeted genomic integration system can have active variants and fragments. Such components include, for example, nuclease agents (i.e. engineered nuclease agents), nuclease agent recognition sites, polynucleotides of interest, target sites and corresponding homology arms of the targeting vector. Biological activity for each of these components is described elsewhere herein.
- sequence identity or “identity” in the context of two polynucleotides or polypeptide sequences makes reference to the residues in the two sequences that are the same when aligned for maximum correspondence over a specified comparison window.
- sequence identity or “identity” in the context of two polynucleotides or polypeptide sequences makes reference to the residues in the two sequences that are the same when aligned for maximum correspondence over a specified comparison window.
- percentage of sequence identity is used in reference to proteins it is recognized that residue positions which are not identical often differ by conservative amino acid substitutions, where amino acid residues are substituted for other amino acid residues with similar chemical properties (e.g., charge or hydrophobicity) and therefore do not change the functional properties of the molecule.
- sequences differ in conservative substitutions the percent sequence identity may be adjusted upwards to correct for the conservative nature of the substitution.
- Sequences that differ by such conservative substitutions are said to have “sequence similarity” or “similarity”. Means for making this adjustment are well known to those of skill in the art. Typically this involves scoring a conservative substitution as a partial rather than a full mismatch, thereby increasing the percentage sequence identity. Thus, for example, where an identical amino acid is given a score of 1 and a non-conservative substitution is given a score of zero, a conservative substitution is given a score between zero and 1. The scoring of conservative substitutions is calculated, e.g., as implemented in the program PC/GENE (Intelligenetics, Mountain View, Calif.).
- percentage of sequence identity means the value determined by comparing two optimally aligned sequences over a comparison window, wherein the portion of the polynucleotide sequence in the comparison window may comprise additions or deletions (i.e., gaps) as compared to the reference sequence (which does not comprise additions or deletions) for optimal alignment of the two sequences. The percentage is calculated by determining the number of positions at which the identical nucleic acid base or amino acid residue occurs in both sequences to yield the number of matched positions, dividing the number of matched positions by the total number of positions in the window of comparison, and multiplying the result by 100 to yield the percentage of sequence identity.
- sequence identity/similarity values provided herein refer to the value obtained using GAP Version 10 using the following parameters: % identity and % similarity for a nucleotide sequence using GAP Weight of 50 and Length Weight of 3, and the nwsgapdna.cmp scoring matrix; % identity and % similarity for an amino acid sequence using GAP Weight of 8 and Length Weight of 2, and the BLOSUM62 scoring matrix; or any equivalent program thereof “Equivalent program” means any sequence comparison program that, for any two sequences in question, generates an alignment having identical nucleotide or amino acid residue matches and an identical percent sequence identity when compared to the corresponding alignment generated by GAP Version 10.
- a method for targeted modification of a genomic locus of interest in a pluripotent rat cell comprising (a) introducing into the pluripotent rat cell a large targeting vector (LTVEC) comprising an insert nucleic acid flanked with a 5′ rat homology arm and a 3′ rat homology arm, wherein the sum total of the 5′ and the 3′ homology arms is at least 10 kb but less than 150 kb; and (b) identifying a genetically modified pluripotent rat cell comprising the targeted genetic modification at the genomic locus of interest, wherein the targeted genetic modification is capable of being transmitted through the germline.
- LTVEC large targeting vector
- pluripotent rat cell is characterized by expression of at least one pluripotency marker comprising Dnmt3L, Eras, Err-beta, Fbxo15, Fgf4, Gdf3, Klf4, Lef1, LIF receptor, Lin28, Nanog, Oct4, Sox15, Sox2, Utf1, or a combination thereof.
- pluripotent rat cell is characterized by one of more of the following characteristics:
- the targeted genetic modification comprises: (a) a replacement of an endogenous rat nucleic acid sequence with a homologous or an orthologous nucleic acid sequence; (b) a deletion of an endogenous rat nucleic acid sequence; (c) a deletion of an endogenous rat nucleic acid sequence, wherein the deletion ranges from about 5 kb to about 10 kb, from about 10 kb to about 20 kb, from about 20 kb to about 40 kb, from about 40 kb to about 60 kb, from about 60 kb to about 80 kb, from about 80 kb to about 100 kb, from about 100 kb to about 150 kb, or from about 150 kb to about 200 kb, from about 200 kb to about 300 kb, from about 300 kb to about 400 kb, from about 400 kb to about 500 kb, from about 500 kb to about 1 Mb,
- genomic locus of interest comprises (i) a first nucleic acid sequence that is complementary to the 5′ rat homology arm; and (ii) a second nucleic acid sequence that is complementary to the 3′ rat homology arm.
- introducing step (a) further comprises introducing a second nucleic acid encoding a nuclease agent that promotes a homologous recombination between the targeting construct and the genomic locus of interest in the pluripotent rat cell.
- nuclease agent comprises (a) a chimeric protein comprising a zinc finger-based DNA binding domain fused to a FokI endonuclease; or, (b) a chimeric protein comprising a Transcription Activator-Like Effector Nuclease (TALEN) fused to a FokI endonuclease.
- TALEN Transcription Activator-Like Effector Nuclease
- introducing step (a) further comprises introducing into the pluripotent rat cell: (i) a first expression construct comprising a first promoter operably linked to a first nucleic acid sequence encoding a Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-associated (Cas) protein, (ii) a second expression construct comprising a second promoter operably linked to a genomic target sequence linked to a guide RNA (gRNA), wherein the genomic target sequence is immediately flanked on the 3′ end by a Protospacer Adjacent Motif (PAM) sequence.
- CRISPR Clustered Regularly Interspaced Short Palindromic Repeats
- gRNA guide RNA
- genomic locus of interest comprises the nucleotide sequence of SEQ ID NO: 1.
- the gRNA comprises a third nucleic acid sequence encoding a Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) RNA (crRNA) and a trans-activating CRISPR RNA (tracrRNA).
- CRISPR Clustered Regularly Interspaced Short Palindromic Repeats
- tracrRNA trans-activating CRISPR RNA
- gRNA comprises: (a) the chimeric RNA of the nucleic acid sequence of SEQ ID NO: 2; or, (b) the chimeric RNA of the nucleic acid sequence of SEQ ID NO: 3.
- a modified rat genomic locus comprising: (i) an insertion of a homologous or orthologous human nucleic acid sequence; (ii) a replacement of an endogenous rat nucleic acid sequence with the homologous or orthologous human nucleic acid sequence; or (iii) a combination thereof, wherein the modified rat genomic locus is capable of being transmitted through the germline.
- a method for making a humanized rat comprising: (a) targeting a genomic locus of interest in a pluripotent rat cell with a targeting construct comprising a human nucleic acid to form a genetically modified pluripotent rat cell; (b) introducing the genetically modified pluripotent rat cell into a host rat embryo; and (c) gestating the host rat embryo in a surrogate mother; wherein the surrogate mother produces rat progeny comprising a modified genomic locus that comprises: (i) an insertion of a human nucleic acid sequence; (ii) a replacement of the rat nucleic acid sequence at the genomic locus of interest with a homologous or orthologous human nucleic acid sequence; (iii) a chimeric nucleic acid sequence comprising a human and a rat nucleic acid sequence; or (iv) a combination thereof, wherein the modified genomic locus is capable of being transmitted through the germline.
- the human nucleic acid sequence is at least 5 kb but less than 10 kb, at least 10 kb but less than 20 kb, at least 20 kb but less than 40 kb, at least 40 kb but less than 60 kb, at least 60 kb but less than 80 kb, at least about 80 kb but less than 100 kb, at least 100 kb but less than 150 kb, at least 150 kb but less than 200 kb, at least 200 kb but less than 250 kb, at least 250 kb but less than 300 kb, at least 300 kb but less than 350 kb, or at least 350 kb but less than 400 kb.
- pluripotent rat cell is characterized by expression of at least one pluripotency marker comprising Dnmt3L, Eras, Err-beta, Fbxo15, Fgf4, Gdf3, Klf4, Lef1, LIF receptor, Lin28, Nanog, Oct4, Sox15, Sox2, Utf1, or a combination thereof.
- the pluripotent rat cell is characterized by one or more of the following features: (a) lack of expression of one or more pluripotency markers comprising c-Myc, Ecat1, and/or Rexo1; (b) lack of expression of one or more mesodermal markers comprising Brachyury and/or Bmpr2; (c) lack of expression of one or more endodermal markers comprising Gata6, Sox17, and/or Sox7; or (d) lack of expression of one or more neural markers comprising Nestin and/or Pax6.
- a modified rat comprising a humanized genomic locus, wherein the humanized genomic locus comprises: (i) an insertion of a homologous or orthologous human nucleic acid sequence; (ii) a replacement of a rat nucleic acid sequence at an endogenous genomic locus with a homologous or orthologous human nucleic acid sequence; (iii) a chimeric nucleic acid sequence comprising a human and a rat nucleic acid sequence or, (iv) a combination thereof, wherein the humanized genomic locus is capable of being transmitted through the germline.
- a rat or rat cell comprising a targeted genetic modification in its genomic locus, wherein the genomic locus is an Interleukin-2 receptor gamma locus, an ApoE locus, a Rag1 locus, a Rag2 locus, or a Rag2/Rag1 locus, wherein the targeted genetic modification comprises: (a) a deletion of an endogenous rat nucleic acid sequence at the genomic locus; (b) an insertion of a homologous nucleic acid, an orthologous nucleic acid, or a chimeric nucleic acid comprising a human and a rat nucleic acid sequence, or (c) a combination thereof, wherein the targeted genetic modification is transmissible through the germline of the rat or a rat propagated from the rat cell.
- the genomic locus is an Interleukin-2 receptor gamma locus, an ApoE locus, a Rag1 locus, a Rag2 locus, or a Rag2/Rag1 locus
- the targeted genetic modification of the Interleukin-2 receptor gamma locus comprises: (a) a deletion of the entire rat Interleukin-2 receptor gamma coding region or a portion thereof; (b) a replacement of the entire rat Interleukin-2 receptor gamma coding region or a portion thereof with a human Interleukin-2 receptor gamma coding region or a portion thereof; (c) a replacement of an ecto-domain of the rat Interleukin-2 receptor gamma coding region with the ecto-domain of a human Interleukin-2 receptor gamma; or, (d) at least a 3 kb deletion of the Interleukin-2 receptor gamma locus.
- rat or rat cell of any one of embodiments 35-37, wherein the targeted genetic modification of the ApoE locus comprises: (a) a deletion of the entire ApoE coding region or a portion thereof; or, (b) at least a 1.8 kb deletion of the ApoE locus comprising the ApoE coding region.
- the targeted genetic modification of the Rag2 locus comprises: (a) a deletion of the entire Rag2 coding region or a portion thereof; (b) at least a 5.7 kb deletion of the Rag2 locus comprising the Rag2 coding region.
- the targeted genetic modification of the Rag2/Rag1 locus comprises: (a) a deletion of the entire Rag2 coding region or a portion thereof and a deletion of the entire Rag1 coding region or portion thereof; or, (b) a deletion of at least 16 kb of the Rag2/Rag1 locus comprising the Rag2 coding region.
- rat or rat cell of any one of embodiments 42, wherein the expression cassette comprises a lacZ gene operably linked to the endogenous promoter at the genomic locus and a human ubiquitin promoter operably linked to a selective marker.
- rat or rat cell of any one of embodiments 35-43, wherein the targeted genetic modification in the Interleukin-2 receptor gamma locus, the ApoE locus, the Rag1 locus, the Rag2 locus or the Rag2/Rag1 locus comprises the insertion of a self-deleting selection cassette.
- the self-deleting selection cassette comprises a selective marker gene operably linked to a promoter active in the rat cell and a recombinase gene operably linked to a male germ cell-specific promoter, wherein the self-deleting cassette is flanked by recombination recognition sites recognized by the recombinase.
- rat or rat cell of embodiment 45 wherein (a) the male germ cell-specific promoter is a Protamine-1 promoter; or, (b) the recombinase gene encodes Cre, and the recombination recognition sites are loxP sites.
- rat or rat cell of any one of embodiments 35-46, wherein the insertion of the exogenous nucleic acid sequence at the genomic locus comprises a reporter nucleic acid operably linked to an endogenous Interleukin-2 receptor gamma promoter, an endogenous ApoE promoter, an endogenous Rag1 promoter, or an endogenous Rag2 promoter.
- reporter nucleic acid encodes a reporter comprising ⁇ -galactosidase, mPlum, mCherry, tdTomato, mStrawberry, J-Red, DsRed, mOrange, mKO, mCitrine, Venus, YPet, enhanced yellow fluorescent protein (EYFP), Emerald, enhanced green fluorescent protein (EGFP), CyPet, cyan fluorescent protein (CFP), Cerulean, T-Sapphire, luciferase, alkaline phosphatase, or a combination thereof.
- a reporter comprising ⁇ -galactosidase, mPlum, mCherry, tdTomato, mStrawberry, J-Red, DsRed, mOrange, mKO, mCitrine, Venus, YPet, enhanced yellow fluorescent protein (EYFP), Emerald, enhanced green fluorescent protein (EGFP), CyPet, cyan fluorescent protein (CFP), Cer
- rat cell is a pluripotent rat cell or a rat embryonic stem (ES) cell.
- the rat cell of embodiment 49, wherein the pluripotent rat cell or the rat embryonic stem (ES) cell (a) is derived from a DA strain or an ACI strain; (b) is characterized by expression of at least one pluripotency marker comprising Dnmt3L, Eras, Err-beta, Fbxo15, Fgf4, Gdf3, Klf4, Lef1, LIF receptor, Lin28, Nanog, Oct4, Sox15, Sox2, Utf1, or a combination thereof; or (c) is characterized by one or more of the following characteristics: (i) lack of expression of one or more pluripotency markers comprising c-Myc, Ecat1, and/or Rexo1; (ii) lack of expression of mesodermal markers comprising Brachyury and/or Bmpr2; (iii) lack of expression of one or more endodermal markers comprising Gata6, Sox17 and/or Sox7; or (iv) lack of expression of one
- a method for modifying a target genomic locus in an Interleukin-2 receptor gamma locus, an ApoE locus, a Rag1 locus, a Rag2 locus or a Rag2/Rag1 locus in a pluripotent rat cell comprising: (a) introducing into the pluripotent rat cell a targeting vector comprising an insert nucleic acid flanked with 5′ and 3′ rat homology arms homologous to the target genomic locus, (b) identifying a genetically modified pluripotent rat cell comprising a targeted genetic modification at the target genomic locus, wherein the targeted genetic modification is capable of being transmitted through the germline of a rat propagated from the pluripotent rat cell.
- the targeting vector is a large targeting vector (LTVEC) wherein the sum total of the 5′ and the 3′ rat homology arms is at least about 10 kb but less than about 150 kb.
- LTVEC large targeting vector
- introducing the targeting vector into the pluripotent rat cell leads to: (i) a deletion of an endogenous rat nucleic acid sequence at the target genomic locus; (ii) an insertion of an exogenous nucleic acid sequence at the target genomic locus; or (iii) a combination thereof.
- the insertion of the exogenous nucleic acid sequence at the genomic locus is from about 5 kb to about 10 kb, from about 10 kb to about 20 kb, from about 20 kb to about 40 kb, from about 40 kb to about 60 kb, from about 60 kb to about 80 kb, from about 80 kb to about 100 kb, from about 100 kb to about 150 kb, from about 150 kb to about 200 kb, from about 200 kb to about 250 kb, from about 250 kb to about 300 kb, from about 300 kb to about 350 kb, or from about 350 kb to about 400 kb.
- the targeted genetic modification of the Interleukin-2 receptor gamma locus comprises (a) a deletion of the entire rat Interleukin-2 receptor gamma coding region or a portion thereof; (b) a replacement of the entire rat Interleukin-2 receptor gamma coding region or a portion thereof with a human Interleukin-2 receptor gamma coding region or a portion thereof; (c) a replacement of an ecto-domain of the rat Interleukin-2 receptor gamma coding region with the ecto-domain of a human Interleukin-2 receptor gamma; or, (d) at least a 3 kb deletion of the Interleukin-2 receptor gamma locus comprising the Interleukin-2 receptor gamma coding region.
- the targeted genetic modification of the ApoE locus comprises: (a) a deletion of the entire ApoE coding region or a portion thereof; or, (b) at least a 1.8 kb deletion of the ApoE locus comprising the ApoE coding region.
- the targeted genetic modification of the Rag2 locus comprises: (a) a deletion of the entire Rag2 coding region or a portion thereof; or, (b) at least a 5.7 kb deletion of the Rag2 locus comprising the Rag2 coding region.
- the targeted genetic modification of the Rag1/Rag2 locus comprises: (a) a deletion of the entire Rag2 coding region or a portion thereof and a deletion of the entire Rag1 coding region or portion thereof; or, (b) a deletion of at least 16 kb of the Rag2/Rag1 locus comprising the Rag2 and Rag1 coding regions.
- the insert nucleic acid comprises an expression cassette comprising a polynucleotide encoding a selective marker.
- the expression cassette comprises a lacZ gene operably linked to an endogenous promoter at the genomic locus and a human ubiquitin promoter operably linked to a selective marker gene.
- the self-deleting selection cassette comprises a selective marker operably linked to a promoter active in the rat pluripotent cell and a polynucleotide encoding a recombinase operably linked to a male germ cell-specific promoter, wherein the self-deleting cassette is flanked by recombination recognition sites recognized by the recombinase.
- the insertion of the exogenous nucleic acid sequence at the genomic locus comprises a reporter nucleic acid sequence operably linked to an endogenous Interleukin-2 receptor gamma promoter, an endogenous ApoE promoter, an endogenous Rag1 promoter, or an endogenous Rag2 promoter.
- the reporter nucleic acid sequence encodes a reporter comprising ⁇ -galactosidase, mPlum, mCherry, tdTomato, mStrawberry, J-Red, DsRed, mOrange, mKO, mCitrine, Venus, YPet, enhanced yellow fluorescent protein (EYFP), Emerald, enhanced green fluorescent protein (EGFP), CyPet, cyan fluorescent protein (CFP), Cerulean, T-Sapphire, luciferase, alkaline phosphatase, or a combination thereof.
- a reporter comprising ⁇ -galactosidase, mPlum, mCherry, tdTomato, mStrawberry, J-Red, DsRed, mOrange, mKO, mCitrine, Venus, YPet, enhanced yellow fluorescent protein (EYFP), Emerald, enhanced green fluorescent protein (EGFP), CyPet, cyan fluorescent protein (CFP
- the pluripotent rat cell (a) is derived from a DA strain or an ACI strain; or, (b) is characterized by expression of a pluripotency marker comprising Oct-4, Sox-2, alkaline phosphatase, or a combination thereof; or, (c) is characterized by one or more of the following characteristics: (i) lack of expression of one or more pluripotency markers comprising c-Myc, Ecat1, and/or Rexo1; (ii) lack of expression of mesodermal markers comprising Brachyury and/or Bmpr2; (iii) lack of expression of one or more endodermal markers comprising Gata6, Sox17 and/or Sox7; or (iv) lack of expression of one or more neural markers comprising Nestin and/or Pax6.
- introducing step (a) further comprises introducing a second nucleic acid encoding a nuclease agent that promotes a homologous recombination between the targeting vector and the target genomic locus in the pluripotent rat cell.
- nuclease agent comprises a chimeric protein comprising a zinc finger-based DNA binding domain fused to a FokI endonuclease.
- introducing step (a) further comprises introducing into the pluripotent rat cell: (i) a first expression construct comprising a first promoter operably linked to a first nucleic acid sequence encoding a Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-associated (Cas) protein, (ii) a second expression construct comprising a second promoter operably linked to a genomic target sequence linked to a guide RNA (gRNA), wherein the genomic target sequence is immediately flanked on the 3′ end by a Protospacer Adjacent Motif (PAM) sequence.
- CRISPR Clustered Regularly Interspaced Short Palindromic Repeats
- gRNA guide RNA
- genomic locus of interest comprises the nucleotide sequence of SEQ ID NO: 1.
- gRNA comprises a third nucleic acid sequence encoding a Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) RNA (crRNA) and a trans-activating CRISPR RNA (tracrRNA).
- CRISPR Clustered Regularly Interspaced Short Palindromic Repeats
- tracrRNA trans-activating CRISPR RNA
- gRNA comprises: (a) the chimeric RNA of the nucleic acid sequence of SEQ ID NO: 2; or, (b) the chimeric RNA of the nucleic acid sequence of SEQ ID NO: 3.
- tracrRNA comprises SEQ ID NO: 7 or SEQ ID NO: 8.
- Rat ESCs grow as compact spherical colonies, which routinely detach and float in the dish (close-up, FIG. 7 ).
- Rat ESCs express pluripotency markers including Oct-4 ( FIG. 2A ) and Sox2 ( FIG. 2B ), and express high levels of alkaline phosphatase ( FIG. 3 , left panel).
- Karyotype for line DA.2B is 42X,Y ( FIG. 3 , right panel).
- Rat ESCs often become tetraploid; thus, lines were pre-screened by counting metaphase chromosome spreads; lines with mostly normal counts were then formally karyotyped.
- ACI blastocysts were collected from super-ovulated females obtained commercially.
- DA blastocysts were cultured from frozen 8-cell embryos obtained commercially.
- Zona pellucidae were removed with Acid Tyrodes; and blastocysts were plated onto mitotically inactivated MEFs. Outgrowths were picked and expanded using standard methods. All blastocysts were plated, cultured and expanded using 2i media (Li et al. (2008) Germline competent embryonic stem cells derived from rat blastocysts, Cell 135:1299-1310; incorporated herein by reference in its entirety).
- Chimeric rats were produced by blastocyst injection and transmission of the rat ESC genome. Chimeras produced by blastocyst microinjection using parental ACI.G1 rat ESCs are shown in FIG. 8 . F1 agouti pups with albino littermates, sired by the ACI/SD chimera labeled with an asterisk (*) in FIG. 8 are shown in FIG. 9 .
- rat ESC lines Three euploid rat ESC lines were evaluated for pluripotency by microinjection into albino SD blastocysts. Chimeras were identified by agouti coat color, which indicates rat ESC contribution. For each line, a majority of chimeras transmitted the rESC genome to F1 offspring (Table 2).
- Day 3 checked plugs. Females were plugged. This is day 0.5.
- the 2i media was prepared as follows in Table 3.
- Reagent Vendor Concentration DMEM/F12 basal media Invitrogen/Life 1 ⁇ Technologies Neurobasal media Invitrogen/Life 1 ⁇ Technologies Penicillin/streptomycin Invitrogen/Life 1% Technologies L-Glutamine Invitrogen/Life 4 mM Technologies 2-Mercaptoethanol Invitrogen/Life 0.1 mM Technologies N2 supplement Invitrogen/Life 1 ⁇ Technologies B27 supplement Invitrogen/Life 1 ⁇ Technologies LIF Millipore 100 U/ml PD0325901 (MEK Stemgent 1 uM inhibitor). CHIR99021 (GSK Stemgent 3 uM inhibitor).
- PMSG Sigma #G-4877 (1000 IU). Resuspend in PBS to a final [ ] of 50 IU/ml. Store at ⁇ 20° in 1 ml aliquots.
- HCG Sigma #CG-5 (5000 IU). Resuspend in PBS to a final [ ] of 50 IU/ml. Store at ⁇ 20° in 1 ml aliquots.
- FIG. 4 provides a photograph showing the analysis of the chromosome number of the ACI.G1 rat ES cell line.
- FIG. 5 provides a photograph showing the analysis of the chromosome number of the DA.2B rat ES cell line.
- FIG. 6 provides a photograph showing the analysis of the chromosome number of the DA.C2 rat ES cell line.
- Pelleted cells (5′/1200 rpm); calculate total cell number and total resuspension volume to achieve correct cell concentration (target #/75 ⁇ l EP buffer).
- Electroporation buffer is sold by Millipore. The catalog # is ES-003-D. See, Valenzuela et al. (2003) Nature Biotechnology 21:652-659, which is herein incorporated by reference.
- neoR MEFs or other MEFs depending on project.
- the neoR selectable marker is the neomycin phosphotransferase (neo) gene of Beck et al. (1982) Gene, 19:327-36 or in U.S. Pat. No. 7,205,148 or 6,596,541, each of which are herein incorporated by reference.
- ROCK inhibitor used was Y-27632.
- Pelleted cells (5′/1200 rpm); calculate total cell number and total resuspension volume to achieve correct cell concentration (target #/75 ⁇ l EP buffer).
- the genes listed in Table 8 were expressed at 20-fold lower in rat ES cells than the corresponding genes in mouse ES cells.
- the genes listed in Table 9 were expressed at levels 20-fold higher in rat ES cells than the corresponding genes in mouse ES cells.
- mice ES cells were cultured in 2i media for 3 passages until confluent. F1H4 cells were cultured on gelatin-coated plates in the absence of feeders. F1H4 mouse ES cells were derived from 12956/SvEvTac and C57BL/6NTac heterozygous embryos (see, e.g., U.S. Pat. No. 7,294,754 and Poueymirou, W. T., Auerbach, W., Frendewey, D., Hickey, J. F., Escaravage, J.
- the 1.5 mL Eppendorf tubes were labeled with the Sample ID. Cells grown on a plate were rinsed in 37° C. Phosphate-Buffered Saline (PBS). PBS was removed and 300 ul of Trizol® was added. A scraper was used to break the cells in Trizol® (Life Technology). The lysed cells were collected in Trizol® in a 1.5 mL Epperdorf tube. For cells grown on suspension, the cells were rinsed in 37° C. PBS and collected in a 1.5 mL tube. The cells were spun down; PBS was removed; and 300 ul of Trizol® was added to the cells. The cell membranes were broken by pipetting.
- PBS Phosphate-Buffered Saline
- RNA Lysis buffer 320 uL RNA Lysis buffer was added to 80 uL sample. Samples were stored at ⁇ 20° C.
- RNA-Seq was used to measure the expression level of mouse and rat genes. Sequencing reads were mapped to mouse and rat reference genome by Tophat, and RPKM (fragments per kilobase of exon per million fragments mapped) were calculated for mouse and rat genes. Homology genes based on gene symbol were selected, and then used t-test to compare the expression level of each gene between mouse and rat. miR-632 was in the top 10 highest expressed in rat ESCs but was not expressed in mouse ES cells. Although no comparative data exist from miR-632, based on the level of its expression compared to other genes expressed in rat ESCs and their known function in embryonic development, miR-632 was selected as a marker for rat ES cells.
- Table 11 provides a gene list and their expression ranks from the RNA profiling data. mRNA was isolated from rat ES cells and the expression level of various markers were compared relative to each other. The term “rank” means the comparative expression levels of individual genes: the higher the rank (1 is highest), the higher the expression. For example, Oct4's rank of 13 means that, of all the genes assayed, it was expressed higher than all but 12 genes. Background in this experiment was any expression value below 30; 6107 genes had expression values of 30 or higher.
- the rat ES cells described herein are electroporated with expression vectors (or mRNA) that express ZFNs 1 and 2 (or TALENs 1 and 2). These proteins bind their target sequences on opposite strands, separated by about 6 bp to about 40 bp. A double-stranded break is formed within the target locus, which the cell attempts to repair by Non-Homologous End-Joining (NHEJ). In many cases, NHEJ results in creation of a deletion, which often disrupts the function of the gene (most often by producing a frameshift mutation).
- NHEJ Non-Homologous End-Joining
- the electroporated cells are plated at low density, because no drug selection is done. Colonies are picked and assayed at the target site to see if a mutation was produced (e.g., using a modification of allele (MOA) assay described above).
- MOA modification of allele
- the selected ES cells comprising the mutant allele are then introduced into a host rat embryo, for example, a pre-morula stage or blastocyst stage rat embryo, and implanted in the uterus of a surrogate mother to generate a founder rat (F0 rat).
- the founder rat is bred to a wild-type rat to create F1 progeny heterozygous for the mutant allele. Mating of the heterozygous F1 rat can produce progeny homozygous for the mutant allele.
- Zinc finger nucleases use sequence specific modular DNA binding domains to direct endonuclease activity to unique target sequence in the genome.
- ZFNs are engineered as a pair of monomers. Each monomer contains nonspecific cleavage domain from FokI endonuclease fused to 3 or more zinc finger DNA-binding domains. Each zinc finger binds a 3 bp subsite and specificity is achieved by the combined target sites of both monomers.
- ZFNs produce double-stranded breaks (DSB′S) in DNA, and mutations (indertions or deletions) frequently occur during non-homologous end joining (NHEJ).
- DSBs also stimulate homology-directed repair (HDR) by homologous recombination if a donor sequence is provided with ZFN.
- HDR homology-directed repair
- Such ZFNs were employed in combination with the various methods and compositions described herein to improve targeting efficiency.
- the rat Apolipoprotein E (ApoE) locus was targeted as described in Example 3.2(a)(i), except expression vectors that express ZFNs 1 and 2 were also introduced into the rat ES cells. See FIG. 10 which provides a schematic of the ApoE targeting event in combination with rTZFN1P and rTZFN2P.
- the targeting efficiency was determined as discussed below in Example 6 and results are shown in FIG. 11 . Surprisingly, the targeting efficiency went up 8-10 fold.
- a plasmid targeting vector was built with a self-deleting drug selection cassette cassette and a lacZ gene as a reporter gene. Good targeting efficiency was achieved and a high % chimeras were produced.
- Zinc finger nucleases (ZFNs) were also tested in combination with targeting vectors to examine its effect on improving targeting efficiency.
- the targeting vector was co-expressed with the expression vectors for 2 ZFN pairs that cut the ApoE locus.
- the rat ESC clones electroporated with both the targeting vector and a set of the ZFNs showed a targeting efficiency of 8-10 fold higher than that of rat ESC clones electroporated with a targeting vector alone.
- bi-allelic homozygous targeting in about 2% of our clones was detected. High % chimeras from two of these targeted clones were obtained.
- the ApoE-targeted (with ZFN assistance) rat ESC clones were microinjected into SD blastocysts, which were then transferred to pseudopregnant SD recipient females, using standard techniques. Chimeras were identified by coat color; male F0 chimeras were bred to SD females. Germline F1 pups were genotyped for the presence of the targeted ApoE allele ( FIG. 17 ). There was a high % chimeras from two of these targeted clones.
- An ApoE knockout rat provides a means to study various types of disorders and diseases.
- Apolipoprotein is found in chylomicron, HDL, LDL and VLDL.
- ApoE is essential for the normal catabolism of triglyceride-rich lipoprotein constituents. Defects in APOE result in numerous disease states including, for example, familial hypercholesterolemia, hyperlipemia, betalipoproteinemia, familial dysbetalipoproteinemia, type III hyperlipoproteinemia (HLP III), risk of coronary artery disease.
- One isoform (ApoE4) is associated with late-onset familial and sporadic Alzheimer's disease, possibly with MS as well.
- mice ApoE is primarily found in HDL; transports cholesterol, as in humans. ApoE-deficient mice (2 independent KOs) have 5 times normal plasma cholesterol; developed foam cell-rich depositions in their proximal aortas by age 3 months (comparable to human syndrome).
- RNA-Seq transcriptional changes
- the rat Interleukin-2 receptor gamma (IL2r- ⁇ ) locus was targeted as described in Example 3.3(a), except that expression vectors that express ZFN U (ZFN upstream) and ZFN D (ZFN downstream) were also introduced into the rat ES cells.
- FIG. 18 provides a schematic of the IL2r- ⁇ targeting event in combination with ZFN U and ZFN D.
- the sequence of the IL2r- ⁇ locus which these zinc fingers bind is denoted in FIG. 18 .
- the targeting efficiency was determined as discussed below in Example 3.3(a) and the results are shown in FIG. 18 . Briefly, homozygously targeted clones were confirmed by PCR. For the ZFN1 pair: 173 mutant clones out of 192 screened (90%) and for the ZFN2 pair: 162 clones out of 192 (84%) screened.
- IL2r- ⁇ -targeted (with ZFN assistance) rat ESC clones were microinjected into SD blastocysts, which were then transferred to pseudopregnant SD recipient females, using standard techniques. Chimeras were identified by coat color; male F0 chimeras were bred to SD females. Germline F1 pups were genotyped for the presence of the targeted IL2r- ⁇ allele.
- the rat IL2r- ⁇ locus was targeted as described in Example 3.3(a), except that the CRISPR/Cas9 system was also introduced into the rat ES cells to aid in targeting efficiency.
- SBI System Biosciences Cas9 “SmartNuclease” all-in-one vectors were employed and Cas9 expression was driven by CAG, EF1a, PGK, or CMV promoter. Custom gRNA was ligated into a vector and expressed by H1 promoter. 4 gRNAs against Il2rg were designed. The targeting efficiency when employing the various guide RNAs is shown in FIG. 19 .
- Rat ESC Targeting the Rat Rosa 26 Locus
- the rat Rosa26 locus lies between the Setd5 and Thumpd3 genes as in mouse, with the same spacing.
- the rat Rosa 26 locus ( FIG. 12 , Panel B) differs from the mouse Rosa 26 locus ( FIG. 12 , Panel A).
- the mouse Rosa26 transcripts consist of 2 or 3 exons.
- the rat locus contains a 2nd exon 1 (Ex1b) in addition to the homologous exon to mouse exon1 (Ex1a). No 3rd exon has been identified in rat.
- Targeting of a rat Rosa26 allele is depicted in FIG. 12 (bottom), where homology arms of 5 kb each were cloned by PCR using genomic DNA from DA rat ESC.
- the targeted allele contains a SA (splicing acceptor)-lacZ-hUb-neo cassette replacing a 117 bp deletion in the rat Rosa26 intron.
- LOA Loss of Allele
- Rosa26-targeted rat ESC clones were microinjected into SD blastocysts, which were then transferred to pseudopregnant SD recipient females, using standard techniques. Chimeras were identified by coat color; male F0 chimeras were bred to SD females. Germline (agouti) F1 pups were genotyped for the presence of the targeted Rosa26 allele; nine of 22 agouti pups genotyped as heterozygous at the Rosa26 locus (Table 13).
- the rat Apolipoprotein E (ApoE) locus was targeted to disrupt ApoE function. Targeting of the ApoE locus was done using a targeting vector comprising a lacZ-hUb-neo cassette flanked with a 5′ and 3′ homology arms homologus to the ApoE locus.
- FIG. 20 depicts a genetically modified rat ApoE locus that has been disrupted by a 1.8 kb deletion and the insertion of a lacZ-hUb-neo cassette, which further includes a self-deleting Cre cassette comprising a Crei gene driven by a protamine promoter.
- the electroporation conditions were as follows: 6 ug DNA; 2.05 ⁇ 10 6 cells; 400V; 200 uF: 342 V, 593 usec; plate on 15 cm 2 ⁇ dense neoR MEFs in 2i+10 uM ROCKi.
- Targeting efficiency at the ApoE locus was determined and is shown in Table 14.
- Linearized vector was electroporated into DA.2B rat ESCs derived from the DA strain, and transfected colonies were cultured using standard techniques. Individual colonies were picked and screened using a Loss of Allele (LOA) assay.
- LOA Loss of Allele
- Additional targeting data for ApoE is also provided in FIG. 21 .
- FIG. 20 provides a schematic of the rat ApoE locus and a targeting plasmid.
- the upper schematic of FIG. 20 shows the genomic structure of the rat ApoE locus and the genomic regions corresponding to 5′ and 3′ homology arms (5 kb and 5.4 kb, respectively; dark grey boxes).
- Exon 1 of ApoE is non-coding and is shown as an open box closest to the 5′ homology arm.
- the 3 introns of ApoE are denoted as lines and exons 2 and 3 comprise coding regions and are shown as stippled grey boxes.
- Exon 4 contains both coding and non-coding sequences as denoted by the stippled grey shading and the open box.
- the lower schematic in FIG. 20 is the targeting vector.
- the 5′ and 3′ homology arms (5 kb and 5.4 kb respectively) are denoted by the dark grey boxes.
- the targeting vector comprises a reporter gene (lacZ) and a self-deleting cassette flanked by loxP sites (open arrows).
- the self-deleting cassette comprises the Crei gene operably linked to a mouse Prm1 promoter and a selection cassette comprising a neomycin resistance gene operably linked to a human ubiquitin promoter.
- the Crei gene comprises two exons encoding a Cre recombinase, which are separated by an intron (Crei) to prevent its expression in a prokaryotic cell. See, See, for example, U.S. Pat. No. 8,697,851 and U.S. Application Publication 2013-0312129, which describe the self-deleting cassette in detail and are hereby incorporated by reference in their entirety.
- the self-deleting cassette can be deleted specifically in male germ cells of F0 rats.
- the targeting vector was electroporated into the rat ES cells obtained in Example 1 and the cells were plated on 15 cm 2 ⁇ dense neomycin-resistant MEFs in 2i+10 uM ROCKi.
- the transformed rat ES cells were cultured, selected, and maintained as described in Example 1.
- Example 3.2(a)(ii) The targeting vector employed in Example 3.2(a)(ii) was used in combination with zinc finger nucleases to target the rat ApoE locus.
- Table 16 provides a summary of the genomic organization of the rat ApoE locus. The positions shown in the Table 16 were taken from build 5.0 of the Reference Sequence of the rat genome (ENSMBL). ApoE is on chromosome 1 on the ( ⁇ ) strand.
- FIG. 10 provides a schematic of the rat ApoE locus and denotes with grey bars the cutting site for ZFN1 and ZFN2.
- the cutting site for ZFN1 is in exon 3 and the cutting site for ZNF2 is in intron 3.
- the exact position of the both ZFN sites is set forth in Table 16.
- the genomic regions corresponding to the 5′ and 3′ homology arms (5 kb and 5.4 kb, respectively) are denoted by the dark grey boxes.
- Exon 1 of ApoE is non-coding and is shown as an open box closest to the 5′ homology arm.
- the three introns of the ApoE gene are denoted as lines and exons 2 and 3 comprise coding regions and are shown as stippled grey boxes.
- Exon 4 contains both coding and non-coding sequences as denoted by the stippled grey shading and the open box.
- the employed targeting vector was the same as that in Example 3.2(a)(ii) and shown in FIG. 20 .
- the ZFNs were introduced as two expression plasmids, one for each half of the ZFN pair. 20 ug of the plasmid for ZFN1 and 20 ug of the plasmid for ZFN2 was used. ZFNs were purchased from Sigma. The expression of each ZFN was driven by the CMV promoter.
- the targeting vector were electroporated into the rat ES cells obtained in Example 1 and the cells were plated on 15 cm 2 ⁇ dense neoR MEFs in 2i+10 uM ROCKi.
- the transformed rat ES cells were cultured, selected and maintained as described in Example 1.
- Targeting of the ApoE locus is done using a large targeting vector (LTVEC) comprising a lacZ-mouse Prm1-Crei cassette flanked with a 5′ homology arm to the ApoE locus of about 45 kb and a 3′ homology arm to the ApoE locus of about 23 Kb.
- FIG. 22 depicts the rat ApoE locus in which the ApoE locus has been disrupted by a 1.83 kb deletion and the insertion of the lacZ gene and a self-deleting cassette comprising mPrm1-Crei cassette and a hUb-neo selection cassette. Methods employed in example 3.2(a)(i) can be used to introduce this vector into rat ES cells.
- FIG. 22 provides a schematic of the rat ApoE locus and a large targeting vector (LTEVC).
- the upper schematic of FIG. 22 shows the genomic organization of the rat ApoE locus and the genomic regions corresponding to the 5′ and 3′ homology arms (45 kb and 23 kb, respectively; dark grey boxes).
- Exon 1 of ApoE is non-coding and is shown as an open box closest to the 5′ homology arm.
- the 3 introns of ApoE are denoted as lines and exons 2 and 3 comprise coding regions and are shown as stippled grey boxes.
- Exon 4 contains both coding and non-coding sequences as denoted by the stippled grey shading and the open box.
- the lower schematic in FIG. 22 is the LTVEC.
- the 5′ and 3′ homology arms (45 kb and 23 kb, respectively) are denoted by the dark grey boxes.
- the targeting vector comprises a reporter gene (lacZ) and a self-deleting cassette flanked by loxP sites (open arrows), which comprises the Crei gene operably linked to a mouse Prm1 promoter and a drug selection cassette comprising a neomycin resistance gene operably linked to a human ubiquitin promoter.
- the Crei comprises two exons encoding the Cre recombinase which are separated by an intron (Crei) to prevent its expression in a prokaryotic cell. See, for example, U.S. Pat. No.
- the LTVEC was electroporated into the rat ES cells obtained in Example 1 and the cells were plated on 15 cm 2 ⁇ dense neoR MEFs in 2i+10 uM ROCKi.
- the transformed rat ES cells were cultured, selected, and maintained as described in Example 1.
- Example 3.2.(b)(ii) was used in combination with zinc finger nucleases to target the rat ApoE locus.
- Table 16 provides a summary of the genomic organization of the rat ApoE locus and the positions shown were taken from build 5.0 of the Reference Sequence of the rat genome (ENSMBL).
- FIG. 23 provides a schematic of the rat ApoE locus and denotes with grey bars the cutting site for ZFN1 and ZFN2.
- the cutting site for ZFN1 is in t exon 3 and the cutting site for ZNF2 is in intron 3.
- the exact position of the both ZFN sites is set forth in Table 16.
- the 5′ and 3′ homology arms (45 kb and 23 kb, respectively) are denoted by the dark grey boxes.
- Exon 1 of the ApoE gene is non-coding and is shown as an open box closest to the 5′ homology arm.
- the three introns of the ApoE gene are denoted as lines.
- Exons 2 and 3 comprise coding regions and are shown as stippled grey boxes.
- Exon 4 contains both coding and non-coding sequences as denoted by the stippled grey shading and the open box.
- the LTVEC employed was the same as that in Example 3.2(b)(ii) and shown in FIG. 22 .
- the ZFNs were introduced as two expression plasmids, one for each half of the ZFN pair. 20 ug of the plasmid for ZFN 1 and 20 ug of the plasmid for ZFN2 was used. ZFNs were purchased from Sigma. The expression of each ZFN was driven by the CMV promoter.
- the targeting vector was electroporated into the rat ES cells obtained in Example 1 and the cells were plated on 15 cm 2 ⁇ dense neoR MEFs in 2i+10 uM ROCKi.
- the transformed rat ES cells were cultured, selected, and maintained as described in Example 1.
- IL2r- ⁇ The rat Interleukin-2 receptor gamma (IL2r- ⁇ ) locus was targeted to disrupt IL2r- ⁇ function.
- IL2r- ⁇ plays an important role for signaling by IL-2, IL-4, IL-7, IL-9, IL-15, IL-21 and mutations in IL2r- ⁇ are associated with severe defects in T, B and NK cell development.
- FIG. 26 depicts the genomic structure of the rat IL2r- ⁇ locus in which the IL2r- ⁇ locus has been disrupted by a 3.2 kb deletion.
- the targeted IL2r- ⁇ locus also comprised an eGFP gene and a self-deleting cassette containing Crei operably linked to a mouse Protamine) promoter and a drug selection cassette comprising a hUb promoter operably linked to a neomycin resistance gene.
- Targeting efficiency at the IL2r- ⁇ locus was determined and shown in Table 17.
- Linearized vector was electroporated into DA.2B rat ESCs, and transfected colonies were cultured using standard techniques. Individual colonies were picked and screened using a Loss of Allele (LOA) assay.
- LOA Loss of Allele
- IL2r- ⁇ -targeted rat ESC clones Chimera production and germline transmission using IL2r- ⁇ -targeted rat ESC clones was performed.
- IL2r- ⁇ -targeted rat ESC clones were microinjected into SD blastocysts, which were then transferred to pseudopregnant SD recipient females, using standard techniques. Chimeras were identified by coat color; male F0 chimeras were bred to SD females.
- Germline F1 pups were genotyped for the presence of the targeted IL2r- ⁇ allele (Table 18).
- the phenotype of Il2rg ⁇ /Y chimera #3 was further studied.
- the peripheral blood mononuclear cells (PBMCs) were stained with antibodies that recognize antigens in several lymphoid lineages.
- GFP-positive PBMCs were detected from 2 of the chimeras.
- the GFP+ cells were negative for the T-cell marker CD3, and were mostly negative for the B-cell marker B220 and the NK cell marker CD161a. See, FIG. 30 .
- the small double-positive populations are consistent with the published Il2rg knockout phenotype in mice. These data were obtained from a chimeric rat, which contains IL2 receptor gamma-positive cells, and this may complicate the analysis of the phenotype.
- the rat Interleukin-2 receptor gamma (IL2r- ⁇ ) locus was targeted to disrupt the IL2r- ⁇ function in rats.
- FIG. 26 shows the genomic structure of the rat Il2rg locus and the targeting vector introduced into the locus.
- eGFP was chosen as a reporter so that the immunophenotype of the genetically modified rats could be examined using FACS.
- the self-deleting cassette (hUb-Neo; Prm1-Cre) was used to delete the drug section cassette and the Cre gene specifically in male germ cells of the F0 rat.
- the targeting vector was designed to delete the entire coding region (about 3.2 kb) of the rat Il2rg gene.
- the size of the deletion in rat ESCs was confirmed by PCR using primers specific to the rat Il2rg locus. Upon microinjection of the targeted clones into host embryos at a blastocyst stage, high percentage of chimeras were obtained. Those chimeras have been set up for breeding. To determine if the targeting worked as expected, the peripheral blood from the chimeras were collected prior to breeding, and the phenotype of the immune cells in the peripheral blood was analyzed via FACS. As shown in FIG.
- GFP-positive cells were detected in the peripheral blood in 2 of the 3 chimeras examined (upper right panel), and the chimeric rats contained less than 1% of T cells, less than 1% of B cells, and less than 1% of NK-cells, which are positive for GFP (i.e., Il2rg KO cells).
- Table 19 provides a summary of the genomic organization of the rat Rag2 locus and the positions shown were taken from build 5.0 of the Reference Sequence of the rat genome (ENSMBL).
- Rag2 is on chromosome 3 on the (+) strand.
- FIG. 27 provides a schematic of the rat Rag2 locus and a large targeting vector (LTVEC).
- the upper schematic of FIG. 27 shows the genomic organization of the rat ApoE locus and the genomic regions corresponding to the 5′ and 3′ homology arms (48 Kb and 15 Kb, respectively; dark grey boxes).
- Rag2 comprises a single exon denoted by the stippled grey shading.
- the lower schematic in FIG. 27 is the LTVEC.
- the 5′ and 3′ homology arms (48 kb and 15 kb, respectively) are denoted by the dark grey boxes.
- the LTVEC comprises a reporter gene (lacZ) and a self-deleting cassette flanked by loxP sites (open arrows).
- the self-deleting cassette comprises a mouse Prm1 promoter operably linked to the Crei gene and a drug selection cassette comprising a human ubiquitin promoter operably linked to a neomycin resistance gene.
- the Crei comprises two exons encoding the Cre recombinase are separated by an intron (Crei) to prevent its expression in a prokaryotic cell. See, for example, U.S. Pat. No.
- the LTVEC was electroporated into the rat ES cells obtained in Example 1 and the cells were plated on 15 cm 2 ⁇ dense neoR MEFs in 2i+10 uM ROCKi.
- the transformed rat ES cells were cultured and maintained as described in Example 1. Colonies are screened as described elsewhere herein and targeted clones are obtained. The targeted clones are then injected into a host embryo as described elsewhere herein to produce an F0 rat.
- FIG. 28 provides the genomic structure of the rat Rag1/Rag2 locus.
- CDS denotes the coding sequence and grey boxes represent exons.
- Rag2 is on the “plus” strand with transcription to the right.
- Rag1 is on the “minus” strand with transcription to the left.
- Mbp million base pairs.
- Table 20 provides a summary of the genomic organization of the rat Rag2 and Rag1 locus and the positions shown were taken from build 5.0 of the Reference Sequence of the rat genome (ENSMBL).
- Rag1 is on chromosome 3 on the ( ⁇ ) strand.
- FIG. 29 provides a schematic of the rat Rag2 and Rag1 locus and a large targeting vector (LTVEC).
- the upper schematic of FIG. 29 shows the genomic organization of the Rag1 and Rag2 loci and the genomic regions corresponding to the 5′ and 3′ homology arms (48 kb and 84 kb, respectively; dark grey boxes).
- Rag2 and Rag1 each comprises a single exon denoted by the stippled grey shading.
- the lower schematic in FIG. 29 is the LTVEC.
- the 5′ and 3′ homology arms (48 kb and 84 kb, respectively) are denoted by the dark grey boxes.
- the LTVEC comprises a reporter gene (lacZ) and a self-deleting cassette flanked by loxP sites (open arrows).
- the self-deleting cassette comprises a rat Prm1 promoter operably linked to the Crei gene and a drug selection cassette comprising a human ubiquitin promoter operably linked to a neomycin resistance gene.
- the Crei comprises two exons encoding the Cre recombinase are separated by an intron (Crei) to prevent its expression in a prokaryotic cell. See, for example, U.S. Pat. No. 8,697,851 and U.S. Application Publication 2013-0312129, which describes the self-deleting cassette in detail and is hereby incorporated by reference in their entirety.
- the self-deleting cassette can be deleted from the male germ cells of F0 rats.
- the LTVEC was electroporated into the rat ES cells obtained in Example 1 and the cells were plated on 15 cm 2 ⁇ dense neoR MEFs in 2i+10 uM ROCKi.
- the transformed rat ES cells were cultured and maintained as described in Example 1.
- Colonies are screened as described elsewhere herein and targeted clones are obtained. The targeted clones are then injected into a host embryo as described elsewhere herein to produce an F0 rat.
- rat genomic loci Humanization of rat genomic loci is carried out employing the rat ES cells described herein, which are capable of sustaining their pluripotency following one or more electroporations in vitro, and are capable of transmitting the targeted genetic modifications to subsequent generations.
- one or more targeted genetic modifications are carried out in bacteria, e.g., E. coli , by utilizing bacterial homologous recombination (BHR) and employing a large targeting vector (LTVEC).
- the LTVEC described herein includes a large fragment of an endogenous rat genomic sequence with one or more modifications or comprises an exogenous nucleic acid (e.g., a homologous or orthologous human nucleic acid) flanked with rat homology arms complementary to specific genomic regions.
- exogenous nucleic acid e.g., a homologous or orthologous human nucleic acid
- Humanization of an endogenous rat immunoglobulin heavy chain locus is carried out by removing one or more endogenous rat immunoglobulin heavy chain nucleic acid sequences (e.g., one or more endogenous V H gene segments, one or more human D gene segments, and one or more human J H gene segments); and introducing into the modified immunoglobulin locus a targeting vector, e.g., a large targeting vector (LTVEC) comprising: (i) one or more unrearranged human variable region nucleic acid sequences (e.g., one or more human V H gene segments, one or more human D gene segments, and one or more human J H gene segments), or one or more rearranged human variable region nucleic acid sequences (e.g., one or more human rearranged V-D-J gene segments); (ii) a selection cassette (e.g., neomycin resistance gene flanked with loxP sites); and (iii) 5′ and 3′ rat homology arms.
- one or more endogenous rat immunoglobulin heavy chain variable region gene segments i.e., one or more V H gene segments, one or more human D gene segments, and one or more human J H gene segments
- one or more endogenous rat immunoglobulin heavy chain variable region gene segments i.e., one or more V H gene segments, one or more human D gene segments, and one or more human J H gene segments
- a targeting vector is constructed to contain a selection cassette (e.g., a neomycin resistance gene flanked with loxP sites) flanked with 5′ and 3′ rat homology arms that are complementary to target rat genomic sequences (e.g., upstream and downstream rat genomic DNA sequences encompassing one or more rat V H gene segments, one or more human D gene segments, and one or more human J H gene segments).
- a selection cassette e.g., a neomycin resistance gene flanked with loxP sites
- 5′ and 3′ rat homology arms that are complementary to target rat genomic sequences (e.g., upstream and downstream rat genomic DNA sequences encompassing one or more rat V H gene segments, one or more human D gene segments, and one or more human J H gene segments).
- bacterial cells containing a large rat genomic DNA fragment encompassing a rat immunoglobulin heavy chain locus are selected and introduced with a plasmid (e.g., pABG) encoding a recombinase operably linked to a transiently inducible promoter.
- the targeting vector constructed above is then introduced into the recombination-competent bacterial cells.
- the bacterial cells are treated with an inducer (e.g., arabinoside) to initiate homologous recombination between the targeting vector and the target rat genomic sequence in the BAC clone.
- Transformed cells are plated at a high density and subjected to drug selection to find colonies that are drug-resistant. Drug-resistant colonies are picked and screened for the targeted modification.
- a high-throughput quantitative assay namely, modification of allele (MOA) assay
- MOA modification of allele
- the MOA assay can be carried out via various analytical techniques, including, but not limited to, a quantitative PCR, e.g., a real-time PCR (qPCR).
- qPCR real-time PCR
- the real-time PCR comprises a first primer set that recognizes the target locus and a second primer set that recognizes a non-targeted reference locus.
- the primer set can comprise a fluorescent probe that recognizes the amplified sequence.
- the quantitative assay can be carried out via a variety of analytical techniques, including, but not limited to, fluorescence-mediated in situ hybridization (FISH), comparative genomic hybridization, isothermic DNA amplification, quantitative hybridization to an immobilized probe(s), Invader Probes®, MMP Assays®, TaqMan® Molecular Beacon, and EclipseTM probe technology.
- FISH fluorescence-mediated in situ hybridization
- MMP Assays® MMP Assays®
- TaqMan® Molecular Beacon and EclipseTM probe technology.
- the bacterial cells comprising the modified rat BAC clone i.e., a BAC clone containing a rat genomic DNA sequence wherein one or more endogenous heavy chain variable region gene segments (V H , D, and/or J H gene segments) have been deleted or inactivated, are then electroporated with a large targeting vector (LTVEC) comprising: (i) one or more unrearranged human variable region nucleic acid sequences (e.g., one or more unrearranged human V H gene segments, one or more human D gene segments, and one or more human J H gene segments), or one or more rearranged human variable region nucleic acid sequences (e.g., one or more rearranged human V-D-J gene segments).
- LTVEC large targeting vector
- endogenous rat heavy chain constant region locus can be inactivated, for example, by deleting one or more rat heavy chain constant region gene segments (CH) from the endogenous heavy chain constant region locus, and can be replaced with a human heavy chain constant region nucleic acid sequence.
- CH rat heavy chain constant region gene segments
- humanization of an endogenous rat immunoglobulin ⁇ or ⁇ light chain locus is carried out by removing one or more endogenous rat immunoglobulin ⁇ and/or ⁇ light chain variable region nucleic acid sequences (e.g., one or more endogenous rat V ⁇ gene segments and one or more endogenous rat J ⁇ gene segments); and targeting the modified immunoglobulin light chain locus with a targeting vector, e.g., a large targeting vector (LTVEC), comprising: (i) one or more unrearranged human immunoglobulin light chain variable region nucleic acid sequences (e.g., one or more human V ⁇ gene segments and one or more human J ⁇ gene segments), or one or more rearranged human variable region nucleic acid sequences (e.g., one or more human rearranged V ⁇ -J ⁇ gene segments); (ii) a selection cassette (e.g., neomycin resistance gene flanked with loxP sites); and (ii)
- the unrearranged or rearranged human immunoglobulin light chain variable region nucleic acid sequences when targeted into the endogenous immunoglobulin light chain locus, become operably linked to the endogenous rat immunoglobulin light chain constant region nucleic acid sequence.
- the LTVEC so produced in the bacterial cells comprises, for example, an insert nucleic acid that contains a humanized rat immunoglobulin heavy chain or light chain locus in which one or more endogenous rat heavy or light chain variable region gene segments have been replaced with one or more human heavy or light chain variable region gene segments; and rat homologous arms (e.g., ranging from 5 kb to 150 kb) complementary to specific genomic target sequences.
- the LTVEC comprising the genetic modification described above is then linearized and electroporated into the rat ES cells. Electroporated rat ES cells are plated at a high density to select drug-resistant ES cells comprising the targeting vector.
- the drug selection process removes the majority of the plated cells ( ⁇ 99%), leaving behind individual colonies, each of which is a clone derived from a single cell. Of the remaining cells, most cells ( ⁇ 80-100%) contain the targeting vector integrated at a random location in the genome. Therefore, the colonies are picked and genotyped individually in order to identify rat ES cells comprising the targeting vector at the correct genomic location (e.g., using the modification of allele (MOA) assay described above).
- MOA modification of allele
- the rat ES cells are electroporated with expression vectors (or mRNA) that express ZFNs 1 and 2 (or TALENs 1 and 2) together with the LTVEC.
- the targeting vector's homology arms lie outside the ZFN target site, therefore, the targeting vector is not cleaved by the ZFNs.
- the double strand break produced by the ZFNs stimulates homology-directed repair (HDR), which otherwise accounts for a very small percentage of repairs occurred normally in mammalian cells (compared to non-homologous end-joining; NHEJ).
- HDR homology-directed repair
- expression vectors containing a type II CRISPR-associated nuclease e.g., Cas9, a guide RNA (including CRISPR-RNA (cr-RNA) and trans-activating CRISPR RNA (tracrRNA)), as described herein, can be introduced into the bacterial cells together with the LTVEC to increase the efficiency of homologous recombination at the target genomic locus. Electroporated cells are plated at a high density and subjected to drug selection to find colonies that are drug-resistant. Drug-resistant colonies are picked and screened for the targeted modification using the modification of allele (MOA) assay as described herein. Following these procedures, improvement in the targeting efficiency can be achieved. For example, the amount of improvement can be small (e.g., improve from 10% to 15%) or large (e.g., improve from 10% to 80%).
- MOA modification of allele
- the selected rat ES cells comprising the targeted genetic modification are then introduced into a host rat embryo, for example, a pre-morula stage or blastocyst stage rat embryo, and implanted in the uterus of a surrogate mother to generate a founder rat (F0 rat). Subsequently, the founder rat is bred to a wild-type rat to create F1 progeny heterozygous for the genetic modification. Mating of the heterozygous F1 rat can produce progeny homozygous for the genetic modification.
- Table 21 provides a summary of the genomic organization of the rat Interleukin 2 receptor gamma locus and the positions shown were taken from build 5.0 of the Reference Sequence of the rat genome (ENSMBL).
- IL2rg is on chromosome X on the ( ⁇ ) strand.
- Exon 1 72,021,388 72,021,516 129 contains ATG ATG 72,017,500 72,017,502 3 start codon Exon2 72,021,007 72,021,160 154 ZFN1a binding site 72,021,014 72,021,028 15 CAGGCCCTGAACCGC (SEQ ID NO: 17) ZFN1 cutting site 72,021,008 72,021,013 6 TTCTGG (SEQ ID NO: 18) ZFN1b binding site 72,020,993 72,021,007 15 GATTACCTGCGCTGGG (SEQ ID NO: 20) Exon3 72,020,606 72,020,790 185 Exon4 72,020,274 72,020,413 140 Exon5 72,019,662 72,019,824 163 Exon6 72,019,101 72,019,197 97 Exon
- the lower schematic in FIG. 26 is the targeting vector for the IL2rg 3.2 kb deletion.
- the targeting vector comprises a reporter gene (eGFP) operably linked to the endogenous promoter and a self-deleting cassette flanked by loxP sites (open arrows).
- the self-deleting cassette comprises the Crei gene operably linked to a mouse Prm1 promoter and a selection cassette comprising a neomycin resistance gene operably linked to a human ubiquitin promoter.
- the Crei gene comprises two exons encoding a Cre recombinase, which are separated by an intron (Crei) to prevent its expression in a prokaryotic cell. See, See, for example, U.S. Pat. No. 8,697,851 and U.S. Application Publication 2013-0312129, which describe the self-deleting cassette in detail and are hereby incorporated by reference in their entirety.
- the targeting vector was electroporated into the rat ES cells obtained in Example 1 and the cells were plated on 15 cm 2 ⁇ dense neomycin-resistant MEFs in 2i+10 uM ROCKi.
- the transformed rat ES cells were cultured, selected, and maintained as described in Example 1.
- Clones are injected into blastocysts as described herein in Example 1. Clones producing F0 rats are obtained and F0 rats that transmit the targeted modification through the germline are obtained.
- the full-length humanization of IL 2 receptor gamma is useful because rats having this modified locus will produce human Il2rg; and this would allow for the detection of human Il2rg in rats with antibodies specific to human Il2rg.
- the ecto-humanization i.e., replacing the rat ecto-domain of Il2rg with the human ecto-domain of Il2rg
- an Il2rg polypeptide that will bind the human ligands for Il2rg, but because the cytoplasmic domain is still rat, it ecto-humanized form of Il2rg will also interact with the rat signaling machinery.
- FIG. 1 ecto-humanization
- IL-2rg protein SEQ ID NO: 20; NP — 000197.1
- rat IL-2rg protein SEQ ID NO: 21; NP — 543165.1
- chimeric IL-2rg protein SEQ ID NO: 22 comprising the human ecto-domain of IL-2rg fused to the remainder of the rat IL-2rg protein.
- the junction between the human and rat IL-2rg is noted by the vertical line.
- Table 22 provides a summary of the genomic organization of the rat Interleukin 2 receptor gamma locus and the positions shown were taken from build 5.0 of the Reference Sequence of the rat genome (ENSMBL).
- IL2rg is on chromosome X on the ( ⁇ ) strand. Further noted is the position of the ecto-domain of IL2rg.
- Exon 1 71,111,444 71,111,543 100 contains ATG ATG 71,111,537 71,111,539 3 start codon Exon2 71,110,897 71,111,050 154 Exon3 71,110,504 71,110,688 185 Exon4 71,110,156 71,110,295 140 Exon5 71,109,228 71,109,390 163 Exon6 71,108,599 71,108,645 47 contains transmembrane domain Exon7 71,108,277 71,108,346 70 Exon8 71,107,404 71,107,921 518 contains TGA TGA 71,108,736 71,108,738 3 stop codon full-length 71,107,404 71,111,539 4,136 (ATG to TGA humaniza- plus 3′ poly
- a plasmid targeting vectors were constructed to replace the rat ecto-domain of the interleukin 2 receptor gamma coding region with the human ecto domain as shown in FIG. 31 .
- the targeting vector was electroporated into the rat ES cells obtained in Example 1 and the cells were plated on 15 cm 2 ⁇ dense neomycin-resistant MEFs in 2i+10 uM ROCKi.
- the transformed rat ES cells were cultured, selected, and maintained as described in Example 1.
- Clones are injected into blastocysts as described herein in Example 1. Clones producing F0 rats are obtained and F0 rats that transmit the targeted modification through the germline are obtained.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Biotechnology (AREA)
- General Health & Medical Sciences (AREA)
- Environmental Sciences (AREA)
- Veterinary Medicine (AREA)
- Wood Science & Technology (AREA)
- Molecular Biology (AREA)
- General Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biophysics (AREA)
- Biochemistry (AREA)
- Animal Behavior & Ethology (AREA)
- Animal Husbandry (AREA)
- Biodiversity & Conservation Biology (AREA)
- Plant Pathology (AREA)
- Microbiology (AREA)
- Physics & Mathematics (AREA)
- Cell Biology (AREA)
- Gastroenterology & Hepatology (AREA)
- Toxicology (AREA)
- Medicinal Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Mycology (AREA)
- Immunology (AREA)
- Reproductive Health (AREA)
- Transplantation (AREA)
- Public Health (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Peptides Or Proteins (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/254,715 US20140310828A1 (en) | 2013-04-16 | 2014-04-16 | Targeted modification of rat genome |
US14/314,866 US20140309487A1 (en) | 2013-04-16 | 2014-06-25 | Targeted modification of rat genome |
US15/410,252 US10385359B2 (en) | 2013-04-16 | 2017-01-19 | Targeted modification of rat genome |
US16/451,859 US10975390B2 (en) | 2013-04-16 | 2019-06-25 | Targeted modification of rat genome |
US17/196,408 US12037596B2 (en) | 2013-04-16 | 2021-03-09 | Targeted modification of rat genome |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201361812319P | 2013-04-16 | 2013-04-16 | |
US201361914768P | 2013-12-11 | 2013-12-11 | |
US14/254,715 US20140310828A1 (en) | 2013-04-16 | 2014-04-16 | Targeted modification of rat genome |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/314,866 Continuation US20140309487A1 (en) | 2013-04-16 | 2014-06-25 | Targeted modification of rat genome |
US15/410,252 Division US10385359B2 (en) | 2013-04-16 | 2017-01-19 | Targeted modification of rat genome |
Publications (1)
Publication Number | Publication Date |
---|---|
US20140310828A1 true US20140310828A1 (en) | 2014-10-16 |
Family
ID=51687240
Family Applications (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/254,715 Abandoned US20140310828A1 (en) | 2013-04-16 | 2014-04-16 | Targeted modification of rat genome |
US14/314,866 Abandoned US20140309487A1 (en) | 2013-04-16 | 2014-06-25 | Targeted modification of rat genome |
US15/410,252 Active 2034-05-26 US10385359B2 (en) | 2013-04-16 | 2017-01-19 | Targeted modification of rat genome |
US16/451,859 Active US10975390B2 (en) | 2013-04-16 | 2019-06-25 | Targeted modification of rat genome |
US17/196,408 Active 2036-03-07 US12037596B2 (en) | 2013-04-16 | 2021-03-09 | Targeted modification of rat genome |
Family Applications After (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/314,866 Abandoned US20140309487A1 (en) | 2013-04-16 | 2014-06-25 | Targeted modification of rat genome |
US15/410,252 Active 2034-05-26 US10385359B2 (en) | 2013-04-16 | 2017-01-19 | Targeted modification of rat genome |
US16/451,859 Active US10975390B2 (en) | 2013-04-16 | 2019-06-25 | Targeted modification of rat genome |
US17/196,408 Active 2036-03-07 US12037596B2 (en) | 2013-04-16 | 2021-03-09 | Targeted modification of rat genome |
Country Status (26)
Country | Link |
---|---|
US (5) | US20140310828A1 (pt) |
EP (2) | EP2986729B1 (pt) |
JP (1) | JP6411463B2 (pt) |
KR (2) | KR102186281B1 (pt) |
CN (2) | CN105308184B (pt) |
AU (2) | AU2014253942B9 (pt) |
BR (1) | BR112015026197B1 (pt) |
CA (1) | CA2908697C (pt) |
CY (2) | CY1120845T1 (pt) |
DK (2) | DK2986729T3 (pt) |
ES (2) | ES2888250T3 (pt) |
HK (1) | HK1214625A1 (pt) |
HR (2) | HRP20181648T1 (pt) |
HU (2) | HUE040575T2 (pt) |
IL (2) | IL241856B (pt) |
LT (2) | LT3456831T (pt) |
MX (1) | MX369747B (pt) |
MY (1) | MY177850A (pt) |
PL (2) | PL2986729T3 (pt) |
PT (2) | PT2986729T (pt) |
RS (2) | RS62263B1 (pt) |
RU (1) | RU2676708C2 (pt) |
SG (2) | SG10201808935WA (pt) |
SI (2) | SI2986729T1 (pt) |
SM (2) | SMT201800671T1 (pt) |
WO (1) | WO2014172489A2 (pt) |
Cited By (107)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150024500A1 (en) * | 2013-07-19 | 2015-01-22 | Larix Bioscience, Llc | Methods and compositions for producing double allele knock outs |
WO2015143406A2 (en) | 2014-03-21 | 2015-09-24 | Regeneron Pharmaceuticals, Inc. | Vl antigen binding proteins exhibiting distinct binding characteristics |
WO2015188109A1 (en) | 2014-06-06 | 2015-12-10 | Regeneron Pharmaceuticals, Inc. | Methods and compositions for modifying a targeted locus |
US9228208B2 (en) | 2013-12-11 | 2016-01-05 | Regeneron Pharmaceuticals, Inc. | Methods and compositions for the targeted modification of a genome |
WO2016061374A1 (en) | 2014-10-15 | 2016-04-21 | Regeneron Pharmaceuticals, Inc. | Methods and compositions for generating or maintaining pluripotent cells |
WO2016114972A1 (en) | 2015-01-12 | 2016-07-21 | The Regents Of The University Of California | Heterodimeric cas9 and methods of use thereof |
WO2016141224A1 (en) | 2015-03-03 | 2016-09-09 | The General Hospital Corporation | Engineered crispr-cas9 nucleases with altered pam specificity |
US9512446B1 (en) | 2015-08-28 | 2016-12-06 | The General Hospital Corporation | Engineered CRISPR-Cas9 nucleases |
WO2016196655A1 (en) | 2015-06-03 | 2016-12-08 | The Regents Of The University Of California | Cas9 variants and methods of use thereof |
US9567604B2 (en) | 2013-03-15 | 2017-02-14 | The General Hospital Corporation | Using truncated guide RNAs (tru-gRNAs) to increase specificity for RNA-guided genome editing |
WO2017040348A1 (en) | 2015-08-28 | 2017-03-09 | The General Hospital Corporation | Engineered crispr-cas9 nucleases |
WO2017040738A1 (en) | 2015-09-02 | 2017-03-09 | Regeneron Pharmaceuticals, Inc. | Rodent model of prostate cancer |
WO2017143071A1 (en) | 2016-02-18 | 2017-08-24 | The Regents Of The University Of California | Methods and compositions for gene editing in stem cells |
WO2017151453A1 (en) | 2016-02-29 | 2017-09-08 | Regeneron Pharmaceuticals, Inc. | Rodents having a humanized tmprss gene |
WO2017161043A1 (en) | 2016-03-16 | 2017-09-21 | The J. David Gladstone Institutes | Methods and compositions for treating obesity and/or diabetes and for identifying candidate treatment agents |
CN107208078A (zh) * | 2014-11-21 | 2017-09-26 | 瑞泽恩制药公司 | 使用成对向导rna进行靶向遗传修饰的方法和组合物 |
US9834786B2 (en) | 2012-04-25 | 2017-12-05 | Regeneron Pharmaceuticals, Inc. | Nuclease-mediated targeting with large targeting vectors |
WO2017210586A1 (en) | 2016-06-03 | 2017-12-07 | Regeneron Pharmaceuticals, Inc. | Non-human animals expressing exogenous terminal deoxynucleotidyltransferase |
US9902971B2 (en) | 2014-06-26 | 2018-02-27 | Regeneron Pharmaceuticals, Inc. | Methods for producing a mouse XY embryonic (ES) cell line capable of producing a fertile XY female mouse in an F0 generation |
US9926546B2 (en) | 2015-08-28 | 2018-03-27 | The General Hospital Corporation | Engineered CRISPR-Cas9 nucleases |
WO2018064371A1 (en) | 2016-09-30 | 2018-04-05 | The Regents Of The University Of California | Rna-guided nucleic acid modifying enzymes and methods of use thereof |
US10000772B2 (en) | 2012-05-25 | 2018-06-19 | The Regents Of The University Of California | Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription |
WO2018112278A1 (en) | 2016-12-14 | 2018-06-21 | Ligandal, Inc. | Methods and compositions for nucleic acid and protein payload delivery |
US10011850B2 (en) | 2013-06-21 | 2018-07-03 | The General Hospital Corporation | Using RNA-guided FokI Nucleases (RFNs) to increase specificity for RNA-Guided Genome Editing |
WO2018157058A1 (en) | 2017-02-27 | 2018-08-30 | Regeneron Pharmaceuticals, Inc. | Non-human animal models of retinoschisis |
WO2018195545A2 (en) | 2017-04-21 | 2018-10-25 | The General Hospital Corporation | Variants of cpf1 (cas12a) with altered pam specificity |
WO2018218206A1 (en) | 2017-05-25 | 2018-11-29 | The General Hospital Corporation | Bipartite base editor (bbe) architectures and type-ii-c-cas9 zinc finger editing |
WO2019067706A1 (en) | 2017-09-29 | 2019-04-04 | Regeneron Pharmaceuticals, Inc. | NON-HUMAN ANIMALS EXPRESSING A HUMANIZED C1Q COMPLEX |
US10285387B2 (en) | 2015-03-16 | 2019-05-14 | Regeneron Pharmaceuticals, Inc. | Non-human animal exhibiting diminished upper and lower motor neuron function and sensory perception |
WO2019108983A1 (en) | 2017-11-30 | 2019-06-06 | Regeneron Pharmaceuticals, Inc. | Non-human animals comprising a humanized trkb locus |
CN109862785A (zh) * | 2016-09-30 | 2019-06-07 | 瑞泽恩制药公司 | C9orf72基因座中具有六核苷酸重复扩增的非人类动物 |
WO2019113065A1 (en) | 2017-12-05 | 2019-06-13 | Regeneron Pharmaceuticals, Inc. | Non-human animals having an engineered immunoglobulin lambda light chain and uses thereof |
US10329582B2 (en) | 2013-02-20 | 2019-06-25 | Regeneron Pharmaceuticals, Inc. | Genetic modification of rats |
US10337001B2 (en) | 2014-12-03 | 2019-07-02 | Agilent Technologies, Inc. | Guide RNA with chemical modifications |
US10385359B2 (en) | 2013-04-16 | 2019-08-20 | Regeneron Pharmaceuticals, Inc. | Targeted modification of rat genome |
WO2019190922A1 (en) | 2018-03-24 | 2019-10-03 | Regeneron Pharmaceuticals, Inc. | Genetically modified non-human animals for generating therapeutic antibodies against peptide-mhc complexes, methods of making and uses thereof |
US10463029B1 (en) | 2018-06-07 | 2019-11-05 | Regeneron Pharmaceuticals, Inc. | Rodent model of steel syndrome |
US10501794B2 (en) | 2014-06-23 | 2019-12-10 | The General Hospital Corporation | Genomewide unbiased identification of DSBs evaluated by sequencing (GUIDE-seq) |
WO2019241350A1 (en) | 2018-06-13 | 2019-12-19 | Regeneron Pharmaceuticals, Inc. | A rodent model of fibrodysplasia ossificans progressiva |
US10526589B2 (en) | 2013-03-15 | 2020-01-07 | The General Hospital Corporation | Multiplex guide RNAs |
WO2020014528A1 (en) | 2018-07-13 | 2020-01-16 | The Regents Of The University Of California | Retrotransposon-based delivery vehicle and methods of use thereof |
WO2020018511A1 (en) | 2018-07-16 | 2020-01-23 | Regeneron Pharmaceuticals, Inc. | Non-human animal models of ditra disease and uses thereof |
WO2020056122A1 (en) | 2018-09-13 | 2020-03-19 | Regeneron Pharmaceuticals, Inc. | Complement factor h gene knockout rat as a model of c3 glomerulopathy |
EP3653048A1 (en) | 2014-12-19 | 2020-05-20 | Regeneron Pharmaceuticals, Inc. | Methods and compositions for targeted genetic modification through single-step multiple targeting |
US10669539B2 (en) | 2016-10-06 | 2020-06-02 | Pioneer Biolabs, Llc | Methods and compositions for generating CRISPR guide RNA libraries |
WO2020150426A1 (en) | 2019-01-17 | 2020-07-23 | Regeneron Pharmaceuticals, Inc. | A rodent model of mood disorders |
US10731181B2 (en) | 2012-12-06 | 2020-08-04 | Sigma, Aldrich Co. LLC | CRISPR-based genome modification and regulation |
US10738303B2 (en) | 2015-09-30 | 2020-08-11 | The General Hospital Corporation | Comprehensive in vitro reporting of cleavage events by sequencing (CIRCLE-seq) |
WO2020163856A1 (en) | 2019-02-10 | 2020-08-13 | The J. David Gladstone Institutes, A Testamentary Trust Established Under The Will Of J. David Gladstone | Modified mitochondrion and methods of use thereof |
WO2020163396A1 (en) | 2019-02-04 | 2020-08-13 | The General Hospital Corporation | Adenine dna base editor variants with reduced off-target rna editing |
WO2020172505A1 (en) | 2019-02-22 | 2020-08-27 | Regeneron Pharmaceuticals, Inc. | Rodents having genetically modified sodium channels and methods of use thereof |
US10767175B2 (en) | 2016-06-08 | 2020-09-08 | Agilent Technologies, Inc. | High specificity genome editing using chemically modified guide RNAs |
WO2020190621A1 (en) | 2019-03-15 | 2020-09-24 | Regeneron Pharmaceuticals, Inc. | A loss of function rodent model of solute carrier 39 member 5 |
WO2020206139A1 (en) | 2019-04-04 | 2020-10-08 | Regeneron Pharmaceuticals, Inc. | Non-human animals comprising a humanized coagulation factor 12 locus |
WO2020247623A1 (en) | 2019-06-05 | 2020-12-10 | Regeneron Pharmaceuticals, Inc. | Non-human animals having a limited lambda light chain repertoire expressed from the kappa locus and uses thereof |
WO2020264339A1 (en) | 2019-06-27 | 2020-12-30 | Regeneron Pharmaceuticals, Inc. | Modeling tdp-43 proteinopathy |
US10881086B2 (en) | 2014-12-09 | 2021-01-05 | Regeneron Pharmaceuticals, Inc. | Genetically modified mouse whose genome comprises a humanized CD274 gene |
US10881085B2 (en) | 2014-03-21 | 2021-01-05 | Regeneron Pharmaceuticals, Inc. | Non-human animals that make single domain binding proteins |
CN112204148A (zh) * | 2018-03-27 | 2021-01-08 | 宾夕法尼亚大学董事会 | 具有增强功能的修饰的免疫细胞及其筛选方法 |
US10954310B2 (en) | 2010-08-02 | 2021-03-23 | Regeneran Pharmaceuticals, Inc. | Mice that make VL binding proteins |
WO2021067740A1 (en) | 2019-10-03 | 2021-04-08 | Regeneron Pharmaceuticals, Inc. | A crnn loss of function rodent model |
US11013220B2 (en) | 2014-05-30 | 2021-05-25 | Regeneron Pharmaceuticals, Inc. | Humanized dipeptidyl-peptidase IV (DPP4) animals |
US11021719B2 (en) | 2017-07-31 | 2021-06-01 | Regeneron Pharmaceuticals, Inc. | Methods and compositions for assessing CRISPER/Cas-mediated disruption or excision and CRISPR/Cas-induced recombination with an exogenous donor nucleic acid in vivo |
WO2021108363A1 (en) | 2019-11-25 | 2021-06-03 | Regeneron Pharmaceuticals, Inc. | Crispr/cas-mediated upregulation of humanized ttr allele |
US11028429B2 (en) | 2015-09-11 | 2021-06-08 | The General Hospital Corporation | Full interrogation of nuclease DSBs and sequencing (FIND-seq) |
WO2021154791A1 (en) | 2020-01-28 | 2021-08-05 | Regeneron Pharmaceuticals, Inc. | Non-human animals comprising a humanized pnpla3 locus and methods of use |
WO2021158883A1 (en) | 2020-02-07 | 2021-08-12 | Regeneron Pharmaceuticals, Inc. | Non-human animals comprising a humanized klkb1 locus and methods of use |
US11111314B2 (en) | 2015-03-19 | 2021-09-07 | Regeneron Pharmaceuticals, Inc. | Non-human animals that select for light chain variable regions that bind antigen |
WO2021178474A1 (en) | 2020-03-04 | 2021-09-10 | Regeneron Pharmaceuticals, Inc. | A rodent model of b4galt1-mediated functions |
US11130999B2 (en) | 2017-07-31 | 2021-09-28 | Regeneron Pharmaceuticals, Inc. | Cas-ready mouse embryonic stem cells and mice and uses thereof |
WO2021195079A1 (en) | 2020-03-23 | 2021-09-30 | Regeneron Pharmaceuticals, Inc. | Non-human animals comprising a humanized ttr locus comprising a v30m mutation and methods of use |
WO2021216505A1 (en) | 2020-04-21 | 2021-10-28 | Regeneron Pharmaceuticals, Inc. | Non-human animals having a humanized cxcl13 gene |
US11180792B2 (en) | 2015-01-28 | 2021-11-23 | The Regents Of The University Of California | Methods and compositions for labeling a single-stranded target nucleic acid |
DE212020000516U1 (de) | 2019-03-07 | 2022-01-17 | The Regents of the University of California | CRISPR-CAS-Effektorpolypeptide |
US11286468B2 (en) | 2017-08-23 | 2022-03-29 | The General Hospital Corporation | Engineered CRISPR-Cas9 nucleases with altered PAM specificity |
WO2022072671A1 (en) | 2020-10-01 | 2022-04-07 | Regeneron Pharmaceuticals, Inc. | Rodent animals expressing human cr1 |
US11306309B2 (en) | 2015-04-06 | 2022-04-19 | The Board Of Trustees Of The Leland Stanford Junior University | Chemically modified guide RNAs for CRISPR/CAS-mediated gene regulation |
WO2022140221A1 (en) | 2020-12-21 | 2022-06-30 | Regeneron Pharmaceuticals, Inc. | Non-human animals having a humanized tslp gene, a humanized tslp receptor gene, and/or a humanized il7ra gene |
US11407995B1 (en) | 2018-10-26 | 2022-08-09 | Inari Agriculture Technology, Inc. | RNA-guided nucleases and DNA binding proteins |
US11434477B1 (en) | 2018-11-02 | 2022-09-06 | Inari Agriculture Technology, Inc. | RNA-guided nucleases and DNA binding proteins |
US11519004B2 (en) | 2018-03-19 | 2022-12-06 | Regeneran Pharmaceuticals, Inc. | Transcription modulation in animals using CRISPR/Cas systems |
US11547100B2 (en) | 2013-08-07 | 2023-01-10 | Regeneron Pharmaceuticals, Inc. | Method for screening gene expression in lincRNA-deficient mice or rats |
US11547101B2 (en) | 2015-05-29 | 2023-01-10 | Regeneron Pharmaceuticals, Inc. | Non-human animals having a disruption in a C9ORF72 locus |
US11622547B2 (en) | 2019-06-07 | 2023-04-11 | Regeneran Pharmaceuticals, Inc. | Genetically modified mouse that expresses human albumin |
WO2023081756A1 (en) | 2021-11-03 | 2023-05-11 | The J. David Gladstone Institutes, A Testamentary Trust Established Under The Will Of J. David Gladstone | Precise genome editing using retrons |
WO2023108047A1 (en) | 2021-12-08 | 2023-06-15 | Regeneron Pharmaceuticals, Inc. | Mutant myocilin disease model and uses thereof |
EP4198124A1 (en) | 2021-12-15 | 2023-06-21 | Versitech Limited | Engineered cas9-nucleases and method of use thereof |
US11690362B2 (en) | 2018-12-20 | 2023-07-04 | Regeneran Pharmaceuticals, Inc. | Nuclease-mediated repeat expansion |
WO2023141602A2 (en) | 2022-01-21 | 2023-07-27 | Renagade Therapeutics Management Inc. | Engineered retrons and methods of use |
WO2023150798A1 (en) | 2022-02-07 | 2023-08-10 | Regeneron Pharmaceuticals, Inc. | Compositions and methods for defining optimal treatment timeframes in lysosomal disease |
US11725228B2 (en) | 2017-10-11 | 2023-08-15 | The General Hospital Corporation | Methods for detecting site-specific and spurious genomic deamination induced by base editing technologies |
WO2023154861A1 (en) | 2022-02-11 | 2023-08-17 | Regeneron Pharmaceuticals, Inc. | Compositions and methods for screening 4r tau targeting agents |
US11730150B2 (en) | 2016-07-29 | 2023-08-22 | Regeneron Pharmaceuticals, Inc. | Fibrillin-1 mutations for modeling neonatal progeroid syndrome with congenital lipodystrophy |
WO2023212560A1 (en) | 2022-04-26 | 2023-11-02 | Regeneron Pharmaceuticals, Inc. | A rodent model of fibrodysplasia ossificans progressiva |
WO2023235677A1 (en) | 2022-05-31 | 2023-12-07 | Regeneron Pharmaceuticals, Inc. | Animal model of tdp-43 proteinopathy |
US11845987B2 (en) | 2018-04-17 | 2023-12-19 | The General Hospital Corporation | Highly sensitive in vitro assays to define substrate preferences and sites of nucleic acid cleaving agents |
WO2024006677A1 (en) | 2022-06-27 | 2024-01-04 | Regeneron Pharmaceuticals, Inc. | Non-human animals having a humanized clec9a gene |
WO2024020057A1 (en) | 2022-07-19 | 2024-01-25 | Regeneron Pharmaceuticals, Inc. | Genetically modified animal model and its use to model the human immune system |
WO2024020346A2 (en) | 2022-07-18 | 2024-01-25 | Renagade Therapeutics Management Inc. | Gene editing components, systems, and methods of use |
US11884915B2 (en) | 2021-09-10 | 2024-01-30 | Agilent Technologies, Inc. | Guide RNAs with chemical modification for prime editing |
US11891618B2 (en) | 2019-06-04 | 2024-02-06 | Regeneron Pharmaceuticals, Inc. | Mouse comprising a humanized TTR locus with a beta-slip mutation and methods of use |
WO2024044723A1 (en) | 2022-08-25 | 2024-02-29 | Renagade Therapeutics Management Inc. | Engineered retrons and methods of use |
WO2024073679A1 (en) | 2022-09-29 | 2024-04-04 | Regeneron Pharmaceuticals, Inc. | Correction of hepatosteatosis in humanized liver animals through restoration of il6/il6r/gp130 signaling in human hepatocytes |
US12010979B2 (en) | 2017-09-29 | 2024-06-18 | Regeneron Pharmaceuticals, Inc. | Non-human animals comprising a humanized TTR locus and methods of use |
WO2024259354A1 (en) | 2023-06-16 | 2024-12-19 | Regeneron Pharmaceuticals, Inc. | Vectors, genetically modified cells, and genetically modified non-human animals comprising the same |
WO2025049959A2 (en) | 2023-09-01 | 2025-03-06 | Renagade Therapeutics Management Inc. | Gene editing systems, compositions, and methods for treatment of vexas syndrome |
US12264341B2 (en) | 2020-01-24 | 2025-04-01 | The General Hospital Corporation | CRISPR-Cas enzymes with enhanced on-target activity |
Families Citing this family (61)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013066438A2 (en) | 2011-07-22 | 2013-05-10 | President And Fellows Of Harvard College | Evaluation and improvement of nuclease cleavage specificity |
US20150044192A1 (en) | 2013-08-09 | 2015-02-12 | President And Fellows Of Harvard College | Methods for identifying a target site of a cas9 nuclease |
US9359599B2 (en) | 2013-08-22 | 2016-06-07 | President And Fellows Of Harvard College | Engineered transcription activator-like effector (TALE) domains and uses thereof |
US9322037B2 (en) | 2013-09-06 | 2016-04-26 | President And Fellows Of Harvard College | Cas9-FokI fusion proteins and uses thereof |
US9340800B2 (en) | 2013-09-06 | 2016-05-17 | President And Fellows Of Harvard College | Extended DNA-sensing GRNAS |
US9737604B2 (en) | 2013-09-06 | 2017-08-22 | President And Fellows Of Harvard College | Use of cationic lipids to deliver CAS9 |
ES2844174T3 (es) * | 2013-09-18 | 2021-07-21 | Kymab Ltd | Métodos, células y organismos |
WO2015070083A1 (en) | 2013-11-07 | 2015-05-14 | Editas Medicine,Inc. | CRISPR-RELATED METHODS AND COMPOSITIONS WITH GOVERNING gRNAS |
HUE041331T2 (hu) * | 2013-12-11 | 2019-05-28 | Regeneron Pharma | Módszerek és készítmények a genom célzott módosításához |
US20150166985A1 (en) | 2013-12-12 | 2015-06-18 | President And Fellows Of Harvard College | Methods for correcting von willebrand factor point mutations |
CA2956224A1 (en) | 2014-07-30 | 2016-02-11 | President And Fellows Of Harvard College | Cas9 proteins including ligand-dependent inteins |
CN105177110A (zh) * | 2015-09-11 | 2015-12-23 | 中国科学院微生物研究所 | 核酸的检测方法 |
WO2017053729A1 (en) | 2015-09-25 | 2017-03-30 | The Board Of Trustees Of The Leland Stanford Junior University | Nuclease-mediated genome editing of primary cells and enrichment thereof |
EP4269577A3 (en) | 2015-10-23 | 2024-01-17 | President and Fellows of Harvard College | Nucleobase editors and uses thereof |
WO2017087780A1 (en) | 2015-11-20 | 2017-05-26 | Regeneron Pharmaceuticals, Inc. | Non-human animals having a humanized lymphocyte-activation gene 3 |
US20170332610A1 (en) * | 2016-05-20 | 2017-11-23 | Regeneron Pharmaceuticals, Inc. | Methods for breaking immunological tolerance using multiple guide rnas |
US20210010022A1 (en) * | 2016-05-27 | 2021-01-14 | Cambridge Enterprise Limited | Novel nucleic acid construct |
US11572545B2 (en) | 2016-06-16 | 2023-02-07 | Cedars-Sinai Medical Center | Efficient method for reprogramming blood to induced pluripotent stem cells |
US10221395B2 (en) * | 2016-06-16 | 2019-03-05 | Cedars-Sinai Medical Center | Efficient method for reprogramming blood to induced pluripotent stem cells |
AU2017306676B2 (en) | 2016-08-03 | 2024-02-22 | President And Fellows Of Harvard College | Adenosine nucleobase editors and uses thereof |
AU2017308889B2 (en) | 2016-08-09 | 2023-11-09 | President And Fellows Of Harvard College | Programmable Cas9-recombinase fusion proteins and uses thereof |
US11542509B2 (en) | 2016-08-24 | 2023-01-03 | President And Fellows Of Harvard College | Incorporation of unnatural amino acids into proteins using base editing |
CN107815465B (zh) | 2016-08-31 | 2021-03-16 | 百奥赛图(北京)医药科技股份有限公司 | 人源化基因改造动物模型的制备方法及应用 |
US11279948B2 (en) | 2016-08-31 | 2022-03-22 | Biocytogen Pharmaceuticals (Beijing) Co., Ltd. | Genetically modified non-human animal with human or chimeric OX40 |
SG11201903089RA (en) | 2016-10-14 | 2019-05-30 | Harvard College | Aav delivery of nucleobase editors |
US10745677B2 (en) | 2016-12-23 | 2020-08-18 | President And Fellows Of Harvard College | Editing of CCR5 receptor gene to protect against HIV infection |
CN118140872A (zh) | 2017-01-19 | 2024-06-07 | 欧莫诺艾比公司 | 来自具有多个重链免疫球蛋白基因座的转基因啮齿类动物的人抗体 |
US11530388B2 (en) | 2017-02-14 | 2022-12-20 | University of Pittsburgh—of the Commonwealth System of Higher Education | Methods of engineering human induced pluripotent stem cells to produce liver tissue |
US11898179B2 (en) | 2017-03-09 | 2024-02-13 | President And Fellows Of Harvard College | Suppression of pain by gene editing |
US11542496B2 (en) | 2017-03-10 | 2023-01-03 | President And Fellows Of Harvard College | Cytosine to guanine base editor |
CN108467873B (zh) * | 2017-03-17 | 2020-03-13 | 百奥赛图江苏基因生物技术有限公司 | 一种cd132基因缺失的免疫缺陷动物模型的制备方法及应用 |
JP7191388B2 (ja) | 2017-03-23 | 2022-12-19 | プレジデント アンド フェローズ オブ ハーバード カレッジ | 核酸によってプログラム可能なdna結合蛋白質を含む核酸塩基編集因子 |
CN106987604B (zh) * | 2017-03-29 | 2021-05-28 | 北京希诺谷生物科技有限公司 | 一种制备动脉粥样硬化疾病模型犬的方法 |
US12060572B2 (en) | 2017-04-20 | 2024-08-13 | Ramot At Tel-Aviv University Ltd. | Recombination activating gene (RAG) induced V(D)J gene targeting |
WO2018209320A1 (en) | 2017-05-12 | 2018-11-15 | President And Fellows Of Harvard College | Aptazyme-embedded guide rnas for use with crispr-cas9 in genome editing and transcriptional activation |
WO2018228534A1 (zh) * | 2017-06-16 | 2018-12-20 | 中国科学院上海生命科学研究院 | 制备免疫缺陷的大鼠的方法及其应用 |
EP3658573A1 (en) | 2017-07-28 | 2020-06-03 | President and Fellows of Harvard College | Methods and compositions for evolving base editors using phage-assisted continuous evolution (pace) |
EP3676376B1 (en) | 2017-08-30 | 2025-01-15 | President and Fellows of Harvard College | High efficiency base editors comprising gam |
WO2019051237A1 (en) * | 2017-09-08 | 2019-03-14 | Life Technologies Corporation | ENHANCED RECOMBINANT RECOMBINATION METHODS AND COMPOSITIONS THEREOF |
US11572574B2 (en) | 2017-09-28 | 2023-02-07 | Toolgen Incorporated | Artificial genome manipulation for gene expression regulation |
RU2767201C2 (ru) * | 2017-09-28 | 2022-03-16 | Тулджен Инкорпорейтед | Искусственная модификация генома для регуляции экспрессии гена |
CN118530993A (zh) | 2017-09-29 | 2024-08-23 | 因特利亚治疗公司 | 用于ttr基因编辑及治疗attr淀粉样变性的组合物及方法 |
US11795443B2 (en) | 2017-10-16 | 2023-10-24 | The Broad Institute, Inc. | Uses of adenosine base editors |
WO2020172587A1 (en) * | 2019-02-21 | 2020-08-27 | Nemametrix Inc | Monogenic or polygenic disease model organisms humanized with two or more genes |
CA3093850A1 (en) | 2018-03-26 | 2019-10-03 | Regeneron Pharmaceuticals, Inc. | Humanized rodents for testing therapeutic agents |
CN108624622A (zh) * | 2018-05-16 | 2018-10-09 | 湖南艾佳生物科技股份有限公司 | 一种基于CRISPR-Cas9系统构建的能分泌小鼠白细胞介素-6的基因工程细胞株 |
WO2019226953A1 (en) | 2018-05-23 | 2019-11-28 | The Broad Institute, Inc. | Base editors and uses thereof |
CN109868285A (zh) * | 2018-05-29 | 2019-06-11 | 江苏艾尔康生物医药科技有限公司 | 一种免疫缺陷大鼠动物模型的构建方法及应用 |
IL318469A (en) | 2018-06-14 | 2025-03-01 | Regeneron Pharma | Non-human animals capable of reorganizing transgenic DH-DH, and their uses |
EP3844272A1 (en) * | 2018-08-28 | 2021-07-07 | Flagship Pioneering Innovations VI, LLC | Methods and compositions for modulating a genome |
CN109504708A (zh) * | 2018-12-03 | 2019-03-22 | 江苏集萃药康生物科技有限公司 | 一种筛选标记自我删除的基因打靶载体及方法 |
KR20210133234A (ko) | 2019-02-18 | 2021-11-05 | 바이오사이토젠 파마슈티컬스 (베이징) 컴퍼니 리미티드 | 인간화 면역글로불린 유전자좌를 갖는 유전적으로 변형된 비-인간 동물 |
WO2020191242A1 (en) | 2019-03-19 | 2020-09-24 | The Broad Institute, Inc. | Methods and compositions for editing nucleotide sequences |
WO2021129766A1 (zh) * | 2019-12-25 | 2021-07-01 | 江苏集萃药康生物科技股份有限公司 | 一种il-15人源化小鼠模型及其用途 |
CN113355325B (zh) * | 2020-03-06 | 2023-07-14 | 中国科学院广州生物医药与健康研究院 | 人源化ace2基因改造小鼠胚胎干细胞模型制备方法及应用 |
CN113355323B (zh) * | 2020-03-06 | 2023-07-11 | 生物岛实验室 | 人源化ace2基因改造小鼠模型的制备方法及应用 |
MX2022014008A (es) | 2020-05-08 | 2023-02-09 | Broad Inst Inc | Métodos y composiciones para la edición simultánea de ambas cadenas de una secuencia de nucleótidos de doble cadena objetivo. |
IL298632A (en) | 2020-06-02 | 2023-01-01 | Biocytogen Pharmaceuticals Beijing Co Ltd | Genetically modified non-human animals with common light chain immunoglobulin locus |
CN112852875B (zh) * | 2021-02-26 | 2022-10-21 | 福建省立医院 | 示踪肿瘤T淋巴细胞浸润的CD3e转基因小鼠模型的构建方法 |
CN113229213B (zh) * | 2021-05-14 | 2022-06-14 | 福州大学 | 通过近红外荧光探针标记血栓实现肺栓塞造模及无创定量检测的方法 |
CN116326540A (zh) * | 2022-12-22 | 2023-06-27 | 新疆农业大学 | 一种调控哺乳期马驹肠道健康并促进生长发育的补饲方法 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6372956B1 (en) * | 1998-12-31 | 2002-04-16 | The J. David Gladstone Institutes | Transgenic rats and rat cell lines expressing human CD4 and a human chemokine receptor |
Family Cites Families (228)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
PT87133B (pt) | 1987-04-02 | 1992-07-31 | Amrad Corp Ltd | Metodo de purificacao do factor inibidor da leucemia (lif) e de composicoes farmaceuticas contendo polipeptidos com actividade do lif |
AU7677894A (en) | 1993-08-30 | 1995-03-22 | Northwestern University | Rat pluripotent embryonic stem cells and method of obtaining and using same |
AU1802797A (en) | 1996-02-16 | 1997-09-02 | University Of Edinburgh, The | Cytokine expressed by dia/lif-deficient embryonic stem cells for the inhibition of differentiation |
US5830729A (en) | 1996-04-18 | 1998-11-03 | Institut Pasteur | I Sce I-induced gene replacement and gene conversion in embryonic stem cells |
US6136566A (en) | 1996-10-04 | 2000-10-24 | Lexicon Graphics Incorporated | Indexed library of cells containing genomic modifications and methods of making and utilizing the same |
AU8587598A (en) | 1997-07-26 | 1999-02-16 | Wisconsin Alumni Research Foundation | Trans-species nuclear transfer |
US6599692B1 (en) | 1999-09-14 | 2003-07-29 | Sangamo Bioscience, Inc. | Functional genomics using zinc finger proteins |
AU2982900A (en) | 1999-02-03 | 2000-08-25 | Children's Medical Center Corporation | Gene repair involving the induction of double-stranded dna cleavage at a chromosomal target site |
US20030104526A1 (en) | 1999-03-24 | 2003-06-05 | Qiang Liu | Position dependent recognition of GNN nucleotide triplets by zinc fingers |
AU776576B2 (en) | 1999-12-06 | 2004-09-16 | Sangamo Biosciences, Inc. | Methods of using randomized libraries of zinc finger proteins for the identification of gene function |
US20050144655A1 (en) | 2000-10-31 | 2005-06-30 | Economides Aris N. | Methods of modifying eukaryotic cells |
US6596541B2 (en) | 2000-10-31 | 2003-07-22 | Regeneron Pharmaceuticals, Inc. | Methods of modifying eukaryotic cells |
US7105348B2 (en) | 2000-10-31 | 2006-09-12 | Regeneron Pharmaceuticals, Inc. | Methods of modifying eukaryotic cells |
US6586251B2 (en) * | 2000-10-31 | 2003-07-01 | Regeneron Pharmaceuticals, Inc. | Methods of modifying eukaryotic cells |
AU2002228841C1 (en) | 2000-12-07 | 2006-11-23 | Sangamo Biosciences, Inc | Regulation of angiogenesis with zinc finger proteins |
ES2389251T3 (es) | 2000-12-19 | 2012-10-24 | Altor Bioscience Corporation | Animales transgénicos que comprenden un sistema inmunitario humanizado |
AU2002225187A1 (en) | 2001-01-22 | 2002-07-30 | Sangamo Biosciences, Inc. | Zinc finger polypeptides and their use |
AU2002243645A1 (en) | 2001-01-22 | 2002-07-30 | Sangamo Biosciences, Inc. | Zinc finger proteins for dna binding and gene regulation in plants |
NZ527527A (en) | 2001-02-14 | 2005-08-26 | Leo T | Mammalian multipotent adult stem cells (MASC) with the capacity to differentiate into cells of mesodermal, ectodermal or endodermal origin and uses thereof |
AUPR451401A0 (en) | 2001-04-20 | 2001-05-24 | Monash University | A method of nuclear transfer |
CN100575485C (zh) | 2002-01-23 | 2009-12-30 | 犹他大学研究基金会 | 使用锌指核酸酶的定向染色体诱变 |
US20060078552A1 (en) | 2002-03-15 | 2006-04-13 | Sylvain Arnould | Hybrid and single chain meganucleases and use thereof |
ATE531796T1 (de) | 2002-03-21 | 2011-11-15 | Sangamo Biosciences Inc | Verfahren und zusammensetzungen zur verwendung von zinkfinger-endonukleasen zur verbesserung der homologen rekombination |
US7612250B2 (en) | 2002-07-29 | 2009-11-03 | Trustees Of Tufts College | Nuclear transfer embryo formation method |
CA2497913C (en) | 2002-09-05 | 2014-06-03 | California Institute Of Technology | Use of chimeric nucleases to stimulate gene targeting |
AU2003290518A1 (en) | 2002-09-06 | 2004-04-23 | Fred Hutchinson Cancer Research Center | Methods and compositions concerning designed highly-specific nucleic acid binding proteins |
US20030175968A1 (en) | 2002-10-30 | 2003-09-18 | Golic Kent G. | Gene targeting method |
US7344886B2 (en) | 2002-11-29 | 2008-03-18 | Boehringer Ingelheim Pharma Gmbh & Co., Kg | Neomycin-phosphotransferase-genes and methods for the selection of recombinant cells producing high levels of a desired gene product |
WO2004063356A2 (en) | 2003-01-13 | 2004-07-29 | Rao Mahendra S | Persistent expression of candidate molecule in proliferating stem and progenitor cells for delivery of therapeutic products |
GB2398784B (en) | 2003-02-26 | 2005-07-27 | Babraham Inst | Removal and modification of the immunoglobulin constant region gene cluster of a non-human mammal |
US7205148B2 (en) | 2003-06-11 | 2007-04-17 | Regeneron Pharmaceuticals, Inc. | Genome mutation by intron insertion into an embryonic stem cell genome |
US7888121B2 (en) | 2003-08-08 | 2011-02-15 | Sangamo Biosciences, Inc. | Methods and compositions for targeted cleavage and recombination |
US8409861B2 (en) | 2003-08-08 | 2013-04-02 | Sangamo Biosciences, Inc. | Targeted deletion of cellular DNA sequences |
KR20120091471A (ko) | 2004-03-04 | 2012-08-17 | 도쿠리츠교세이호진 고쿠리츠간켄큐센터 | 래트 배아 줄기 세포 |
EP1591521A1 (en) | 2004-04-30 | 2005-11-02 | Cellectis | I-Dmo I derivatives with enhanced activity at 37 degrees C and use thereof |
ES2364878T3 (es) | 2004-09-03 | 2011-09-15 | Moraga Biotechnology Inc. | Células madre de tipo blastómero totipotenciales no embrionarias y procedimientos de las mismas. |
WO2006033859A2 (en) | 2004-09-16 | 2006-03-30 | Sangamo Biosciences, Inc. | Compositions and methods for protein production |
ES2463476T3 (es) | 2004-10-19 | 2014-05-28 | Regeneron Pharmaceuticals, Inc. | Método para generar un ratón homocigótico para una modificación genética |
FR2879622B1 (fr) | 2004-12-17 | 2008-02-01 | Agronomique Inst Nat Rech | Procede in vitro de production d'ovocytes ou d'oeufs presentant une modification genomique ciblee |
WO2006097784A1 (en) | 2005-03-15 | 2006-09-21 | Cellectis | I-crei meganuclease variants with modified specificity, method of preparation and uses thereof |
JP2008535484A (ja) | 2005-03-15 | 2008-09-04 | セレクティス | 特異性が改変されたI−CreIメガヌクレアーゼ変異型、その作製方法及びその使用 |
US10022457B2 (en) | 2005-08-05 | 2018-07-17 | Gholam A. Peyman | Methods to regulate polarization and enhance function of cells |
GB0615327D0 (en) * | 2006-03-30 | 2006-09-13 | Univ Edinburgh | Culture medium containing kinase inhibitors and uses thereof |
AU2007232393A1 (en) * | 2006-03-30 | 2007-10-11 | The University Court Of The University Of Edinburgh | Culture medium containing kinase inhibitors. and uses thereof |
JP5514539B2 (ja) * | 2006-03-31 | 2014-06-04 | メダレックス・リミテッド・ライアビリティ・カンパニー | ヒト抗体の調製に用いるためのキメラ抗体を発現するトランスジェニック動物 |
CN101117633B (zh) | 2006-08-03 | 2011-07-20 | 上海交通大学附属儿童医院 | 一种细胞核移植方法 |
NZ576800A (en) | 2006-12-14 | 2013-02-22 | Dow Agrosciences Llc | Optimized non-canonical zinc finger proteins |
US7771967B2 (en) * | 2006-12-22 | 2010-08-10 | The J. David Gladstone Institutes | Nucleic acid encoding apolipoprotein E-I3 |
US10155038B2 (en) | 2007-02-02 | 2018-12-18 | Yale University | Cells prepared by transient transfection and methods of use thereof |
EP2137310B1 (en) | 2007-04-26 | 2010-11-24 | Sangamo BioSciences, Inc. | Targeted integration into the ppp1r12c locus |
DK2152880T3 (da) | 2007-06-01 | 2011-11-28 | Omt Inc | Sammensætninger og fremgangsmåder til hæmning af endogene immunoglobulingener og produktion af transgene, humane idiotype antistoffer |
KR20160015400A (ko) | 2008-08-22 | 2016-02-12 | 상가모 바이오사이언스 인코포레이티드 | 표적화된 단일가닥 분할 및 표적화된 통합을 위한 방법 및 조성물 |
US20100076057A1 (en) | 2008-09-23 | 2010-03-25 | Northwestern University | TARGET DNA INTERFERENCE WITH crRNA |
EP2180058A1 (en) | 2008-10-23 | 2010-04-28 | Cellectis | Meganuclease recombination system |
JP5681114B2 (ja) * | 2008-12-04 | 2015-03-04 | サンガモ バイオサイエンシーズ, インコーポレイテッド | 亜鉛フィンガーヌクレアーゼを使用したラットのゲノム編集 |
US20110030072A1 (en) | 2008-12-04 | 2011-02-03 | Sigma-Aldrich Co. | Genome editing of immunodeficiency genes in animals |
SG172160A1 (en) | 2008-12-17 | 2011-07-28 | Scripps Research Inst | Generation and maintenance of stem cells |
EP2206723A1 (en) | 2009-01-12 | 2010-07-14 | Bonas, Ulla | Modular DNA-binding domains |
US20110239315A1 (en) | 2009-01-12 | 2011-09-29 | Ulla Bonas | Modular dna-binding domains and methods of use |
EP2408921B1 (en) | 2009-03-20 | 2017-04-19 | Sangamo BioSciences, Inc. | Modification of cxcr4 using engineered zinc finger proteins |
EP2421980A2 (en) | 2009-04-23 | 2012-02-29 | Transposagen Biopharmaceuticals, Inc. | Genetically modified rat models for cancer |
US8772008B2 (en) | 2009-05-18 | 2014-07-08 | Sangamo Biosciences, Inc. | Methods and compositions for increasing nuclease activity |
EP2449112A1 (en) | 2009-07-01 | 2012-05-09 | Transposagen Biopharmaceuticals, Inc. | Genetically modified rat models for severe combined immunodeficiency (scid) |
EP2456876A2 (en) | 2009-07-24 | 2012-05-30 | Transposagen Biopharmaceuticals, Inc. | Genetically modified rat models for cytokine-cytokine signaling pathways |
CN102858985A (zh) * | 2009-07-24 | 2013-01-02 | 西格马-奥尔德里奇有限责任公司 | 基因组编辑方法 |
AU2010275432A1 (en) | 2009-07-24 | 2012-02-02 | Sigma-Aldrich Co. Llc. | Method for genome editing |
WO2011017293A2 (en) | 2009-08-03 | 2011-02-10 | The General Hospital Corporation | Engineering of zinc finger arrays by context-dependent assembly |
US8586526B2 (en) | 2010-05-17 | 2013-11-19 | Sangamo Biosciences, Inc. | DNA-binding proteins and uses thereof |
US8518392B2 (en) | 2009-08-14 | 2013-08-27 | Regeneron Pharmaceuticals, Inc. | Promoter-regulated differentiation-dependent self-deleting cassette |
WO2011051390A1 (en) | 2009-10-28 | 2011-05-05 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH) | Homologous recombination in the oocyte |
CN102666854B (zh) | 2009-10-29 | 2016-08-24 | 瑞泽恩制药公司 | 多功能等位基因 |
WO2011053957A2 (en) | 2009-11-02 | 2011-05-05 | Gen9, Inc. | Compositions and methods for the regulation of multiple genes of interest in a cell |
JP5807862B2 (ja) | 2009-12-01 | 2015-11-10 | 国立研究開発法人国立がん研究センター | ラット胚性幹細胞を用いたキメララットの作製法 |
WO2011072246A2 (en) | 2009-12-10 | 2011-06-16 | Regents Of The University Of Minnesota | Tal effector-mediated dna modification |
EP2813572B1 (en) | 2009-12-21 | 2016-04-27 | Keygene N.V. | Improved techniques for transfecting protoplasts |
WO2011091311A2 (en) | 2010-01-22 | 2011-07-28 | Dow Agrosciences Llc | Excision of transgenes in genetically modified organisms |
JP2013518602A (ja) | 2010-02-09 | 2013-05-23 | サンガモ バイオサイエンシーズ, インコーポレイテッド | 部分的に一本鎖のドナー分子による標的化ゲノム改変 |
GB201009732D0 (en) | 2010-06-10 | 2010-07-21 | Gene Bridges Gmbh | Direct cloning |
MY172702A (en) | 2010-06-11 | 2019-12-10 | Regeneron Pharma | Production of fertile xy female animals from xy es cells |
WO2012012667A2 (en) | 2010-07-21 | 2012-01-26 | Sangamo Biosciences, Inc. | Methods and compositions for modification of a hla locus |
WO2012018726A1 (en) | 2010-08-02 | 2012-02-09 | Cellectis Sa | Method for increasing double-strand break-induced gene targeting |
US9402377B2 (en) | 2010-09-20 | 2016-08-02 | Yale University | Human SIRPAalpha transgenic animals and their methods of use |
CN105861553B (zh) | 2011-02-15 | 2020-08-14 | 再生元制药公司 | 人源化m-csf小鼠 |
WO2012129198A1 (en) * | 2011-03-23 | 2012-09-27 | Transposagen Biopharmaceuticals, Inc. | Genetically modified rat models for obesity and diabetes |
EP2718446A2 (en) | 2011-06-07 | 2014-04-16 | Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH) | Improved recombination efficiency by inhibition of nhej dna repair |
PL2747551T3 (pl) * | 2011-08-26 | 2020-09-21 | Yecuris Corporation | Szczury z niedoborem hydrolazy fumaryloacetooctanowej (fah) i z niedoborem odporności oraz ich zastosowanie |
CN107858332A (zh) | 2011-10-28 | 2018-03-30 | 瑞泽恩制药公司 | T细胞受体基因修饰小鼠 |
WO2013141680A1 (en) | 2012-03-20 | 2013-09-26 | Vilnius University | RNA-DIRECTED DNA CLEAVAGE BY THE Cas9-crRNA COMPLEX |
US9637739B2 (en) | 2012-03-20 | 2017-05-02 | Vilnius University | RNA-directed DNA cleavage by the Cas9-crRNA complex |
BR112014026294B1 (pt) * | 2012-04-25 | 2021-11-23 | Regeneron Pharmaceuticals, Inc | Método para modificar um lócus genômico alvo em uma célula tronco embrionária (es) de camundongo |
DE102012103797A1 (de) * | 2012-04-30 | 2013-10-31 | KRAH Elektronische Bauelemente GmbH | Flüssigkeitsgekühlter Widerstand |
US10174331B2 (en) | 2012-05-07 | 2019-01-08 | Sangamo Therapeutics, Inc. | Methods and compositions for nuclease-mediated targeted integration of transgenes |
MX349744B (es) | 2012-05-25 | 2017-08-10 | Univ California | Metodos y composiciones para la modificacion de adn objetivo dirigida por arn y para la modulacion de la transcripcion dirigida por arn. |
KR20150023670A (ko) | 2012-06-12 | 2015-03-05 | 제넨테크, 인크. | 조건적 녹아웃 대립유전자의 생성 방법 및 이를 위한 조성물 |
PL3494997T3 (pl) | 2012-07-25 | 2020-04-30 | The Broad Institute, Inc. | Indukowalne białka wiążące dna i narzędzia perturbacji genomu oraz ich zastosowania |
CN110066775B (zh) | 2012-10-23 | 2024-03-19 | 基因工具股份有限公司 | 用于切割靶dna的组合物及其用途 |
JP6620018B2 (ja) | 2012-12-06 | 2019-12-11 | シグマ−アルドリッチ・カンパニー・リミテッド・ライアビリティ・カンパニーSigma−Aldrich Co., LLC | Crisprに基づくゲノム修飾および制御 |
WO2014093479A1 (en) | 2012-12-11 | 2014-06-19 | Montana State University | Crispr (clustered regularly interspaced short palindromic repeats) rna-guided control of gene regulation |
ES2701749T3 (es) | 2012-12-12 | 2019-02-25 | Broad Inst Inc | Métodos, modelos, sistemas y aparatos para identificar secuencias diana para enzimas Cas o sistemas CRISPR-Cas para secuencias diana y transmitir resultados de los mismos |
ES2553782T3 (es) | 2012-12-12 | 2015-12-11 | The Broad Institute, Inc. | Ingeniería de sistemas, métodos y composiciones de guía optimizadas para manipulación de secuencias |
PL2931898T3 (pl) | 2012-12-12 | 2016-09-30 | Le Cong | Projektowanie i optymalizacja systemów, sposoby i kompozycje do manipulacji sekwencją z domenami funkcjonalnymi |
EP2931899A1 (en) | 2012-12-12 | 2015-10-21 | The Broad Institute, Inc. | Functional genomics using crispr-cas systems, compositions, methods, knock out libraries and applications thereof |
CA2894684A1 (en) | 2012-12-12 | 2014-06-19 | The Broad Institute, Inc. | Engineering and optimization of improved crispr-cas systems, methods and enzyme compositions for sequence manipulation in eukaryotes |
PL2896697T3 (pl) | 2012-12-12 | 2016-01-29 | Broad Inst Inc | Projektowanie systemów, sposoby i optymalizowane kompozycje kierujące do manipulacji sekwencją |
EP4299741A3 (en) | 2012-12-12 | 2024-02-28 | The Broad Institute, Inc. | Delivery, engineering and optimization of systems, methods and compositions for sequence manipulation and therapeutic applications |
WO2014093694A1 (en) | 2012-12-12 | 2014-06-19 | The Broad Institute, Inc. | Crispr-cas nickase systems, methods and compositions for sequence manipulation in eukaryotes |
US8697359B1 (en) | 2012-12-12 | 2014-04-15 | The Broad Institute, Inc. | CRISPR-Cas systems and methods for altering expression of gene products |
EP2840140B2 (en) | 2012-12-12 | 2023-02-22 | The Broad Institute, Inc. | Crispr-Cas based method for mutation of prokaryotic cells |
KR20150095861A (ko) | 2012-12-17 | 2015-08-21 | 프레지던트 앤드 펠로우즈 오브 하바드 칼리지 | Rna-가이드된 인간 게놈 조작 |
DK2938184T3 (en) | 2012-12-27 | 2018-12-17 | Keygene Nv | Method of removing a genetic linkage in a plant |
WO2014127287A1 (en) | 2013-02-14 | 2014-08-21 | Massachusetts Institute Of Technology | Method for in vivo tergated mutagenesis |
SG10201706741VA (en) | 2013-02-20 | 2017-10-30 | Regeneron Pharma | Genetic modification of rats |
CA2901676C (en) | 2013-02-25 | 2023-08-22 | Sangamo Biosciences, Inc. | Methods and compositions for enhancing nuclease-mediated gene disruption |
JP2016507244A (ja) | 2013-02-27 | 2016-03-10 | ヘルムホルツ・ツェントルム・ミュンヒェン・ドイチェス・フォルシュンクスツェントルム・フューア・ゲズントハイト・ウント・ウムベルト(ゲーエムベーハー)Helmholtz Zentrum MuenchenDeutsches Forschungszentrum fuer Gesundheit und Umwelt (GmbH) | Cas9ヌクレアーゼによる卵母細胞における遺伝子編集 |
US10612043B2 (en) | 2013-03-09 | 2020-04-07 | Agilent Technologies, Inc. | Methods of in vivo engineering of large sequences using multiple CRISPR/cas selections of recombineering events |
AU2014235794A1 (en) | 2013-03-14 | 2015-10-22 | Caribou Biosciences, Inc. | Compositions and methods of nucleic acid-targeting nucleic acids |
US9234213B2 (en) | 2013-03-15 | 2016-01-12 | System Biosciences, Llc | Compositions and methods directed to CRISPR/Cas genomic engineering systems |
US20140349400A1 (en) | 2013-03-15 | 2014-11-27 | Massachusetts Institute Of Technology | Programmable Modification of DNA |
US20140273230A1 (en) | 2013-03-15 | 2014-09-18 | Sigma-Aldrich Co., Llc | Crispr-based genome modification and regulation |
CA2906970C (en) | 2013-03-21 | 2021-05-18 | Ospedale San Raffaele Srl | Targeted disruption of t cell receptor genes using engineered zinc finger protein nucleases |
EP4286517A3 (en) | 2013-04-04 | 2024-03-13 | President and Fellows of Harvard College | Therapeutic uses of genome editing with crispr/cas systems |
WO2014172470A2 (en) | 2013-04-16 | 2014-10-23 | Whitehead Institute For Biomedical Research | Methods of mutating, modifying or modulating nucleic acid in a cell or nonhuman mammal |
EP2986709A4 (en) | 2013-04-16 | 2017-03-15 | University Of Washington Through Its Center For Commercialization | Activating an alternative pathway for homology-directed repair to stimulate targeted gene correction and genome engineering |
WO2014172489A2 (en) * | 2013-04-16 | 2014-10-23 | Regeneron Pharmaceuticals, Inc. | Targeted modification of rat genome |
EP2796558A1 (en) | 2013-04-23 | 2014-10-29 | Rheinische Friedrich-Wilhelms-Universität Bonn | Improved gene targeting and nucleic acid carrier molecule, in particular for use in plants |
CA2910427C (en) | 2013-05-10 | 2024-02-20 | Sangamo Biosciences, Inc. | Delivery methods and compositions for nuclease-mediated genome engineering |
EP2997146A4 (en) | 2013-05-15 | 2017-04-26 | Sangamo BioSciences, Inc. | Methods and compositions for treatment of a genetic condition |
ES2883131T3 (es) | 2013-05-29 | 2021-12-07 | Cellectis | Métodos para la modificación de células T para inmunoterapia utilizando el sistema de nucleasa CAS guiado por ARN |
DK3309248T3 (da) | 2013-05-29 | 2021-08-02 | Cellectis | Fremgangsmåde til manipulering af T-celler til immunterapi under anvendelse af et RNA-guidet CAS-nuklease-system |
JP7065564B2 (ja) | 2013-05-29 | 2022-05-12 | セレクティス | Cas9ニッカーゼ活性を用いて正確なdna切断をもたらすための方法 |
US20140359795A1 (en) | 2013-05-31 | 2014-12-04 | Recombinetics, Inc. | Genetic techniques for making animals with sortable sperm |
US9982277B2 (en) | 2013-06-11 | 2018-05-29 | The Regents Of The University Of California | Methods and compositions for target DNA modification |
EP3620524A1 (en) | 2013-06-17 | 2020-03-11 | The Broad Institute, Inc. | Delivery, engineering and optimization of systems, methods and compositions for targeting and modeling diseases and disorders of post mitotic cells |
AU2014281028B2 (en) | 2013-06-17 | 2020-09-10 | Massachusetts Institute Of Technology | Delivery and use of the CRISPR-Cas systems, vectors and compositions for hepatic targeting and therapy |
MX374532B (es) | 2013-06-17 | 2025-03-06 | Broad Inst Inc | Suministro, uso y aplicaciones terapéuticas de los sistemas y composiciones crispr-cas, para actuar sobre trastornos y enfermedades utilizando componentes víricos. |
WO2014204724A1 (en) | 2013-06-17 | 2014-12-24 | The Broad Institute Inc. | Delivery, engineering and optimization of tandem guide systems, methods and compositions for sequence manipulation |
CN105492611A (zh) | 2013-06-17 | 2016-04-13 | 布罗德研究所有限公司 | 用于序列操纵的优化的crispr-cas双切口酶系统、方法以及组合物 |
WO2014204723A1 (en) | 2013-06-17 | 2014-12-24 | The Broad Institute Inc. | Oncogenic models based on delivery and use of the crispr-cas systems, vectors and compositions |
CA2915467A1 (en) | 2013-06-19 | 2014-12-24 | Sigma Aldrich Co. Llc | Targeted integration |
US10011850B2 (en) | 2013-06-21 | 2018-07-03 | The General Hospital Corporation | Using RNA-guided FokI Nucleases (RFNs) to increase specificity for RNA-Guided Genome Editing |
WO2015006498A2 (en) | 2013-07-09 | 2015-01-15 | President And Fellows Of Harvard College | Therapeutic uses of genome editing with crispr/cas systems |
CA3192673A1 (en) | 2013-07-09 | 2015-01-15 | President And Fellows Of Harvard College | Multiplex rna-guided genome engineering |
SG10201800213VA (en) | 2013-07-10 | 2018-02-27 | Harvard College | Orthogonal cas9 proteins for rna-guided gene regulation and editing |
WO2015010114A1 (en) | 2013-07-19 | 2015-01-22 | Larix Bioscience, Llc | Methods and compositions for producing double allele knock outs |
US10563225B2 (en) | 2013-07-26 | 2020-02-18 | President And Fellows Of Harvard College | Genome engineering |
AU2014308896A1 (en) | 2013-08-22 | 2016-03-10 | E. I. Du Pont De Nemours And Company | Plant genome modification using guide RNA/Cas endonuclease systems and methods of use |
MX2016002586A (es) | 2013-08-29 | 2016-06-14 | Univ Temple | Métodos y composiciones para el tratamiento guiado por rna de infección por hiv. |
US9322037B2 (en) | 2013-09-06 | 2016-04-26 | President And Fellows Of Harvard College | Cas9-FokI fusion proteins and uses thereof |
US9340800B2 (en) | 2013-09-06 | 2016-05-17 | President And Fellows Of Harvard College | Extended DNA-sensing GRNAS |
ES2844174T3 (es) | 2013-09-18 | 2021-07-21 | Kymab Ltd | Métodos, células y organismos |
WO2015048690A1 (en) | 2013-09-27 | 2015-04-02 | The Regents Of The University Of California | Optimized small guide rnas and methods of use |
WO2015052231A2 (en) | 2013-10-08 | 2015-04-16 | Technical University Of Denmark | Multiplex editing system |
EP3058072B1 (en) | 2013-10-17 | 2021-05-19 | Sangamo Therapeutics, Inc. | Delivery methods and compositions for nuclease-mediated genome engineering |
WO2015068785A1 (ja) | 2013-11-06 | 2015-05-14 | 国立大学法人広島大学 | 核酸挿入用ベクター |
WO2015070083A1 (en) | 2013-11-07 | 2015-05-14 | Editas Medicine,Inc. | CRISPR-RELATED METHODS AND COMPOSITIONS WITH GOVERNING gRNAS |
US10787684B2 (en) | 2013-11-19 | 2020-09-29 | President And Fellows Of Harvard College | Large gene excision and insertion |
EP3074515B1 (en) | 2013-11-28 | 2018-11-14 | Horizon Discovery Limited | Somatic haploid human cell line |
RU2685914C1 (ru) | 2013-12-11 | 2019-04-23 | Регенерон Фармасьютикалс, Инк. | Способы и композиции для направленной модификации генома |
EP4183876A1 (en) | 2013-12-12 | 2023-05-24 | The Broad Institute, Inc. | Delivery, use and therapeutic applications of the crispr-cas systems and compositions for hbv and viral diseases and disorders |
CN118813621A (zh) | 2013-12-12 | 2024-10-22 | 布罗德研究所有限公司 | 用于基因组编辑的crispr-cas系统和组合物的递送、用途和治疗应用 |
AU2014361826A1 (en) | 2013-12-12 | 2016-06-23 | Massachusetts Institute Of Technology | Delivery, use and therapeutic applications of the CRISPR-Cas systems and compositions for targeting disorders and diseases using particle delivery components |
AU2014361834B2 (en) | 2013-12-12 | 2020-10-22 | Massachusetts Institute Of Technology | CRISPR-Cas systems and methods for altering expression of gene products, structural information and inducible modular Cas enzymes |
CA2932472A1 (en) | 2013-12-12 | 2015-06-18 | Massachusetts Institute Of Technology | Compositions and methods of use of crispr-cas systems in nucleotide repeat disorders |
EP4219699A1 (en) | 2013-12-12 | 2023-08-02 | The Broad Institute, Inc. | Engineering of systems, methods and optimized guide compositions with new architectures for sequence manipulation |
AU2014363479A1 (en) | 2013-12-13 | 2016-06-23 | Cellectis | New method of selection of algal-transformed cells using nuclease |
EP3083958B1 (en) | 2013-12-19 | 2019-04-17 | Amyris, Inc. | Methods for genomic integration |
EP3092310B1 (en) | 2014-01-08 | 2019-12-25 | President and Fellows of Harvard College | Rna-guided gene drives |
JP6479024B2 (ja) | 2014-01-24 | 2019-03-06 | ザ チルドレンズ メディカル センター コーポレーション | 抗体親和性の最適化のための高スループットマウスモデル |
WO2015117041A1 (en) | 2014-01-30 | 2015-08-06 | Nair Ramesh B | Gene modification-mediated methods and compositions for generating dominant traits in eukaryotic systems |
US10233456B2 (en) | 2014-01-30 | 2019-03-19 | The Board Of Trustees Of The University Of Arkansas | Method, vectors, cells, seeds and kits for stacking genes into a single genomic site |
CA3075047C (en) | 2014-02-11 | 2022-02-01 | The Regents Of The University Of Colorado, A Body Corporate | Crispr enable method for multiplex genome editing |
AU2015218576B2 (en) | 2014-02-24 | 2020-02-27 | Sangamo Therapeutics, Inc. | Methods and compositions for nuclease-mediated targeted integration |
EP3114227B1 (en) | 2014-03-05 | 2021-07-21 | Editas Medicine, Inc. | Crispr/cas-related methods and compositions for treating usher syndrome and retinitis pigmentosa |
ES2745769T3 (es) | 2014-03-10 | 2020-03-03 | Editas Medicine Inc | Procedimientos y composiciones relacionados con CRISPR/CAS para tratar la amaurosis congénita de Leber 10 (LCA10) |
US20170106055A1 (en) | 2014-03-12 | 2017-04-20 | Precision Biosciences, Inc. | Dystrophin Gene Exon Deletion Using Engineered Nucleases |
HRP20240186T1 (hr) | 2014-03-14 | 2024-05-10 | Cibus Us Llc | Postupci i kompozicije za povećanje efikasnosti ciljane modifikacije gena korištenjem reparacije gena posredovane oligonukleotidima |
CA2942762C (en) | 2014-03-18 | 2023-10-17 | Sangamo Biosciences, Inc. | Methods and compositions for regulation of zinc finger protein expression |
JP6815986B2 (ja) | 2014-03-26 | 2021-01-20 | ユニバーシティ オブ メリーランド, カレッジ パーク | 大型家畜の接合体における標的化ゲノム編集 |
GB201406968D0 (en) | 2014-04-17 | 2014-06-04 | Green Biologics Ltd | Deletion mutants |
US20170076039A1 (en) | 2014-04-24 | 2017-03-16 | Institute For Basic Science | A Method of Selecting a Nuclease Target Sequence for Gene Knockout Based on Microhomology |
GB201407852D0 (en) | 2014-05-02 | 2014-06-18 | Iontas Ltd | Preparation of libraries od protein variants expressed in eukaryotic cells and use for selecting binding molecules |
EP3142706A1 (en) | 2014-05-16 | 2017-03-22 | Vrije Universiteit Brussel | Genetic correction of myotonic dystrophy type 1 |
CA2949713A1 (en) | 2014-05-30 | 2015-12-03 | The Board Of Trustees Of The Leland Stanford Junior University | Compositions and methods of delivering treatments for latent viral infections |
JP6688231B2 (ja) | 2014-06-06 | 2020-04-28 | リジェネロン・ファーマシューティカルズ・インコーポレイテッドRegeneron Pharmaceuticals, Inc. | 標的遺伝子座を修飾するための方法及び組成物 |
JP6930834B2 (ja) | 2014-06-16 | 2021-09-01 | ザ・ジョンズ・ホプキンス・ユニバーシティー | H1プロモーターを用いるcrisprガイドrnaの発現のための組成物および方法 |
JP6752158B2 (ja) | 2014-06-26 | 2020-09-09 | リジェネロン・ファーマシューティカルズ・インコーポレイテッドRegeneron Pharmaceuticals, Inc. | 標的化された遺伝子修飾のための方法及び組成物、並びに使用方法 |
KR20170032406A (ko) | 2014-07-15 | 2017-03-22 | 주노 쎄러퓨티크스 인코퍼레이티드 | 입양 세포 치료를 위한 조작된 세포 |
US9944933B2 (en) | 2014-07-17 | 2018-04-17 | Georgia Tech Research Corporation | Aptamer-guided gene targeting |
WO2016011428A1 (en) | 2014-07-17 | 2016-01-21 | University Of Pittsburgh - Of The Commonwealth System Of Higher Education | Methods of treating cells containing fusion genes |
WO2016033315A2 (en) | 2014-08-27 | 2016-03-03 | New England Biolabs, Inc. | Synthon formation |
SG11201701245QA (en) | 2014-08-27 | 2017-03-30 | Caribou Biosciences Inc | Methods for increasing cas9-mediated engineering efficiency |
WO2016036754A1 (en) | 2014-09-02 | 2016-03-10 | The Regents Of The University Of California | Methods and compositions for rna-directed target dna modification |
JP7242179B2 (ja) | 2014-09-07 | 2023-03-20 | セレクタ バイオサイエンシーズ インコーポレーテッド | 遺伝子治療用抗ウイルス導入ベクター免疫応答を減弱化するための方法および組成物 |
WO2016049163A2 (en) | 2014-09-24 | 2016-03-31 | The Broad Institute Inc. | Use and production of chd8+/- transgenic animals with behavioral phenotypes characteristic of autism spectrum disorder |
WO2016049024A2 (en) | 2014-09-24 | 2016-03-31 | The Broad Institute Inc. | Delivery, use and therapeutic applications of the crispr-cas systems and compositions for modeling competition of multiple cancer mutations in vivo |
WO2016049258A2 (en) | 2014-09-25 | 2016-03-31 | The Broad Institute Inc. | Functional screening with optimized functional crispr-cas systems |
AU2015323973A1 (en) | 2014-09-29 | 2017-04-20 | The Jackson Laboratory | High efficiency, high throughput generation of genetically modified mammals by electroporation |
IL287561B2 (en) | 2014-10-01 | 2024-03-01 | Massachusetts Gen Hospital | Methods for increasing efficiency of nuclease-induced homology-directed repair |
WO2016057961A1 (en) | 2014-10-10 | 2016-04-14 | Editas Medicine, Inc. | Compositions and methods for promoting homology directed repair |
WO2016061073A1 (en) | 2014-10-14 | 2016-04-21 | Memorial Sloan-Kettering Cancer Center | Composition and method for in vivo engineering of chromosomal rearrangements |
EP3207124B1 (en) | 2014-10-15 | 2019-06-26 | Regeneron Pharmaceuticals, Inc. | Methods and compositions for generating or maintaining pluripotent cells |
EP3207139A1 (en) | 2014-10-17 | 2017-08-23 | The Penn State Research Foundation | Methods and compositions for multiplex rna guided genome editing and other rna technologies |
US11174506B2 (en) | 2014-10-17 | 2021-11-16 | Howard Hughes Medical Institute | Genomic probes |
WO2016065364A1 (en) | 2014-10-24 | 2016-04-28 | Life Technologies Corporation | Compositions and methods for enhancing homologous recombination |
US12180263B2 (en) | 2014-11-06 | 2024-12-31 | President And Fellows Of Harvard College | Cells lacking B2M surface expression and methods for allogeneic administration of such cells |
CA2963820A1 (en) | 2014-11-07 | 2016-05-12 | Editas Medicine, Inc. | Methods for improving crispr/cas-mediated genome-editing |
SG10201913829YA (en) | 2014-11-21 | 2020-03-30 | Regeneron Pharma | METHODS AND COMPOSITIONS FOR TARGETED GENETIC MODIFICATION USING PAIRED GUIDE RNAs |
JP2017535296A (ja) | 2014-11-27 | 2017-11-30 | ダンツィガー イノベイションズ リミテッドDanziger Innovations Ltd. | ゲノム編集のための核酸構築物 |
US20170266320A1 (en) | 2014-12-01 | 2017-09-21 | President And Fellows Of Harvard College | RNA-Guided Systems for In Vivo Gene Editing |
EP3230452A1 (en) | 2014-12-12 | 2017-10-18 | The Broad Institute Inc. | Dead guides for crispr transcription factors |
WO2016094880A1 (en) | 2014-12-12 | 2016-06-16 | The Broad Institute Inc. | Delivery, use and therapeutic applications of crispr systems and compositions for genome editing as to hematopoietic stem cells (hscs) |
WO2016094874A1 (en) | 2014-12-12 | 2016-06-16 | The Broad Institute Inc. | Escorted and functionalized guides for crispr-cas systems |
WO2016097751A1 (en) | 2014-12-18 | 2016-06-23 | The University Of Bath | Method of cas9 mediated genome engineering |
WO2016100819A1 (en) | 2014-12-19 | 2016-06-23 | Regeneron Pharmaceuticals, Inc. | Methods and compositions for targeted genetic modification through single-step multiple targeting |
US10190106B2 (en) | 2014-12-22 | 2019-01-29 | Univesity Of Massachusetts | Cas9-DNA targeting unit chimeras |
WO2016108926A1 (en) | 2014-12-30 | 2016-07-07 | The Broad Institute Inc. | Crispr mediated in vivo modeling and genetic screening of tumor growth and metastasis |
US20180155708A1 (en) | 2015-01-08 | 2018-06-07 | President And Fellows Of Harvard College | Split Cas9 Proteins |
CN107406842B (zh) | 2015-01-09 | 2021-05-11 | 生物辐射实验室股份有限公司 | 检测基因组编辑 |
EP3245232B1 (en) | 2015-01-12 | 2021-04-21 | The Regents of The University of California | Heterodimeric cas9 and methods of use thereof |
WO2016115326A1 (en) | 2015-01-15 | 2016-07-21 | The Board Of Trustees Of The Leland Stanford Junior University | Methods for modulating genome editing |
SG10201804715WA (en) | 2015-01-28 | 2018-07-30 | Pioneer Hi Bred Int | Crispr hybrid dna/rna polynucleotides and methods of use |
WO2016130697A1 (en) | 2015-02-11 | 2016-08-18 | Memorial Sloan Kettering Cancer Center | Methods and kits for generating vectors that co-express multiple target molecules |
EP3262171A2 (en) | 2015-02-23 | 2018-01-03 | Crispr Therapeutics AG | Materials and methods for treatment of hemoglobinopathies |
WO2016135559A2 (en) | 2015-02-23 | 2016-09-01 | Crispr Therapeutics Ag | Materials and methods for treatment of human genetic diseases including hemoglobinopathies |
CA2977685C (en) | 2015-03-02 | 2024-02-20 | Sinai Health System | Homologous recombination factors |
GB201504223D0 (en) | 2015-03-12 | 2015-04-29 | Genome Res Ltd | Biallelic genetic modification |
EP3274453B1 (en) | 2015-03-26 | 2021-01-27 | Editas Medicine, Inc. | Crispr/cas-mediated gene conversion |
US9790490B2 (en) | 2015-06-18 | 2017-10-17 | The Broad Institute Inc. | CRISPR enzymes and systems |
-
2014
- 2014-04-16 WO PCT/US2014/034412 patent/WO2014172489A2/en active Application Filing
- 2014-04-16 MY MYPI2015703445A patent/MY177850A/en unknown
- 2014-04-16 SM SM20180671T patent/SMT201800671T1/it unknown
- 2014-04-16 KR KR1020157031609A patent/KR102186281B1/ko active Active
- 2014-04-16 SI SI201430914T patent/SI2986729T1/sl unknown
- 2014-04-16 SG SG10201808935WA patent/SG10201808935WA/en unknown
- 2014-04-16 HU HUE14784879A patent/HUE040575T2/hu unknown
- 2014-04-16 SG SG11201508028QA patent/SG11201508028QA/en unknown
- 2014-04-16 ES ES18187581T patent/ES2888250T3/es active Active
- 2014-04-16 SM SM20210516T patent/SMT202100516T1/it unknown
- 2014-04-16 ES ES14784879T patent/ES2699578T3/es active Active
- 2014-04-16 KR KR1020207034258A patent/KR20200136508A/ko not_active Ceased
- 2014-04-16 BR BR112015026197-3A patent/BR112015026197B1/pt not_active IP Right Cessation
- 2014-04-16 EP EP14784879.0A patent/EP2986729B1/en active Active
- 2014-04-16 RU RU2015148637A patent/RU2676708C2/ru active
- 2014-04-16 AU AU2014253942A patent/AU2014253942B9/en active Active
- 2014-04-16 CN CN201480033094.0A patent/CN105308184B/zh active Active
- 2014-04-16 RS RS20211065A patent/RS62263B1/sr unknown
- 2014-04-16 PT PT14784879T patent/PT2986729T/pt unknown
- 2014-04-16 PT PT181875816T patent/PT3456831T/pt unknown
- 2014-04-16 CA CA2908697A patent/CA2908697C/en active Active
- 2014-04-16 CN CN202010354904.XA patent/CN111500630A/zh active Pending
- 2014-04-16 JP JP2016509078A patent/JP6411463B2/ja active Active
- 2014-04-16 PL PL14784879T patent/PL2986729T3/pl unknown
- 2014-04-16 DK DK14784879.0T patent/DK2986729T3/en active
- 2014-04-16 RS RS20181446A patent/RS58255B1/sr unknown
- 2014-04-16 LT LTEP18187581.6T patent/LT3456831T/lt unknown
- 2014-04-16 MX MX2015014487A patent/MX369747B/es active IP Right Grant
- 2014-04-16 PL PL18187581T patent/PL3456831T3/pl unknown
- 2014-04-16 US US14/254,715 patent/US20140310828A1/en not_active Abandoned
- 2014-04-16 SI SI201431864T patent/SI3456831T1/sl unknown
- 2014-04-16 DK DK18187581.6T patent/DK3456831T3/da active
- 2014-04-16 HU HUE18187581A patent/HUE056903T2/hu unknown
- 2014-04-16 LT LTEP14784879.0T patent/LT2986729T/lt unknown
- 2014-04-16 EP EP18187581.6A patent/EP3456831B1/en active Active
- 2014-06-25 US US14/314,866 patent/US20140309487A1/en not_active Abandoned
-
2015
- 2015-10-06 IL IL241856A patent/IL241856B/en active IP Right Grant
-
2016
- 2016-03-07 HK HK16102550.0A patent/HK1214625A1/zh unknown
-
2017
- 2017-01-19 US US15/410,252 patent/US10385359B2/en active Active
-
2018
- 2018-10-11 HR HRP20181648TT patent/HRP20181648T1/hr unknown
- 2018-11-14 CY CY181101202T patent/CY1120845T1/el unknown
-
2019
- 2019-06-25 US US16/451,859 patent/US10975390B2/en active Active
-
2020
- 2020-08-18 IL IL276772A patent/IL276772A/en unknown
- 2020-09-16 AU AU2020233694A patent/AU2020233694A1/en not_active Abandoned
-
2021
- 2021-03-09 US US17/196,408 patent/US12037596B2/en active Active
- 2021-08-31 HR HRP20211385TT patent/HRP20211385T8/hr unknown
- 2021-09-07 CY CY20211100789T patent/CY1124627T1/el unknown
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6372956B1 (en) * | 1998-12-31 | 2002-04-16 | The J. David Gladstone Institutes | Transgenic rats and rat cell lines expressing human CD4 and a human chemokine receptor |
Non-Patent Citations (2)
Title |
---|
Mashimo et al., PLoS One, 5(10): e8870: 1-7, 2010. * |
Tong et al., Nature Protocols, 6(6): 827-844, 2011. * |
Cited By (266)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10954310B2 (en) | 2010-08-02 | 2021-03-23 | Regeneran Pharmaceuticals, Inc. | Mice that make VL binding proteins |
US9834786B2 (en) | 2012-04-25 | 2017-12-05 | Regeneron Pharmaceuticals, Inc. | Nuclease-mediated targeting with large targeting vectors |
US10301646B2 (en) | 2012-04-25 | 2019-05-28 | Regeneron Pharmaceuticals, Inc. | Nuclease-mediated targeting with large targeting vectors |
US10988780B2 (en) | 2012-05-25 | 2021-04-27 | The Regents Of The University Of California | Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription |
US11473108B2 (en) | 2012-05-25 | 2022-10-18 | The Regents Of The University Of California | Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription |
US12123015B2 (en) | 2012-05-25 | 2024-10-22 | The Regents Of The University Of California | Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription |
US10612045B2 (en) | 2012-05-25 | 2020-04-07 | The Regents Of The University Of California | Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription |
US10597680B2 (en) | 2012-05-25 | 2020-03-24 | The Regents Of The University Of California | Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription |
US10640791B2 (en) | 2012-05-25 | 2020-05-05 | The Regents Of The University Of California | Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription |
US10577631B2 (en) | 2012-05-25 | 2020-03-03 | The Regents Of The University Of California | Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription |
US10570419B2 (en) | 2012-05-25 | 2020-02-25 | The Regents Of The University Of California | Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription |
US10563227B2 (en) | 2012-05-25 | 2020-02-18 | The Regents Of The University Of California | Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription |
US11970711B2 (en) | 2012-05-25 | 2024-04-30 | The Regents Of The University Of California | Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription |
US10550407B2 (en) | 2012-05-25 | 2020-02-04 | The Regents Of The University Of California | Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription |
US10669560B2 (en) | 2012-05-25 | 2020-06-02 | The Regents Of The University Of California | Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription |
US10676759B2 (en) | 2012-05-25 | 2020-06-09 | The Regents Of The University Of California | Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription |
US11814645B2 (en) | 2012-05-25 | 2023-11-14 | The Regents Of The University Of California | Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription |
US11674159B2 (en) | 2012-05-25 | 2023-06-13 | The Regents Of The University Of California | Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription |
US11634730B2 (en) | 2012-05-25 | 2023-04-25 | The Regents Of The University Of California | Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription |
US10533190B2 (en) | 2012-05-25 | 2020-01-14 | The Regents Of The University Of California | Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription |
US10526619B2 (en) | 2012-05-25 | 2020-01-07 | The Regents Of The University Of California | Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription |
US11549127B2 (en) | 2012-05-25 | 2023-01-10 | The Regents Of The University Of California | Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription |
US10519467B2 (en) | 2012-05-25 | 2019-12-31 | The Regents Of The University Of California | Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription |
US10513712B2 (en) | 2012-05-25 | 2019-12-24 | The Regents Of The University Of California | Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription |
US11479794B2 (en) | 2012-05-25 | 2022-10-25 | The Regents Of The University Of California | Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription |
US10308961B2 (en) | 2012-05-25 | 2019-06-04 | The Regents Of The University Of California | Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription |
US11401532B2 (en) | 2012-05-25 | 2022-08-02 | The Regents Of The University Of California | Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription |
US11332761B2 (en) | 2012-05-25 | 2022-05-17 | The Regenis of Wie University of California | Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription |
US10000772B2 (en) | 2012-05-25 | 2018-06-19 | The Regents Of The University Of California | Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription |
US11293034B2 (en) | 2012-05-25 | 2022-04-05 | The Regents Of The University Of California | Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription |
US10752920B2 (en) | 2012-05-25 | 2020-08-25 | The Regents Of The University Of California | Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription |
US11274318B2 (en) | 2012-05-25 | 2022-03-15 | The Regents Of The University Of California | Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription |
US11242543B2 (en) | 2012-05-25 | 2022-02-08 | The Regents Of The University Of California | Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription |
US12180503B2 (en) | 2012-05-25 | 2024-12-31 | The Regents Of The University Of California | Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription |
US10487341B2 (en) | 2012-05-25 | 2019-11-26 | The Regents Of The University Of California | Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription |
US10774344B1 (en) | 2012-05-25 | 2020-09-15 | The Regents Of The University Of California | Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription |
US11028412B2 (en) | 2012-05-25 | 2021-06-08 | The Regents Of The University Of California | Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription |
US10113167B2 (en) | 2012-05-25 | 2018-10-30 | The Regents Of The University Of California | Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription |
US10793878B1 (en) | 2012-05-25 | 2020-10-06 | The Regents Of The University Of California | Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription |
US10443076B2 (en) | 2012-05-25 | 2019-10-15 | The Regents Of The University Of California | Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription |
US11008590B2 (en) | 2012-05-25 | 2021-05-18 | The Regents Of The University Of California | Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription |
US11008589B2 (en) | 2012-05-25 | 2021-05-18 | The Regents Of The University Of California | Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription |
US11001863B2 (en) | 2012-05-25 | 2021-05-11 | The Regents Of The University Of California | Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription |
US10428352B2 (en) | 2012-05-25 | 2019-10-01 | The Regents Of The University Of California | Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription |
US10227611B2 (en) | 2012-05-25 | 2019-03-12 | The Regents Of The University Of California | Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription |
US10988782B2 (en) | 2012-05-25 | 2021-04-27 | The Regents Of The University Of California | Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription |
US10266850B2 (en) | 2012-05-25 | 2019-04-23 | The Regents Of The University Of California | Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription |
US10626419B2 (en) | 2012-05-25 | 2020-04-21 | The Regents Of The University Of California | Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription |
US10982230B2 (en) | 2012-05-25 | 2021-04-20 | The Regents Of The University Of California | Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription |
US11186849B2 (en) | 2012-05-25 | 2021-11-30 | The Regents Of The University Of California | Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription |
US10421980B2 (en) | 2012-05-25 | 2019-09-24 | The Regents Of The University Of California | Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription |
US12180504B2 (en) | 2012-05-25 | 2024-12-31 | The Regents Of The University Of California | Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription |
US10982231B2 (en) | 2012-05-25 | 2021-04-20 | The Regents Of The University Of California | Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription |
US10415061B2 (en) | 2012-05-25 | 2019-09-17 | The Regents Of The University Of California | Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription |
US12215343B2 (en) | 2012-05-25 | 2025-02-04 | The Regents Of The University Of California | Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription |
US10301651B2 (en) | 2012-05-25 | 2019-05-28 | The Regents Of The University Of California | Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription |
US10900054B2 (en) | 2012-05-25 | 2021-01-26 | The Regents Of The University Of California | Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription |
US10337029B2 (en) | 2012-05-25 | 2019-07-02 | The Regents Of The University Of California | Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription |
US10351878B2 (en) | 2012-05-25 | 2019-07-16 | The Regents Of The University Of California | Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription |
US10358659B2 (en) | 2012-05-25 | 2019-07-23 | The Regents Of The University Of California | Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription |
US10358658B2 (en) | 2012-05-25 | 2019-07-23 | The Regents Of The University Of California | Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription |
US10407697B2 (en) | 2012-05-25 | 2019-09-10 | The Regents Of The University Of California | Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription |
US10385360B2 (en) | 2012-05-25 | 2019-08-20 | The Regents Of The University Of California | Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription |
US10400253B2 (en) | 2012-05-25 | 2019-09-03 | The Regents Of The University Of California | Methods and compositions or RNA-directed target DNA modification and for RNA-directed modulation of transcription |
US10731181B2 (en) | 2012-12-06 | 2020-08-04 | Sigma, Aldrich Co. LLC | CRISPR-based genome modification and regulation |
US10745716B2 (en) | 2012-12-06 | 2020-08-18 | Sigma-Aldrich Co. Llc | CRISPR-based genome modification and regulation |
US10894965B2 (en) | 2013-02-20 | 2021-01-19 | Regeneron Pharmaceuticals, Inc. | Genetic modification of rats |
US12065661B2 (en) | 2013-02-20 | 2024-08-20 | Regeneron Pharmaceuticals, Inc. | Genetic modification of rats |
US10329582B2 (en) | 2013-02-20 | 2019-06-25 | Regeneron Pharmaceuticals, Inc. | Genetic modification of rats |
US10119133B2 (en) | 2013-03-15 | 2018-11-06 | The General Hospital Corporation | Using truncated guide RNAs (tru-gRNAs) to increase specificity for RNA-guided genome editing |
US9885033B2 (en) | 2013-03-15 | 2018-02-06 | The General Hospital Corporation | Increasing specificity for RNA-guided genome editing |
US10138476B2 (en) | 2013-03-15 | 2018-11-27 | The General Hospital Corporation | Using RNA-guided FokI nucleases (RFNs) to increase specificity for RNA-guided genome editing |
US12065668B2 (en) | 2013-03-15 | 2024-08-20 | The General Hospital Corporation | RNA-guided targeting of genetic and epigenomic regulatory proteins to specific genomic loci |
US10378027B2 (en) | 2013-03-15 | 2019-08-13 | The General Hospital Corporation | RNA-guided targeting of genetic and epigenomic regulatory proteins to specific genomic loci |
US10760064B2 (en) | 2013-03-15 | 2020-09-01 | The General Hospital Corporation | RNA-guided targeting of genetic and epigenomic regulatory proteins to specific genomic loci |
US11098326B2 (en) | 2013-03-15 | 2021-08-24 | The General Hospital Corporation | Using RNA-guided FokI nucleases (RFNs) to increase specificity for RNA-guided genome editing |
US11920152B2 (en) | 2013-03-15 | 2024-03-05 | The General Hospital Corporation | Increasing specificity for RNA-guided genome editing |
US11168338B2 (en) | 2013-03-15 | 2021-11-09 | The General Hospital Corporation | RNA-guided targeting of genetic and epigenomic regulatory proteins to specific genomic loci |
US10544433B2 (en) | 2013-03-15 | 2020-01-28 | The General Hospital Corporation | Using RNA-guided FokI nucleases (RFNs) to increase specificity for RNA-guided genome editing |
US11634731B2 (en) | 2013-03-15 | 2023-04-25 | The General Hospital Corporation | Using truncated guide RNAs (tru-gRNAs) to increase specificity for RNA-guided genome editing |
US9567603B2 (en) | 2013-03-15 | 2017-02-14 | The General Hospital Corporation | Using RNA-guided FokI nucleases (RFNs) to increase specificity for RNA-guided genome editing |
US10844403B2 (en) | 2013-03-15 | 2020-11-24 | The General Hospital Corporation | Increasing specificity for RNA-guided genome editing |
US10415059B2 (en) | 2013-03-15 | 2019-09-17 | The General Hospital Corporation | Using truncated guide RNAs (tru-gRNAs) to increase specificity for RNA-guided genome editing |
US9567604B2 (en) | 2013-03-15 | 2017-02-14 | The General Hospital Corporation | Using truncated guide RNAs (tru-gRNAs) to increase specificity for RNA-guided genome editing |
US10526589B2 (en) | 2013-03-15 | 2020-01-07 | The General Hospital Corporation | Multiplex guide RNAs |
US12037596B2 (en) | 2013-04-16 | 2024-07-16 | Regeneron Pharmaceuticals, Inc. | Targeted modification of rat genome |
US10385359B2 (en) | 2013-04-16 | 2019-08-20 | Regeneron Pharmaceuticals, Inc. | Targeted modification of rat genome |
US10975390B2 (en) | 2013-04-16 | 2021-04-13 | Regeneron Pharmaceuticals, Inc. | Targeted modification of rat genome |
US10011850B2 (en) | 2013-06-21 | 2018-07-03 | The General Hospital Corporation | Using RNA-guided FokI Nucleases (RFNs) to increase specificity for RNA-Guided Genome Editing |
US9663782B2 (en) * | 2013-07-19 | 2017-05-30 | Larix Bioscience Llc | Methods and compositions for producing double allele knock outs |
US20150024500A1 (en) * | 2013-07-19 | 2015-01-22 | Larix Bioscience, Llc | Methods and compositions for producing double allele knock outs |
US11547100B2 (en) | 2013-08-07 | 2023-01-10 | Regeneron Pharmaceuticals, Inc. | Method for screening gene expression in lincRNA-deficient mice or rats |
US11820997B2 (en) | 2013-12-11 | 2023-11-21 | Regeneron Pharmaceuticals, Inc. | Methods and compositions for the targeted modification of a genome |
US10711280B2 (en) | 2013-12-11 | 2020-07-14 | Regeneron Pharmaceuticals, Inc. | Methods and compositions for the targeted modification of a mouse ES cell genome |
US9228208B2 (en) | 2013-12-11 | 2016-01-05 | Regeneron Pharmaceuticals, Inc. | Methods and compositions for the targeted modification of a genome |
US9546384B2 (en) | 2013-12-11 | 2017-01-17 | Regeneron Pharmaceuticals, Inc. | Methods and compositions for the targeted modification of a mouse genome |
US10208317B2 (en) | 2013-12-11 | 2019-02-19 | Regeneron Pharmaceuticals, Inc. | Methods and compositions for the targeted modification of a mouse embryonic stem cell genome |
US10881085B2 (en) | 2014-03-21 | 2021-01-05 | Regeneron Pharmaceuticals, Inc. | Non-human animals that make single domain binding proteins |
US10787522B2 (en) | 2014-03-21 | 2020-09-29 | Regeneron Pharmaceuticals, Inc. | VL antigen binding proteins exhibiting distinct binding characteristics |
WO2015143406A2 (en) | 2014-03-21 | 2015-09-24 | Regeneron Pharmaceuticals, Inc. | Vl antigen binding proteins exhibiting distinct binding characteristics |
US12256720B2 (en) | 2014-05-30 | 2025-03-25 | Regeneron Pharmaceuticals, Inc. | Humanized dipeptidyl-peptidase IV (DPP4) animals |
US11013220B2 (en) | 2014-05-30 | 2021-05-25 | Regeneron Pharmaceuticals, Inc. | Humanized dipeptidyl-peptidase IV (DPP4) animals |
US10294494B2 (en) | 2014-06-06 | 2019-05-21 | Regeneron Pharmaceuticals, Inc. | Methods and compositions for modifying a targeted locus |
WO2015188109A1 (en) | 2014-06-06 | 2015-12-10 | Regeneron Pharmaceuticals, Inc. | Methods and compositions for modifying a targeted locus |
US12060571B2 (en) | 2014-06-06 | 2024-08-13 | Regeneron Pharmaceuticals, Inc. | Methods and compositions for modifying a targeted locus |
US10106820B2 (en) | 2014-06-06 | 2018-10-23 | Regeneron Pharmaceuticals, Inc. | Methods and compositions for modifying a targeted locus |
EP3708671A1 (en) | 2014-06-06 | 2020-09-16 | Regeneron Pharmaceuticals, Inc. | Methods and compositions for modifying a targeted locus |
US10501794B2 (en) | 2014-06-23 | 2019-12-10 | The General Hospital Corporation | Genomewide unbiased identification of DSBs evaluated by sequencing (GUIDE-seq) |
US12104207B2 (en) | 2014-06-23 | 2024-10-01 | The General Hospital Corporation | Genomewide unbiased identification of DSBs evaluated by sequencing (GUIDE-Seq) |
US9902971B2 (en) | 2014-06-26 | 2018-02-27 | Regeneron Pharmaceuticals, Inc. | Methods for producing a mouse XY embryonic (ES) cell line capable of producing a fertile XY female mouse in an F0 generation |
US10793874B2 (en) | 2014-06-26 | 2020-10-06 | Regeneron Pharmaceuticals, Inc. | Methods and compositions for targeted genetic modifications and methods of use |
WO2016061374A1 (en) | 2014-10-15 | 2016-04-21 | Regeneron Pharmaceuticals, Inc. | Methods and compositions for generating or maintaining pluripotent cells |
EP3561052A1 (en) | 2014-10-15 | 2019-10-30 | Regeneron Pharmaceuticals, Inc. | Methods and compositions for generating or maintaining pluripotent cells |
KR102683423B1 (ko) | 2014-11-21 | 2024-07-10 | 리제너론 파마슈티칼스 인코포레이티드 | 쌍 형성된 가이드 rna를 사용하는 표적화된 유전자 변형을 위한 방법 및 조성물 |
CN107208078A (zh) * | 2014-11-21 | 2017-09-26 | 瑞泽恩制药公司 | 使用成对向导rna进行靶向遗传修饰的方法和组合物 |
US10457960B2 (en) | 2014-11-21 | 2019-10-29 | Regeneron Pharmaceuticals, Inc. | Methods and compositions for targeted genetic modification using paired guide RNAs |
KR20230070319A (ko) * | 2014-11-21 | 2023-05-22 | 리제너론 파마슈티칼스 인코포레이티드 | 쌍 형성된 가이드 rna를 사용하는 표적화된 유전자 변형을 위한 방법 및 조성물 |
US11697828B2 (en) | 2014-11-21 | 2023-07-11 | Regeneran Pharmaceuticals, Inc. | Methods and compositions for targeted genetic modification using paired guide RNAs |
US20200002731A1 (en) * | 2014-11-21 | 2020-01-02 | Regeneron Pharmaceuticals, Inc. | Methods and compositions for targeted genetic modification using paired guide rnas |
CN107208078B (zh) * | 2014-11-21 | 2021-07-16 | 瑞泽恩制药公司 | 使用成对向导rna进行靶向遗传修饰的方法和组合物 |
US10900034B2 (en) | 2014-12-03 | 2021-01-26 | Agilent Technologies, Inc. | Guide RNA with chemical modifications |
US10337001B2 (en) | 2014-12-03 | 2019-07-02 | Agilent Technologies, Inc. | Guide RNA with chemical modifications |
US10881086B2 (en) | 2014-12-09 | 2021-01-05 | Regeneron Pharmaceuticals, Inc. | Genetically modified mouse whose genome comprises a humanized CD274 gene |
US12089575B2 (en) | 2014-12-09 | 2024-09-17 | Regeneron Pharmaceuticals, Inc. | Genetically modified mouse that expresses humanized PD1 and PD-L1 proteins |
EP3653048A1 (en) | 2014-12-19 | 2020-05-20 | Regeneron Pharmaceuticals, Inc. | Methods and compositions for targeted genetic modification through single-step multiple targeting |
US11326184B2 (en) | 2014-12-19 | 2022-05-10 | Regeneron Pharmaceuticals, Inc. | Methods and compositions for targeted genetic modification through single-step multiple targeting |
WO2016114972A1 (en) | 2015-01-12 | 2016-07-21 | The Regents Of The University Of California | Heterodimeric cas9 and methods of use thereof |
US11180792B2 (en) | 2015-01-28 | 2021-11-23 | The Regents Of The University Of California | Methods and compositions for labeling a single-stranded target nucleic acid |
US10479982B2 (en) | 2015-03-03 | 2019-11-19 | The General Hospital Corporation | Engineered CRISPR-Cas9 nucleases with altered PAM specificity |
US12180520B2 (en) | 2015-03-03 | 2024-12-31 | The General Hospital Corporation | Engineered CRISPR-Cas9 nucleases with altered PAM specificity |
US11220678B2 (en) | 2015-03-03 | 2022-01-11 | The General Hospital Corporation | Engineered CRISPR-Cas9 nucleases with altered PAM specificity |
US10767168B2 (en) | 2015-03-03 | 2020-09-08 | The General Hospital Corporation | Engineered CRISPR-Cas9 nucleases with altered PAM specificity |
US11859220B2 (en) | 2015-03-03 | 2024-01-02 | The General Hospital Corporation | Engineered CRISPR-Cas9 nucleases with altered PAM specificity |
WO2016141224A1 (en) | 2015-03-03 | 2016-09-09 | The General Hospital Corporation | Engineered crispr-cas9 nucleases with altered pam specificity |
US10808233B2 (en) | 2015-03-03 | 2020-10-20 | The General Hospital Corporation | Engineered CRISPR-Cas9 nucleases with altered PAM specificity |
EP3858990A1 (en) | 2015-03-03 | 2021-08-04 | The General Hospital Corporation | Engineered crispr-cas9 nucleases with altered pam specificity |
US9944912B2 (en) | 2015-03-03 | 2018-04-17 | The General Hospital Corporation | Engineered CRISPR-Cas9 nucleases with altered PAM specificity |
US9752132B2 (en) | 2015-03-03 | 2017-09-05 | The General Hospital Corporation | Engineered CRISPR-CAS9 nucleases with altered PAM specificity |
US10202589B2 (en) | 2015-03-03 | 2019-02-12 | The General Hospital Corporation | Engineered CRISPR-Cas9 nucleases with altered PAM specificity |
US9926545B2 (en) | 2015-03-03 | 2018-03-27 | The General Hospital Corporation | Engineered CRISPR-CAS9 nucleases with altered PAM specificity |
EP3685662A1 (en) | 2015-03-16 | 2020-07-29 | Regeneron Pharmaceuticals, Inc. | Non-human animal exhibiting diminished upper and lower motor neuron function and sensory perception |
US10285387B2 (en) | 2015-03-16 | 2019-05-14 | Regeneron Pharmaceuticals, Inc. | Non-human animal exhibiting diminished upper and lower motor neuron function and sensory perception |
US11111314B2 (en) | 2015-03-19 | 2021-09-07 | Regeneron Pharmaceuticals, Inc. | Non-human animals that select for light chain variable regions that bind antigen |
US11851652B2 (en) | 2015-04-06 | 2023-12-26 | The Board Of Trustees Of The Leland Stanford Junior | Compositions comprising chemically modified guide RNAs for CRISPR/Cas-mediated editing of HBB |
US11535846B2 (en) | 2015-04-06 | 2022-12-27 | The Board Of Trustees Of The Leland Stanford Junior University | Chemically modified guide RNAS for CRISPR/Cas-mediated gene regulation |
US11306309B2 (en) | 2015-04-06 | 2022-04-19 | The Board Of Trustees Of The Leland Stanford Junior University | Chemically modified guide RNAs for CRISPR/CAS-mediated gene regulation |
US11547101B2 (en) | 2015-05-29 | 2023-01-10 | Regeneron Pharmaceuticals, Inc. | Non-human animals having a disruption in a C9ORF72 locus |
WO2016196655A1 (en) | 2015-06-03 | 2016-12-08 | The Regents Of The University Of California | Cas9 variants and methods of use thereof |
US10633642B2 (en) | 2015-08-28 | 2020-04-28 | The General Hospital Corporation | Engineered CRISPR-Cas9 nucleases |
US9926546B2 (en) | 2015-08-28 | 2018-03-27 | The General Hospital Corporation | Engineered CRISPR-Cas9 nucleases |
US9512446B1 (en) | 2015-08-28 | 2016-12-06 | The General Hospital Corporation | Engineered CRISPR-Cas9 nucleases |
WO2017040348A1 (en) | 2015-08-28 | 2017-03-09 | The General Hospital Corporation | Engineered crispr-cas9 nucleases |
US11060078B2 (en) | 2015-08-28 | 2021-07-13 | The General Hospital Corporation | Engineered CRISPR-Cas9 nucleases |
US10093910B2 (en) | 2015-08-28 | 2018-10-09 | The General Hospital Corporation | Engineered CRISPR-Cas9 nucleases |
US10526591B2 (en) | 2015-08-28 | 2020-01-07 | The General Hospital Corporation | Engineered CRISPR-Cas9 nucleases |
EP4036236A1 (en) | 2015-08-28 | 2022-08-03 | The General Hospital Corporation | Engineered crispr-cas9 nucleases |
WO2017040738A1 (en) | 2015-09-02 | 2017-03-09 | Regeneron Pharmaceuticals, Inc. | Rodent model of prostate cancer |
US11028429B2 (en) | 2015-09-11 | 2021-06-08 | The General Hospital Corporation | Full interrogation of nuclease DSBs and sequencing (FIND-seq) |
US10738303B2 (en) | 2015-09-30 | 2020-08-11 | The General Hospital Corporation | Comprehensive in vitro reporting of cleavage events by sequencing (CIRCLE-seq) |
WO2017143071A1 (en) | 2016-02-18 | 2017-08-24 | The Regents Of The University Of California | Methods and compositions for gene editing in stem cells |
US11910787B2 (en) | 2016-02-29 | 2024-02-27 | Regeneron Pharmaceuticals, Inc. | Rodents having a humanized TMPRSS gene |
EP3895529A1 (en) | 2016-02-29 | 2021-10-20 | Regeneron Pharmaceuticals, Inc. | Rodents having a humanized tmprss gene |
US10070631B2 (en) | 2016-02-29 | 2018-09-11 | Regeneron Pharmaceuticals, Inc. | Rodents having a humanized TMPRSS gene |
WO2017151453A1 (en) | 2016-02-29 | 2017-09-08 | Regeneron Pharmaceuticals, Inc. | Rodents having a humanized tmprss gene |
US10070632B2 (en) | 2016-02-29 | 2018-09-11 | Regeneron Pharmaceuticals, Inc. | Rodents having a humanized TMPRSS gene |
US10863729B2 (en) | 2016-02-29 | 2020-12-15 | Regeneron Pharmaceuticals, Inc. | Rodents having a humanized TMPRSS gene |
WO2017161043A1 (en) | 2016-03-16 | 2017-09-21 | The J. David Gladstone Institutes | Methods and compositions for treating obesity and/or diabetes and for identifying candidate treatment agents |
US10980221B2 (en) | 2016-06-03 | 2021-04-20 | Regeneron Pharmaceuticals, Inc. | Non-human animals expressing exogenous terminal deoxynucleotidyltransferase |
EP4218408A1 (en) | 2016-06-03 | 2023-08-02 | Regeneron Pharmaceuticals, Inc. | Rodents expressing exogenous terminal deoxynucleotidyltransferase |
WO2017210586A1 (en) | 2016-06-03 | 2017-12-07 | Regeneron Pharmaceuticals, Inc. | Non-human animals expressing exogenous terminal deoxynucleotidyltransferase |
US10767175B2 (en) | 2016-06-08 | 2020-09-08 | Agilent Technologies, Inc. | High specificity genome editing using chemically modified guide RNAs |
US11730150B2 (en) | 2016-07-29 | 2023-08-22 | Regeneron Pharmaceuticals, Inc. | Fibrillin-1 mutations for modeling neonatal progeroid syndrome with congenital lipodystrophy |
CN109862785A (zh) * | 2016-09-30 | 2019-06-07 | 瑞泽恩制药公司 | C9orf72基因座中具有六核苷酸重复扩增的非人类动物 |
WO2018064371A1 (en) | 2016-09-30 | 2018-04-05 | The Regents Of The University Of California | Rna-guided nucleic acid modifying enzymes and methods of use thereof |
US10781453B2 (en) | 2016-09-30 | 2020-09-22 | Regeneron Pharmaceuticals, Inc. | Non-human animals having a hexanucleotide repeat expansion in a C9ORF72 locus |
US10669539B2 (en) | 2016-10-06 | 2020-06-02 | Pioneer Biolabs, Llc | Methods and compositions for generating CRISPR guide RNA libraries |
US12123012B2 (en) | 2016-12-14 | 2024-10-22 | Ligandal, Inc. | Methods and compositions for nucleic acid and protein payload delivery |
US10975388B2 (en) | 2016-12-14 | 2021-04-13 | Ligandal, Inc. | Methods and compositions for nucleic acid and protein payload delivery |
WO2018112278A1 (en) | 2016-12-14 | 2018-06-21 | Ligandal, Inc. | Methods and compositions for nucleic acid and protein payload delivery |
WO2018157058A1 (en) | 2017-02-27 | 2018-08-30 | Regeneron Pharmaceuticals, Inc. | Non-human animal models of retinoschisis |
US12082565B2 (en) | 2017-02-27 | 2024-09-10 | Regeneron Pharmaceuticals, Inc. | Non-human animals models of retinoschisis |
US11064685B2 (en) | 2017-02-27 | 2021-07-20 | Regeneron Pharmaceuticals, Inc. | Non-human animal models of retinoschisis |
EP4481049A2 (en) | 2017-04-21 | 2024-12-25 | The General Hospital Corporation | Variants of cpf1 (cas12a) with altered pam specificity |
WO2018195545A2 (en) | 2017-04-21 | 2018-10-25 | The General Hospital Corporation | Variants of cpf1 (cas12a) with altered pam specificity |
WO2018218206A1 (en) | 2017-05-25 | 2018-11-29 | The General Hospital Corporation | Bipartite base editor (bbe) architectures and type-ii-c-cas9 zinc finger editing |
WO2018218166A1 (en) | 2017-05-25 | 2018-11-29 | The General Hospital Corporation | Using split deaminases to limit unwanted off-target base editor deamination |
US11130999B2 (en) | 2017-07-31 | 2021-09-28 | Regeneron Pharmaceuticals, Inc. | Cas-ready mouse embryonic stem cells and mice and uses thereof |
US11021719B2 (en) | 2017-07-31 | 2021-06-01 | Regeneron Pharmaceuticals, Inc. | Methods and compositions for assessing CRISPER/Cas-mediated disruption or excision and CRISPR/Cas-induced recombination with an exogenous donor nucleic acid in vivo |
US11866794B2 (en) | 2017-07-31 | 2024-01-09 | Regeneron Pharmaceuticals, Inc. | Cas-ready mouse embryonic stem cells and mice and uses thereof |
US11286468B2 (en) | 2017-08-23 | 2022-03-29 | The General Hospital Corporation | Engineered CRISPR-Cas9 nucleases with altered PAM specificity |
US11624058B2 (en) | 2017-08-23 | 2023-04-11 | The General Hospital Corporation | Engineered CRISPR-Cas9 nucleases with altered PAM specificity |
US12241096B2 (en) | 2017-08-23 | 2025-03-04 | The General Hospital Corporation | Engineered CRISPR-Cas9 nucleases with altered PAM specificity |
EP4249502A2 (en) | 2017-09-29 | 2023-09-27 | Regeneron Pharmaceuticals, Inc. | Rodents expressing humanized c1q complex |
US12010979B2 (en) | 2017-09-29 | 2024-06-18 | Regeneron Pharmaceuticals, Inc. | Non-human animals comprising a humanized TTR locus and methods of use |
WO2019067706A1 (en) | 2017-09-29 | 2019-04-04 | Regeneron Pharmaceuticals, Inc. | NON-HUMAN ANIMALS EXPRESSING A HUMANIZED C1Q COMPLEX |
US11186848B2 (en) | 2017-09-29 | 2021-11-30 | Regeneron Pharmaceuticals, Inc. | Non-human animals expressing humanized C1Q complex |
US11725228B2 (en) | 2017-10-11 | 2023-08-15 | The General Hospital Corporation | Methods for detecting site-specific and spurious genomic deamination induced by base editing technologies |
WO2019108983A1 (en) | 2017-11-30 | 2019-06-06 | Regeneron Pharmaceuticals, Inc. | Non-human animals comprising a humanized trkb locus |
US11419318B2 (en) | 2017-11-30 | 2022-08-23 | Regeneran Pharmaceuticals, Inc. | Genetically modified rat comprising a humanized TRKB locus |
EP4299732A2 (en) | 2017-11-30 | 2024-01-03 | Regeneron Pharmaceuticals, Inc. | Rats comprising a humanized trkb locus |
US11051498B2 (en) | 2017-12-05 | 2021-07-06 | Regeneron Pharmaceuticals, Inc. | Mouse having an engineered immunoglobulin lambda light chain |
EP4140297A1 (en) | 2017-12-05 | 2023-03-01 | Regeneron Pharmaceuticals, Inc. | Non-human animals having an engineered immunoglobulin lambda light chain and uses thereof |
WO2019113065A1 (en) | 2017-12-05 | 2019-06-13 | Regeneron Pharmaceuticals, Inc. | Non-human animals having an engineered immunoglobulin lambda light chain and uses thereof |
US11519004B2 (en) | 2018-03-19 | 2022-12-06 | Regeneran Pharmaceuticals, Inc. | Transcription modulation in animals using CRISPR/Cas systems |
WO2019190922A1 (en) | 2018-03-24 | 2019-10-03 | Regeneron Pharmaceuticals, Inc. | Genetically modified non-human animals for generating therapeutic antibodies against peptide-mhc complexes, methods of making and uses thereof |
EP4534560A2 (en) | 2018-03-24 | 2025-04-09 | Regeneron Pharmaceuticals, Inc. | Genetically modified non-human animals for generating therapeutic antibodies against peptide-mhc complexes, methods of making and uses thereof |
CN112204148A (zh) * | 2018-03-27 | 2021-01-08 | 宾夕法尼亚大学董事会 | 具有增强功能的修饰的免疫细胞及其筛选方法 |
US11845987B2 (en) | 2018-04-17 | 2023-12-19 | The General Hospital Corporation | Highly sensitive in vitro assays to define substrate preferences and sites of nucleic acid cleaving agents |
US11898203B2 (en) | 2018-04-17 | 2024-02-13 | The General Hospital Corporation | Highly sensitive in vitro assays to define substrate preferences and sites of nucleic-acid binding, modifying, and cleaving agents |
US11976324B2 (en) | 2018-04-17 | 2024-05-07 | The General Hospital Corporation | Highly sensitive in vitro assays to define substrate preferences and sites of nucleic-acid binding, modifying, and cleaving agents |
US10463029B1 (en) | 2018-06-07 | 2019-11-05 | Regeneron Pharmaceuticals, Inc. | Rodent model of steel syndrome |
WO2019236783A1 (en) | 2018-06-07 | 2019-12-12 | Regeneron Pharmaceuticals, Inc. | A rodent model of steel syndrome |
US12089576B2 (en) | 2018-06-13 | 2024-09-17 | Regeneron Pharmaceuticals, Inc. | Nucleic acids comprising a modified rodent activin a receptor type 1 (Acvr1) gene |
US11419319B2 (en) | 2018-06-13 | 2022-08-23 | Regeneran Pharmaceuticals, Inc. | Genetically modified rodent with an inducible ACVR1 mutation in exon 7 that causes ectopic bone formation |
WO2019241350A1 (en) | 2018-06-13 | 2019-12-19 | Regeneron Pharmaceuticals, Inc. | A rodent model of fibrodysplasia ossificans progressiva |
WO2020014528A1 (en) | 2018-07-13 | 2020-01-16 | The Regents Of The University Of California | Retrotransposon-based delivery vehicle and methods of use thereof |
WO2020018511A1 (en) | 2018-07-16 | 2020-01-23 | Regeneron Pharmaceuticals, Inc. | Non-human animal models of ditra disease and uses thereof |
US11589562B2 (en) | 2018-07-16 | 2023-02-28 | Regeneran Pharmaceuticals, Inc. | Mouse model of DITRA disease and uses thereof |
WO2020056122A1 (en) | 2018-09-13 | 2020-03-19 | Regeneron Pharmaceuticals, Inc. | Complement factor h gene knockout rat as a model of c3 glomerulopathy |
US11407995B1 (en) | 2018-10-26 | 2022-08-09 | Inari Agriculture Technology, Inc. | RNA-guided nucleases and DNA binding proteins |
US12071641B2 (en) | 2018-11-02 | 2024-08-27 | Inari Agriculture Technology, Inc. | RNA-guided nucleases and DNA binding proteins |
US11434477B1 (en) | 2018-11-02 | 2022-09-06 | Inari Agriculture Technology, Inc. | RNA-guided nucleases and DNA binding proteins |
US11690362B2 (en) | 2018-12-20 | 2023-07-04 | Regeneran Pharmaceuticals, Inc. | Nuclease-mediated repeat expansion |
WO2020150426A1 (en) | 2019-01-17 | 2020-07-23 | Regeneron Pharmaceuticals, Inc. | A rodent model of mood disorders |
WO2020163396A1 (en) | 2019-02-04 | 2020-08-13 | The General Hospital Corporation | Adenine dna base editor variants with reduced off-target rna editing |
WO2020163856A1 (en) | 2019-02-10 | 2020-08-13 | The J. David Gladstone Institutes, A Testamentary Trust Established Under The Will Of J. David Gladstone | Modified mitochondrion and methods of use thereof |
WO2020172505A1 (en) | 2019-02-22 | 2020-08-27 | Regeneron Pharmaceuticals, Inc. | Rodents having genetically modified sodium channels and methods of use thereof |
US11464217B2 (en) | 2019-02-22 | 2022-10-11 | Regeneron Pharmaceuticals, Inc. | Rodents having genetically modified sodium channels and methods of use thereof |
EP4219700A1 (en) | 2019-03-07 | 2023-08-02 | The Regents of the University of California | Crispr-cas effector polypeptides and methods of use thereof |
DE212020000516U1 (de) | 2019-03-07 | 2022-01-17 | The Regents of the University of California | CRISPR-CAS-Effektorpolypeptide |
WO2020190621A1 (en) | 2019-03-15 | 2020-09-24 | Regeneron Pharmaceuticals, Inc. | A loss of function rodent model of solute carrier 39 member 5 |
US12201096B2 (en) | 2019-04-04 | 2025-01-21 | Regeneron Pharmaceuticals, Inc. | Non-human animals comprising a humanized coagulation factor 12 locus |
US11737435B2 (en) | 2019-04-04 | 2023-08-29 | Regeneron Pharmaceuticals, Inc. | Non-human animals comprising a humanized coagulation factor 12 locus |
WO2020206139A1 (en) | 2019-04-04 | 2020-10-08 | Regeneron Pharmaceuticals, Inc. | Non-human animals comprising a humanized coagulation factor 12 locus |
US11891618B2 (en) | 2019-06-04 | 2024-02-06 | Regeneron Pharmaceuticals, Inc. | Mouse comprising a humanized TTR locus with a beta-slip mutation and methods of use |
WO2020247623A1 (en) | 2019-06-05 | 2020-12-10 | Regeneron Pharmaceuticals, Inc. | Non-human animals having a limited lambda light chain repertoire expressed from the kappa locus and uses thereof |
US11622547B2 (en) | 2019-06-07 | 2023-04-11 | Regeneran Pharmaceuticals, Inc. | Genetically modified mouse that expresses human albumin |
WO2020264339A1 (en) | 2019-06-27 | 2020-12-30 | Regeneron Pharmaceuticals, Inc. | Modeling tdp-43 proteinopathy |
WO2021067740A1 (en) | 2019-10-03 | 2021-04-08 | Regeneron Pharmaceuticals, Inc. | A crnn loss of function rodent model |
US11825819B2 (en) | 2019-10-03 | 2023-11-28 | Regeneron Pharmaceuticals, Inc. | Crnn loss of function rodent model |
WO2021108363A1 (en) | 2019-11-25 | 2021-06-03 | Regeneron Pharmaceuticals, Inc. | Crispr/cas-mediated upregulation of humanized ttr allele |
US12264341B2 (en) | 2020-01-24 | 2025-04-01 | The General Hospital Corporation | CRISPR-Cas enzymes with enhanced on-target activity |
US12250931B2 (en) | 2020-01-28 | 2025-03-18 | Regeneron Pharmaceuticals, Inc. | Genetically modified mouse with a humanized PNPLA3 gene and methods of use |
WO2021154791A1 (en) | 2020-01-28 | 2021-08-05 | Regeneron Pharmaceuticals, Inc. | Non-human animals comprising a humanized pnpla3 locus and methods of use |
WO2021158883A1 (en) | 2020-02-07 | 2021-08-12 | Regeneron Pharmaceuticals, Inc. | Non-human animals comprising a humanized klkb1 locus and methods of use |
WO2021178474A1 (en) | 2020-03-04 | 2021-09-10 | Regeneron Pharmaceuticals, Inc. | A rodent model of b4galt1-mediated functions |
WO2021195079A1 (en) | 2020-03-23 | 2021-09-30 | Regeneron Pharmaceuticals, Inc. | Non-human animals comprising a humanized ttr locus comprising a v30m mutation and methods of use |
WO2021216505A1 (en) | 2020-04-21 | 2021-10-28 | Regeneron Pharmaceuticals, Inc. | Non-human animals having a humanized cxcl13 gene |
WO2022072671A1 (en) | 2020-10-01 | 2022-04-07 | Regeneron Pharmaceuticals, Inc. | Rodent animals expressing human cr1 |
WO2022140221A1 (en) | 2020-12-21 | 2022-06-30 | Regeneron Pharmaceuticals, Inc. | Non-human animals having a humanized tslp gene, a humanized tslp receptor gene, and/or a humanized il7ra gene |
US11884915B2 (en) | 2021-09-10 | 2024-01-30 | Agilent Technologies, Inc. | Guide RNAs with chemical modification for prime editing |
WO2023081756A1 (en) | 2021-11-03 | 2023-05-11 | The J. David Gladstone Institutes, A Testamentary Trust Established Under The Will Of J. David Gladstone | Precise genome editing using retrons |
WO2023108047A1 (en) | 2021-12-08 | 2023-06-15 | Regeneron Pharmaceuticals, Inc. | Mutant myocilin disease model and uses thereof |
EP4198124A1 (en) | 2021-12-15 | 2023-06-21 | Versitech Limited | Engineered cas9-nucleases and method of use thereof |
WO2023141602A2 (en) | 2022-01-21 | 2023-07-27 | Renagade Therapeutics Management Inc. | Engineered retrons and methods of use |
WO2023150798A1 (en) | 2022-02-07 | 2023-08-10 | Regeneron Pharmaceuticals, Inc. | Compositions and methods for defining optimal treatment timeframes in lysosomal disease |
WO2023154861A1 (en) | 2022-02-11 | 2023-08-17 | Regeneron Pharmaceuticals, Inc. | Compositions and methods for screening 4r tau targeting agents |
WO2023212560A1 (en) | 2022-04-26 | 2023-11-02 | Regeneron Pharmaceuticals, Inc. | A rodent model of fibrodysplasia ossificans progressiva |
WO2023235677A1 (en) | 2022-05-31 | 2023-12-07 | Regeneron Pharmaceuticals, Inc. | Animal model of tdp-43 proteinopathy |
WO2024006677A1 (en) | 2022-06-27 | 2024-01-04 | Regeneron Pharmaceuticals, Inc. | Non-human animals having a humanized clec9a gene |
WO2024020346A2 (en) | 2022-07-18 | 2024-01-25 | Renagade Therapeutics Management Inc. | Gene editing components, systems, and methods of use |
WO2024020057A1 (en) | 2022-07-19 | 2024-01-25 | Regeneron Pharmaceuticals, Inc. | Genetically modified animal model and its use to model the human immune system |
WO2024044723A1 (en) | 2022-08-25 | 2024-02-29 | Renagade Therapeutics Management Inc. | Engineered retrons and methods of use |
WO2024073679A1 (en) | 2022-09-29 | 2024-04-04 | Regeneron Pharmaceuticals, Inc. | Correction of hepatosteatosis in humanized liver animals through restoration of il6/il6r/gp130 signaling in human hepatocytes |
WO2024259354A1 (en) | 2023-06-16 | 2024-12-19 | Regeneron Pharmaceuticals, Inc. | Vectors, genetically modified cells, and genetically modified non-human animals comprising the same |
WO2025049959A2 (en) | 2023-09-01 | 2025-03-06 | Renagade Therapeutics Management Inc. | Gene editing systems, compositions, and methods for treatment of vexas syndrome |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US12037596B2 (en) | Targeted modification of rat genome | |
US11820997B2 (en) | Methods and compositions for the targeted modification of a genome | |
EP3080279B1 (en) | Methods and compositions for the targeted modification of a genome | |
NZ713343B2 (en) | Targeted modification of rat genome |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: REGENERON PHARMACEUTICALS, INC., NEW YORK Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LEE, JEFFREY D.;MUJICA, ALEXANDER O.;AUERBACH, WOJTEK;AND OTHERS;SIGNING DATES FROM 20140605 TO 20140610;REEL/FRAME:033219/0604 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |