[go: up one dir, main page]

TWM576366U - Level conversion circuit with auxiliary circuit - Google Patents

Level conversion circuit with auxiliary circuit Download PDF

Info

Publication number
TWM576366U
TWM576366U TW107215951U TW107215951U TWM576366U TW M576366 U TWM576366 U TW M576366U TW 107215951 U TW107215951 U TW 107215951U TW 107215951 U TW107215951 U TW 107215951U TW M576366 U TWM576366 U TW M576366U
Authority
TW
Taiwan
Prior art keywords
node
conversion circuit
pmos transistor
signal
nmos transistor
Prior art date
Application number
TW107215951U
Other languages
Chinese (zh)
Inventor
余建政
賴永瑄
邱崑霖
Original Assignee
修平學校財團法人修平科技大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 修平學校財團法人修平科技大學 filed Critical 修平學校財團法人修平科技大學
Priority to TW107215951U priority Critical patent/TWM576366U/en
Publication of TWM576366U publication Critical patent/TWM576366U/en

Links

Landscapes

  • Logic Circuits (AREA)

Abstract

本創作提出一種具輔助電路之位準轉換電路,其係由一輸入電路(1)、一電位轉換電路(2)以及一輸出控制電晶體(3)所組成,其中,該輸入電路(1)係耦接於一第一輸入端(IN),用來提供差動輸入信號;該電位轉換電路(2)係耦接於該第一高電源供應電壓(VDDH),用來做為電位轉換;該輸出控制電晶體(3)係耦接於該第一輸入端(IN),用以控制該第一節點(N1)之輸出電位。 This creation proposes a level conversion circuit with an auxiliary circuit, which is composed of an input circuit (1), a potential conversion circuit (2), and an output control transistor (3), where the input circuit (1) Is coupled to a first input terminal (IN) for providing a differential input signal; the potential conversion circuit (2) is coupled to the first high power supply voltage (VDDH) for potential conversion; The output control transistor (3) is coupled to the first input terminal (IN) to control the output potential of the first node (N1).

本創作提出之具輔助電路之位準轉換電路係透過該第三NMOS電晶體(MN3)將對應的上拉路徑切斷來減少競爭。當該第二NMOS電晶體(MN2)導通時,該第三NMOS電晶體(MN3)將上拉路徑切斷,以避免上拉路徑和下拉路徑之間的競爭,因此,可以大幅減少延遲時間,並且可以消除短路功率損耗。 The level conversion circuit with an auxiliary circuit proposed in this creation cuts the corresponding pull-up path through the third NMOS transistor (MN3) to reduce competition. When the second NMOS transistor (MN2) is turned on, the third NMOS transistor (MN3) cuts off the pull-up path to avoid competition between the pull-up path and the pull-down path. Therefore, the delay time can be greatly reduced. And can eliminate short circuit power loss.

Description

具輔助電路之位準轉換電路 Level conversion circuit with auxiliary circuit

本創作係有關一種具輔助電路之位準轉換電路,尤指利用一輸入電路(1)、一電位轉換電路(2)以及一輸出控制電晶體(3)所組成,以求獲得精確電壓位準轉換且有效地避免上拉路徑和下拉路徑之間的競爭,進而降低功率損耗之電子電路。 This creation relates to a level conversion circuit with auxiliary circuits, especially using an input circuit (1), a potential conversion circuit (2), and an output control transistor (3) to obtain accurate voltage levels Switch and effectively avoid the competition between the pull-up path and the pull-down path, thereby reducing the power loss of the electronic circuit.

位準轉換電路係一種用來溝通不同的積體電路(Integrated Circuit,簡稱IC)之間的信號傳遞之電子電路。在許多應用中,當應用系統需將信號從電壓位準較低的核心邏輯傳送到電壓位準較高的週邊裝置時,位準轉換電路就負責將低電壓工作信號轉換成高電壓工作信號。 The level conversion circuit is an electronic circuit used to communicate signal transmission between different integrated circuits (ICs). In many applications, when the application system needs to transfer signals from core logic with lower voltage levels to peripheral devices with higher voltage levels, the level conversion circuit is responsible for converting low-voltage working signals into high-voltage working signals.

第1圖係顯示一先前技藝(prior art)之一閂鎖型位準轉換電路電路,其係使用一第一PMOS(P-channel metal oxide semiconductor,P通道金屬氧化物半導體)電晶體(MP1)、一第二PMOS電晶體(MP2)、一第一NMOS(N-channel metal oxide semiconductor,N通道金屬氧化物半導體)電晶體(MN1)、一第二NMOS電晶體(MN2)及一反相器(INV)來構成一具輔助電路之位準轉換電路電路,其中,該反相器(INV)的偏壓是第二高電位電壓(VDDL)及地(GND),而輸入電壓(V(IN))的電位亦在地(GND)與第二高電位電壓(VDDL)之間。輸入電壓(V(IN))及經過反相器(INV)輸出的反相輸入電 壓信號分別連接至第一NMOS電晶體(MN1)及第二NMOS電晶體(MN2)的閘極(gate)。因此,在同一時間內,第一NMOS電晶體(MN1)及第二NMOS電晶體(MN2)之中只有一個會導通(ON)。此外,由於第一PMOS電晶體(MP1)和第二PMOS電晶體(MP2)的交叉耦合(cross-coupled)方式,使得當位準轉換電路的輸出(OUT)處於一個穩定的狀態時,閂鎖型的位準轉換電路中沒有靜態電流(static current)產生。尤其,當第一NMOS電晶體(MN1)截止(OFF)而第二NMOS電晶體(MN2)導通(ON)時,第一PMOS電晶體(MP1)的閘極電位被拉降(pull down)並使得第一PMOS電晶體(MP1)導通,以致拉升(pull up)第二PMOS電晶體(MP2)的閘極電位而截止第二PMOS電晶體(MP2);再者,當第一NMOS電晶體(MN1)導通而第二NMOS電晶體(MN2)截止時,第二PMOS電晶體(MP2)的閘極電位被拉降並使得第二PMOS電晶體(MP2)導通,以致拉升第一PMOS電晶體(MP1)的閘極電位而截止第一PMOS電晶體(MP1)。因此,在第一PMOS電晶體(MP1)和第一NMOS電晶體(MN1)之間或第二PMOS電晶體(MP2)和第二NMOS電晶體(MN2)之間就不會存在一個電流路徑。 FIG. 1 shows a latch-type level conversion circuit circuit of a prior art, which uses a first PMOS (P-channel metal oxide semiconductor) transistor (MP1) , A second PMOS transistor (MP2), a first NMOS (N-channel metal oxide semiconductor) transistor (MN1), a second NMOS transistor (MN2), and an inverter (INV) to form a level conversion circuit with an auxiliary circuit, wherein the bias voltage of the inverter (INV) is the second high potential voltage (VDDL) and ground (GND), and the input voltage (V (IN )) Is also between ground (GND) and the second high potential voltage (VDDL). Input voltage (V (IN)) and inverting input voltage output through inverter (INV) The voltage signals are respectively connected to the gates of the first NMOS transistor (MN1) and the second NMOS transistor (MN2). Therefore, at the same time, only one of the first NMOS transistor (MN1) and the second NMOS transistor (MN2) will be turned on. In addition, due to the cross-coupled mode of the first PMOS transistor (MP1) and the second PMOS transistor (MP2), the latch is latched when the output (OUT) of the level conversion circuit is in a stable state. No level current is generated in the level conversion circuit of the type. In particular, when the first NMOS transistor (MN1) is turned off and the second NMOS transistor (MN2) is turned on, the gate potential of the first PMOS transistor (MP1) is pulled down and pulled down. The first PMOS transistor (MP1) is turned on, so that the gate potential of the second PMOS transistor (MP2) is pulled up and the second PMOS transistor (MP2) is turned off; further, when the first NMOS transistor is turned on When (MN1) is turned on and the second NMOS transistor (MN2) is turned off, the gate potential of the second PMOS transistor (MP2) is pulled down and the second PMOS transistor (MP2) is turned on, so that the first PMOS transistor is pulled up The gate potential of the crystal (MP1) turns off the first PMOS transistor (MP1). Therefore, there will be no current path between the first PMOS transistor (MP1) and the first NMOS transistor (MN1) or between the second PMOS transistor (MP2) and the second NMOS transistor (MN2).

然而,上述習知位準轉換電路在第二PMOS電晶體(MP2)趨近於導通(或截止)與在第二NMOS電晶體(MN2)趨近於截止(或導通)的過程中,對於輸出節點(OUT)上的電位之拉升及拉降有互相競爭(contention)的現象,因此輸出電壓信號(V(OUT))在轉變成低電位時速度較慢。此外,考慮當輸入電壓(V(IN))由0伏特改變至1.8伏特時,第一NMOS電晶體(MN1)導通,而第二PMOS電晶體(MP2)的閘極變為低電位,使得第二PMOS電晶體(MP2)導通。所以,輸出為一第一高電位電壓(VDDH)。但是,由於0伏特無法瞬間轉換至1.8伏特,因此,在轉換期間的較低輸入電壓(V(IN))可能無法 使第一PMOS電晶體(MP1)、第二PMOS電晶體(MP2)、第一NMOS電晶體(MN1)及第二NMOS電晶體(MN2)達到完全導通或完全截止,如此會造成在第一高電位電壓(VDDH)與地(GND)之間存在一靜態電流(static current),此靜態電流會增加功率的損耗。 However, in the process of the above-mentioned conventional level conversion circuit, when the second PMOS transistor (MP2) is approaching on (or off) and when the second NMOS transistor (MN2) is approaching off (or on), the output of There is a phenomenon of contention between the pull-up and pull-down of the potential at the node (OUT), so the output voltage signal (V (OUT)) is slower when it is converted to a low potential. In addition, it is considered that when the input voltage (V (IN)) is changed from 0 volts to 1.8 volts, the first NMOS transistor (MN1) is turned on, and the gate of the second PMOS transistor (MP2) becomes low, so that the first Two PMOS transistors (MP2) are turned on. Therefore, the output is a first high potential voltage (VDDH). However, because 0 volts cannot be instantly converted to 1.8 volts, the lower input voltage (V (IN)) during the conversion may not be possible Make the first PMOS transistor (MP1), the second PMOS transistor (MP2), the first NMOS transistor (MN1), and the second NMOS transistor (MN2) reach full conduction or completely cut off. There is a static current between the potential voltage (VDDH) and the ground (GND). This static current will increase the power loss.

再者,閂鎖型的位準轉換電路的性能是受到第一高電位電壓(VDDH)的影響,由於第一PMOS電晶體(MP1)和第二PMOS電晶體(MP2)的閘-源極電壓為第一高電位電壓(VDDH),而第一NMOS電晶體(MN1)和第二NMOS電晶體(MN2)的閘-源極電壓是第二高電位電壓(VDDL)。因此,限制了可以使閂鎖型位準轉換電路正常運作的第一高電位電壓(VDDH)的範圍。 In addition, the performance of the latch-type level conversion circuit is affected by the first high potential voltage (VDDH), due to the gate-source voltage of the first PMOS transistor (MP1) and the second PMOS transistor (MP2). Is the first high potential voltage (VDDH), and the gate-source voltage of the first NMOS transistor (MN1) and the second NMOS transistor (MN2) is the second high potential voltage (VDDL). Therefore, the range of the first high potential voltage (VDDH) that can make the latch type level conversion circuit operate normally is limited.

第2圖係顯示另一先前技藝之一鏡像型位準轉換電路電路,該位準轉換電路藉由將第一PMOS電晶體(MP1)和第二PMOS電晶體(MP2)的閘極連接在一起並連接到第一PMOS電晶體(MP1)的汲極,使得第一PMOS電晶體(MP1)和第二PMOS電晶體(MP2)形成電流鏡電路,第一PMOS電晶體(MP1)是處於飽和區,並且其閘極電壓使得飽和電流等於流入第一NMOS電晶體(MN1)之電流,而流經第一PMOS電晶體(MP1)和第二PMOS電晶體(MP2)之電流亦相等。由於鏡像型位準轉換電路的性能是由第一PMOS電晶體(MP1)和第一NMOS電晶體(MN1)的電流來決定,因此,即使輸出的第一高電位電壓(VDDH)改變,位準轉換電路的性能也不會有太大的改變。因此,鏡像型的位準轉換電路可以適用在各種輸出電壓電路。 Figure 2 shows one of the other prior art mirror level switching circuits. The level switching circuit connects the gates of the first PMOS transistor (MP1) and the second PMOS transistor (MP2) together. And connected to the drain of the first PMOS transistor (MP1), so that the first PMOS transistor (MP1) and the second PMOS transistor (MP2) form a current mirror circuit, and the first PMOS transistor (MP1) is in a saturation region And its gate voltage makes the saturation current equal to the current flowing into the first NMOS transistor (MN1), and the current flowing through the first PMOS transistor (MP1) and the second PMOS transistor (MP2) are also equal. Since the performance of the mirror-type level conversion circuit is determined by the current of the first PMOS transistor (MP1) and the first NMOS transistor (MN1), even if the output first high-potential voltage (VDDH) changes, the level The performance of the conversion circuit will not change much. Therefore, the mirror-type level conversion circuit can be applied to various output voltage circuits.

然而,當第一NMOS電晶體(MN1)導通而第二NMOS電晶體(MN2)截止時,第一PMOS電晶體(MP1)和第二PMOS電晶體(MP2)的閘極電位被拉降,使得第一PMOS電晶體(MP1)和第二PMOS電晶體(MP2)都導通。 如此,在第一PMOS電晶體(MP1)和第一NMOS電晶體(MN1)之間會產生一個靜態電流路徑。 However, when the first NMOS transistor (MN1) is turned on and the second NMOS transistor (MN2) is turned off, the gate potentials of the first PMOS transistor (MP1) and the second PMOS transistor (MP2) are pulled down, so that Both the first PMOS transistor (MP1) and the second PMOS transistor (MP2) are turned on. In this way, a static current path is generated between the first PMOS transistor (MP1) and the first NMOS transistor (MN1).

有鑑於此,本創作之主要目的係提出一種具輔助電路之位準轉換電路,其不但能精確且快速地將第一信號轉換為一第二信號,並且可有效地抑制上拉路徑和下拉路徑之間的競爭,進而降低功率損耗。 In view of this, the main purpose of this creation is to propose a level conversion circuit with an auxiliary circuit, which can accurately and quickly convert the first signal into a second signal, and can effectively suppress the pull-up path and pull-down path Competition between them, which in turn reduces power loss.

本創作提出一種具輔助電路之位準轉換電路,其係由一輸入電路(1)、一電位轉換電路(2)以及一輸出控制電晶體(3)所組成,其中,該輸入電路(1)係耦接於一第一輸入端(IN),用來提供差動輸入信號;該電位轉換電路(2)係耦接於該第一高電源供應電壓(VDDH),用來做為電位轉換;該輸出控制電晶體(3)係耦接於該第一輸入端(IN),用以控制該第一節點(N1)之輸出電位。。 This creation proposes a level conversion circuit with an auxiliary circuit, which is composed of an input circuit (1), a potential conversion circuit (2), and an output control transistor (3), where the input circuit (1) Is coupled to a first input terminal (IN) for providing a differential input signal; the potential conversion circuit (2) is coupled to the first high power supply voltage (VDDH) for potential conversion; The output control transistor (3) is coupled to the first input terminal (IN) to control the output potential of the first node (N1). .

由模擬結果證實,本創作所提出之具輔助電路之位準轉換電路,不但能精確且快速地將一第一信號轉換為一第二信號,並且可以有效地抑制上拉路徑和下拉路徑之間的競爭,同時亦能有效地減少功率損耗。 The simulation results confirm that the level conversion circuit with the auxiliary circuit proposed in this creation can not only accurately and quickly convert a first signal into a second signal, but also effectively suppress the difference between the pull-up path and the pull-down path Competition can also effectively reduce power loss.

1‧‧‧輸入電路 1‧‧‧input circuit

2‧‧‧電位轉換電路 2‧‧‧potential conversion circuit

3‧‧‧輸出控制電晶體 3‧‧‧Output control transistor

N1‧‧‧第一節點 N1‧‧‧First Node

N2‧‧‧第二節點 N2‧‧‧Second Node

N3‧‧‧第三節點 N3‧‧‧ third node

MP1‧‧‧第一PMOS電晶體 MP1‧‧‧The first PMOS transistor

MP2‧‧‧第二PMOS電晶體 MP2‧‧‧Second PMOS transistor

MP3‧‧‧第三PMOS電晶體 MP3‧‧‧Third PMOS Transistor

MN1‧‧‧第一NMOS電晶體 MN1‧‧‧The first NMOS transistor

MN2‧‧‧第二NMOS電晶體 MN2‧‧‧Second NMOS transistor

MN3‧‧‧第三NMOS電晶體 MN3‧‧‧The third NMOS transistor

I1‧‧‧第一反相器 I1‧‧‧first inverter

GND‧‧‧地 GND‧‧‧ Ground

IN‧‧‧第一輸入端 IN‧‧‧first input

V(IN)‧‧‧第一信號 V (IN) ‧‧‧First Signal

INB‧‧‧第二輸入端 INB‧‧‧Second Input

OUT‧‧‧輸出端 OUT‧‧‧output

V(OUT)‧‧‧第二信號 V (OUT) ‧‧‧Second signal

VDDH‧‧‧第一高電源供應電壓 VDDH‧‧‧The first highest power supply voltage

VDDL‧‧‧第二高電源供應電壓 VDDL‧‧‧The second highest power supply voltage

第1圖 係顯示第一先前技藝中位準轉換電路之電路圖;第2圖 係顯示第二先前技藝中位準轉換電路之電路圖;第3圖 係顯示本創作較佳實施例之具輔助電路之位準轉換電路之電路圖;第4圖 係顯示本創作較佳實施例之第一信號及第二信號之暫態分析時序圖; Figure 1 shows the circuit diagram of the level conversion circuit in the first prior art; Figure 2 shows the circuit diagram of the level conversion circuit in the second prior art; Figure 3 shows the Circuit diagram of level conversion circuit; Figure 4 is a timing diagram showing the transient analysis of the first signal and the second signal in the preferred embodiment of the present invention;

根據上述之目的,本創作提出一種具輔助電路之位準轉換電路,如第3圖所示,其係由一輸入電路(1)、一電位轉換電路(2)以及一輸出控制電晶體(3)所組成,其中,該輸入電路(1)係耦接於該第一輸入端(IN),用來提供差動輸入信號;其係由一第一NMOS電晶體(MN1)、一第二NMOS電晶體(MN2)以及一第一反相器(I1)所組成,其中,該第一NMOS電晶體(MN1)的源極連接至地(GND),其閘極連接至該第一輸入端(IN),而其汲極則與該第一節點(N1)相連接;該第二NMOS電晶體(MN2)的源極連接至地(GND),其閘極連接至該第二輸入端(INB),而其汲極則與該第三節點(N3)相連接;該第一反相器(I1)係耦接於該第一輸入端(IN),用以接受該第一信號(V(IN)),並提供一個與該第一信號(V(IN))反相的信號;該電位轉換電路(2)係耦接於該第一高電源供應電壓(VDDH),用來做為電位轉換;其係由一第一PMOS電晶體(MP1)、一第二PMOS電晶體(MP2)以及一第三NMOS電晶體(MN3)所組成,其中,該第一PMOS電晶體(MP1)的源極連接至該第一高電源供應電壓(VDDH),其閘極連接至該第三節點(N3),而其汲極則與該第一節點(N1)相連接;該第二PMOS電晶體(MP2)的源極連接至該第一高電源供應電壓(VDDH),其閘極連接至該第一節點(N1),而其汲極則與該第二節點(N2)相連接;該第三NMOS電晶體(MN3)的源極連接至該第三節點(N3),其閘極連接至該第一輸入端(IN),而其汲極則與該第二節點(N2)相連接;該輸出控制電晶體(3)係耦接於該第一輸入端(IN),用以控制該第一節點(N1) 之輸出電位;其係由一第三PMOS電晶體(MP3)所組成,其源極連接至該第二高電源供應電壓(VDDL),其閘極連接至該第一輸入端(IN),而其汲極則與該第一節點(N1)相連接;該第一高電源供應電壓(VDDH)係用以提供該位準轉換電路所需之第一高電源電壓,該第二高電源供應電壓(VDDL)係用以提供該位準轉換電路所需之第二高電源電壓,該第二高電源供應電壓(VDDL)之位準係小於該第一高電源供應電壓(VDDH)之位準,該第一信號(V(IN))為介於0伏特及1.2伏特間的矩形波,而該第二信號(V(OUT))則為介於0伏特及1.8伏特間的對應波形。 According to the above purpose, this creation proposes a level conversion circuit with an auxiliary circuit, as shown in FIG. 3, which is composed of an input circuit (1), a potential conversion circuit (2), and an output control transistor (3 ), Wherein the input circuit (1) is coupled to the first input terminal (IN) for providing a differential input signal; it is composed of a first NMOS transistor (MN1), a second NMOS The transistor (MN2) is composed of a first inverter (I1), and the source of the first NMOS transistor (MN1) is connected to the ground (GND), and the gate is connected to the first input terminal ( IN), and its drain is connected to the first node (N1); the source of the second NMOS transistor (MN2) is connected to ground (GND), and its gate is connected to the second input terminal (INB ), And its drain is connected to the third node (N3); the first inverter (I1) is coupled to the first input terminal (IN) for receiving the first signal (V ( IN)) and provide a signal that is opposite to the first signal (V (IN)); the potential conversion circuit (2) is coupled to the first high power supply voltage (VDDH) and is used as a potential Conversion; it consists of a first PMOS transistor (M P1), a second PMOS transistor (MP2) and a third NMOS transistor (MN3), wherein the source of the first PMOS transistor (MP1) is connected to the first high power supply voltage (VDDH) ), Its gate is connected to the third node (N3), and its drain is connected to the first node (N1); the source of the second PMOS transistor (MP2) is connected to the first high power source The supply voltage (VDDH), whose gate is connected to the first node (N1), and whose drain is connected to the second node (N2); the source of the third NMOS transistor (MN3) is connected to the The third node (N3), whose gate is connected to the first input terminal (IN), and its drain is connected to the second node (N2); the output control transistor (3) is coupled to the A first input terminal (IN) for controlling the first node (N1) Output potential; it is composed of a third PMOS transistor (MP3), its source is connected to the second high power supply voltage (VDDL), its gate is connected to the first input terminal (IN), and Its drain is connected to the first node (N1); the first high power supply voltage (VDDH) is used to provide the first high power supply voltage required by the level conversion circuit, and the second high power supply voltage (VDDL) is used to provide a second high power supply voltage required by the level conversion circuit. The level of the second high power supply voltage (VDDL) is less than the level of the first high power supply voltage (VDDH). The first signal (V (IN)) is a rectangular wave between 0 volts and 1.2 volts, and the second signal (V (OUT)) is a corresponding waveform between 0 volts and 1.8 volts.

請再參閱第3圖,茲依位準轉換電路之工作模式說明圖3之工作原理如下:現在考慮第一信號(V(IN))為邏輯低位準(“0”)時,位準轉換電路的穩態操作情形:第一輸入端(IN)上的邏輯低位準(“0”)同時傳送到該第一反相器(I1)的輸入端、該第一NMOS電晶體(MN1)、該第三NMOS電晶體(MN3)的閘極以及該第三PMOS電晶體(MP3)的閘極,使得該第一NMOS電晶體(MN1)和該第三NMOS電晶體(MN3)截止,該第三PMOS電晶體(MP3)導通,使得該第一節點(N1)處於邏輯高位準(VDDL),而該第一反相器(I1)傳送一邏輯高位準(VDDL)到該第二NMOS電晶體(MN2)的閘極,使得該第二NMOS電晶體(MN2)導通,該第三節點(N3)的電位會被拉降至一邏輯低位準(“0”),該第三節點(N3)的邏輯低位準(“0”)使得第一PMOS電晶體(MP1)導通,由於該第一PMOS電晶體(MP1)和該第三PMOS電晶體(MP3)都導通,而該第一NMOS電晶體(MN1)截止,因此,該第一節點(N1)的電位會被拉升至一邏輯高位準(VDDH),而該第一節點(N1)上的邏輯高位準(“1”)傳送到該第二PMOS電晶體(MP2)的閘極,使得該第二PMOS電晶體(MP2)截止;由於該 第二PMOS電晶體(MP2)和該第三NMOS電晶體(MN3)都截止,而該第二NMOS電晶體(MN2)導通,因此,該第三節點(N3)的電位會維持在一邏輯低位準(“0”),因此,輸出端(OUT)的電位會維持在一邏輯低位準(“0”)的穩態值。 Please refer to FIG. 3 again, the operation mode of the level-dependent conversion circuit is described below. The working principle of FIG. 3 is as follows: Now consider the level conversion circuit when the first signal (V (IN)) is a logic low level (“0”). Steady-state operation: the logic low level ("0") on the first input (IN) is simultaneously transmitted to the input of the first inverter (I1), the first NMOS transistor (MN1), the The gate of the third NMOS transistor (MN3) and the gate of the third PMOS transistor (MP3) cause the first NMOS transistor (MN1) and the third NMOS transistor (MN3) to be turned off, and the third The PMOS transistor (MP3) is turned on, so that the first node (N1) is at a logic high level (VDDL), and the first inverter (I1) transmits a logic high level (VDDL) to the second NMOS transistor ( MN2), the second NMOS transistor (MN2) is turned on, and the potential of the third node (N3) is pulled down to a logic low level ("0"). A logic low level ("0") turns on the first PMOS transistor (MP1), since both the first PMOS transistor (MP1) and the third PMOS transistor (MP3) are turned on, and the first NMOS transistor (MP1) is turned on MN1) ends, so this The potential of a node (N1) is pulled up to a logic high level (VDDH), and the logic high level ("1") on the first node (N1) is transmitted to the second PMOS transistor (MP2). The gate makes the second PMOS transistor (MP2) turn off; Both the second PMOS transistor (MP2) and the third NMOS transistor (MN3) are turned off, and the second NMOS transistor (MN2) is turned on, so the potential of the third node (N3) is maintained at a logic low Level ("0"), therefore, the potential of the output (OUT) is maintained at a steady state value of a logic low level ("0").

再考慮第一信號(V(IN))為邏輯高位準(VDDL)時,位準轉換電路的穩態操作情形:第一輸入端(IN)上的邏輯高位準(VDDL)同時傳送到該第一反相器(I1)的輸入端、該第一NMOS電晶體(MN1)、該第三NMOS電晶體(MN3)的閘極以及該第三PMOS電晶體(MP3)的閘極,使得該第一NMOS電晶體(MN1)、該第三NMOS電晶體(MN3)導通、該第三PMOS電晶體(MP3)截止,而該第一反相器(I1)傳送邏輯低位準(“0”)到該第二NMOS電晶體(MN2)的閘極,使得該第二NMOS電晶體(MN2)截止,此時,由於該第一NMOS電晶體(MN1)導通,因此,該第一節點(N1)的電位會被拉降至一邏輯低位準(“0”),該第一節點(N1)上的邏輯低位準(“0”)傳送到該第二PMOS電晶體(MP2)的閘極,使得該第二PMOS電晶體(MP2)導通;由於該第二PMOS電晶體(MP2)和該第三NMOS電晶體(MN3)都導通,該第二NMOS電晶體(MN2)截止,因此,該第三節點(N3)的電位會被拉升至一邏輯高位準(VDDH);而該第三節點(N3)的邏輯高位準(“1”)使得該第一PMOS電晶體(MP1)截止,此時由於該第一PMOS電晶體(MP1)和該第三PMOS電晶體(MP3)都截止,因此,該第一節點(N1)的電位會維持在邏輯低位準(“0”),而該第三節點(N3)的電位亦將維持在邏輯高位準(VDDH),因此,輸出端(OUT)的電位會被拉升至一第一高電源供應電壓(VDDH)的穩態值。 Consider again the steady-state operation of the level conversion circuit when the first signal (V (IN)) is the logic high level (VDDL): the logic high level (VDDL) on the first input terminal (IN) is simultaneously transmitted to the first An input terminal of an inverter (I1), a gate of the first NMOS transistor (MN1), a gate of the third NMOS transistor (MN3), and a gate of the third PMOS transistor (MP3) make the first An NMOS transistor (MN1), the third NMOS transistor (MN3) is turned on, the third PMOS transistor (MP3) is turned off, and the first inverter (I1) transmits a logic low level ("0") to The gate of the second NMOS transistor (MN2) turns off the second NMOS transistor (MN2). At this time, since the first NMOS transistor (MN1) is turned on, the first node (N1) The potential is pulled down to a logic low level ("0"), and the logic low level ("0") on the first node (N1) is transmitted to the gate of the second PMOS transistor (MP2), so that the The second PMOS transistor (MP2) is turned on; since the second PMOS transistor (MP2) and the third NMOS transistor (MN3) are both turned on, the second NMOS transistor (MN2) is turned off, so the third node (N3) will be pulled up to a logic High level (VDDH); and the logic high level ("1") of the third node (N3) causes the first PMOS transistor (MP1) to be turned off. At this time, due to the first PMOS transistor (MP1) and the first All three PMOS transistors (MP3) are turned off. Therefore, the potential of the first node (N1) will be maintained at a logic low level ("0"), and the potential of the third node (N3) will also be maintained at a logic high level (VDDH). Therefore, the potential of the output terminal (OUT) is pulled up to a steady state value of the first high power supply voltage (VDDH).

綜上所述,因為該第二PMOS電晶體(MP2)和該第二NMOS電晶體(MN2)可以在短時間內同時導通。本創作透過該第三NMOS電晶體 (MN3)切斷對應的上拉路徑來減少競爭。當該第二NMOS電晶體(MN2)導通(亦即,下拉路徑被致能)時,該第三NMOS電晶體(MN3)將上拉路徑切斷,以避免上拉路徑和下拉路徑之間的競爭,因此,可以大幅減少延遲時間,並且可以消除短路功率損耗。 In summary, the second PMOS transistor (MP2) and the second NMOS transistor (MN2) can be turned on simultaneously in a short time. This creation through this third NMOS transistor (MN3) Cut off the corresponding pull-up path to reduce competition. When the second NMOS transistor (MN2) is turned on (that is, the pull-down path is enabled), the third NMOS transistor (MN3) cuts off the pull-up path to avoid a situation between the pull-up path and the pull-down path. Competition, therefore, can significantly reduce the delay time and can eliminate short circuit power loss.

本創作所提出之具輔助電路之位準轉換電路之Spice暫態分析模擬結果,如第4圖所示,由該模擬結果可証實,本創作所提出之具輔助電路之位準轉換電路,其不但仍能快速且精確地將第一信號轉換為一第二信號,並且能有效地降低功率的損耗。 The Spice transient analysis simulation result of the level conversion circuit with the auxiliary circuit proposed in this work is shown in Figure 4. From the simulation results, it can be confirmed that the level conversion circuit with the auxiliary circuit proposed in this work, the Not only can the first signal be quickly and accurately converted into a second signal, but also the power loss can be effectively reduced.

雖然本創作特別揭露並描述了所選之最佳實施例,但舉凡熟悉本技術之人士可明瞭任何形式或是細節上可能的變化均未脫離本創作的精神與範圍。因此,所有相關技術範疇內之改變都包括在本創作之申請專利範圍內。 Although the present invention specifically discloses and describes the selected preferred embodiment, those skilled in the art can understand that any form or details of possible changes can be made without departing from the spirit and scope of this creation. Therefore, all changes within the relevant technical scope are included in the scope of the patent application for this creation.

Claims (7)

一種具輔助電路之位準轉換電路,用以將一第一信號(V(IN))轉換為一第二信號(V(OUT)),其包括:一第一節點(N1),用以將一第一PMOS電晶體(MP1)的汲極、一第三PMOS電晶體(MP3)的汲極、一第二PMOS電晶體(MP2)的閘極以及一第一NMOS電晶體(MN1)的汲極連接在一起;一第二節點(N2),用以將該第二PMOS電晶體(MP2)的汲極以及一第三NMOS電晶體(MN3)的汲極連接在一起;一第三節點(N3),用以將該第一PMOS電晶體(MP1)的閘極、該第三NMOS電晶體(MN3)的源極以及一第二NMOS電晶體(MN2)的汲極連接在一起;一第一輸入端(IN),耦接於該第三PMOS電晶體(MP3)以及該第一NMOS電晶體(MN1)的閘極,用以提供一第一信號(V(IN));一第二輸入端(INB),耦接於該第二NMOS電晶體(MN2)的閘極,用以提供該第一信號(V(IN))的反相信號;一輸出端(OUT),耦接於該第三節點(N3),用以輸出該第二信號(V(OUT));一第一反相器(I1),耦接於該第一輸入端(IN),用以接受該第一信號(V(IN)),並提供一個與該第一信號(V(IN))反相的信號;一第一高電源供應電壓(VDDH),耦接於該第一PMOS電晶體(MP1)以及該第二PMOS電晶體(MP2)的源極,用以提供該位準轉換電路所需之第一高電源電壓;一第二高電源供應電壓(VDDL),耦接於該第三PMOS電晶體(MP3)的源極,用以提供該位準轉換電路所需之第二高電源電壓,該第二高電源供應電壓(VDDL)之電位係小於該第一高電源供應電壓(VDDH)之電位;一輸入電路(1),耦接於該第一輸入端(IN),用來提供差動輸入信號;一電位轉換電路(2),耦接於該第一高電源供應電壓(VDDH),用來做為電位轉換;以及一輸出控制電晶體(3),耦接於該第一輸入端(IN),用以控制該第一節點(N1)之輸出電位。A level conversion circuit with an auxiliary circuit is used to convert a first signal (V (IN)) into a second signal (V (OUT)). The level conversion circuit includes a first node (N1) for converting A drain of a first PMOS transistor (MP1), a drain of a third PMOS transistor (MP3), a gate of a second PMOS transistor (MP2), and a drain of a first NMOS transistor (MN1) A second node (N2) for connecting the drain of the second PMOS transistor (MP2) and the drain of a third NMOS transistor (MN3); a third node (N2) N3) to connect the gate of the first PMOS transistor (MP1), the source of the third NMOS transistor (MN3), and the drain of a second NMOS transistor (MN2); a first An input terminal (IN) is coupled to the gate of the third PMOS transistor (MP3) and the first NMOS transistor (MN1) to provide a first signal (V (IN)); a second An input terminal (INB) is coupled to the gate of the second NMOS transistor (MN2) to provide an inverted signal of the first signal (V (IN)); an output terminal (OUT) is coupled to The third node (N3) is used to output the second signal (V (OUT)); a first inverter (I1 ), Coupled to the first input terminal (IN), for receiving the first signal (V (IN)) and providing a signal that is opposite to the first signal (V (IN)); a first A high power supply voltage (VDDH) is coupled to the sources of the first PMOS transistor (MP1) and the second PMOS transistor (MP2) to provide a first high power voltage required by the level conversion circuit A second high power supply voltage (VDDL) coupled to the source of the third PMOS transistor (MP3) to provide a second high power supply voltage required by the level conversion circuit, the second high power supply The potential of the supply voltage (VDDL) is less than the potential of the first high power supply voltage (VDDH); an input circuit (1) is coupled to the first input terminal (IN) to provide a differential input signal; The potential conversion circuit (2) is coupled to the first high power supply voltage (VDDH) for potential conversion; and an output control transistor (3) is coupled to the first input terminal (IN), It is used to control the output potential of the first node (N1). 如申請專利範圍第1項所述的具輔助電路之位準轉換電路,其中該輸入電路(1)包括:一第一NMOS電晶體(MN1),其源極連接至地(GND),其閘極連接至該第一輸入端(IN),而其汲極則與該第一節點(N1)相連接;一第二NMOS電晶體(MN2),其源極連接至地(GND),其閘極連接至該第二輸入端(INB),而其汲極則與該第三節點(N3)相連接;以及一第一反相器(I1),耦接於該第一輸入端(IN),用以接受該第一信號(V(IN)),並提供一個與該第一信號(V(IN))反相的信號。The level conversion circuit with an auxiliary circuit according to item 1 of the scope of patent application, wherein the input circuit (1) includes: a first NMOS transistor (MN1), the source of which is connected to the ground (GND), and the gate Is connected to the first input terminal (IN), and its drain is connected to the first node (N1); a second NMOS transistor (MN2), its source is connected to ground (GND), and its gate Terminal is connected to the second input terminal (INB), and its drain terminal is connected to the third node (N3); and a first inverter (I1) is coupled to the first input terminal (IN) To receive the first signal (V (IN)) and provide a signal that is inverse to the first signal (V (IN)). 如申請專利範圍第2項所述的具輔助電路之位準轉換電路,其中該電位轉換電路(2)包括:一第一PMOS電晶體(MP1),其源極連接至該第一高電源供應電壓(VDDH),其閘極連接至該第三節點(N3),而其汲極則與該第一節點(N1)相連接;一第二PMOS電晶體(MP2),其源極連接至該第一高電源供應電壓(VDDH),其閘極連接至該第一節點(N1),而其汲極則與該第二節點(N2)相連接;以及一第三NMOS電晶體(MN3),其源極連接至該第三節點(N3),其閘極連接至該第一輸入端(IN),而其汲極則與該第二節點(N2)相連接。The level conversion circuit with an auxiliary circuit according to item 2 of the scope of patent application, wherein the potential conversion circuit (2) includes: a first PMOS transistor (MP1) whose source is connected to the first high power supply Voltage (VDDH), its gate is connected to the third node (N3), and its drain is connected to the first node (N1); a second PMOS transistor (MP2), its source is connected to the A first high power supply voltage (VDDH), a gate of which is connected to the first node (N1), and a drain of which is connected to the second node (N2); and a third NMOS transistor (MN3), Its source is connected to the third node (N3), its gate is connected to the first input terminal (IN), and its drain is connected to the second node (N2). 如申請專利範圍第3項所述的具輔助電路之位準轉換電路,其中該輸出控制電晶體(3)係由一第三PMOS電晶體(MP3)所組成,其源極連接至該第二高電源供應電壓(VDDL),其閘極連接至該第一輸入端(IN),而其汲極則與該第一節點(N1)相連接。The level conversion circuit with an auxiliary circuit according to item 3 of the scope of patent application, wherein the output control transistor (3) is composed of a third PMOS transistor (MP3), and its source is connected to the second The high power supply voltage (VDDL) has a gate connected to the first input terminal (IN), and a drain connected to the first node (N1). 如申請專利範圍第1項所述的具輔助電路之位準轉換電路,其中該第一反相器(I1)的電壓源為該第二高電源供應電壓(VDDL)。The level conversion circuit with an auxiliary circuit according to item 1 of the scope of patent application, wherein the voltage source of the first inverter (I1) is the second high power supply voltage (VDDL). 如申請專利範圍第5項所述的具輔助電路之位準轉換電路,其中該第一信號(V(IN))的振幅為0伏特至該第二高電源供應電壓(VDDL)之間。The level conversion circuit with an auxiliary circuit according to item 5 of the scope of the patent application, wherein the amplitude of the first signal (V (IN)) is between 0 volts and the second high power supply voltage (VDDL). 如申請專利範圍第6項所述的具輔助電路之位準轉換電路,其中該第二信號(V(OUT))的振幅為0伏特至該第一高電源供應電壓(VDDH)之間。The level conversion circuit with an auxiliary circuit according to item 6 of the scope of the patent application, wherein the amplitude of the second signal (V (OUT)) is between 0 volts and the first high power supply voltage (VDDH).
TW107215951U 2018-11-23 2018-11-23 Level conversion circuit with auxiliary circuit TWM576366U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW107215951U TWM576366U (en) 2018-11-23 2018-11-23 Level conversion circuit with auxiliary circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107215951U TWM576366U (en) 2018-11-23 2018-11-23 Level conversion circuit with auxiliary circuit

Publications (1)

Publication Number Publication Date
TWM576366U true TWM576366U (en) 2019-04-01

Family

ID=66996913

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107215951U TWM576366U (en) 2018-11-23 2018-11-23 Level conversion circuit with auxiliary circuit

Country Status (1)

Country Link
TW (1) TWM576366U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI817389B (en) * 2022-03-15 2023-10-01 智原科技股份有限公司 Level shifter and electronic device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI817389B (en) * 2022-03-15 2023-10-01 智原科技股份有限公司 Level shifter and electronic device

Similar Documents

Publication Publication Date Title
TWM576366U (en) Level conversion circuit with auxiliary circuit
TWM616390U (en) Low power voltage level shifter
TWM586017U (en) Low power level shifter circuit
TWM576365U (en) Low power voltage level converter
TWM565921U (en) Voltage level shifter
TWM598009U (en) Voltage level shifter having output control circuit
TWM531694U (en) Voltage level converter
TWM587403U (en) Voltage level converter with low-power consumption
TWM643204U (en) Level conversion circuit for converting a small-amplitude input signal
TWM649184U (en) Low voltage to high voltage signal level translator with improved performance
TWM639384U (en) High-speed low-power level shifter circuit for integrated circuits having multiple power supplies
TWM576363U (en) Potential converter to reduce competition
TWM517481U (en) Voltage level converter
TWM643260U (en) High performance level shifting circuit
TWM626307U (en) Contention-reduced level converting circuit
TWM625120U (en) Voltage level converter with leakage current reduction
TWM629696U (en) High performance voltage level shifting circuit
TWM626414U (en) Voltage level converter with stack transistors
TWM643324U (en) Low power level converter with inhibit current circuit
TWM578459U (en) Power-saving level shifting circuit
TWM628446U (en) Contention-free level converting circuit for data receiving circuit
TWM627595U (en) Voltage level conversion circuit exhibiting reduced power consumption
TWM625119U (en) Voltage level converting circuit with reduced power consumption
TWM576364U (en) Low power voltage level shifter
TWM598007U (en) High performance voltage level converter

Legal Events

Date Code Title Description
MM4K Annulment or lapse of a utility model due to non-payment of fees