TWI798402B - 肖特基能障二極體 - Google Patents
肖特基能障二極體 Download PDFInfo
- Publication number
- TWI798402B TWI798402B TW108110997A TW108110997A TWI798402B TW I798402 B TWI798402 B TW I798402B TW 108110997 A TW108110997 A TW 108110997A TW 108110997 A TW108110997 A TW 108110997A TW I798402 B TWI798402 B TW I798402B
- Authority
- TW
- Taiwan
- Prior art keywords
- drift layer
- barrier diode
- schottky barrier
- anode electrode
- outer peripheral
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D8/00—Diodes
- H10D8/60—Schottky-barrier diodes
- H10D8/605—Schottky-barrier diodes of the trench conductor-insulator-semiconductor barrier type, e.g. trench MOS barrier Schottky rectifiers [TMBS]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/80—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/20—Electrodes characterised by their shapes, relative sizes or dispositions
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/60—Electrodes characterised by their materials
- H10D64/64—Electrodes comprising a Schottky barrier to a semiconductor
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D8/00—Diodes
- H10D8/01—Manufacture or treatment
- H10D8/051—Manufacture or treatment of Schottky diodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D8/00—Diodes
- H10D8/60—Schottky-barrier diodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/102—Constructional design considerations for preventing surface leakage or controlling electric field concentration
- H10D62/103—Constructional design considerations for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse-biased devices
- H10D62/105—Constructional design considerations for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse-biased devices by having particular doping profiles, shapes or arrangements of PN junctions; by having supplementary regions, e.g. junction termination extension [JTE]
- H10D62/106—Constructional design considerations for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse-biased devices by having particular doping profiles, shapes or arrangements of PN junctions; by having supplementary regions, e.g. junction termination extension [JTE] having supplementary regions doped oppositely to or in rectifying contact with regions of the semiconductor bodies, e.g. guard rings with PN or Schottky junctions
Landscapes
- Electrodes Of Semiconductors (AREA)
Abstract
本發明提供一種不易發生因電場集中引起之絕緣破壞之肖特基能障二極體。
本發明之肖特基能障二極體具備:半導體基板20,其包含氧化鎵;漂移層30,其設置於半導體基板20上,且包含氧化鎵;陽極電極40,其與漂移層30肖特基接觸;及陰極電極50,其與半導體基板20歐姆接觸。漂移層30具有於俯視下包圍陽極電極40之外周溝槽10,外周溝槽10係由與漂移層30逆導電型之半導體材料11嵌埋。如此,若設置由與漂移層30逆導電型之半導體材料11嵌埋之外周溝槽10,則因外周溝槽10之存在而使電場分散。藉此,緩和陽極電極40之角部處之電場集中,故而不易發生絕緣破壞。
Description
本發明係關於一種肖特基能障二極體,尤其是關於一種使用有氧化鎵之肖特基能障二極體。
肖特基能障二極體係一種利用藉由金屬與半導體之接面而產生之肖特基能障之整流元件,與具有PN接面之通常之二極體相比,具有正向電壓較低且開關速度較快之特徵。因此,肖特基能障二極體有時被用作功率裝置用開關元件。
於將肖特基能障二極體用作功率裝置用開關元件之情形時,必須確保充分之反向耐壓,故而有時使用能帶隙更大之碳化矽(SiC)、氮化鎵(GaN)、氧化鎵(Ga2O3)等代替矽(Si)。其中,氧化鎵之能帶隙非常大,大至4.8~4.9eV,絕緣破壞電場亦大至7~8MV/cm,故而使用有氧化鎵之肖特基能障二極體作為功率裝置用開關元件係非常有前景。使用有氧化鎵之肖特基能障二極體之例記載於專利文獻1及2中。
專利文獻2中所記載之肖特基能障二極體具有如下構造:於俯視下與陽極電極重疊之位置設置數個溝槽,利用絕緣膜覆蓋溝槽之內壁。藉由該構造,若施加反向電壓,則位於溝槽間之平台區域(mesa area)成為空乏層,故而漂移層之通道區域被夾斷。藉此,能夠大幅地抑制施加有反向電壓之情形時之漏電流。
[專利文獻1]日本專利特開2017-045969號公報
[專利文獻2]日本專利特開2017-199869號公報
然而,專利文獻1及2中所記載之肖特基能障二極體因電場集中於陽極電極之端部,故而若施加高電壓,則於該部分會發生絕緣破壞。例如於專利文獻2中所記載之肖特基能障二極體中,電場集中於位於端部之溝槽之邊緣部分。
因此,本發明之目的在於提供一種肖特基能障二極體,該肖特基能障二極體係使用有氧化鎵者,不易發生因電場集中引起之絕緣破壞。
本發明之肖特基能障二極體具備:半導體基板,其包含氧化鎵;漂移層,其設置於半導體基板上,且包含氧化鎵;陽極電極,其與漂移層肖特基接觸;及陰極電極,其與半導體基板歐姆接觸;漂移層具有於俯視下包圍陽極電極之外周溝槽,外周溝槽係由與漂移層逆導電型之半導體材料嵌埋。
根據本發明,於漂移層設置有外周溝槽,故而因外周溝槽之存在而使電場分散。並且,外周溝槽係由與漂移層逆導電型之半導體材料嵌埋,故而藉由外周溝槽內之半導體材料與漂移層之電位差,使空乏層擴展至外周溝槽之周圍。藉此,緩和陽極電極之 角部處之電場集中,故而不易發生絕緣破壞。
於本發明中,亦可為漂移層進而具有設置於俯視下與陽極電極重疊之位置之數個中心溝槽。該情形時,數個中心溝槽之內壁亦可由絕緣膜覆蓋。藉此,若施加反向電壓,則位於中心溝槽間之平台區域成為空乏層,漂移層之通道區域被夾斷,故而能夠大幅地抑制施加有反向電壓之情形時之漏電流。
本發明之肖特基能障二極體亦可為進而具備絕緣層,該絕緣層設置於漂移層上,具有使漂移層之一部分露出之開口部,陽極電極經由開口部與漂移層肖特基接觸,並且形成於位於開口部之周緣之絕緣層上。藉此,可獲得所謂之場板構造,故而能夠進一步緩和施加至位於端部之中心溝槽之底部之電場。
於本發明中,外周溝槽之寬度亦可較中心溝槽之寬度寬,外周溝槽之深度亦可較中心溝槽之深度深,外周溝槽與最靠近外周溝槽之中心溝槽之間之平台寬度亦可小於數個中心溝槽間之平台寬度。根據該等構成,進一步緩和電場集中,故而更不易發生絕緣破壞。
如此,根據本發明,能夠提供一種不易發生因電場集中引起之絕緣破壞之使用有氧化鎵之肖特基能障二極體。
10‧‧‧外周溝槽
11‧‧‧半導體材料
20‧‧‧半導體基板
21‧‧‧半導體基板之上表面
22‧‧‧半導體基板之背面
30‧‧‧漂移層
31‧‧‧漂移層之上表面
40‧‧‧陽極電極
50‧‧‧陰極電極
60‧‧‧中心溝槽
60a‧‧‧位於端部之中心溝槽
61‧‧‧絕緣膜
70‧‧‧絕緣層
71‧‧‧開口部
100、200、200A、200B、200C、300‧‧‧肖特基能障二極體
D1、D2‧‧‧深度
E1、E2‧‧‧最大電場
M1、M2‧‧‧平台區域
T‧‧‧膜厚
W1、W2、W3、W4‧‧‧寬度
X‧‧‧X方向
Y‧‧‧Y方向
Z‧‧‧Z方向
圖1係表示本發明之第1實施形態之肖特基能障二極體100之構成的俯視圖。
圖2係沿著圖1之A-A線所得之剖面圖。
圖3係表示本發明之第2實施形態之肖特基能障二極體200之構成的剖面圖。
圖4係表示本發明之第2實施形態之第1變形例之肖特基能障二極體200A之構成的剖面圖。
圖5係表示本發明之第2實施形態之第2變形例之肖特基能障二極體200B之構成的剖面圖。
圖6係表示本發明之第2實施形態之第3變形例之肖特基能障二極體200C之構成的剖面圖。
圖7係表示本發明之第3實施形態之肖特基能障二極體300之構成的剖面圖。
圖8係表示比較例1之模擬結果之圖。
圖9係表示實施例1之模擬結果之圖。
圖10係表示比較例2之模擬結果之圖。
圖11係表示實施例2之模擬結果之圖。
圖12係表示實施例2A之模擬結果之圖。
圖13係表示實施例2B之模擬結果之圖。
圖14係表示實施例2C-1之模擬結果之圖。
圖15係表示實施例2C-2之模擬結果之圖。
圖16係表示比較例3之模擬結果之圖。
圖17係表示實施例3之模擬結果之圖。
圖18係表示溝槽寬度與電場強度之關係之曲線圖。
以下,一面參照隨附圖式,一面對本發明之較佳實施形態進行詳細說明。
圖1係表示本發明之第1實施形態之肖特基能障二極體100之構成的示意性俯視圖。又,圖2係沿著圖1之A-A線所得之示意性剖面圖。
如圖1及圖2所示,本實施形態之肖特基能障二極體100均具備包含氧化鎵(β-Ga2O3)之半導體基板20及漂移層30。對半導體基板20及漂移層30導入有矽(Si)或錫(Sn)作為n型摻雜劑。關於摻雜劑之濃度,半導體基板20高於漂移層30,藉此半導體基板20作為n+層發揮功能,漂移層30作為n-層發揮功能。
半導體基板20係對使用熔融液生長法等形成之塊狀結晶進行切斷加工而成者,其厚度(Z方向上之高度)為250μm左右。對半導體基板20之平面尺寸並無特別限定,一般根據元件中流通之電流量而選擇,若正向之最大電流量為20A左右,則只要將X方向上之寬度及Y方向上之寬度設為2.4mm左右即可。
半導體基板20具有:上表面21,其於安裝時位於上表面側;背面22,其為上表面21之相反側,於安裝時位於下表面側。於上表面21之整個面形成有漂移層30。漂移層30係於半導體基板20之上表面21使用反應性濺鍍、脈衝雷射沈積(PLD,Pulsed Laser Deposition)法、分子束磊晶(MBE,Molecular Beam Epitaxy)法、有機金屬化學氣相沈積(MOCVD,Metal Organic Chemical Vapor Deposition)法、氫化物氣相磊晶(HVPE,Hydride Vapor-Phase Epitaxy)法等使氧化鎵磊晶生長而成之薄膜。對漂移層30之膜厚並無特別限定,一般根據元件之反向耐受電壓而選擇,為了確保600V左右 之耐壓,例如設為7μm左右即可。
於漂移層30之上表面31形成有與漂移層30肖特基接觸之陽極電極40。陽極電極40例如包含鉑(Pt)、鈀(Pd)、金(Au)、鎳(Ni)等金屬。陽極電極40亦可為使不同金屬膜積層而成之多層構造,例如Pt/Au、Pt/Al、Pd/Au、Pd/Al、Pt/Ti/Au或Pd/Ti/Au。另一方面,於半導體基板20之背面22,設置有與半導體基板20歐姆接觸之陰極電極50。陰極電極50例如包含鈦(Ti)等金屬。陰極電極50亦可為使不同金屬膜積層而成之多層構造,例如Ti/Au或Ti/Al。
進而,於漂移層30,於俯視下(自Z方向觀察)不與陽極電極40重疊之位置且包圍陽極電極40之位置設置有外周溝槽10。外周溝槽10可藉由自上表面31側對漂移層30進行蝕刻而形成。
外周溝槽10係由與漂移層30逆導電型之半導體材料11嵌埋。於本實施形態中,漂移層30之導電型為n型,故而嵌埋至外周溝槽10之半導體材料11之導電型為p型。作為p型之半導體材料,除Si、GaAs、SiC、Ge、ZnSe、CdS、InP、SiGe等,可列舉NiO、Cu2O、Ag2O等p型氧化物半導體。p型氧化物半導體具有無氧化之問題之優點,其中,NiO係僅表現出p型導電性之特殊之材料,就品質之穩定化之觀點而言係最佳之材料。又,NiO之能帶隙大至3.7eV,故而作為發揮氧化鎵之高耐壓之材料較理想。進而,為了控制受體濃度,亦可對NiO(99.9%)添加0.2~1.0mol%左右之Li或La作為摻雜劑。受體濃度較佳為5×1017cm-3以上,就製造穩定性之方面而言更佳為5×1018cm-3以上。其原因在於:若受體濃度較低,則有外周溝槽10之內部空乏化,而無法獲得所需之功能之虞。因此,受體濃度越高越佳。然而,若受體濃度超過1×1022cm-3,則有膜之特性劣化之虞,故而較佳為5×1021cm-3左右以下。嵌埋至外周溝槽10之半導體材料11亦可不與上述陽極電極連接而為浮動狀態。
此處,若構成半導體材料11之p型氧化物為完全之非晶狀態,則有於器件製造中之加熱步驟中會意外地結晶化,而特性變得不穩定之虞。若考慮該方面,則於在外周溝槽10嵌埋p型氧化物之時間點,例如使之以體積比計50%左右結晶化,藉此能夠降低器件製造中之加熱步驟中之結晶化之影響。
外周溝槽10係為了緩和集中於陽極電極40之端部之電場而設置,於本實施形態中,外周溝槽10之內部由半導體材料11嵌埋,故而因半導體材料11與漂移層30之電位差,使空乏層擴展至外周溝槽10之周圍。
如此,本實施形態之肖特基能障二極體100於漂移層30設置有外周溝槽10,外周溝槽10之內部由與漂移層30逆導電型之半導體材料11嵌埋,故而藉由外周溝槽10及擴展至其周圍之空乏層使集中於陽極電極40之端部之電場緩和。藉此,能夠防止因電場集中引起之絕緣破壞。
圖3係表示本發明之第2實施形態之肖特基能障二極體200之構成的示意性剖面圖。
如圖3所示,於第2實施形態之肖特基能障二極體200中,在漂移層30設置有數個中心溝槽60。中心溝槽60均設置於俯視下與陽極電極40重疊之位置,其內壁由包含HfO2等之絕緣膜61覆蓋。中心溝槽60之內部由導電性材料嵌埋。嵌埋中心溝槽60之導電性材料可為與陽極電極40相同之材料,亦可為高濃度地摻雜之多晶Si或Ni、Au等金屬材料。於本實施形態中,因於漂移層30設置有數個中心溝槽60,故而作為陽極電極40之材料,可使用鉬(Mo)或銅(Cu)等工作函數較低之材料。又,於本實施形態中,可將漂移層30之摻雜劑濃度提高至5×1016cm-3左右。其他構成係與第1實施形態之肖特基能障二極體100基本相同,故而對相同要素標註相同符號,省略重複說明。
漂移層30中之位於中心溝槽60間之部分構成平台區域M1。若對陽極電極40與陰極電極50之間施加反向電壓,則平台區域M1成為空乏層,故而漂移層30之通道區域被夾斷。藉此,大幅地抑制施加有反向電壓之情形時之漏電流。
於具有此種構造之肖特基能障二極體中,電場集中於位於端部之中心溝槽60a之底部,該部分容易絕緣破壞。然而,於本實施形態之肖特基能障二極體200中,以包圍數個中心溝槽60之方式,於數個中心溝槽60之進而外周位置設置有外周溝槽10,故而使位於端部之中心溝槽60a之電場緩和。並且,因外周溝槽10之內部由與漂移層30逆導電型之半導體材料11嵌埋,故而更有效地緩和位於端部之中心溝槽60a之電場。
如圖3所示,漂移層30中之處於位於端部之中心溝槽60a與外周溝槽10之間之部分構成平台區域M2。關於上述平台區域M1之平台寬度W1與平台區域M2之平台寬度W2之關係並無特別限定, 較佳為W1≧W2,更佳為W1>W2。
其原因在於:為了降低導通電阻,必須某種程度確保平台區域M1之平台寬度W1,與此相對,關於平台區域M2,平台寬度W2越窄則使電場分散之效果越高。但是,平台區域M2之平台寬度W2之下限受到加工精度限制。
又,關於中心溝槽60之寬度W3與外周溝槽10之寬度W4之關係亦無特別限定,較佳為W3≦W4,更佳為W3<W4。
其原因在於:為了降低導通電阻,必須使中心溝槽60之寬度W3某程度變窄,與此相對,關於外周溝槽10,寬度W4越大則使電場分散之效果越高。
如此,本實施形態之肖特基能障二極體200不僅具有利用第1實施形態之肖特基能障二極體100所得之效果,亦具有能夠削減施加有反向電壓之情形時之漏電流之效果。又,於本實施形態中,外周溝槽10之深度D2與中心溝槽60之深度D1相同,因此,可利用同一步驟形成該等溝槽。
但是,於本發明中,外周溝槽10之深度D2與中心溝槽60之深度D1相同並非必須。因此,可如圖4所示之第1變形 例之肖特基能障二極體200A般,使外周溝槽10之深度D2較中心溝槽60之深度D1淺,亦可如圖5所示之第2變形例之肖特基能障二極體200B般,使外周溝槽10之深度D2較中心溝槽60之深度D1深。外周溝槽10之深度D2越深,則使集中於位於端部之中心溝槽60a之電場緩和之效果越大。但是,若外周溝槽10之深度D2過深,則漂移層30之殘留膜厚會變得過薄,於該部分容易發生破壞。若考慮此點,漂移層30之膜厚T與外周溝槽10之深度D2之差(T-D2)較佳為2μm以上。
進而,對外周溝槽10之數量亦無特別限定,亦可如圖6所示之第3變形例之肖特基能障二極體200C般,設置數個外周溝槽10。於設置有數個外周溝槽10之情形時,電場集中於位於最外周之外周溝槽10。又,集中於位於端部之中心溝槽60a之電場係外周溝槽10之數量越多,則越能有效地緩和。
於本實施形態中,利用絕緣膜61覆蓋中心溝槽60之內壁,並且利用與陽極電極40相同之材料嵌埋中心溝槽60之內部,但亦可不使用絕緣膜61,而利用逆導電型(於本實施形態中為p型)之半導體材料嵌埋。
圖7係表示本發明之第3實施形態之肖特基能障二極體300之構成之示意性剖面圖。
如圖7所示,第3實施形態之肖特基能障二極體300於在漂移層30上設置有絕緣層70之方面,與第2實施形態之肖特基能障二極體200不同。其他構成則與第2實施形態之肖特基能障 二極體200基本相同,故而對相同要素標註相同符號,省略重複說明。
絕緣層70包含氧化矽等絕緣材料,以覆蓋漂移層30之上表面31之方式形成,並且具有使中心溝槽60露出之開口部71。而且,陽極電極40之一部分形成於絕緣層70上,並且其餘部分經由開口部71與漂移層30肖特基接觸。藉此,可獲得所謂之場板構造,故而能夠進一步緩和施加至位於端部之溝槽60a之底部之電場。
以上對本發明之較佳實施形態進行了說明,但本發明並不限定於上述實施形態,可於不脫離本發明之主旨之範圍內進行各種變更,當然,其等亦包含於本發明之範圍內。
假定具有與圖1及圖2所示之肖特基能障二極體100相同之構造之實施例1的模擬模型,模擬對陽極電極40與陰極電極50之間施加有反向電壓之情形時之電場強度。關於半導體基板20之摻雜劑濃度係設為1×1018cm-3,作為漂移層30之摻雜劑濃度係設為1×1016cm-3。漂移層30之厚度係設為7μm。作為嵌埋至外周溝槽10之半導體材料11,係使用受體濃度為1×1019cm-3之NiO。又,為了進行比較,假定具有自實施例1之模擬模型削除外周溝槽10及半導體材料11後之構造之比較例1之模擬模型,模擬對陽極電極40與陰極電極50之間施加有反向電壓之情形時之電場強度。
圖8係表示比較例1之模擬結果之圖。於比較例1之模擬模型中,電場集中於陽極電極40之角部,其最大值為2.8MV/cm。
圖9係表示實施例1之模擬結果之圖。於實施例1之模擬模型中,電場亦集中於陽極電極40之角部,但藉由外周溝槽10及擴展至其周圍之空乏層使電場分散,結果,其最大值降低至0.4MV/cm。
假定具有與圖3所示之肖特基能障二極體200相同之構造之實施例2的模擬模型,模擬對陽極電極40與陰極電極50之間施加反向電壓之情形時之電場強度。此處,中心溝槽60之深度D1及寬度W3係分別設為3μm及1μm,平台區域M1之平台寬度W1係設為2μm,形成於中心溝槽60之內壁之絕緣膜61係設為厚度50nm之HfO2膜。另一方面,外周溝槽10之深度D2及寬度W4係分別設為3μm及2μm,平台區域M2之平台寬度W2係設為2μm。關於半導體基板20之摻雜劑濃度係設為1×1018cm-3,作為漂移層30之摻雜劑濃度係設為5×1016cm-3。漂移層30之厚度係設為7μm。其他方面係與實施例1之模擬模型相同之條件。
又,為了進行比較,假定具有自實施例2之模擬模型削除外周溝槽10及半導體材料11後之構造之比較例2之模擬模型,模擬對陽極電極40與陰極電極50之間施加有反向電壓之情形時之電場強度。
圖10係表示比較例2之模擬結果之圖。於比較例2之模擬模型中,電場集中於位於端部之中心溝槽60a之底部,其最大值為8.4MV/cm。
圖11係表示實施例2之模擬結果之圖。於實施例2之模擬模型中,電場亦集中於位於端部之中心溝槽60a之底部,但 藉由外周溝槽10及擴展至其周圍之空乏層使電場分散,結果,其最大值降低至6.8MV/cm。
其次,假定具有與圖4所示之肖特基能障二極體200A相同之構造之實施例2A的模擬模型、及具有與圖5所示之肖特基能障二極體200B相同之構造之實施例2B的模擬模型,模擬對陽極電極40與陰極電極50之間施加有反向電壓之情形時之電場強度。實施例2A除了外周溝槽10之深度D2為1μm以外,與實施例2之條件相同。又,實施例2B除了外周溝槽10之深度D2為5μm以外,與實施例2之條件相同。
圖12及圖13分別係表示實施例2A及2B之模擬結果之圖。於實施例2A及2B之模擬模型中,位於端部之中心溝槽60a中之電場之最大值分別為8.0V/cm及5.8V/cm。藉此,確認到外周溝槽10之深度D2越深,則集中於位於端部之中心溝槽60a之電場越進一步緩和。
進而,如圖6所示之肖特基能障二極體200C般,假定具備數個外周溝槽10之實施例2C-1、2C-2之模擬模型,模擬對陽極電極40與陰極電極50之間施加有反向電壓之情形時之電場強度。實施例2C-1除了外周溝槽10之數量為3個以外,與實施例2之條件相同。又,實施例2C-2除了外周溝槽10之數量為5個以外,與實施例2之條件相同。
圖14及圖15分別係表示實施例2C-1及2C-2之模擬結果之圖。如圖14及圖15所示,確認到於設置數個外周溝槽10之情形時,電場集中於位於最外周之外周溝槽10。
假定具有與圖7所示之肖特基能障二極體300相同之構造之實施例3的模擬模型,模擬對陽極電極與陰極電極之間施加有反向電壓之情形時之電場強度。此處,外周溝槽10之寬度W4係設為10μm,平台區域M2之平台寬度W2係設為2μm。作為絕緣層70,係使用厚度300nm之氧化矽,將場板長設為10μm。其他方面係設為與實施例2之模擬模型相同之條件。
又,為了進行比較,假定具有自實施例3之模擬模型削除外周溝槽10及半導體材料11後之構造之比較例3的模擬模型,模擬對陽極電極40與陰極電極50之間施加有反向電壓之情形時之電場強度。
圖16係表示比較例3之模擬結果之圖。於比較例3之模擬模型中,電場集中於位於端部之中心溝槽60a之底部,其最大值為8.1MV/cm。
圖17係表示實施例3之模擬結果之圖。於實施例3之模擬模型中,電場亦集中於位於端部之中心溝槽60a之底部,但藉由外周溝槽10及擴展至其周圍之空乏層使電場分散,結果,其最大值降低至6.8MV/cm。
圖18係表示外周溝槽10之寬度W4與電場強度之關係之曲線圖。於圖18中,符號E2係表示施加至位於端部之中心溝槽60a之附近之漂移層30的最大電場,符號E1係表示施加至外周溝槽10之附近之漂移層30之最大電場。
如圖18所示,關於施加至外周溝槽10之附近之漂移層30之電場,外周溝槽10之寬度W4越寬,則電場強度越緩和。具體而言,可知於外周溝槽10之寬度W4未滿2μm之區域,藉由 使寬度W4變寬而產生之電場強度之緩和效果顯著,若寬度W4為2μm以上,則藉由使寬度W4變寬而產生之電場強度之緩和效果變緩,若寬度W4為5μm左右,則藉由使寬度W4變寬而產生之電場強度之緩和效果大致飽和。若考慮該方面,則可以說外周溝槽10之寬度W4較佳為設為2μm以上,更佳為設為5μm以上。與此相對,關於施加至位於端部之中心溝槽60a之附近之漂移層30之電場,無論外周溝槽10之寬度W4如何均為固定。
10‧‧‧外周溝槽
11‧‧‧半導體材料
20‧‧‧半導體基板
21‧‧‧半導體基板之上表面
22‧‧‧半導體基板之背面
30‧‧‧漂移層
31‧‧‧漂移層之上表面
40‧‧‧陽極電極
50‧‧‧陰極電極
100‧‧‧肖特基能障二極體
X‧‧‧X方向
Z‧‧‧Z方向
Claims (7)
- 一種肖特基能障二極體,其特徵在於具備:半導體基板,其包含氧化鎵;漂移層,其設置於上述半導體基板上,且包含氧化鎵;陽極電極,其與上述漂移層肖特基接觸;及陰極電極,其與上述半導體基板歐姆接觸;且上述漂移層具有於俯視下包圍上述陽極電極之外周溝槽,上述外周溝槽係由與上述漂移層逆導電型之半導體材料嵌埋;上述半導體材料,係不與上述陽極電極連接而為浮動狀態。
- 如請求項1之肖特基能障二極體,其中,上述漂移層進而具有設置於俯視下與上述陽極電極重疊之位置之數個中心溝槽。
- 如請求項2之肖特基能障二極體,其中,上述數個中心溝槽之內壁由絕緣膜覆蓋。
- 如請求項2之肖特基能障二極體,其進而具備絕緣層,該絕緣層設置於上述漂移層上,具有使上述漂移層之一部分露出之開口部,且上述陽極電極經由上述開口部與上述漂移層肖特基接觸,並且形成於位於上述開口部之周緣之上述絕緣層上。
- 如請求項2之肖特基能障二極體,其中,上述外周溝槽之寬度較上述中心溝槽之寬度寬。
- 如請求項2之肖特基能障二極體,其中,上述外周溝槽與最靠近上述外周溝槽之上述中心溝槽之間之平台寬度較上述數個中心溝槽間之平台寬度小。
- 如請求項1至6中任一項之肖特基能障二極體,其中,上述 逆導電型之半導體材料為氧化物半導體。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018067392A JP7165322B2 (ja) | 2018-03-30 | 2018-03-30 | ショットキーバリアダイオード |
JP2018-067392 | 2018-03-30 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201942976A TW201942976A (zh) | 2019-11-01 |
TWI798402B true TWI798402B (zh) | 2023-04-11 |
Family
ID=68058909
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW108110997A TWI798402B (zh) | 2018-03-30 | 2019-03-28 | 肖特基能障二極體 |
Country Status (6)
Country | Link |
---|---|
US (1) | US11469334B2 (zh) |
EP (1) | EP3780119A4 (zh) |
JP (1) | JP7165322B2 (zh) |
CN (1) | CN112005384B (zh) |
TW (1) | TWI798402B (zh) |
WO (1) | WO2019188188A1 (zh) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6966739B2 (ja) * | 2018-10-23 | 2021-11-17 | Tdk株式会社 | ショットキーバリアダイオード |
JP6966740B2 (ja) * | 2018-10-23 | 2021-11-17 | Tdk株式会社 | ショットキーバリアダイオード |
JP7353957B2 (ja) * | 2019-12-13 | 2023-10-02 | ルネサスエレクトロニクス株式会社 | 半導体装置及びその製造方法 |
JP7371484B2 (ja) * | 2019-12-18 | 2023-10-31 | Tdk株式会社 | ショットキーバリアダイオード |
CN115244714A (zh) | 2020-03-03 | 2022-10-25 | 罗姆股份有限公司 | 半导体器件和包含它的半导体封装以及半导体器件的制造方法 |
TW202207600A (zh) * | 2020-07-10 | 2022-02-16 | 日商Flosfia股份有限公司 | 電力轉換電路及電力轉換系統 |
JP2022129918A (ja) * | 2021-02-25 | 2022-09-06 | Tdk株式会社 | ショットキーバリアダイオード |
JP2022129917A (ja) * | 2021-02-25 | 2022-09-06 | Tdk株式会社 | ショットキーバリアダイオード |
JP2023079551A (ja) * | 2021-11-29 | 2023-06-08 | Tdk株式会社 | ショットキーバリアダイオード |
WO2024029001A1 (ja) * | 2022-08-03 | 2024-02-08 | 三菱電機株式会社 | 半導体装置、および、半導体装置の製造方法 |
JP2024033852A (ja) * | 2022-08-31 | 2024-03-13 | Tdk株式会社 | ショットキーバリアダイオード |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200522350A (en) * | 2003-12-25 | 2005-07-01 | Sanyo Electric Co | Semiconductor device |
CN106887470A (zh) * | 2017-01-23 | 2017-06-23 | 西安电子科技大学 | Ga2O3肖特基二极管器件结构及其制作方法 |
TW201740568A (zh) * | 2016-04-28 | 2017-11-16 | 日商.田村製作所股份有限公司 | 溝槽式金氧半型肖特基二極體 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3914785B2 (ja) * | 2002-02-20 | 2007-05-16 | 新電元工業株式会社 | ダイオード素子 |
US8372738B2 (en) * | 2009-10-30 | 2013-02-12 | Alpha & Omega Semiconductor, Inc. | Method for manufacturing a gallium nitride based semiconductor device with improved termination scheme |
TWI497602B (zh) * | 2011-02-15 | 2015-08-21 | Tzu Hsiung Chen | 溝渠式蕭基二極體及其製作方法 |
US20120217541A1 (en) * | 2011-02-24 | 2012-08-30 | Force Mos Technology Co., Ltd. | Igbt with integrated mosfet and fast switching diode |
US20160254357A1 (en) * | 2013-10-24 | 2016-09-01 | Rohm Co., Ltd. | Semiconductor device and semiconductor package |
EP2945192A1 (en) * | 2014-05-14 | 2015-11-18 | Nxp B.V. | Semiconductive device and associated method of manufacture |
CN110828552B (zh) | 2014-07-22 | 2024-04-12 | 株式会社Flosfia | 结晶性半导体膜和板状体以及半导体装置 |
WO2016075927A1 (ja) * | 2014-11-11 | 2016-05-19 | 出光興産株式会社 | 新規な積層体 |
JP2017045969A (ja) | 2015-08-28 | 2017-03-02 | 株式会社タムラ製作所 | ショットキーバリアダイオード |
JP6545047B2 (ja) * | 2015-09-02 | 2019-07-17 | 三菱電機株式会社 | 半導体装置および半導体装置の製造方法 |
WO2019003861A1 (ja) * | 2017-06-29 | 2019-01-03 | 三菱電機株式会社 | 酸化物半導体装置、および、酸化物半導体装置の製造方法 |
JP6484304B2 (ja) * | 2017-08-09 | 2019-03-13 | ローム株式会社 | ショットキバリアダイオード |
-
2018
- 2018-03-30 JP JP2018067392A patent/JP7165322B2/ja active Active
-
2019
- 2019-03-11 WO PCT/JP2019/009676 patent/WO2019188188A1/ja active Application Filing
- 2019-03-11 US US17/041,127 patent/US11469334B2/en active Active
- 2019-03-11 CN CN201980024311.2A patent/CN112005384B/zh active Active
- 2019-03-11 EP EP19775799.0A patent/EP3780119A4/en active Pending
- 2019-03-28 TW TW108110997A patent/TWI798402B/zh active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200522350A (en) * | 2003-12-25 | 2005-07-01 | Sanyo Electric Co | Semiconductor device |
TW201740568A (zh) * | 2016-04-28 | 2017-11-16 | 日商.田村製作所股份有限公司 | 溝槽式金氧半型肖特基二極體 |
CN106887470A (zh) * | 2017-01-23 | 2017-06-23 | 西安电子科技大学 | Ga2O3肖特基二极管器件结构及其制作方法 |
Also Published As
Publication number | Publication date |
---|---|
CN112005384B (zh) | 2024-02-23 |
US20210119062A1 (en) | 2021-04-22 |
EP3780119A4 (en) | 2021-12-22 |
US11469334B2 (en) | 2022-10-11 |
WO2019188188A1 (ja) | 2019-10-03 |
CN112005384A (zh) | 2020-11-27 |
JP7165322B2 (ja) | 2022-11-04 |
EP3780119A1 (en) | 2021-02-17 |
JP2019179815A (ja) | 2019-10-17 |
TW201942976A (zh) | 2019-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI798402B (zh) | 肖特基能障二極體 | |
CN111279490B (zh) | 肖特基势垒二极管 | |
CN110352498B (zh) | 沟槽mos型肖特基二极管 | |
CN112913035B (zh) | 肖特基势垒二极管 | |
CN112913034B (zh) | 肖特基势垒二极管 | |
CN111095570B (zh) | 肖特基势垒二极管 | |
WO2023095396A1 (ja) | ジャンクションバリアショットキーダイオード | |
TWI860747B (zh) | 肖特基能障二極體 | |
WO2023095395A1 (ja) | ショットキーバリアダイオード | |
TWI803189B (zh) | 肖特基能障二極體 | |
WO2021186936A1 (ja) | ショットキーバリアダイオード |