US11333381B2 - Determination device - Google Patents
Determination device Download PDFInfo
- Publication number
- US11333381B2 US11333381B2 US15/749,654 US201615749654A US11333381B2 US 11333381 B2 US11333381 B2 US 11333381B2 US 201615749654 A US201615749654 A US 201615749654A US 11333381 B2 US11333381 B2 US 11333381B2
- Authority
- US
- United States
- Prior art keywords
- refrigerant
- determination
- determination device
- compressor
- unregenerable
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B49/00—Arrangement or mounting of control or safety devices
- F25B49/005—Arrangement or mounting of control or safety devices of safety devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/30—Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
- F24F11/32—Responding to malfunctions or emergencies
- F24F11/38—Failure diagnosis
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B49/00—Arrangement or mounting of control or safety devices
- F25B49/02—Arrangement or mounting of control or safety devices for compression type machines, plants or systems
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/50—Control or safety arrangements characterised by user interfaces or communication
- F24F11/56—Remote control
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/62—Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
- F24F11/63—Electronic processing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/89—Arrangement or mounting of control or safety devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B13/00—Compression machines, plants or systems, with reversible cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2313/00—Compression machines, plants or systems with reversible cycle not otherwise provided for
- F25B2313/025—Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units
- F25B2313/0253—Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units in parallel arrangements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/08—Refrigeration machines, plants and systems having means for detecting the concentration of a refrigerant
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/19—Pumping down refrigerant from one part of the cycle to another part of the cycle, e.g. when the cycle is changed from cooling to heating, or before a defrost cycle is started
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2500/00—Problems to be solved
- F25B2500/19—Calculation of parameters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2700/00—Sensing or detecting of parameters; Sensors therefor
- F25B2700/15—Power, e.g. by voltage or current
- F25B2700/151—Power, e.g. by voltage or current of the compressor motor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2700/00—Sensing or detecting of parameters; Sensors therefor
- F25B2700/19—Pressures
- F25B2700/193—Pressures of the compressor
- F25B2700/1931—Discharge pressures
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2700/00—Sensing or detecting of parameters; Sensors therefor
- F25B2700/21—Temperatures
- F25B2700/2115—Temperatures of a compressor or the drive means therefor
- F25B2700/21152—Temperatures of a compressor or the drive means therefor at the discharge side of the compressor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B45/00—Arrangements for charging or discharging refrigerant
Definitions
- the present invention relates to a determination device.
- the multiple type air conditioning machine includes one outdoor unit and a plurality of indoor units connected to the one outdoor unit through branch pipes.
- the outdoor unit includes a compressor that compresses a refrigerant. Flow or the refrigerant compressed by the compressor is controlled by a four-way switching valve. In a cooling operation, more specifically, the refrigerant is delivered from the compressor to an outdoor heat exchanger of the outdoor unit and the outdoor heat exchanger functions as a condenser. In a heating operation, the refrigerant is delivered from the compressor to an indoor heat exchanger of each indoor unit and the indoor heat exchanger functions as a condenser.
- the outdoor heat exchanger and the indoor heat exchangers form portions of a refrigerant circuit through which the refrigerant flows.
- the refrigerant in the refrigerant circuit is initially collected into a refrigerant collection cylinder. Then the refrigerant collection cylinder is brought into a regeneration plant that is far from a place where the refrigerant circuit is installed and the regeneration plant is requested to regenerate the refrigerant in the refrigerant collection cylinder.
- An object of the invention is to provide a determination device by which the effort involved with determination as to whether the refrigerant is regenerable or not can be reduced.
- the invention provides a determination device including a refrigerant circuit in which a compressor, condenser, an expansion mechanism, and an evaporator are circularly connected, an operation determination unit which determines in a refrigeration cycle operation whether the refrigeration cycle operation can be normally carried out or not, and a refrigerant determination unit which determines, upon determination that the refrigeration cycle operation cannot normally carried out, whether a refrigerant is the refrigerant circuit is regenerable or not.
- the refrigerant determination unit determines whether the refrigerant in the refrigerant circuit is regenerable or not, based on the result of the determination. As a result, it can be determined whether the refrigerant is regenerable or not, in a vicinity of a place where the refrigerant circuit is installed, without travel to a regeneration plant that is far from the place where the refrigerant circuit is installed. Accordingly, an effort involved with determination as to whether the refrigerant is regenerable or not can be reduced.
- a determination device in accordance with an aspect further includes a collecting action prohibition unit which prohibits an action or collecting the refrigerant when it is determined that the refrigerant is unregenerable.
- the collecting action prohibition unit By provision of the collecting action prohibition unit, the refrigerant that is determined as unregenerable refrigerant can be prevented from being collected and being subjected to regeneration processing by mistake.
- a determination device in accordance with an aspect further includes a storage unit which stores information indicating that the refrigerant is unregenerable, when it is determined that the refrigerant is unregenerable.
- Provision of the storage unit enables accumulation of the information indicating that the refrigerant unregenerable. Consequently, the information can be retrieved from the storage unit when necessary and can be utilized for appropriate handling in repair, maintenance, or the like.
- the refrigerant determination unit determines that the refrigerant is unregenerable, when it is determined that the refrigeration cycle operation cannot be normally carried out due to an abnormality relating to the compressor.
- a determination device in accordance with an aspect further includes a communication device which transmits the information indicating that the refrigerant is unregenerable, to an external terminal, when it is determined that the refrigerant is unregenerable.
- Provision of the communication device makes it possible to quickly notify outside that the refrigerant is unregenerable.
- a determination device in accordance with an aspect is an air conditioning machine and the external terminal is a computer of a service center.
- the information indicating that the refrigerant is unregenerable is transmitted to the computer of the service center and thus the service center can be urged to do maintenance.
- the external terminal is a mobile device of a user.
- the information indicating that the refrigerant is unregenerable is transmitted to the mobile device of the user and thus the service center can be urged to do the maintenance.
- the communication device wirelessly transmits the information to the external terminal.
- the information is wirelessly transmitted to the external terminal and thus a degree of freedom of installation of the external terminal can be increased.
- the determination device of the invention includes the operation determination unit and the refrigerant determination unit and thus the effort involved with the determination as to whether the refrigerant is regenerable or not can be reduced.
- FIG. 1 is a circuit diagram illustrating a multiple type air conditioning machine is accordance with a first embodiment of the invention
- FIG. 2 is an external perspective view of an outdoor heat exchanger in FIG. 1 ;
- FIG. 3 is a configuration of a receiver in the multiple type air conditioning machine
- FIG. 4 is a block diagram illustrating a control section of the multiple type air conditioning machine
- FIG. 5 is a flow chart illustrating an example of control over the multiple type air conditioning machine
- FIG. 6A is a block diagram illustrating a modification to the control section of the multiple type air conditioning machine
- FIG. 6B is a block diagram illustrating a modification to the control section of the multiple type air conditioning machine.
- FIG. 7 is a schematic configuration of a determination device in accordance with a second embodiment of the invention.
- FIG. 1 is a circuit diagram illustrating a multiple type air conditioning machine 100 in accordance with a first embodiment of the invention.
- the multiple air conditioning machine 100 is an example of a determination device 100 .
- the air conditioning machine includes one outdoor unit 1 , a plurality of indoor units 2 A, 2 B, 2 C, 2 D, and 2 E, and a refrigerant circuit 3 through which a refrigerant flows.
- R22 refrigerant is used as the refrigerant, for instance.
- mixed refrigerants such as R410A refrigerant, containing R32, R32 single refrigerant, a low-GWP (Global Warming Potential) refrigerant, or the like may be used.
- the outdoor unit 1 includes a compressor 11 , a four-way switching valve 12 of which one end is connected to a discharge side of the compressor 11 , an outdoor heat exchanger 13 of which one end is connected to another end of the four-way switching valve 12 , expansion valves 14 A, 14 B, 14 C, 14 D, and 14 E that expand the refrigerant, a receiver 15 as an example of a refrigerant collection container, and a controller 16 .
- An outdoor blower fan (not illustrated) that blows air to the outdoor heat exchanger 13 is provided in the outdoor unit 1 .
- the expansion valves 14 A, 14 B, 14 C, 14 D, and 14 E are an example of expansion mechanisms in accordance with the invention.
- the indoor units 2 A, 2 B, 2 C, 2 D, and 2 E respectively include indoor heat exchangers 21 A, 21 B, 21 C, 21 D, and 21 E.
- the indoor heat exchangers 21 A, 21 B, 21 C, 21 D, and 21 E are provided in the refrigerant circuit 3 and form principal parts on an indoor side of the refrigerant circuit 3 .
- Indoor blower fans (not illustrated) that blow air to the indoor heat exchangers 21 A, 21 B, 21 C, 21 D, and 21 E are provided in the indoor units 2 A, 2 B, 2 C, 2 D, and 2 E, respectively.
- the indoor units 2 A, 2 B, 2 C, 2 D, and 2 E may be of wall-hanging type or may be of ceiling-embedded type.
- cool air or warm air from the indoor units 2 A, 2 B, 2 C, 2 D, and 2 E may be directly supplied into rooms or may be supplied through ducts into the rooms.
- the compressor 11 includes a compressor body 111 that houses a motor (not illustrated) and the like, on the discharge side, and an accumulator 112 , on a suction side.
- the compressor 11 forms a principal part on an outdoor side of the refrigerant circuit 3 .
- the compressor body 111 may be of any of rotary type, swing type, scroll type, and the like.
- a voltage sensor 51 is provided in the compressor 11 and is capable of detecting a supply voltage for the compressor body 111 .
- a pressure sensor 52 and a temperature sensor 53 are provided on the discharge side of the compressor 11 and are respectively capable of detecting a discharge pressure and a discharge temperature of air discharged from the compressor body 111 . Such detected values are outputted to the controller 16 .
- the outdoor heat exchanger 13 is a heat exchanger in which flattened tubes 131 are used as heat transfer tubes. More specifically, the outdoor heat exchanger 13 is a stacked heat exchanger and primarily includes the flattened tubes 131 , corrugated fins 132 , and first and second headers 133 A and 133 B.
- the flattened tubes 131 are formed of aluminum or aluminum alloy and each include a planar part 131 a which forms heat transfer surfaces and a plurality of inner channels (not illustrated) through which the refrigerant flows.
- the flattened tubes 131 are arranged at a plurality of levels so as to be stacked with intervals (ventilation spaces) therebetween in a state in which the planar parts 131 a face upward and downward.
- the corrugated fins 132 are fins bent into corrugated shapes and made of aluminum or aluminum alloy.
- the corrugated fins 132 are placed in the ventilation spaces between the flattened tubes 131 that vertically adjoin and have valley parts and peak parts in contact with the planar parts 131 a of the flattened tubes 131 .
- the valley parts and the peak parts are joined to the planar parts 131 a by brazing or the like.
- the first and second headers 133 A and 133 B are connected to both ends of each of the flattened tubes 131 that are arranged vertically at the plurality of levels.
- the first and second headers 133 A and 133 B have a function of supporting the flattened tubes 131 , a function of guiding the refrigerant into the inner channels in the flattened tubes 131 , and a function of aggregating the refrigerant that comes out of the inner channels.
- the refrigerant that flows in through a first opening 134 of the first header 133 A is distributed evenly in general into the inner channels in the uppermost flattened tube 131 and then flows toward the second header 133 B.
- the refrigerant that reaches the second header 133 B is distributed evenly into the inner channels in the second-level flattened tube 131 and then flows toward the first header 133 A.
- the refrigerant in the flattened tubes 131 at odd-numbered levels flows toward the second header 133 B and the refrigerant in the flattened tubes 131 at even-numbered levels flows toward the first header 133 A.
- the refrigerant in the flattened tube 131 at the lowermost and even-numbered level flows toward the first header 133 A, aggregates in the first header 133 A, and flows out through a second opening 135 of the first header 133 A.
- the outdoor heat exchanger 13 functions as the condenser for the refrigerant
- the refrigerant that flows in the flattened tubes 131 radiates heat through the corrugated fins 132 into air flow that flows through the ventilation spaces.
- the refrigerant flows in through the second opening 135 of the first header 133 A, flows through the flattened tubes 131 and the first and second headers 133 A and 133 B in directions opposite to directions for a function as the condenser for the refrigerant, and thereafter flows out through the first opening 134 of the first header 133 A.
- the outdoor heat exchanger 13 functions as the evaporator for the refrigerant
- the refrigerant that flows in the flattened tubes 131 absorbs heat through the corrugated fins 132 from the air flow that flows through the ventilation spaces.
- One end of the accumulator 112 is connected through a connecting tube 113 to the compressor body 111 . That is, inside of the accumulator 112 communicates through the connecting tube 113 with inside of the compressor body 111 .
- the other end of the accumulator 112 is connected through the four-way switching valve 12 to one end of each of the indoor heat exchangers 21 A, 210 , 210 , 210 , and 210 .
- Interconnecting pipes L 11 , L 12 , L 13 , L 14 , and L 15 guide the refrigerant between the four-way switching valve 12 and the indoor heat exchangers 21 A, 21 B, 21 C, 21 D, and 21 E, respectively.
- Temperature sensors 4 A, 4 B, 4 C, 4 D, and 4 E are respectively attached onto the interconnecting pipes L 11 , L 12 , L 13 , L 14 , and L 15 .
- the temperature sensors 4 A, 4 B, 4 C, 4 D, and 4 E respectively detect temperatures of the refrigerant in the interconnecting pipes L 11 , L 12 , L 13 , L 14 , and L 15 and output signals indicating the temperatures to the controller 16 .
- each of the indoor heat exchangers 21 A, 21 B, 21 C, 21 D, and 21 E is connected to one end of each of the expansion valves 14 A, 14 B, 14 C, 14 D, and 14 E through an interconnecting pipe L 21 , L 22 , L 23 , L 24 , or L 25 . That is, the interconnecting pipes L 21 , L 22 , L 23 , L 24 , and L 25 guide the refrigerant between the expansion valves 14 A, 14 B, 14 C, 14 D, and 14 E and the indoor heat exchangers 21 A, 21 B, 210 , 210 , and 21 E, respectively.
- Temperature sensors 411 , 41 B, 41 C, 41 D, and 41 E are respectively attached onto parts of the interconnecting pipes 121 , 122 , 123 , 124 , and 125 that are adjacent to the expansion valves 14 A, 14 B, 14 C, 14 D, and 14 E.
- the temperature sensors 41 A, 41 B, 41 C, 41 D, and 41 E respectively output to the controller 16 signals indicating temperatures of the refrigerant in the interconnecting pipes L 21 , L 22 , L 23 , L 24 , and L 25 .
- each of the expansion valves 14 A, 14 B, 14 C, 14 D, and 14 E is connected through the receiver 15 to the other end of the outdoor heat exchanger 13 .
- the receiver 15 is detachably provided in the refrigerant circuit 3 so that the refrigerant flows through the receiver 15 in cooling operation and a heating operation.
- the receiver 15 is provided in the outdoor unit 1 .
- the cooling operation and the heating operation are carried out in accordance with a quantity of heat required by the indoor heat exchangers 21 A, 21 B, 21 C, 21 D, and 21 E.
- the cooling operation and the heating operation are examples of the refrigeration cycle operation.
- the controller 16 is made of microcomputers, input/output circuits, and the like and controls the compressor 11 , the four-way switching valve 12 , the expansion valves 14 A, 14 B, 14 C, 14 D, and 14 E, and the like. For instance, the controller 16 controls a position of a valving element (not illustrated) in the four-way switching valve 12 so that the refrigerant in the four-way switching valve 12 flows along solid lines in the cooling operation and so that the refrigerant in the four-way switching valve 12 flows along dashed lines in the heating operation.
- a valving element not illustrated
- the outdoor heat exchanger 13 operates as an example of the condenser and the indoor heat exchangers 21 A, 21 B, 21 C, 21 D, and 21 E operate as an example of the evaporators.
- the outdoor heat exchanger 13 operates as an example of the evaporator and the indoor heat exchangers 21 A, 21 B, 21 C, 21 D, and 21 E operate as an example of the condensers.
- the multiple type air conditioning machine 100 in accordance with the embodiment includes a communication device 19 .
- the communication device 19 receives signals from the controller 16 and wirelessly transmits the contents to outside.
- a destination is a computer 18 A of a service center, a mobile device 18 B of a user, or the like, for instance.
- the remote control and the communication device 19 are not essential components and aspects thereof may be any desired aspects.
- an arrow of solid line designates a direction in which the refrigerant in the refrigerant circuit 3 flows in the cooling operation and an arrow of dashed line designates a direction in which the refrigerant in the refrigerant circuit 3 flows in the heating operation.
- FIG. 3 is a diagram illustrating a configuration of the receiver 15 .
- the receiver 15 includes a receiver body 151 that retains the refrigerant, an outdoor-heat-exchanger side connecting pipe 152 , an expansion-valve side connecting pipe 153 , and first and second stop valves 154 A and 154 B.
- the receiver body 151 is an example of a container body.
- One end of the outdoor-heat-exchanger side connecting pipe 152 is placed in the receiver body 151 .
- the other end of the outdoor-heat-exchanger side connecting pipe 152 is placed out of the receiver body 151 and is connected to one end of the first stop valve 154 A.
- One end of the expansion-valve side connecting pipe 153 is placed in the receiver body 151 and on generally the same level as the one end of the outdoor-heat-exchanger side connecting pipe 152 .
- the other end of the expansion-valve side connecting pipe 153 is placed out of the receiver body 151 and is connected to one end of the second stop valve 154 B.
- the other end of the first stop valve 154 A is connected through a pipe L 31 to the other end of the outdoor heat exchanger 13 .
- Bolts (not illustrated) and nuts (not illustrated) are used for connection between the first stop valve 154 A and the pipe L 31 so that the first stop valve 154 A can be separated from the pipe L 31 by loosening of the bolts and the nuts. That is, the connection between the first stop valve 154 A and the pipe L 31 is flange connection.
- the other end of the second stop valve 154 B is connected through a pipe L 32 to the other end of each of the expansion valves 14 A, 14 B, 14 C, 14 D, and 14 E.
- Bolts (not illustrated) and nuts (not illustrated) are used for connection between the second stop valve 154 B and the pipe L 32 so that the second stop valve 154 B can be separated from the pipe L 32 by loosening of the bolts and the nuts. That is, the connection between the second stop valve 154 B and the pipe L 32 is the flange connection.
- the receiver 15 in accordance with the embodiment is detachably provided in the refrigerant circuit 3 as above and, when the refrigerant is collected from the refrigerant circuit 3 , the refrigerant can be collected by gathering of the refrigerant in the refrigerant circuit 3 into the receiver 15 and subsequent detachment of the receiver 15 from the refrigerant circuit 3 . Accordingly, an operator can avoid bringing a refrigerant collection cylinder, for instance, to a place where the refrigerant circuit 3 exists. As a result, a load of an operation for collecting the refrigerant can be reduced.
- the receiver 15 does not have to be detachable and therefore the first and second stop valves 154 A and 154 B are not essential.
- FIG. 4 is a block diagram illustrating a control section of the multiple type air conditioning machine 100 .
- the control section in FIG. 4 that will be described herein is merely an example and there is no limitation to that.
- the controller 16 includes an operation determination unit. 161 A and a refrigerant determination unit 161 B.
- the controller 16 receives signals on the various detected values for the controller 16 from the voltage sensor 51 , the pressure sensor 52 , and the temperature sensor 53 , processes the signals on the detected values in the operation determination unit 161 A and the refrigerant determination unit 161 B, and thereafter outputs processing results to remote controls 17 A, 17 B, 17 C, 17 D, and 17 E.
- output destinations in the embodiment are the remote controls 17 A, 17 B, 17 C, 17 D, and 17 E that control operations of the multiple type air conditioning machine 100 , output monitors or the like may be newly provided, for instance, without limitation to the embodiment.
- the operation determination unit 161 A determines whether the cooling operation or the heating operation can be carried out.
- the refrigerant determination unit 161 B determines whether the refrigerant in the refrigerant circuit 3 is regenerable or not, based on a result of the determination.
- the result of the determination by the refrigerant determination unit 161 B is outputted to the remote controls 17 A, 17 B, 17 C, 17 D, and 17 E. Thus it is indicated on indication units of the remote controls that the refrigerant is regenerable or that the refrigerant is unregenerable.
- the refrigerant For determination as to whether the refrigerant regenerable or not, ordinarily, the refrigerant is directly analyzed. When results of such analysis indicate that the refrigerant is conspicuously oxidized or that the refrigerant is contaminated with a large amount of impurities, it is determined that the refrigerant is not suitable for the regeneration and the refrigerant is disposed of.
- a failure in the four-way switching valve 12 another abnormality relating to the compressor 11 , an abnormal temperature relating to the outdoor heat exchanger 13 , or the like is detected as well, other than the cases where the abnormality in the detected values is detected, it may be determined that the refrigerant is in the state unsuitable for the regeneration. In terms of reliability, however, it is desirable to determine that the refrigerant is in the state unsuitable for the regeneration, based on detection of the abnormality in the detected values.
- a storage unit 162 is provided in the controller 16 .
- the storage unit 162 is made of a nonvolatile memory and stores information indicating that the refrigerant is unregenerable as the results of the determination by the operation determination unit 161 A and the refrigerant determination unit 161 B.
- Provision of the storage unit 162 enables accumulation of the information indicating that the refrigerant is unregenerable. Consequently, the information can be retrieved when necessary and can be utilized for appropriate handling in repair, maintenance, or the like.
- a collecting action prohibition unit 163 is provided in the controller 16 .
- the collecting action prohibition unit 163 prohibits an action of collecting the refrigerant when the refrigerant determination unit 161 B determines that the refrigerant is unregenerable. Specifically, when a service provider or the like collects the refrigerant, the compressor 11 is operated with the expansion valves 14 A, 14 B, 14 C, 14 D, and 14 E closed, so that the refrigerant is retained in and collected into the receiver 15 without being circulated. By activation of the collecting action prohibition unit 163 , however, an operation of the compressor 11 for performing the collecting action can be prevented from starting. Consequently, the action of collecting the refrigerant is not started and collection of the refrigerant can be prohibited.
- the receiver 15 On condition that the multiple type air conditioning machine 100 has a refrigerant collection mode or the like, execution of the mode may be prohibited by the activation of the collecting action prohibition unit 163 .
- the receiver 15 In a configuration in which the receiver 15 is a detachable mechanism as in the embodiment, the receiver 15 may be locked so that the receiver 15 cannot be detached.
- Operations of the collecting action prohibition unit 163 that are enumerated herein are examples and aspects thereof are not limited to those examples but have only to be capable of substantially prohibiting the collection of the refrigerant.
- the collecting action prohibition unit 163 By such provision of the collecting action prohibition unit 163 , the refrigerant that is determined as unregenerable refrigerant can be prevented from being collected and being subjected to regeneration processing by mistake.
- the collecting action prohibition unit 163 and the storage unit 162 that have been described herein are provided as software in the controller 16 , the units may be provided as hardware separately from the controller without limitation to the above. Provision as the software, however, is preferable in terms of cost reduction, downsizing, and the like.
- FIG. 5 illustrates a control flow for FIG. 4 .
- An example of control over the multiple type air conditioning machine 100 of the embodiment will be described with reference to the flow chart of FIG. 5 .
- the control is ended or, when it is determined that the refrigerant is unregenerable, contents of an error are stored in the storage unit 162 (step S 3 - 4 ), the collecting action prohibition unit 163 prohibits the collection of the refrigerant (step S 3 - 5 ), and information on the error is outputted to the remote controls 17 A, 17 B, 17 C, 17 D, and 171 (step S 3 - 6 ). After completion of those processes, the control is ended.
- steps S 3 - 4 through S 3 - 6 illustrated in FIG. 5 are not essential and may be omitted is accordance with partial omission from configurations illustrated in FIG. 4 .
- the communication device 19 may be provided.
- the communication device 19 transmits information indicating that it has been determined in the controller 16 that the refrigerant is unregenerable, to the computer 18 A of the service center that is an external terminal. Communication from and to the communication device 19 is carried out wirelessly.
- the destination may be the mobile device 18 B such as a cellular phone and a smartphone.
- the external terminal may be such a terminal as a monitoring server 204 that will be described later.
- Such provision of the communication device 19 that makes transmissions to the external terminal 18 makes possible to quickly notify the outside that the refrigerant is unregenerable. Besides, the service center can be urged to do the maintenance by notification to the user, the external service provider, or the like. In addition, the information is wirelessly transmitted to the external terminal 18 and thus a degree of freedom of installation of the external terminal 18 can be increased.
- a cross fin type heat exchanger may be used in place of the outdoor heat exchanger 13 .
- a diameter of refrigerant pipes in the cross fin type heat exchanger may be 5 mm, for instance.
- FIG. 7 is a schematic configuration of a determination device 200 in accordance with a second embodiment of the invention.
- Components in FIG. 7 that are the same as the components in FIGS. 1, 4, and 6B are provided with the same reference characters as those for the components in FIGS. 1, 4, and 6B .
- the determination device 200 includes components such as the compressor 11 and the expansion valves 14 A, 14 B, 14 C, 14 D, and 14 E as with the multiple type air conditioning machine 100 of the first embodiment.
- the operation determination unit 161 A and the refrigerant determination unit 161 B are not provided in a multiple type air conditioning machine 201 but provided in the external monitoring server 204 .
- the determination device 200 includes at least the multiple type air conditioning machine 201 and the monitoring server 204 .
- Operating conditions of the multiple type air conditioning machine 201 in accordance with the embodiment are monitored by a centralized management device 203 and, more specifically, the values from the sensors 51 through 53 are monitored, for instance.
- the centralized management device 203 transmits operating information on the multiple type air conditioning machine 201 through public lines 205 or the like to the monitoring server 204 and the user mobile device 18 B.
- the monitoring server 204 accumulates the received operating information on the multiple type air conditioning machine 201 and makes the above determination by the operation determination unit 161 A and the refrigerant determination unit 161 B. Those communications are carried out through first through fifth communication lines 211 through 215 .
- the first communication line 211 connects the public lines 205 and the monitoring server 204 .
- the second communication line 212 connects the centralized management device 203 and the public lines 205 .
- the third communication line 213 connects the centralized management device 203 and the multiple type air conditioning machine 201 .
- the fourth communication line 214 connects the public lines 205 and the user mobile device 18 B.
- the fifth communication line 215 connects the indoor units 2 A, 2 B, 2 C, 2 D, and 2 E and an outdoor unit 202 .
- the operation determination unit 161 A and the refrigerant determination unit 161 B do not have to be provided in the multiple type air conditioning machine 201 and may be provided on the outside.
- either of the operation determination unit 161 A and the refrigerant determination unit 161 B may be provided in the multiple type air conditioning machine 201 or may be provided on the outside.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Signal Processing (AREA)
- Fuzzy Systems (AREA)
- Mathematical Physics (AREA)
- Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Human Computer Interaction (AREA)
- Air Conditioning Control Device (AREA)
- Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
- Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
- Iron Core Of Rotating Electric Machines (AREA)
Abstract
Description
- PTL1: JP 2015-4473 A
-
- 1 outdoor unit
- 2A, 2B, 2C, 2D, 2E indoor unit
- 3 refrigerant circuit
- 4A, 4B, 4C, 4D, 4E temperature sensor
- 11 compressor
- 12 four-way switching valve
- 13 outdoor heat exchanger (condenser) (evaporator)
- 14A, 14B, 14C, 14D, 14E expansion valve (expansion mechanism)
- 15 receiver
- 16 controller
- 17A, 17B, 17C, 17D, 17E remote control
- 18 external terminal
- 18A computer of service center
- 18B mobile device
- 19 communication device
- 21A, 21B, 21C, 21D, 21E indoor heat exchanger (condenser) (evaporator)
- 41A, 41B, 41C, 41D, 41E temperature sensor
- 51 voltage sensor
- 52 pressure sensor
- 53 temperature sensor
- 100 multiple type air conditioning machine (determination device)
- 131 flattened tube
- 132 corrugated fin
- 133A first header
- 133B second header
- 134 first opening
- 135 second opening
- 161A operation determination unit
- 161B refrigerant determination unit
- 162 storage unit
- 163 collecting action prohibition unit
- 200 determination device
- 201 multiple type air conditioning machine
- 202 outdoor unit
- 203 centralized management device
- 204 monitoring server
- 205 public line
- 211 first communication line
- 212 second communication line
- 213 third communication line
- 214 fourth communication line
- 215 fifth communication line
Claims (6)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JPJP2015-153149 | 2015-08-03 | ||
JP2015153149A JP6690151B2 (en) | 2015-08-03 | 2015-08-03 | Judgment device |
JP2015-153149 | 2015-08-03 | ||
PCT/JP2016/072231 WO2017022642A1 (en) | 2015-08-03 | 2016-07-28 | Determination device |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/072231 A-371-Of-International WO2017022642A1 (en) | 2015-08-03 | 2016-07-28 | Determination device |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/510,716 Division US11609011B2 (en) | 2015-08-03 | 2021-10-26 | Determination device for refrigerant quality |
Publications (2)
Publication Number | Publication Date |
---|---|
US20180231267A1 US20180231267A1 (en) | 2018-08-16 |
US11333381B2 true US11333381B2 (en) | 2022-05-17 |
Family
ID=57943835
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/749,654 Active US11333381B2 (en) | 2015-08-03 | 2016-07-28 | Determination device |
US17/510,716 Active US11609011B2 (en) | 2015-08-03 | 2021-10-26 | Determination device for refrigerant quality |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/510,716 Active US11609011B2 (en) | 2015-08-03 | 2021-10-26 | Determination device for refrigerant quality |
Country Status (6)
Country | Link |
---|---|
US (2) | US11333381B2 (en) |
EP (1) | EP3333508B1 (en) |
JP (1) | JP6690151B2 (en) |
CN (2) | CN112944758B (en) |
ES (1) | ES2932212T3 (en) |
WO (1) | WO2017022642A1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6690151B2 (en) * | 2015-08-03 | 2020-04-28 | ダイキン工業株式会社 | Judgment device |
JP6638788B1 (en) * | 2018-09-28 | 2020-01-29 | ダイキン工業株式会社 | Abnormality determination apparatus for transport refrigeration apparatus, transport refrigeration apparatus provided with this abnormality determination apparatus, and abnormality determination method for transport refrigeration apparatus |
JP7457244B2 (en) | 2020-04-27 | 2024-03-28 | ダイキン工業株式会社 | Air conditioning management system and refrigerant recovery management device |
Citations (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2223330A (en) | 1988-06-30 | 1990-04-04 | Toshiba Kk | "control apparatus for multi-air-conditioner system" |
JPH0371042A (en) | 1989-08-10 | 1991-03-26 | Daikin Ind Ltd | Detector for degree of deterioration in refrigerant of refrigerator |
US5214931A (en) * | 1991-12-20 | 1993-06-01 | Carrier Corporation | Apparatus for sampling the purity of refrigerant in the storage container of a refrigerant recovery and purification system |
US5295367A (en) * | 1990-09-26 | 1994-03-22 | Technical Chemical Company | Portable refrigerant handling apparatus and associated methods |
US5412955A (en) * | 1993-06-18 | 1995-05-09 | Snap-On Incorporated | Non-condensable purge control for refrigerant recycling system |
JPH1151512A (en) | 1997-07-30 | 1999-02-26 | Hitoyoshi Aizawa | Heat exchanging apparatus and handling method therefor |
US6408637B1 (en) * | 1999-11-01 | 2002-06-25 | Century Mfg. Co. | Apparatus and method for recovering and recycling refrigerant |
US20030010044A1 (en) * | 2000-02-14 | 2003-01-16 | Shigeharu Taira | Refrigerator, abrasive powder judging device, and refrigerant oxidation judging device |
JP2003262437A (en) | 2003-04-04 | 2003-09-19 | Daikin Ind Ltd | Refrigerant oxidation determination device and refrigeration device |
JP2005291702A (en) | 2005-07-07 | 2005-10-20 | Mitsubishi Electric Corp | Refrigeration cycle monitoring system |
US7076995B2 (en) * | 2002-02-08 | 2006-07-18 | Daikin Industries, Ltd. | Method for determining reusability of refrigerant using equipment or refrigerant lines, and reusability check tool for refrigerant using equipment or refrigerant lines |
CN1906453A (en) | 2004-01-21 | 2007-01-31 | 三菱电机株式会社 | Device diagnostic device, refrigeration cycle device, fluid circuit diagnostic method, device monitoring system, and refrigeration cycle monitoring system |
US20070089440A1 (en) * | 2005-10-21 | 2007-04-26 | Abtar Singh | Monitoring compressor performance in a refrigeration system |
EP1914493A2 (en) | 2006-10-11 | 2008-04-23 | Mitsubishi Heavy Industries, Ltd. | Air-conditioning apparatus |
JP2008175751A (en) | 2007-01-22 | 2008-07-31 | Fuji Electric Holdings Co Ltd | Degradation diagnosis method of refrigerant, and degradation diagnosis system of refrigerant |
EP2264386A1 (en) | 2008-02-29 | 2010-12-22 | Daikin Industries, Ltd. | Air conditioner and refrigerant amount determining method |
JP2012237472A (en) | 2011-05-10 | 2012-12-06 | Mitsubishi Electric Corp | Diagnosis method of refrigeration air conditioner, and estimation method of failure cause of refrigeration air conditioner |
JP2015004473A (en) | 2013-06-20 | 2015-01-08 | 三菱重工業株式会社 | Air conditioner and control method of air conditioner |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0674496A (en) * | 1992-08-25 | 1994-03-15 | Toshiba Corp | Air-conditioner |
JP2002197156A (en) * | 2000-12-27 | 2002-07-12 | Hitoyoshi Aizawa | Container transportation managing system for refrigerant sealed-apparatus |
JP4265982B2 (en) * | 2004-02-25 | 2009-05-20 | 三菱電機株式会社 | Equipment diagnostic equipment, refrigeration cycle equipment, refrigeration cycle monitoring system |
JP2006226653A (en) * | 2005-02-21 | 2006-08-31 | Matsushita Electric Ind Co Ltd | Reconditioning method for refrigerating cycle device, and refrigerating cycle device |
CN101251460A (en) * | 2008-03-25 | 2008-08-27 | 天津商业大学 | Method for the measurement of moisture and oil content in recovered refrigerants |
JP2009257620A (en) * | 2008-04-14 | 2009-11-05 | Panasonic Corp | Refrigerant recovering device |
CN103097733A (en) * | 2010-09-07 | 2013-05-08 | 松下电器产业株式会社 | Compressor and refrigeration cycle device using same |
JP5744081B2 (en) * | 2013-02-19 | 2015-07-01 | 三菱電機株式会社 | Air conditioner |
JP5795025B2 (en) * | 2013-05-30 | 2015-10-14 | 三菱電機株式会社 | Refrigeration cycle equipment |
JP6046029B2 (en) * | 2013-12-27 | 2016-12-14 | 三井・デュポンフロロケミカル株式会社 | Recovery and recycling system for recovered chlorofluorocarbons |
JP6944236B2 (en) * | 2015-07-30 | 2021-10-06 | ダイキン工業株式会社 | Freezer |
JP6690151B2 (en) * | 2015-08-03 | 2020-04-28 | ダイキン工業株式会社 | Judgment device |
JP6604082B2 (en) * | 2015-08-07 | 2019-11-13 | ダイキン工業株式会社 | Refrigeration equipment |
-
2015
- 2015-08-03 JP JP2015153149A patent/JP6690151B2/en active Active
-
2016
- 2016-07-28 CN CN202110423604.7A patent/CN112944758B/en active Active
- 2016-07-28 EP EP16832921.7A patent/EP3333508B1/en active Active
- 2016-07-28 ES ES16832921T patent/ES2932212T3/en active Active
- 2016-07-28 WO PCT/JP2016/072231 patent/WO2017022642A1/en active Application Filing
- 2016-07-28 US US15/749,654 patent/US11333381B2/en active Active
- 2016-07-28 CN CN201680041604.8A patent/CN107850364B/en active Active
-
2021
- 2021-10-26 US US17/510,716 patent/US11609011B2/en active Active
Patent Citations (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2223330A (en) | 1988-06-30 | 1990-04-04 | Toshiba Kk | "control apparatus for multi-air-conditioner system" |
JPH0371042A (en) | 1989-08-10 | 1991-03-26 | Daikin Ind Ltd | Detector for degree of deterioration in refrigerant of refrigerator |
US5295367A (en) * | 1990-09-26 | 1994-03-22 | Technical Chemical Company | Portable refrigerant handling apparatus and associated methods |
US5214931A (en) * | 1991-12-20 | 1993-06-01 | Carrier Corporation | Apparatus for sampling the purity of refrigerant in the storage container of a refrigerant recovery and purification system |
US5412955A (en) * | 1993-06-18 | 1995-05-09 | Snap-On Incorporated | Non-condensable purge control for refrigerant recycling system |
JPH1151512A (en) | 1997-07-30 | 1999-02-26 | Hitoyoshi Aizawa | Heat exchanging apparatus and handling method therefor |
US6408637B1 (en) * | 1999-11-01 | 2002-06-25 | Century Mfg. Co. | Apparatus and method for recovering and recycling refrigerant |
US20030010044A1 (en) * | 2000-02-14 | 2003-01-16 | Shigeharu Taira | Refrigerator, abrasive powder judging device, and refrigerant oxidation judging device |
US7076995B2 (en) * | 2002-02-08 | 2006-07-18 | Daikin Industries, Ltd. | Method for determining reusability of refrigerant using equipment or refrigerant lines, and reusability check tool for refrigerant using equipment or refrigerant lines |
JP2003262437A (en) | 2003-04-04 | 2003-09-19 | Daikin Ind Ltd | Refrigerant oxidation determination device and refrigeration device |
CN1906453A (en) | 2004-01-21 | 2007-01-31 | 三菱电机株式会社 | Device diagnostic device, refrigeration cycle device, fluid circuit diagnostic method, device monitoring system, and refrigeration cycle monitoring system |
US20070156373A1 (en) | 2004-01-21 | 2007-07-05 | Mitsubishi Denki Kabushiki Kaisha | Equipment diagnosis device, refrigerating cycle apparatus, fluid circuit diagnosis method, equipment monitoring system, and refrigerating cycle monitoring system |
JP2005291702A (en) | 2005-07-07 | 2005-10-20 | Mitsubishi Electric Corp | Refrigeration cycle monitoring system |
US20070089440A1 (en) * | 2005-10-21 | 2007-04-26 | Abtar Singh | Monitoring compressor performance in a refrigeration system |
EP1914493A2 (en) | 2006-10-11 | 2008-04-23 | Mitsubishi Heavy Industries, Ltd. | Air-conditioning apparatus |
JP2008175751A (en) | 2007-01-22 | 2008-07-31 | Fuji Electric Holdings Co Ltd | Degradation diagnosis method of refrigerant, and degradation diagnosis system of refrigerant |
EP2264386A1 (en) | 2008-02-29 | 2010-12-22 | Daikin Industries, Ltd. | Air conditioner and refrigerant amount determining method |
JP2012237472A (en) | 2011-05-10 | 2012-12-06 | Mitsubishi Electric Corp | Diagnosis method of refrigeration air conditioner, and estimation method of failure cause of refrigeration air conditioner |
JP2015004473A (en) | 2013-06-20 | 2015-01-08 | 三菱重工業株式会社 | Air conditioner and control method of air conditioner |
EP2960598A1 (en) | 2013-06-20 | 2015-12-30 | Mitsubishi Heavy Industries, Ltd. | Air conditioner and method for controlling air conditioner |
Non-Patent Citations (1)
Title |
---|
DES—Environmental Fact Sheet, p. 2 (Year: 2009). * |
Also Published As
Publication number | Publication date |
---|---|
WO2017022642A1 (en) | 2017-02-09 |
US11609011B2 (en) | 2023-03-21 |
US20220042700A1 (en) | 2022-02-10 |
JP6690151B2 (en) | 2020-04-28 |
CN107850364B (en) | 2021-06-04 |
EP3333508A4 (en) | 2019-04-17 |
CN112944758A (en) | 2021-06-11 |
BR112018001540A2 (en) | 2018-09-18 |
US20180231267A1 (en) | 2018-08-16 |
JP2017032217A (en) | 2017-02-09 |
CN107850364A (en) | 2018-03-27 |
EP3333508B1 (en) | 2022-11-09 |
ES2932212T3 (en) | 2023-01-16 |
CN112944758B (en) | 2022-08-26 |
EP3333508A1 (en) | 2018-06-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11609011B2 (en) | Determination device for refrigerant quality | |
US7752855B2 (en) | Air conditioner with refrigerant quantity judging mode | |
JP6297817B2 (en) | Maintenance time determination method for vehicle air conditioner | |
JP3852472B2 (en) | Air conditioner | |
US9709310B2 (en) | Air conditioning apparatus | |
JP2011099591A (en) | Refrigerating device | |
EP2436993A1 (en) | Air conditioning device specialized for heating | |
EP1965159A1 (en) | Air conditioner | |
US12066201B2 (en) | Air conditioning system having a normal control mode and multi-tenant control mode | |
JP2022179215A (en) | Refrigerant leakage management system | |
WO2017018494A1 (en) | Refrigerating device | |
JP6699810B2 (en) | Judgment method and judgment device | |
KR20100069404A (en) | Air conditioner and control method thereof | |
JP5783192B2 (en) | Air conditioner | |
JP6036357B2 (en) | Air conditioner | |
JP4735557B2 (en) | Refrigeration equipment | |
JP7303172B2 (en) | refrigeration equipment | |
JP6075500B1 (en) | Refrigeration equipment | |
BR112018001540B1 (en) | DETERMINATION DEVICE, AND AIR CONDITIONING MACHINE | |
KR101859038B1 (en) | Air conditioner and method for controlling the same | |
JP2014129961A (en) | Air conditioner |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: DAIKIN INDUSTRIES, LTD., JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:TAIRA, SHIGEHARU;REEL/FRAME:045226/0849 Effective date: 20160920 |
|
FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STCV | Information on status: appeal procedure |
Free format text: NOTICE OF APPEAL FILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |