TWM565920U - Voltage level converter - Google Patents
Voltage level converter Download PDFInfo
- Publication number
- TWM565920U TWM565920U TW107204531U TW107204531U TWM565920U TW M565920 U TWM565920 U TW M565920U TW 107204531 U TW107204531 U TW 107204531U TW 107204531 U TW107204531 U TW 107204531U TW M565920 U TWM565920 U TW M565920U
- Authority
- TW
- Taiwan
- Prior art keywords
- signal
- nmos transistor
- node
- pmos transistor
- drain
- Prior art date
Links
Landscapes
- Logic Circuits (AREA)
Abstract
本創作提出一種電壓位準轉換器,其係由一栓鎖電路(1)、一電位拉升電路(2)、一輸入電路(3)以及一模式控制開關(4)所組成,其中,該栓鎖電路(1)係用以保存由輸入電晶體接收的差動輸入信號;該電位拉升電路(2)係用來將該第一節點(N1)以及該第二節點(N2)的電位拉升到第一高電源供應電壓(VDDH);而該輸入電路(3)係用來提供該第一信號(V(IN))以及該第一信號(V(IN))的反相信號;該模式控制開關(4)係用來控制該電壓位準轉換器之不同操作模式。 This creation proposes a voltage level converter, which is composed of a latch circuit (1), a potential pull-up circuit (2), an input circuit (3), and a mode control switch (4). The latch circuit (1) is used to save the differential input signal received by the input transistor; the potential pull-up circuit (2) is used to store the potential of the first node (N1) and the second node (N2) Pulled up to the first high power supply voltage (VDDH); and the input circuit (3) is used to provide the first signal (V (IN)) and the inverted signal of the first signal (V (IN)); The mode control switch (4) is used to control different operation modes of the voltage level converter.
本創作所提出之電壓位準轉換器,不但能精確地將第一信號轉換為一第二信號,並且兼具電路結構簡單以及有利於裝置之小型化等多重功效,同時亦能有效地減少漏電流,進而降低功率消耗。 The voltage level converter proposed in this creation can not only accurately convert the first signal into a second signal, but also has multiple functions such as simple circuit structure and conducive to miniaturization of the device, and it can also effectively reduce leakage. Current, which reduces power consumption.
Description
本創作係有關一種電壓位準轉換器,尤指利用一栓鎖電路(1)、一電位拉升電路(2)、一輸入電路(3)以及一模式控制開關(4)所組成,以求獲得精確電壓位準轉換且有效地降低功率消耗之電子電路。 This creation is about a voltage level converter, especially using a latch circuit (1), a potential pull-up circuit (2), an input circuit (3), and a mode control switch (4). An electronic circuit that achieves precise voltage level conversion and effectively reduces power consumption.
電壓位準轉換器係一種用來溝通不同的積體電路(Integrated Circuit,簡稱IC)之間的信號傳遞之電子電路。在許多應用中,當應用系統需將信號從電壓位準較低的核心邏輯傳送到電壓位準較高的週邊裝置時,電壓位準轉換器就負責將低電壓工作信號轉換成高電壓工作信號。 The voltage level converter is an electronic circuit used to communicate signal transmission between different integrated circuits (ICs). In many applications, when the application system needs to transmit signals from core logic with lower voltage levels to peripheral devices with higher voltage levels, the voltage level converter is responsible for converting low-voltage working signals into high-voltage working signals. .
第1圖係顯示一先前技藝(prior art)之一閂鎖型電壓位準轉換器電路,其係使用一第一PMOS(P-channel metal oxide semiconductor,P通道金屬氧化物半導體)電晶體(MP1)、一第二PMOS電晶體(MP2)、一第一NMOS(N-channel metal oxide semiconductor,N通道金屬氧化物半導體)電晶體(MN1)、一第二NMOS電晶體(MN2)及一反相器(INV)來構成一電壓位準轉換器電路,其中,該反相器(INV)的偏壓是第二高電位電壓(VDDL)及地(GND),而第一信號(V(IN))的電位亦在地(GND)與第二高電位電壓(VDDL)之間。第一信號(V(IN))及經過反相器(INV)輸出的反相輸入電壓信號分別連接至第一NMOS電晶體(MN1)及第二NMOS電晶體(MN2)的閘極(gate)。因 此,在同一時間內,第一NMOS電晶體(MN1)及第二NMOS電晶體(MN2)之中只有一個會導通(ON)。此外,由於第一PMOS電晶體(MP1)和第二PMOS電晶體(MP2)的交叉耦合(cross-coupled)方式,使得當電壓位準轉換器的輸出(OUT)處於一個穩定的狀態時,閂鎖型的電壓位準轉換器中沒有靜態電流(static current)產生。尤其,當第一NMOS電晶體(MN1)關閉(OFF)而第二NMOS電晶體(MN2)導通(ON)時,第一PMOS電晶體(MP1)的閘極電位被拉降(pull down)並使得第一PMOS電晶體(MP1)導通,以致拉升(pull up)第二PMOS電晶體(MP2)的閘極電位而關閉第二PMOS電晶體(MP2);再者,當第一NMOS電晶體(MN1)導通而第二NMOS電晶體(MN2)關閉時,第二PMOS電晶體(MP2)的閘極電位被拉降並使得第二PMOS電晶體(MP2)導通,以致拉升第一PMOS電晶體(MP1)的閘極電位而關閉第一PMOS電晶體(MP1)。因此,在第一PMOS電晶體(MP1)和第一NMOS電晶體(MN1)之間或第二PMOS電晶體(MP2)和第二NMOS電晶體(MN2)之間就不會存在一個電流路徑。 FIG. 1 shows a latch-type voltage level converter circuit of a prior art, which uses a first PMOS (P-channel metal oxide semiconductor) transistor (MP1 ), A second PMOS transistor (MP2), a first NMOS (N-channel metal oxide semiconductor) transistor (MN1), a second NMOS transistor (MN2), and an inverter Voltage converter (INV) to form a voltage level converter circuit, wherein the bias voltage of the inverter (INV) is the second high potential voltage (VDDL) and ground (GND), and the first signal (V (IN) ) Is also between ground (GND) and the second high potential voltage (VDDL). The first signal (V (IN)) and the inverted input voltage signal output through the inverter (INV) are connected to the gates of the first NMOS transistor (MN1) and the second NMOS transistor (MN2), respectively. . because Therefore, at the same time, only one of the first NMOS transistor (MN1) and the second NMOS transistor (MN2) will be turned on. In addition, due to the cross-coupled mode of the first PMOS transistor (MP1) and the second PMOS transistor (MP2), when the output (OUT) of the voltage level converter is in a stable state, the latch No static current is generated in the lock-type voltage level converter. In particular, when the first NMOS transistor (MN1) is turned off and the second NMOS transistor (MN2) is turned on, the gate potential of the first PMOS transistor (MP1) is pulled down and pulled down. The first PMOS transistor (MP1) is turned on, so that the gate potential of the second PMOS transistor (MP2) is pulled up and the second PMOS transistor (MP2) is turned off; further, when the first NMOS transistor is turned on When (MN1) is turned on and the second NMOS transistor (MN2) is turned off, the gate potential of the second PMOS transistor (MP2) is pulled down and the second PMOS transistor (MP2) is turned on, so that the first PMOS transistor is pulled up The gate potential of the crystal (MP1) turns off the first PMOS transistor (MP1). Therefore, there will be no current path between the first PMOS transistor (MP1) and the first NMOS transistor (MN1) or between the second PMOS transistor (MP2) and the second NMOS transistor (MN2).
然而,上述習知電壓位準轉換器在第二PMOS電晶體(MP2)趨近於導通(或關閉)與在第二NMOS電晶體(MN2)趨近於關閉(或導通)的過程中,對於輸出端(OUT)上的電位之拉升及拉降有互相競爭(contention)的現象,因此第二信號(V(OUT))在轉變成低電位時速度較慢。此外,考慮當第一信號(V(IN))由0伏特改變至1.8伏特時,第一NMOS電晶體(MN1)導通,而第二PMOS電晶體(MP2)的閘極變為低電位,使得第二PMOS電晶體(MP2)導通。所以,輸出為一第一高電位電壓(VDDH)。但是,由於0伏特無法瞬間轉換至1.8伏特,因此,在轉換期間的較低第一信號(V(IN))可能無法使第一PMOS電晶體(MP1)、第二PMOS電晶體(MP2)、第一NMOS電晶體(MN1) 及第二NMOS電晶體(MN2)達到完全導通或完全關閉,如此會造成在第一高電位電壓(VDDH)與地(GND)之間存在一靜態電流(static current),此靜態電流會增加功率的損耗。 However, the above-mentioned conventional voltage level converter is approaching (or turning off) the second PMOS transistor (MP2) and the process of turning off (or turning on) the second NMOS transistor (MN2). There is a phenomenon of contention between the pull-up and pull-down of the potential at the output terminal (OUT), so the second signal (V (OUT)) is slower when it is converted to a low potential. In addition, it is considered that when the first signal (V (IN)) changes from 0 volts to 1.8 volts, the first NMOS transistor (MN1) is turned on, and the gate of the second PMOS transistor (MP2) becomes low, so that The second PMOS transistor (MP2) is turned on. Therefore, the output is a first high potential voltage (VDDH). However, because 0 volts cannot be instantly converted to 1.8 volts, the lower first signal (V (IN)) during the conversion may not enable the first PMOS transistor (MP1), the second PMOS transistor (MP2), First NMOS transistor (MN1) And the second NMOS transistor (MN2) is completely turned on or completely turned off, so that there will be a static current between the first high potential voltage (VDDH) and ground (GND), and this static current will increase the power Loss.
再者,閂鎖型的電壓位準轉換器的性能是受到第一高電位電壓(VDDH)的影響,由於第一PMOS電晶體(MP1)和第二PMOS電晶體(MP2)的閘-源極電壓為第一高電位電壓(VDDH),而第一NMOS電晶體(MN1)和第二NMOS電晶體(MN2)的閘-源極電壓是第二高電位電壓(VDDL)。因此,限制了可以使閂鎖型電壓位準轉換器正常運作的第一高電位電壓(VDDH)的範圍。 In addition, the performance of the latch-type voltage level converter is affected by the first high potential voltage (VDDH), because the gate-source of the first PMOS transistor (MP1) and the second PMOS transistor (MP2) The voltage is the first high-potential voltage (VDDH), and the gate-source voltage of the first NMOS transistor (MN1) and the second NMOS transistor (MN2) is the second high-potential voltage (VDDL). Therefore, the range of the first high potential voltage (VDDH) that can make the latch-type voltage level converter operate normally is limited.
第2圖係顯示另一先前技藝之一鏡像型電壓位準轉換器電路,該電壓位準轉換器藉由將第一PMOS電晶體(MP1)和第二PMOS電晶體(MP2)的閘極連接在一起並連接到第一PMOS電晶體(MP1)的汲極,使得第一PMOS電晶體(MP1)和第二PMOS電晶體(MP2)形成電流鏡電路,第一PMOS電晶體(MP1)是處於飽和區,並且其閘極電壓使得飽和電流等於流入第一NMOS電晶體(MN1)之電流,而流經第一PMOS電晶體(MP1)和第二PMOS電晶體(MP2)之電流亦相等。由於鏡像型的電壓位準轉換器的性能是由第一PMOS電晶體(MP1)和第一NMOS電晶體(MN1)的電流來決定,因此,即使輸出的第一高電位電壓(VDDH)改變,電壓位準轉換器的性能也不會有太大的改變。因此,鏡像型的電壓位準轉換器可以適用在各種輸出電壓電路。 Figure 2 shows a mirrored voltage level converter circuit, which is one of the other prior art. The voltage level converter is connected by the gates of the first PMOS transistor (MP1) and the second PMOS transistor (MP2). Together and connected to the drain of the first PMOS transistor (MP1), the first PMOS transistor (MP1) and the second PMOS transistor (MP2) form a current mirror circuit. The first PMOS transistor (MP1) is in The saturation region, and its gate voltage makes the saturation current equal to the current flowing into the first NMOS transistor (MN1), and the current flowing through the first PMOS transistor (MP1) and the second PMOS transistor (MP2) are also equal. Since the performance of the mirrored voltage level converter is determined by the current of the first PMOS transistor (MP1) and the first NMOS transistor (MN1), even if the output first high-potential voltage (VDDH) changes, The performance of the voltage level converter will not change much. Therefore, the mirror-type voltage level converter can be applied to various output voltage circuits.
然而,當第一NMOS電晶體(MN1)導通而第二NMOS電晶體(MN2)關閉時,第一PMOS電晶體(MP1)和第二PMOS電晶體(MP2)的閘極電 位被拉降,使得第一PMOS電晶體(MP1)和第二PMOS電晶體(MP2)都導通。如此,在第一PMOS電晶體(MP1)和第一NMOS電晶體(MN1)之間會產生一個靜態電流路徑。 However, when the first NMOS transistor (MN1) is turned on and the second NMOS transistor (MN2) is turned off, the gate electrodes of the first PMOS transistor (MP1) and the second PMOS transistor (MP2) are turned on. The bit is pulled down so that both the first PMOS transistor (MP1) and the second PMOS transistor (MP2) are turned on. In this way, a static current path is generated between the first PMOS transistor (MP1) and the first NMOS transistor (MN1).
有鑑於此,本創作之主要目的係提出一種電壓位準轉換器,其不但能精確且快速地將第一信號轉換為一第二信號,並且可有效地減少漏電流,進而降低功率消耗。 In view of this, the main purpose of this creation is to propose a voltage level converter, which can not only accurately and quickly convert a first signal into a second signal, but also effectively reduce leakage current and thus reduce power consumption.
本創作提出一種電壓位準轉換器,其係由一栓鎖電路(1)、一電位拉升電路(2)、一輸入電路(3)以及一模式控制開關(4)所組成,其中,該栓鎖電路(1)係用以保存由輸入電晶體接收的差動輸入信號;該電位拉升電路(2)係用來將該第一節點(N1)以及該第二節點(N2)的電位拉升到第一高電源供應電壓(VDDH);而該輸入電路(3)係用來提供該第一信號(V(IN))以及該第一信號(V(IN))的反相信號;該模式控制開關(4)係用來控制該電壓位準轉換器之不同操作模式。 This creation proposes a voltage level converter, which is composed of a latch circuit (1), a potential pull-up circuit (2), an input circuit (3), and a mode control switch (4). The latch circuit (1) is used to save the differential input signal received by the input transistor; the potential pull-up circuit (2) is used to store the potential of the first node (N1) and the second node (N2) Pulled up to the first high power supply voltage (VDDH); and the input circuit (3) is used to provide the first signal (V (IN)) and the inverted signal of the first signal (V (IN)); The mode control switch (4) is used to control different operation modes of the voltage level converter.
由模擬結果證實,本創作所提出之電壓位準轉換器,不但能精確且快速地將第一信號轉換為一第二信號,並且兼具電路結構簡單以及有利於裝置之小型化等多重功效,同時亦能有效地減少功率損耗。 The simulation results confirm that the voltage level converter proposed in this creation can not only accurately and quickly convert the first signal into a second signal, but also has multiple functions such as simple circuit structure and conducive to the miniaturization of the device. It can also effectively reduce power loss.
1‧‧‧栓鎖電路 1‧‧‧ latch circuit
2‧‧‧電位拉升電路 2‧‧‧Potential pull-up circuit
3‧‧‧輸入電路 3‧‧‧input circuit
4‧‧‧模式控制開關 4‧‧‧Mode control switch
N1‧‧‧第一節點 N1‧‧‧First Node
N2‧‧‧第二節點 N2‧‧‧Second Node
N3‧‧‧第三節點 N3‧‧‧ third node
EN‧‧‧致能控制端 EN‧‧‧Enable control terminal
MP1‧‧‧第一PMOS電晶體 MP1‧‧‧The first PMOS transistor
MP2‧‧‧第二PMOS電晶體 MP2‧‧‧Second PMOS transistor
MP3‧‧‧第三PMOS電晶體 MP3‧‧‧Third PMOS Transistor
MP4‧‧‧第四PMOS電晶體 MP4‧‧‧Fourth PMOS transistor
MN1‧‧‧第一NMOS電晶體 MN1‧‧‧The first NMOS transistor
MN2‧‧‧第二NMOS電晶體 MN2‧‧‧Second NMOS transistor
MN3‧‧‧第三NMOS電晶體 MN3‧‧‧The third NMOS transistor
MN4‧‧‧第四NMOS電晶體 MN4‧‧‧Fourth NMOS transistor
MN5‧‧‧第五NMOS電晶體 MN5‧‧‧Fifth NMOS transistor
I1‧‧‧第一反相器 I1‧‧‧first inverter
IN‧‧‧第一輸入端 IN‧‧‧first input
V(IN)‧‧‧第一信號 V (IN) ‧‧‧First Signal
INB‧‧‧第二輸入端 INB‧‧‧Second Input
OUT‧‧‧輸出端 OUT‧‧‧output
V(OUT)‧‧‧第二信號 V (OUT) ‧‧‧Second signal
GND‧‧‧地 GND‧‧‧ Ground
VDDH‧‧‧第一高電源供應電壓 VDDH‧‧‧The first highest power supply voltage
VDDL‧‧‧第二高電源供應電壓 VDDL‧‧‧The second highest power supply voltage
第1圖 係顯示第一先前技藝中電壓位準轉換器之電路圖;第2圖 係顯示第二先前技藝中電壓位準轉換器之電路圖; 第3圖 係顯示本創作較佳實施例之電壓位準轉換器之電路圖;第4圖 係顯示本創作較佳實施例之第一信號及第二信號之暫態分析時序圖; Fig. 1 is a circuit diagram showing a voltage level converter in the first prior art; Fig. 2 is a circuit diagram showing a voltage level converter in the second prior art; FIG. 3 is a circuit diagram showing a voltage level converter of the preferred embodiment of the present invention; FIG. 4 is a timing analysis diagram of the first signal and the second signal of the preferred embodiment of the present invention;
根據上述之目的,本創作提出一種電壓位準轉換器,如第3圖所示,其係由一栓鎖電路(1)、一電位拉升電路(2)、一輸入電路(3)以及一模式控制開關(4)所組成,其中,該栓鎖電路(1)係用以保存由輸入電晶體接收的差動輸入信號;該電位拉升電路(2)係用來將該第一節點(N1)以及該第二節點(N2)的電位拉升到第一高電源供應電壓(VDDH);而該輸入電路(3)係用來提供該第一信號(V(IN))以及該第一信號(V(IN))的反相信號;該模式控制開關(4)係用來控制該電壓位準轉換器之不同操作模式;該栓鎖電路(1)係由一第一PMOS電晶體(MP1)、一第二PMOS電晶體(MP2)、一第一NMOS電晶體(MN1)以及一第二NMOS電晶體(MN2)所組成,其中,該第一PMOS電晶體(MP1)的源極連接至該第一高電源供應電壓(VDDH),其閘極連接至該第二節點(N2),而其汲極則與該第一節點(N1)相連接;該第二PMOS電晶體(MP2),其源極連接至該第一高電源供應電壓(VDDH),其閘極連接至該第一節點(N1),而其汲極則與該第二節點(N2)相連接;該第一NMOS電晶體(MN1)的源極連接至該第三NMOS電晶體(MN3)的汲極,其閘極連接至該第二節點(N2),而其汲極則與該第一節點(N1)相連接;該第二NMOS電晶體(MN2)的源極連接至該第四NMOS電晶體(MN4)的汲極,其閘 極連接至該第一節點(N1),而其汲極則與該第二節點(N2)相連接;該電位拉升電路(2)係由一第三PMOS電晶體(MP3)以及一第四PMOS電晶體(MP4)所組成,其中,該第三PMOS電晶體(MP3)的源極連接至該第一高電源供應電壓(VDDH),其閘極連接至該第一輸入端(IN),而其汲極則與該第一節點(N1)相連接;該第四PMOS電晶體(MP4)的源極連接至該第一高電源供應電壓(VDDH),其閘極連接至該第二輸入端(INB),而其汲極則與該第二節點(N2)相連接;該輸入電路(3)係由一第三NMOS電晶體(MN3)、一第四NMOS電晶體(MN4)以及一第一反相器(I1)所組成,其中,該第三NMOS電晶體(MN3)的源極連接至該第三節點(N3),其閘極連接至該第一輸入端(IN),而其汲極則與該第一NMOS電晶體(MN1)的源極相連接;該第四NMOS電晶體(MN4)的源極連接至該第三節點(N3),其閘極連接至該第二輸入端(INB),而其汲極則與該第二NMOS電晶體(MN2)的源極相連接;該第一反相器(I1)耦接於該第一輸入端(IN),用以接受該第一信號(V(IN)),並提供一個與該第一信號(V(IN))反相的信號;該模式控制開關(4)係由一第五NMOS電晶體(MN5)所組成,其源極連接至地(GND),其閘極連接至該致能控制端(EN),而其汲極則與該第三節點(N3)相連接;該第一高電源供應電壓(VDDH)係用以提供該電壓位準轉換器所需之第一高電位電壓;而該第二高電源供應電壓(VDDL)係用以提供該電壓位準轉換器所需之第二高電位電壓,該第二高電源供應電壓(VDDL)之電位係小於該第一高電源供應電壓(VDDH)之電位,該第一高電 源供應電壓(VDDH)為1.8伏特,而該第二高電源供應電壓(VDDL)為1.2伏特;該第一信號(V(IN))為介於0伏特及1.2伏特間的矩形波,該第二信號(V(OUT))則為介於0伏特及1.8伏特間的對應波形。 According to the above purpose, this creation proposes a voltage level converter, as shown in FIG. 3, which is composed of a latch circuit (1), a potential pull-up circuit (2), an input circuit (3), and a It is composed of a mode control switch (4), wherein the latch circuit (1) is used to save the differential input signal received by the input transistor; the potential pull-up circuit (2) is used to connect the first node ( N1) and the potential of the second node (N2) are pulled up to the first high power supply voltage (VDDH); and the input circuit (3) is used to provide the first signal (V (IN)) and the first The inverted signal of the signal (V (IN)); the mode control switch (4) is used to control different operation modes of the voltage level converter; the latch circuit (1) is composed of a first PMOS transistor ( MP1), a second PMOS transistor (MP2), a first NMOS transistor (MN1) and a second NMOS transistor (MN2), wherein the source of the first PMOS transistor (MP1) is connected To the first high power supply voltage (VDDH), its gate is connected to the second node (N2), and its drain is connected to the first node (N1); the second PMOS transistor (MP2) , Its source is connected Connected to the first high power supply voltage (VDDH), its gate is connected to the first node (N1), and its drain is connected to the second node (N2); the first NMOS transistor (MN1) ) Is connected to the source of the third NMOS transistor (MN3), its gate is connected to the second node (N2), and its drain is connected to the first node (N1); The source of the two NMOS transistors (MN2) is connected to the drain of the fourth NMOS transistor (MN4). The pole is connected to the first node (N1), and its drain is connected to the second node (N2); the potential pull-up circuit (2) is composed of a third PMOS transistor (MP3) and a fourth PMOS transistor (MP4), wherein the source of the third PMOS transistor (MP3) is connected to the first high power supply voltage (VDDH), and its gate is connected to the first input terminal (IN), The drain is connected to the first node (N1); the source of the fourth PMOS transistor (MP4) is connected to the first high power supply voltage (VDDH), and the gate is connected to the second input. Terminal (INB), and its drain is connected to the second node (N2); the input circuit (3) is composed of a third NMOS transistor (MN3), a fourth NMOS transistor (MN4) and a A first inverter (I1), wherein the source of the third NMOS transistor (MN3) is connected to the third node (N3), the gate of the third NMOS transistor (MN3) is connected to the first input terminal (IN), and Its drain is connected to the source of the first NMOS transistor (MN1); the source of the fourth NMOS transistor (MN4) is connected to the third node (N3), and its gate is connected to the second Input terminal (INB), and its drain is electrically connected to the second NMOS The source of the body (MN2) is connected; the first inverter (I1) is coupled to the first input terminal (IN) to receive the first signal (V (IN)) and provide a connection with the The first signal (V (IN)) is an inverted signal; the mode control switch (4) is composed of a fifth NMOS transistor (MN5), whose source is connected to ground (GND) and its gate is connected to The enable control terminal (EN), and its drain is connected to the third node (N3); the first high power supply voltage (VDDH) is the first required to provide the voltage level converter High potential voltage; and the second high power supply voltage (VDDL) is used to provide a second high potential voltage required by the voltage level converter, and the potential of the second high power supply voltage (VDDL) is less than the first A potential of a high power supply voltage (VDDH), the first high voltage The source supply voltage (VDDH) is 1.8 volts, and the second highest power supply voltage (VDDL) is 1.2 volts; the first signal (V (IN)) is a rectangular wave between 0 volts and 1.2 volts. The two signals (V (OUT)) are corresponding waveforms between 0 volts and 1.8 volts.
請再參閱第3圖,茲依電壓位準轉換器之工作模式說明圖3之工作原理如下: Please refer to FIG. 3 again. The working mode of the voltage-level converter is described below. The working principle of FIG. 3 is as follows:
(I)主動模式(Active mode) (I) Active mode
在主動模式下,亦即,當該致能控制端(EN)是在高電位狀態時,該第五NMOS電晶體(MN5)呈導通(ON)狀態。 In the active mode, that is, when the enable control terminal (EN) is in a high potential state, the fifth NMOS transistor (MN5) is in an ON state.
現在考慮第一信號(V(IN))為低電位(0伏特)時,電壓位準轉換器的穩態操作情形:第一輸入端(IN)上的低電位同時傳送到第一反相器(I1)的輸入端、第三NMOS電晶體(MN3)以及第三PMOS電晶體(MP3)的閘極,使得該第三NMOS電晶體(MN3)關閉、第三PMOS電晶體(MP3)導通,此時該第一節點(N1)的電位被拉升至一接近第一高電位電壓(VDDH)之高電位;而該第一反相器(I1)傳送第二高電位電壓(VDDL)到第四NMOS電晶體(MN4)和第四PMOS電晶體(MP4)的閘極,使得該第四NMOS電晶體(MN4)導通、第四PMOS電晶體(MP4)關閉,而該第一節點(N1)的高電位使得該第二PMOS電晶體(MP2)關閉、該第二NMOS電晶體(MN2)導通,此時,由於第二NMOS電晶體(MN2)、第四NMOS電晶體(MN4)和第五NMOS電晶體(MN5)都導通,因此,該第二節點(N2)的電位會被拉降至一低電位(0伏特)的穩態值,再者,該第二節點(N2)上的低電位傳送到第一PMOS電晶體(MP1)和第一NMOS電晶體(MN1)的閘極,使得該第一PMOS電晶體(MP1)導通、該第一NMOS電晶體(MN1)關閉,由於該第一PMOS電晶體(MP1)、該第三PMOS 電晶體(MP3)都導通,該第一NMOS電晶體(MN1)和該第三NMOS電晶體(MN3)都關閉,因此,該第一節點(N1)的電位會維持一第一高電位電壓(VDDH),而由於第二NMOS電晶體(MN2)、第四NMOS電晶體(MN4)和第五NMOS電晶體(MN5)都導通,第二PMOS電晶體(MP2)和第四PMOS電晶體(MP4)都關閉,因此,第二節點(N2)的電位將維持在低電位(0伏特),亦即,輸出端(OUT)的電位會被拉降至一低電位(0伏特)的穩態值。質言之,第一信號(V(IN))為低電位(0伏特)時,經過電壓位準轉換器轉換成具低電位(0伏特)的第二信號,由輸出端(OUT)輸出。 Now consider the steady-state operation of the voltage level converter when the first signal (V (IN)) is low (0 volts): the low potential on the first input (IN) is simultaneously transmitted to the first inverter The input terminal of (I1), the gate of the third NMOS transistor (MN3) and the third PMOS transistor (MP3), so that the third NMOS transistor (MN3) is turned off and the third PMOS transistor (MP3) is turned on, At this time, the potential of the first node (N1) is pulled up to a high potential close to the first high potential voltage (VDDH); and the first inverter (I1) transmits the second high potential voltage (VDDL) to the first The gates of the four NMOS transistors (MN4) and the fourth PMOS transistor (MP4) cause the fourth NMOS transistor (MN4) to be turned on, the fourth PMOS transistor (MP4) to be turned off, and the first node (N1) The high potential causes the second PMOS transistor (MP2) to be turned off and the second NMOS transistor (MN2) to be turned on. At this time, due to the second NMOS transistor (MN2), the fourth NMOS transistor (MN4), and the fifth The NMOS transistor (MN5) is all on, so the potential of the second node (N2) is pulled down to a steady state value of a low potential (0 volts), and further, the low on the second node (N2) The potential is transferred to the first PMOS transistor ( MP1) and the gate of the first NMOS transistor (MN1), so that the first PMOS transistor (MP1) is turned on and the first NMOS transistor (MN1) is turned off, because the first PMOS transistor (MP1), the Third PMOS The transistor (MP3) is turned on, the first NMOS transistor (MN1) and the third NMOS transistor (MN3) are both turned off, so the potential of the first node (N1) will maintain a first high potential voltage ( VDDH), and because the second NMOS transistor (MN2), the fourth NMOS transistor (MN4), and the fifth NMOS transistor (MN5) are all turned on, the second PMOS transistor (MP2) and the fourth PMOS transistor (MP4) ) Are turned off, so the potential of the second node (N2) will be maintained at a low potential (0 volts), that is, the potential of the output (OUT) will be pulled down to a steady state value of a low potential (0 volts) . In other words, when the first signal (V (IN)) is at a low potential (0 volts), it is converted into a second signal with a low potential (0 volts) by a voltage level converter and output from the output terminal (OUT).
再考慮第一信號(V(IN))為高電位(1.2伏特)時,電壓位準轉換器的穩態操作情形:第一輸入端(IN)上的高電位同時傳送到第一反相器(I1)的輸入端、第三NMOS電晶體(MN3)以及第三PMOS電晶體(MP3)的閘極,使得該第三NMOS電晶體(MN3)導通、該第三PMOS電晶體(MP3)關閉,而該第一反相器(I1)傳送一低電位到第四NMOS電晶體(MN4)和第四PMOS電晶體(MP4)的閘極,使得該第四NMOS電晶體(MN4)關閉、該第四PMOS電晶體(MP4)導通,此時由於第四PMOS電晶體(MP4)導通,該第二節點(N2)的電位會被拉升至一接近第一高電位電壓(VDDH)之高電位;而該第二節點(N2)的高電位使得第一PMOS電晶體(MP1)關閉、第一NMOS電晶體(MN1)導通,此時由於該第一NMOS電晶體(MN1)、該第三NMOS電晶體(MN3)和該第五NMOS電晶體(MN5)都導通,因此,該第一節點(N1)的電位會被拉降至一低電位(0伏特),再者,該第一節點(N1)上的低電位傳送到第二PMOS電晶體(MP2)和第二NMOS電晶體(MN2)的閘極,使得該第二PMOS電晶體(MP2)導通、該第二NMOS電晶體(MN2)關閉,此時,由於第二PMOS電晶 體(MP2)和第四PMOS電晶體(MP4)都導通,第二NMOS電晶體(MN2)和第四NMOS電晶體(MN4)都關閉,因此,第二節點(N2)的電位將維持在第一高電位電壓(VDDH),而第一節點(N1)的電位維持在低電位(0伏特),亦即,輸出端(OUT)的電位會被拉升至一第一高電位電壓(VDDH)的穩態值。質言之,第一信號(V(IN))為第二高電位電壓(1.2伏特)時,經過電壓位準轉換器轉換成具第一高電位電壓(1.8伏特)的第二信號,由輸出端(OUT)輸出。 Consider again the steady-state operation of the voltage level converter when the first signal (V (IN)) is high (1.2 volts): the high potential at the first input (IN) is simultaneously transmitted to the first inverter The input of (I1), the gate of the third NMOS transistor (MN3), and the gate of the third PMOS transistor (MP3) make the third NMOS transistor (MN3) turn on and the third PMOS transistor (MP3) turn off And the first inverter (I1) transmits a low potential to the gates of the fourth NMOS transistor (MN4) and the fourth PMOS transistor (MP4), so that the fourth NMOS transistor (MN4) is turned off, the The fourth PMOS transistor (MP4) is turned on. At this time, because the fourth PMOS transistor (MP4) is turned on, the potential of the second node (N2) is pulled up to a high potential close to the first high potential voltage (VDDH). ; And the high potential of the second node (N2) causes the first PMOS transistor (MP1) to be turned off and the first NMOS transistor (MN1) to be turned on. At this time, due to the first NMOS transistor (MN1) and the third NMOS The transistor (MN3) and the fifth NMOS transistor (MN5) are both turned on. Therefore, the potential of the first node (N1) is pulled down to a low potential (0 volts), and further, the first node (N1) N1) is transferred to The gates of the second PMOS transistor (MP2) and the second NMOS transistor (MN2) cause the second PMOS transistor (MP2) to be turned on and the second NMOS transistor (MN2) to be turned off. At this time, due to the second PMOS transistor Both the body (MP2) and the fourth PMOS transistor (MP4) are turned on, and the second NMOS transistor (MN2) and the fourth NMOS transistor (MN4) are both turned off. Therefore, the potential of the second node (N2) will be maintained at the first A high potential voltage (VDDH), and the potential of the first node (N1) is maintained at a low potential (0 volts), that is, the potential of the output terminal (OUT) is pulled up to a first high potential voltage (VDDH) Steady state value. In other words, when the first signal (V (IN)) is the second high-potential voltage (1.2 volts), it is converted into a second signal with the first high-potential voltage (1.8 volts) by the voltage level converter and output by (OUT) output.
綜上所述,第一信號(V(IN))為低電位(0伏特)時,第二信號(V(OUT))亦為低電位(0伏特);而第一信號(V(IN))為第二高電位電壓(1.2伏特)時,第二信號(V(OUT))為第一高電位電壓(1.8伏特)。如此,電壓位準轉換的目的便實現。 In summary, when the first signal (V (IN)) is low potential (0 volts), the second signal (V (OUT)) is also low potential (0 volts); and the first signal (V (IN) ) Is the second high potential voltage (1.2 volts), the second signal (V (OUT)) is the first high potential voltage (1.8 volts). In this way, the purpose of voltage level conversion is achieved.
(II)待機模式(Standby mode) (II) Standby mode
請再參考圖3。在待機狀態下,亦即,當該致能控制端(EN)是在低電位狀態時,該第五NMOS電晶體(MN5)呈關閉(OFF)狀態,此時,該電壓位準轉換器停止動作。此時,任何第一信號(V(IN))的輸入均不會影響到已被栓鎖住的第二信號(V(OUT))值。其工作原理於此不再累述。 Please refer to Figure 3 again. In the standby state, that is, when the enable control terminal (EN) is in a low potential state, the fifth NMOS transistor (MN5) is in an OFF state, and at this time, the voltage level converter stops action. At this time, the input of any first signal (V (IN)) will not affect the value of the second signal (V (OUT)) that has been locked. Its working principle is not repeated here.
本創作所提出之電壓位準轉換器之Spice暫態分析模擬結果,如第4圖所示,由該模擬結果可証實,本創作所提出之電壓位準轉換器,其不但仍能快速且精確地將第一信號轉換為一第二信號,並且能有效地降低功率的損耗。 The Spice transient analysis simulation results of the voltage level converter proposed in this creation are shown in Figure 4. From the simulation results, it can be confirmed that the voltage level converter proposed in this creation can not only be fast and accurate The ground converts the first signal into a second signal, and can effectively reduce power loss.
雖然本創作特別揭露並描述了所選之最佳實施例,但舉凡熟悉本技術之人士可明瞭任何形式或是細節上可能的變化均未脫離本創作的精神與範圍。因此,所有相關技術範疇內之改變都包括在本創作之申請專 利範圍內。 Although the present invention specifically discloses and describes the selected preferred embodiment, those skilled in the art can understand that any form or details of possible changes can be made without departing from the spirit and scope of this creation. Therefore, all changes within the relevant technical scope are included in the application for this creation. Within the range.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW107204531U TWM565920U (en) | 2018-04-09 | 2018-04-09 | Voltage level converter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW107204531U TWM565920U (en) | 2018-04-09 | 2018-04-09 | Voltage level converter |
Publications (1)
Publication Number | Publication Date |
---|---|
TWM565920U true TWM565920U (en) | 2018-08-21 |
Family
ID=63961557
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW107204531U TWM565920U (en) | 2018-04-09 | 2018-04-09 | Voltage level converter |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWM565920U (en) |
-
2018
- 2018-04-09 TW TW107204531U patent/TWM565920U/en not_active IP Right Cessation
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWM616390U (en) | Low power voltage level shifter | |
TWM586017U (en) | Low power level shifter circuit | |
TWM576365U (en) | Low power voltage level converter | |
TWM598009U (en) | Voltage level shifter having output control circuit | |
TWM565921U (en) | Voltage level shifter | |
TWM576366U (en) | Level conversion circuit with auxiliary circuit | |
TWM565920U (en) | Voltage level converter | |
TWM626414U (en) | Voltage level converter with stack transistors | |
TWM628475U (en) | Low power and high performance voltage level converting circuit | |
TWM625120U (en) | Voltage level converter with leakage current reduction | |
TWM657360U (en) | Level converter with contention reduction | |
TWM531694U (en) | Voltage level converter | |
TWM598007U (en) | High performance voltage level converter | |
TWM626417U (en) | High-speed low-power level shifter circuit | |
TWM659069U (en) | Voltage level converter with low power consumption | |
TWM626415U (en) | Voltage level shifter with reduced static leakage current | |
TWM645482U (en) | High speed voltage level converter having low power consumption | |
TWM565919U (en) | Voltage level converter | |
TWM639384U (en) | High-speed low-power level shifter circuit for integrated circuits having multiple power supplies | |
TWM649184U (en) | Low voltage to high voltage signal level translator with improved performance | |
TWM587403U (en) | Voltage level converter with low-power consumption | |
TWM578459U (en) | Power-saving level shifting circuit | |
TWM627595U (en) | Voltage level conversion circuit exhibiting reduced power consumption | |
TWM643260U (en) | High performance level shifting circuit | |
TWM576364U (en) | Low power voltage level shifter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4K | Annulment or lapse of a utility model due to non-payment of fees |