TWM576365U - Low power voltage level converter - Google Patents
Low power voltage level converter Download PDFInfo
- Publication number
- TWM576365U TWM576365U TW107214697U TW107214697U TWM576365U TW M576365 U TWM576365 U TW M576365U TW 107214697 U TW107214697 U TW 107214697U TW 107214697 U TW107214697 U TW 107214697U TW M576365 U TWM576365 U TW M576365U
- Authority
- TW
- Taiwan
- Prior art keywords
- signal
- nmos transistor
- node
- level converter
- voltage level
- Prior art date
Links
Landscapes
- Logic Circuits (AREA)
Abstract
本創作提出一種低功率電壓位準轉換器,其係由一輸入電路(1)、一電位轉換電路(2)以及一模式控制開關(3)所組成,其中,該輸入電路(1)係用來提供差動輸入信號;該電位轉換電路(2)係用以抑制該輸出端(OUT)電位的競爭現象;而該模式控制開關(3)係用以控制該電壓位準轉換器之不同操作模式。 This creation proposes a low-power voltage level converter, which is composed of an input circuit (1), a potential conversion circuit (2), and a mode control switch (3), where the input circuit (1) is used To provide a differential input signal; the potential conversion circuit (2) is used to suppress the competition of the potential at the output terminal (OUT); and the mode control switch (3) is used to control different operations of the voltage level converter mode.
本創作所提出之低功率電壓位準轉換器,不但能精確地將第一信號轉換為一第二信號,並且兼具電路結構簡單以及有利於裝置之小型化等多重功效,同時亦能有效地抑制上拉路徑與下拉路徑的互相競爭,進而降低功率損耗。 The low power voltage level converter proposed in this creation can not only accurately convert the first signal into a second signal, but also has multiple functions such as simple circuit structure and conducive to the miniaturization of the device, and can also effectively The competition between the pull-up path and the pull-down path is suppressed, thereby reducing power loss.
Description
本創作提出一種低功率電壓位準轉換器,尤指一由一輸入電路(1)、一電位轉換電路(2)以及一模式控制開關(3)所組成,以求獲得精確電壓位準轉換同時亦能有效降低功率損耗之電子電路。 This creation proposes a low-power voltage level converter, especially one composed of an input circuit (1), a potential conversion circuit (2), and a mode control switch (3) to obtain accurate voltage level conversion. Electronic circuit that can also effectively reduce power loss.
電壓位準轉換器係一種用來溝通不同的積體電路(Integrated Circuit,簡稱IC)之間的信號傳遞之電子電路。在許多應用中,當應用系統需將信號從電壓位準較低的核心邏輯傳送到電壓位準較高的週邊裝置時,電壓位準轉換器就負責將低電壓工作信號轉換成高電壓工作信號。 The voltage level converter is an electronic circuit used to communicate signal transmission between different integrated circuits (ICs). In many applications, when the application system needs to transmit signals from core logic with lower voltage levels to peripheral devices with higher voltage levels, the voltage level converter is responsible for converting low-voltage working signals into high-voltage working signals. .
第1圖係顯示另一先前技藝(prior art)之一鏡像型電壓位準轉換器電路,該電壓位準轉換器藉由將第一PMOS電晶體(MP1)和第二PMOS電晶體(MP2)的閘極連接在一起並連接到第一PMOS電晶體(MP1)的汲極,使得第一PMOS電晶體(MP1)和第二PMOS電晶體(MP2)形成電流鏡電路,第一PMOS電晶體(MP1)是處於飽和區,並且其閘極電壓使得飽和電流等於流入第一NMOS電晶體(MN1)之電流,而流經第一PMOS電晶體(MP1)和第二PMOS電晶體(MP2)之電流亦相等。由於鏡像型的電壓位準轉換器的性能是由第一PMOS電晶體(MP1)和第一NMOS電晶體(MN1)的電流來決定,因此,即使輸出的第一高電源供應電壓(VDDH)改變,電壓位準轉換器的性能 也不會有太大的改變。因此,鏡像型的電壓位準轉換器可以適用在各種輸出電壓電路。 Figure 1 shows a mirror-type voltage level converter circuit of another prior art. The voltage level converter uses a first PMOS transistor (MP1) and a second PMOS transistor (MP2). The gates are connected together and connected to the drain of the first PMOS transistor (MP1), so that the first PMOS transistor (MP1) and the second PMOS transistor (MP2) form a current mirror circuit, and the first PMOS transistor (MP1) MP1) is in the saturation region, and its gate voltage makes the saturation current equal to the current flowing into the first NMOS transistor (MN1), and the current flowing through the first PMOS transistor (MP1) and the second PMOS transistor (MP2) Also equal. Since the performance of the mirrored voltage level converter is determined by the current of the first PMOS transistor (MP1) and the first NMOS transistor (MN1), even if the output of the first high power supply voltage (VDDH) changes , Voltage level converter performance It will not change much. Therefore, the mirror-type voltage level converter can be applied to various output voltage circuits.
然而,當第一NMOS電晶體(MN1)導通而第二NMOS電晶體(MN2)關閉時,第一PMOS電晶體(MP1)和第二PMOS電晶體(MP2)的閘極電位被拉降,使得第一PMOS電晶體(MP1)和第二PMOS電晶體(MP2)都導通。如此,在第一PMOS電晶體(MP1)和第一NMOS電晶體(MN1)之間會產生一個靜態電流路徑。 However, when the first NMOS transistor (MN1) is turned on and the second NMOS transistor (MN2) is turned off, the gate potentials of the first PMOS transistor (MP1) and the second PMOS transistor (MP2) are pulled down, so that Both the first PMOS transistor (MP1) and the second PMOS transistor (MP2) are turned on. In this way, a static current path is generated between the first PMOS transistor (MP1) and the first NMOS transistor (MN1).
第2圖係顯示一先前技藝之一閂鎖型電壓位準轉換器電路,其係使用一第一PMOS電晶體(MP1)、一第二PMOS電晶體(MP2)、一第一NMOS電晶體(MN1)、一第二NMOS電晶體(MN2)及一反相器(INV)來構成一電壓位準轉換器電路,其中,該反相器(INV)的偏壓是第二高電源供應電壓(VDDL)及地(GND),而第一信號(V(IN))的電位亦在地(GND)與第二高電源供應電壓(VDDL)之間。第一信號(V(IN))及經過反相器(INV)輸出的反相輸入電壓信號分別連接至第一NMOS電晶體(MN1)及第二NMOS電晶體(MN2)的閘極(gate)。因此,在同一時間內,第一NMOS電晶體(MN1)及第二NMOS電晶體(MN2)之中只有一個會導通(ON)。此外,由於第一PMOS電晶體(MP1)和第二PMOS電晶體(MP2)的交叉耦合(cross-coupled)方式,使得當電壓位準轉換器的輸出(OUT)處於一個穩定的狀態時,閂鎖型的電壓位準轉換器中沒有靜態電流(static current)產生。尤其,當第一NMOS電晶體(MN1)關閉(OFF)而第二NMOS電晶體(MN2)導通(ON)時,第一PMOS電晶體(MP1)的閘極電位被拉降(pull down)並使得第一PMOS電晶體(MP1)導通,以致拉升(pull up)第二PMOS電晶體(MP2)的閘極電位而關閉第二PMOS電晶體(MP2);再者, 當第一NMOS電晶體(MN1)導通而第二NMOS電晶體(MN2)關閉時,第二PMOS電晶體(MP2)的閘極電位被拉降並使得第二PMOS電晶體(MP2)導通,以致拉升第一PMOS電晶體(MP1)的閘極電位而關閉第一PMOS電晶體(MP1)。因此,在第一PMOS電晶體(MP1)和第一NMOS電晶體(MN1)之間或第二PMOS電晶體(MP2)和第二NMOS電晶體(MN2)之間就不會存在一個電流路徑。 Figure 2 shows a latch-type voltage level converter circuit, one of the prior art, which uses a first PMOS transistor (MP1), a second PMOS transistor (MP2), and a first NMOS transistor ( MN1), a second NMOS transistor (MN2) and an inverter (INV) to form a voltage level converter circuit, wherein the bias voltage of the inverter (INV) is the second highest power supply voltage ( VDDL) and ground (GND), and the potential of the first signal (V (IN)) is also between ground (GND) and the second highest power supply voltage (VDDL). The first signal (V (IN)) and the inverted input voltage signal output through the inverter (INV) are connected to the gates of the first NMOS transistor (MN1) and the second NMOS transistor (MN2), respectively. . Therefore, at the same time, only one of the first NMOS transistor (MN1) and the second NMOS transistor (MN2) will be turned on. In addition, due to the cross-coupled mode of the first PMOS transistor (MP1) and the second PMOS transistor (MP2), when the output (OUT) of the voltage level converter is in a stable state, the latch No static current is generated in the lock-type voltage level converter. In particular, when the first NMOS transistor (MN1) is turned off and the second NMOS transistor (MN2) is turned on, the gate potential of the first PMOS transistor (MP1) is pulled down and pulled down. Making the first PMOS transistor (MP1) conductive, so that the gate potential of the second PMOS transistor (MP2) is pulled up and the second PMOS transistor (MP2) is turned off; furthermore, When the first NMOS transistor (MN1) is turned on and the second NMOS transistor (MN2) is turned off, the gate potential of the second PMOS transistor (MP2) is pulled down and the second PMOS transistor (MP2) is turned on, so that The gate potential of the first PMOS transistor (MP1) is pulled up to turn off the first PMOS transistor (MP1). Therefore, there will be no current path between the first PMOS transistor (MP1) and the first NMOS transistor (MN1) or between the second PMOS transistor (MP2) and the second NMOS transistor (MN2).
然而,上述習知電壓位準轉換器在第二PMOS電晶體(MP2)趨近於導通(或關閉)與在第二NMOS電晶體(MN2)趨近於關閉(或導通)的過程中,對於輸出端(OUT)上的電位之拉升及拉降有互相競爭(contention)的現象,因此第二信號(V(OUT))在轉變成低電位時速度較慢。此外,考慮當第一信號(V(IN))由0伏特改變至1.8伏特時,第一NMOS電晶體(MN1)導通,而第二PMOS電晶體(MP2)的閘極變為低電位,使得第二PMOS電晶體(MP2)導通。所以,輸出為一第一高電源供應電壓(VDDH)。但是,由於0伏特無法瞬間轉換至1.8伏特,因此,在轉換期間的較低第一信號(V(IN))可能無法使第一PMOS電晶體(MP1)、第二PMOS電晶體(MP2)、第一NMOS電晶體(MN1)及第二NMOS電晶體(MN2)達到完全導通或完全關閉,如此會造成在第一高電源供應電壓(VDDH)與地(GND)之間存在一靜態電流(static current),此靜態電流會增加功率的損耗。 However, the above-mentioned conventional voltage level converter is approaching (or turning off) the second PMOS transistor (MP2) and the process of turning off (or turning on) the second NMOS transistor (MN2). There is a phenomenon of contention between the pull-up and pull-down of the potential at the output terminal (OUT), so the second signal (V (OUT)) is slower when it is converted to a low potential. In addition, it is considered that when the first signal (V (IN)) changes from 0 volts to 1.8 volts, the first NMOS transistor (MN1) is turned on, and the gate of the second PMOS transistor (MP2) becomes low, so that The second PMOS transistor (MP2) is turned on. Therefore, the output is a first high power supply voltage (VDDH). However, because 0 volts cannot be instantly converted to 1.8 volts, the lower first signal (V (IN)) during the conversion may not enable the first PMOS transistor (MP1), the second PMOS transistor (MP2), The first NMOS transistor (MN1) and the second NMOS transistor (MN2) are fully turned on or completely turned off. This will cause a static current (static) between the first high power supply voltage (VDDH) and ground (GND). current), this quiescent current will increase power loss.
再者,閂鎖型的電壓位準轉換器的性能是受到第一高電源供應電壓(VDDH)的影響,由於第一PMOS電晶體(MP1)和第二PMOS電晶體(MP2)的閘-源極電壓為第一高電源供應電壓(VDDH),而第一NMOS電晶體(MN1)和第二NMOS電晶體(MN2)的閘-源極電壓是第二高電源供應電壓 (VDDL)。因此,限制了可以使閂鎖型電壓位準轉換器正常運作的第一高電源供應電壓(VDDH)的範圍。在第二PMOS電晶體(MP2)趨近於導通(或關閉)與在第二NMOS電晶體(MN2)趨近於關閉(或導通)的過程中,對於輸出端(OUT)上的電位之拉升及拉降有互相競爭(contention)的現象,因此第二信號(V(OUT))在轉變成低電位時速度較慢。 Furthermore, the performance of the latch-type voltage level converter is affected by the first high power supply voltage (VDDH), due to the gate-source of the first PMOS transistor (MP1) and the second PMOS transistor (MP2). The electrode voltage is the first high power supply voltage (VDDH), and the gate-source voltage of the first NMOS transistor (MN1) and the second NMOS transistor (MN2) is the second highest power supply voltage (VDDL). Therefore, the range of the first high power supply voltage (VDDH) that can make the latch-type voltage level converter operate normally is limited. In the process of the second PMOS transistor (MP2) approaching to turn on (or off) and the second NMOS transistor (MN2) approaching to turn off (or on), the pull-up of the potential on the output terminal (OUT) There is a phenomenon of contention between rising and pulling down, so the second signal (V (OUT)) is slower when it changes to a low potential.
有鑑於此,本創作之主要目的係提出一種低功率電壓位準轉換器,其不但能精確且快速地將第一信號轉換為一第二信號,並且可有效地減少上拉路徑與下拉路徑的互相競爭,進而降低功率損耗。 In view of this, the main purpose of this creation is to propose a low power voltage level converter, which can not only accurately and quickly convert a first signal to a second signal, but also effectively reduce the pull-up path and pull-down path. Compete with each other, thereby reducing power loss.
本創作提出一種低功率電壓位準轉換器,其係由一輸入電路(1)、一電位轉換電路(2)以及一模式控制開關(3)所組成,其中,該輸入電路(1)係用來提供該第一信號(V(IN))以及該第一信號(V(IN))的反相信號;該電位轉換電路(2)係用以抑制該輸出端(OUT)電位的競爭現象;而該模式控制開關(3)係用以控制該電壓位準轉換器之不同操作模式。 This creation proposes a low-power voltage level converter, which is composed of an input circuit (1), a potential conversion circuit (2), and a mode control switch (3), where the input circuit (1) is used To provide the first signal (V (IN)) and the inverted signal of the first signal (V (IN)); the potential conversion circuit (2) is used to suppress the competition of the potential of the output terminal (OUT); The mode control switch (3) is used to control different operation modes of the voltage level converter.
由模擬結果證實,本創作所提出之低功率電壓位準轉換器,不但能精確且快速地將第一信號轉換為一第二信號,並且兼具電路結構簡單以及有利於裝置之小型化等多重功效,同時亦能有效地減少功率損耗。 The simulation results confirm that the low-power voltage level converter proposed by this creation can not only accurately and quickly convert the first signal into a second signal, but also has multiple advantages such as simple circuit structure and conducive to the miniaturization of the device. Efficiency, while also effectively reducing power loss.
1‧‧‧輸入電路 1‧‧‧input circuit
2‧‧‧電位轉換電路 2‧‧‧potential conversion circuit
3‧‧‧模式控制開關 3‧‧‧Mode control switch
I1‧‧‧第一反相器 I1‧‧‧first inverter
N1‧‧‧第一節點 N1‧‧‧First Node
N2‧‧‧第二節點 N2‧‧‧Second Node
N3‧‧‧第三節點 N3‧‧‧ third node
N4‧‧‧第四節點 N4‧‧‧ fourth node
N5‧‧‧第五節點 N5‧‧‧ fifth node
MP1‧‧‧第一PMOS電晶體 MP1‧‧‧The first PMOS transistor
MP2‧‧‧第二PMOS電晶體 MP2‧‧‧Second PMOS transistor
MN1‧‧‧第一NMOS電晶體 MN1‧‧‧The first NMOS transistor
MN2‧‧‧第二NMOS電晶體 MN2‧‧‧Second NMOS transistor
MN3‧‧‧第三NMOS電晶體 MN3‧‧‧The third NMOS transistor
MN4‧‧‧第四NMOS電晶體 MN4‧‧‧Fourth NMOS transistor
MN5‧‧‧第五NMOS電晶體 MN5‧‧‧Fifth NMOS transistor
OUT‧‧‧輸出端 OUT‧‧‧output
V(OUT)‧‧‧第二信號 V (OUT) ‧‧‧Second signal
IN‧‧‧第一輸入端 IN‧‧‧first input
V(IN)‧‧‧第一信號 V (IN) ‧‧‧First Signal
INB‧‧‧第二輸入端 INB‧‧‧Second Input
EN‧‧‧模式選擇信號 EN‧‧‧Mode selection signal
V(INB)‧‧‧反相輸入信號 V (INB) ‧‧‧ Inverted input signal
VDDH‧‧‧第一高電源供應電壓 VDDH‧‧‧The first highest power supply voltage
VDDL‧‧‧第二高電源供應電壓 VDDL‧‧‧The second highest power supply voltage
GND‧‧‧地 GND‧‧‧ Ground
第1圖 係顯示第一先前技藝中電壓位準轉換器之電路圖;第2圖 係顯示第二先前技藝中電壓位準轉換器之電路圖; 第3圖 係顯示本創作較佳實施例之低功率電壓位準轉換器之電路圖;第4圖 係顯示本創作較佳實施例之第一信號及第二信號之暫態分析時序圖; Fig. 1 is a circuit diagram showing a voltage level converter in the first prior art; Fig. 2 is a circuit diagram showing a voltage level converter in the second prior art; FIG. 3 is a circuit diagram showing a low power voltage level converter of the preferred embodiment of the present invention; FIG. 4 is a timing analysis diagram of the first signal and the second signal of the preferred embodiment of the present invention;
根據上述之目的,本創作提出一種低功率電壓位準轉換器,如第3圖所示,其係由一輸入電路(1)、一電位轉換電路(2)以及一模式控制開關(3)所組成,其中,該輸入電路(1)係用來提供一第一信號(V(IN))以及該第一信號(V(IN))的反相信號;該電位轉換電路(2)係用以抑制該輸出端(OUT)電位的競爭現象;而該模式控制開關(3)係用以控制該電壓位準轉換器之不同操作模式;該輸入電路(1)係由一第三NMOS電晶體(MN3)、一第四NMOS電晶體(MN4)以及一第一反相器(I1)所組成,其中,該第三NMOS電晶體(MN3)的源極連接至該第五節點(N5),其閘極連接至該第一輸入端(IN),而其汲極則與該第三節點(N3)相連接;該第四NMOS電晶體(MN4)的源極連接至該第五節點(N5),其閘極連接至該第二輸入端(INB),而其汲極則與該第四節點(N4)相連接;該第一反相器(I1)係耦接於該第一輸入端(IN),用以接受該第一信號(V(IN)),並提供一個與該第一信號(V(IN))反相的信號;該電位轉換電路(2)係由一第一PMOS電晶體(MP1)、一第二PMOS電晶體(MP2)、一第一NMOS電晶體(MN1)以及一第二NMOS電晶體(MN2)所組成,其中,該第一PMOS電晶體(MP1)的源極連接至一第一高電源供應電壓(VDDH),其閘極連接至該第四節點(N4),而其汲極則與該第一節點(N1)相連接;該第二PMOS電晶體(MP2)的源極連接至第一高電源供應電壓(VDDH),其閘極連接至該第三節點(N3),而其汲極則與該第二節點(N2)相連接;該第一NMOS電 晶體(MN1)的源極連接至該第三節點(N3),其閘極連接至該第二輸入端(INB),而其汲極則與該第一節點(N1)相連接;該第二NMOS電晶體(MN2)的源極連接至該第四節點(N4),其閘極連接至該第一輸入端(IN),而其汲極則與該第二節點(N2)相連接;該模式控制開關(3)係由一第五NMOS電晶體(MN5)所組成,其源極連接至地(GND),其閘極連接至該模式選擇信號(EN),而其汲極則與該第五節點(N5)相連接;該第一高電源供應電壓(VDDH)係用以提供該低功率電壓位準轉換器所需之第一高電源電壓,該第二高電源供應電壓(VDDL)係用以提供該低功率電壓位準轉換器所需之第二高電源電壓,該第二高電源供應電壓(VDDL)之位準係小於該第一高電源供應電壓(VDDH)之位準,該第一信號為介於0伏特及1.2伏特間的矩形波,而該第二信號則為介於0伏特及1.8伏特間的對應波形,該第一高電源供應電壓(VDDH)為1.8伏特,而該第二高電源供應電壓(VDDL)為1.2伏特,該第一信號(V(IN))為介於0伏特及1.2伏特間的矩形波,該第二信號(V(OUT))則為介於0伏特及1.8伏特間的對應波形。 According to the above purpose, the present invention proposes a low-power voltage level converter, as shown in FIG. 3, which is composed of an input circuit (1), a potential conversion circuit (2), and a mode control switch (3). The input circuit (1) is used to provide a first signal (V (IN)) and an inverted signal of the first signal (V (IN)); the potential conversion circuit (2) is used to Suppress the competition of the potential of the output terminal (OUT); and the mode control switch (3) is used to control different operation modes of the voltage level converter; the input circuit (1) is composed of a third NMOS transistor ( MN3), a fourth NMOS transistor (MN4) and a first inverter (I1), wherein the source of the third NMOS transistor (MN3) is connected to the fifth node (N5), which The gate is connected to the first input terminal (IN), and its drain is connected to the third node (N3); the source of the fourth NMOS transistor (MN4) is connected to the fifth node (N5) , Its gate is connected to the second input terminal (INB), and its drain is connected to the fourth node (N4); the first inverter (I1) is coupled to the first input terminal ( IN) to accept the first Signal (V (IN)) and provide a signal that is opposite to the first signal (V (IN)); the potential conversion circuit (2) is composed of a first PMOS transistor (MP1), a second PMOS A transistor (MP2), a first NMOS transistor (MN1), and a second NMOS transistor (MN2). The source of the first PMOS transistor (MP1) is connected to a first high power supply. Voltage (VDDH), its gate is connected to the fourth node (N4), and its drain is connected to the first node (N1); the source of the second PMOS transistor (MP2) is connected to the first High power supply voltage (VDDH), its gate is connected to the third node (N3), and its drain is connected to the second node (N2); the first NMOS power The source of the crystal (MN1) is connected to the third node (N3), its gate is connected to the second input (INB), and its drain is connected to the first node (N1); the second The source of the NMOS transistor (MN2) is connected to the fourth node (N4), its gate is connected to the first input terminal (IN), and its drain is connected to the second node (N2); the The mode control switch (3) is composed of a fifth NMOS transistor (MN5). Its source is connected to ground (GND), its gate is connected to the mode selection signal (EN), and its drain is connected to the The fifth node (N5) is connected; the first high power supply voltage (VDDH) is used to provide a first high power supply voltage required by the low power voltage level converter, and the second high power supply voltage (VDDL) Is used to provide the second high power supply voltage required by the low power voltage level converter, and the level of the second high power supply voltage (VDDL) is lower than the level of the first high power supply voltage (VDDH), The first signal is a rectangular wave between 0 volts and 1.2 volts, and the second signal is a corresponding waveform between 0 volts and 1.8 volts. The first high power supply voltage (VDDH) 1.8 volts, and the second high power supply voltage (VDDL) is 1.2 volts, the first signal (V (IN)) is a rectangular wave between 0 volts and 1.2 volts, and the second signal (V (OUT) ) Is the corresponding waveform between 0 volts and 1.8 volts.
請再參閱第3圖,現在考慮第一信號(V(IN))為邏輯低位準(0伏特)時,低功率電壓位準轉換器的穩態操作情形:第一輸入端(IN)上的邏輯低位準同時傳送到該第一反相器(I1)的輸入端、該第二NMOS電晶體(MN2)以及該第三NMOS電晶體(MN3)的閘極,使得該第二NMOS電晶體(MN2)和該第三NMOS電晶體(MN3)都截止(OFF),而該第一反相器(I1)傳送邏輯高位準(VDDL)到該第一NMOS電晶體(MN1)以及該第四NMOS電晶體(MN4)的閘極,使得該第一NMOS電晶體(MN1)和該第四NMOS電晶體(MN4)都導通(ON),此時,由於該第二NMOS電晶體(MN2)截止(OFF),而 該第四NMOS電晶體(MN4)導通,該第四節點(N4)的電位會被拉降至一邏輯低位準(0伏特),而該第四節點(N4)上的邏輯低位準傳送到該第一PMOS電晶體(MP1)的閘極,使得該第一PMOS電晶體(MP1)導通,此時由於該第一PMOS電晶體(MP1)和該第一NMOS電晶體(MN1)都導通,而該第三NMOS電晶體(MN3)截止,因此,該第三節點(N3)的電位會被拉升至一邏輯高位準,該第三節點(N3)的邏輯高位準使得該第二PMOS電晶體(MP2)截止,由於該第二NMOS電晶體(MN2)和該第二PMOS電晶體(MP2)都截止,而該第四NMOS電晶體(MN4)導通,因此,該第四節點(N4)的電位將維持在邏輯低位準(0伏特),輸出端(OUT)的電位會維持在一邏輯低位準(0伏特)的穩態值。質言之,第一信號(V(IN))為邏輯低位準(0伏特)時,經過低功率電壓位準轉換器轉換成具邏輯低位準(0伏特)的第二信號,由輸出端(OUT)輸出。 Please refer to Figure 3 again. Now consider the steady-state operation of the low-power voltage level converter when the first signal (V (IN)) is a logic low level (0 volts): The logic low level is simultaneously transmitted to the input terminal of the first inverter (I1), the gate of the second NMOS transistor (MN2) and the gate of the third NMOS transistor (MN3), so that the second NMOS transistor ( MN2) and the third NMOS transistor (MN3) are both OFF, and the first inverter (I1) transmits a logic high level (VDDL) to the first NMOS transistor (MN1) and the fourth NMOS The gate of the transistor (MN4) causes both the first NMOS transistor (MN1) and the fourth NMOS transistor (MN4) to be turned on. At this time, because the second NMOS transistor (MN2) is turned off ( OFF), and The fourth NMOS transistor (MN4) is turned on, the potential of the fourth node (N4) is pulled down to a logic low level (0 volts), and the logic low level on the fourth node (N4) is transmitted to the The gate of the first PMOS transistor (MP1) causes the first PMOS transistor (MP1) to be turned on. At this time, because the first PMOS transistor (MP1) and the first NMOS transistor (MN1) are both turned on, and The third NMOS transistor (MN3) is turned off. Therefore, the potential of the third node (N3) is pulled up to a logic high level, and the logic high level of the third node (N3) makes the second PMOS transistor (MP2) is turned off. Because both the second NMOS transistor (MN2) and the second PMOS transistor (MP2) are turned off, and the fourth NMOS transistor (MN4) is turned on, therefore, the fourth node (N4) The potential will be maintained at a logic low level (0 volts), and the potential at the output (OUT) will be maintained at a steady state value at a logic low level (0 volts). In other words, when the first signal (V (IN)) is at a logic low level (0 volts), it is converted into a second signal with a logic low level (0 volts) by a low-power voltage level converter. OUT) output.
再考慮第一信號(V(IN))為邏輯高位準(VDDL)時,低功率電壓位準轉換器的穩態操作情形:第一輸入端(IN)上的邏輯高位準(VDDL)同時傳送到該第一反相器(I1)的輸入端、該第二NMOS電晶體(MN2)以及該第三NMOS電晶體(MN3)的閘極,使得該第二NMOS電晶體(MN2)和該第三NMOS電晶體(MN3)都導通(ON),而該第一反相器(I1)傳送邏輯低位準到該第一NMOS電晶體(MN1)以及該第四NMOS電晶體(MN4)的閘極,使得該第一NMOS電晶體(MN1)和該第四NMOS電晶體(MN4)都截止(OFF),此時,由於該第三NMOS電晶體(MN3)導通,而該第一NMOS電晶體(MN1)截止(OFF),該第三節點(N3)的電位會被拉降至一邏輯低位準,該第三節點(N3)上的邏輯低位準傳送到該第二PMOS電晶體(MP2)的閘極,使得該第二PMOS電晶體(MP2)導通,此時由於該第二PMOS電晶體(MP2)和該第二 NMOS電晶體(MN2)都導通,而該第四NMOS電晶體(MN4)截止,因此,該第四節點(N4)的電位會被拉升至一邏輯高位準,該第四節點(N4)的邏輯高位準使得該第一PMOS電晶體(MP1)截止,此時由於該第一PMOS電晶體(MP1)和該第一NMOS電晶體(MN1)都截止,而該第三NMOS電晶體(MN3)導通,因此,該第三節點(N3)的電位將維持在一邏輯低位準,而該第四節點(N4)的電位亦將維持在一邏輯高位準,因此,輸出端(OUT)的電位會維持在一邏輯高位準的穩態值。質言之,第一信號(V(IN))為一邏輯高位準(VDDL)時,經過低功率電壓位準轉換器轉換成具第一高電源供應電壓(VDDH)的第二信號,由輸出端(OUT)輸出。 Consider again the steady-state operation of the low power voltage level converter when the first signal (V (IN)) is a logic high level (VDDL): the logic high level (VDDL) on the first input (IN) is transmitted simultaneously To the input terminal of the first inverter (I1), the gate of the second NMOS transistor (MN2), and the gate of the third NMOS transistor (MN3), so that the second NMOS transistor (MN2) and the first The three NMOS transistors (MN3) are all turned on, and the first inverter (I1) transmits a logic low level to the gates of the first NMOS transistor (MN1) and the fourth NMOS transistor (MN4). , So that both the first NMOS transistor (MN1) and the fourth NMOS transistor (MN4) are turned OFF. At this time, because the third NMOS transistor (MN3) is turned on, the first NMOS transistor (MN3) MN1) is turned off, the potential of the third node (N3) is pulled down to a logic low level, and the logic low level on the third node (N3) is transmitted to the second PMOS transistor (MP2). The gate electrode causes the second PMOS transistor (MP2) to be turned on. At this time, the second PMOS transistor (MP2) and the second PMOS transistor (MP2) are turned on. The NMOS transistor (MN2) is turned on, and the fourth NMOS transistor (MN4) is turned off. Therefore, the potential of the fourth node (N4) will be pulled up to a logic high level. The logic high level causes the first PMOS transistor (MP1) to be turned off. At this time, because both the first PMOS transistor (MP1) and the first NMOS transistor (MN1) are turned off, and the third NMOS transistor (MN3) is turned off. It is turned on, therefore, the potential of the third node (N3) will be maintained at a logic low level, and the potential of the fourth node (N4) will also be maintained at a logic high level. Therefore, the potential of the output terminal (OUT) will be Maintain a steady state value at a logic high level. In other words, when the first signal (V (IN)) is a logic high level (VDDL), it is converted into a second signal with a first high power supply voltage (VDDH) by a low power voltage level converter, and is output by (OUT) output.
綜上所述,該第一信號(V(IN))為邏輯低位準(0伏特)時,該第二信號(V(OUT))亦為邏輯低位準(0伏特);而該第一信號(V(IN))為邏輯高位準(VDDL)時,該第二信號(V(OUT))為第一高電源供應電壓(VDDH)。如此,電壓位準轉換的目的便實現。 In summary, when the first signal (V (IN)) is a logic low level (0 volts), the second signal (V (OUT)) is also a logic low level (0 volts); and the first signal When (V (IN)) is a logic high level (VDDL), the second signal (V (OUT)) is a first high power supply voltage (VDDH). In this way, the purpose of voltage level conversion is achieved.
本創作所提出之低功率電壓位準轉換器之Spice暫態分析模擬結果,如第4圖所示,由該模擬結果可証實,本創作所提出之低功率電壓位準轉換器,其不但仍能快速且精確地將第一信號轉換為一第二信號,並且可有效地減少輸出端(OUT)的上拉路徑與下拉路徑之間的互相競爭,進而降低功率損耗。 The simulation results of Spice transient analysis of the low power voltage level converter proposed in this work are shown in Figure 4. From the simulation results, it can be confirmed that the low power voltage level converter proposed in this work is not only still The first signal can be quickly and accurately converted into a second signal, and the competition between the pull-up path and the pull-down path of the output (OUT) can be effectively reduced, thereby reducing power loss.
雖然本創作特別揭露並描述了所選之最佳實施例,但舉凡熟悉本技術之人士可明瞭任何形式或是細節上可能的變化均未脫離本創作的精神與範圍。因此,所有相關技術範疇內之改變都包括在本創作之申請專利範圍內。 Although the present invention specifically discloses and describes the selected preferred embodiment, those skilled in the art can understand that any form or details of possible changes can be made without departing from the spirit and scope of this creation. Therefore, all changes within the relevant technical scope are included in the scope of the patent application for this creation.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW107214697U TWM576365U (en) | 2018-10-29 | 2018-10-29 | Low power voltage level converter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW107214697U TWM576365U (en) | 2018-10-29 | 2018-10-29 | Low power voltage level converter |
Publications (1)
Publication Number | Publication Date |
---|---|
TWM576365U true TWM576365U (en) | 2019-04-01 |
Family
ID=66996851
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW107214697U TWM576365U (en) | 2018-10-29 | 2018-10-29 | Low power voltage level converter |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWM576365U (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111900975A (en) * | 2020-08-06 | 2020-11-06 | 中科亿海微电子科技(苏州)有限公司 | Level conversion circuit for converting high-voltage domain signal into low-voltage domain signal |
-
2018
- 2018-10-29 TW TW107214697U patent/TWM576365U/en not_active IP Right Cessation
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111900975A (en) * | 2020-08-06 | 2020-11-06 | 中科亿海微电子科技(苏州)有限公司 | Level conversion circuit for converting high-voltage domain signal into low-voltage domain signal |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWM576365U (en) | Low power voltage level converter | |
TWM616390U (en) | Low power voltage level shifter | |
TWM598009U (en) | Voltage level shifter having output control circuit | |
TWM586017U (en) | Low power level shifter circuit | |
TWM576366U (en) | Level conversion circuit with auxiliary circuit | |
TWM565921U (en) | Voltage level shifter | |
TWM618862U (en) | Voltage level shifter with low power consumption | |
TWM647689U (en) | High speed voltage level converter with low power consumption | |
TWM659069U (en) | Voltage level converter with low power consumption | |
TWM626307U (en) | Contention-reduced level converting circuit | |
TWM645482U (en) | High speed voltage level converter having low power consumption | |
TWM625119U (en) | Voltage level converting circuit with reduced power consumption | |
TWM643324U (en) | Low power level converter with inhibit current circuit | |
TWM601491U (en) | Voltage level shifter with low power consumption | |
TWM649184U (en) | Low voltage to high voltage signal level translator with improved performance | |
TWM587403U (en) | Voltage level converter with low-power consumption | |
TWM643325U (en) | Low power level converter with output control circuit | |
TWM625120U (en) | Voltage level converter with leakage current reduction | |
TWM531694U (en) | Voltage level converter | |
TWM626417U (en) | High-speed low-power level shifter circuit | |
TWM639384U (en) | High-speed low-power level shifter circuit for integrated circuits having multiple power supplies | |
TWM628475U (en) | Low power and high performance voltage level converting circuit | |
TWM626414U (en) | Voltage level converter with stack transistors | |
TWM604082U (en) | Low power voltage level converter | |
TWM635887U (en) | Low-power voltage level converter with contention reduction |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4K | Annulment or lapse of a utility model due to non-payment of fees |