TWI671431B - Showerhead for thin-film deposition and thin-film deposition apparatus comprising the same - Google Patents
Showerhead for thin-film deposition and thin-film deposition apparatus comprising the same Download PDFInfo
- Publication number
- TWI671431B TWI671431B TW104121230A TW104121230A TWI671431B TW I671431 B TWI671431 B TW I671431B TW 104121230 A TW104121230 A TW 104121230A TW 104121230 A TW104121230 A TW 104121230A TW I671431 B TWI671431 B TW I671431B
- Authority
- TW
- Taiwan
- Prior art keywords
- film deposition
- thin film
- gas
- gas supply
- exhaust
- Prior art date
Links
Landscapes
- Chemical Vapour Deposition (AREA)
Abstract
一種薄膜沉積用的噴灑頭,包括一上表面及與該上表面相對的一下表面;複數個第一排氣孔位於該下表面;一進氣口,可供一第一製程氣體經由該進氣口輸送至此些第一排氣孔;及一氣體供應管路,連接於此進氣口與此些第一排氣孔之間,使得此第一製程氣體可經由此氣體供應管路進入此些第一排氣孔噴灑出來,其中一第一排氣孔之一排氣方向相對於此下表面的一法線傾斜一銳角β。一種薄膜沉積裝置包括上述薄膜沉積用的噴灑頭亦予提供。A spraying head for thin film deposition includes an upper surface and a lower surface opposite to the upper surface; a plurality of first exhaust holes are located on the lower surface; an air inlet for a first process gas to pass through the air inlet Port to the first exhaust holes; and a gas supply pipe connected between the air inlet and the first exhaust holes, so that the first process gas can enter the gas through the gas supply pipe The first exhaust hole is sprayed out, and an exhaust direction of one of the first exhaust holes is inclined at an acute angle β with respect to a normal line of the lower surface. A thin film deposition apparatus including the above-mentioned spray head for thin film deposition is also provided.
Description
本發明是有關於一種薄膜沉積用的噴灑頭以及含有此噴灑頭的薄膜沉積裝置。 The invention relates to a spray head for thin film deposition and a thin film deposition device containing the spray head.
傳統製作薄膜發光二極體時,可利用分子束磊晶製程(Molecular Beam Epitaxy;MBE)、化學氣相沉積法製程(Chemical Vapor Deposition;CVD)、電漿輔助化學氣相沉積製程(Plasma Enhanced Chemical Vapor Deposition;PECVD)、原子層磊晶製程(Atomic Layer Epitaxy;ALE)或原子層沉積製程(Atomic Layer Deposition;ALD)來生長構成發光二極體所需要的各種薄膜。其中,利用原子層沉積製程以及電漿輔助化學氣相沉積製程來生長構成發光二極體所需要的各種薄膜已經逐漸成為趨勢。 When traditionally manufacturing thin-film light-emitting diodes, molecular beam epitaxy (MBE), chemical vapor deposition (CVD), and plasma-assisted chemical vapor deposition (Plasma Enhanced Chemical) can be used. Vapor Deposition (PECVD), Atomic Layer Epitaxy (ALE), or Atomic Layer Deposition (ALD) to grow various thin films required to form light emitting diodes. Among them, the use of atomic layer deposition processes and plasma-assisted chemical vapor deposition processes to grow various thin films required to form light-emitting diodes has gradually become a trend.
對於現今製程技術而言,原子層沉積製程與電漿輔助化學氣相沉積製程分屬兩個不同製程腔體,不僅設備成 本高,在元件轉移(transfer)的過程中,未完成封裝的發光二極體元件會暴露於環境中,造成薄膜品質的降低。薄膜沉積裝置。 For today's process technology, the atomic layer deposition process and the plasma-assisted chemical vapor deposition process belong to two different process chambers. This is a high cost. In the process of element transfer, the light-emitting diode element that has not been completely packaged is exposed to the environment, resulting in a reduction in film quality. Thin film deposition device.
本發明提供一種薄膜沉積用的噴灑頭,以及包含此噴灑頭之薄膜沉積裝置。此薄膜沉積用的噴灑頭,包括一上表面及與該上表面相對的一下表面;複數個第一排氣孔位於該下表面;一進氣口,可供一第一製程氣體經由該進氣口輸送至此些第一排氣孔;及一氣體供應管路,連接於此進氣口與此些第一排氣孔之間,使得此第一製程氣體可經由此氣體供應管路進入此些第一排氣孔噴灑出來,其中一第一排氣孔之一排氣方向相對於此下表面的一法線傾斜一銳角β。 The invention provides a spray head for thin film deposition, and a thin film deposition device including the spray head. The spray head for film deposition includes an upper surface and a lower surface opposite to the upper surface; a plurality of first exhaust holes are located on the lower surface; and an air inlet is provided for a first process gas to pass through the air inlet. Port to the first exhaust holes; and a gas supply pipe connected between the air inlet and the first exhaust holes, so that the first process gas can enter the gas through the gas supply pipe The first exhaust hole is sprayed out, and an exhaust direction of one of the first exhaust holes is inclined at an acute angle β with respect to a normal line of the lower surface.
10‧‧‧半導體基底 10‧‧‧ semiconductor substrate
20‧‧‧晶核層 20‧‧‧Nuclear layer
30‧‧‧緩衝層 30‧‧‧ buffer layer
40‧‧‧n型氮化鎵層(n-GaN) 40‧‧‧n-type GaN layer (n-GaN)
50‧‧‧主動層 50‧‧‧Active Level
100‧‧‧薄膜沉積裝置 100‧‧‧ thin film deposition device
110‧‧‧上腔體 110‧‧‧ Upper cavity
110A‧‧‧上腔體上部件 110A‧‧‧ Upper cavity upper part
110B‧‧‧上腔體下部件 110B‧‧‧ Upper cavity lower part
115‧‧‧第二製程氣體導管 115‧‧‧ second process gas conduit
120‧‧‧下腔體 120‧‧‧ lower cavity
125‧‧‧第一製程氣體導管 125‧‧‧First process gas conduit
130‧‧‧固定裝置 130‧‧‧Fixed device
135‧‧‧偏壓電極 135‧‧‧ bias electrode
140‧‧‧承載座 140‧‧‧bearing seat
145‧‧‧阻氣環 145‧‧‧Air blocking ring
148‧‧‧抽引流道 148‧‧‧Drawing channel
150‧‧‧氣相沉積用的噴灑頭 150‧‧‧Spray head for vapor deposition
150A‧‧‧第一階氣盤 150A‧‧‧first stage air plate
150B‧‧‧第二階氣盤 150B‧‧‧Second-stage air disc
150A1‧‧‧第一上表面 150A1‧‧‧First upper surface
150A2‧‧‧第一下表面 150A2‧‧‧First lower surface
150B1‧‧‧第二上表面 150B1‧‧‧Second upper surface
150B2‧‧‧第二下表面 150B2‧‧‧Second lower surface
151‧‧‧第一凹穴 151‧‧‧The first recess
152‧‧‧第二凹穴 152‧‧‧Second Recess
153‧‧‧第一排氣孔 153‧‧‧First exhaust hole
154‧‧‧第二排氣孔 154‧‧‧Second exhaust hole
160‧‧‧主氣體供應管 160‧‧‧Main gas supply pipe
161‧‧‧第一傾斜管壁 161‧‧‧The first inclined pipe wall
162‧‧‧分支氣體供應管 162‧‧‧ Branch gas supply pipe
163‧‧‧氣孔 163‧‧‧Stoma
164‧‧‧歧管 164‧‧‧ Manifold
164’‧‧‧彎曲歧管 164’‧‧‧ curved manifold
164A‧‧‧彎曲部 164A‧‧‧Bend
164B‧‧‧垂直部 164B‧‧‧Vertical
165‧‧‧第一製程氣體進氣口 165‧‧‧First process gas inlet
166‧‧‧第一開口 166‧‧‧First opening
167‧‧‧阻流塊 167‧‧‧block
170‧‧‧電漿氣體分散盤 170‧‧‧ Plasma gas dispersion plate
170A‧‧‧第一電漿氣體分散盤 170A‧‧‧The first plasma gas dispersion plate
170B‧‧‧第二電漿氣體分散盤 170B‧‧‧Second Plasma Gas Dispersion Plate
170C‧‧‧第三電漿氣體分散盤 170C‧‧‧The third plasma gas dispersion plate
172‧‧‧第三排氣孔 172‧‧‧Third exhaust hole
174‧‧‧第四排氣孔 174‧‧‧ Fourth exhaust hole
176‧‧‧第五排氣孔 176‧‧‧Fifth exhaust hole
177‧‧‧偏壓電極 177‧‧‧ bias electrode
177A‧‧‧介電層 177A‧‧‧Dielectric layer
177B‧‧‧金屬電極 177B‧‧‧metal electrode
177C‧‧‧介電層 177C‧‧‧Dielectric layer
178‧‧‧石英固定環 178‧‧‧Quartz fixing ring
180‧‧‧進氣室 180‧‧‧air inlet
190‧‧‧第二製程氣體 190‧‧‧second process gas
200‧‧‧基板 200‧‧‧ substrate
300‧‧‧第一供氣系統 300‧‧‧first gas supply system
310‧‧‧第一前驅物氣體供應源 310‧‧‧First precursor gas supply source
315‧‧‧第一高壓管 315‧‧‧The first high pressure pipe
320‧‧‧第二前驅物氣體供應源 320‧‧‧Second precursor gas supply source
325‧‧‧第二高壓管 325‧‧‧Second high pressure pipe
330‧‧‧潔淨氣體供應源 330‧‧‧Clean gas supply source
335‧‧‧第三高壓管 335‧‧‧The third high pressure pipe
350‧‧‧高壓控制閥 350‧‧‧High pressure control valve
400‧‧‧第二供氣系統 400‧‧‧second gas supply system
410‧‧‧第二製程氣體供應源 410‧‧‧Second process gas supply source
415‧‧‧第四高壓管 415‧‧‧The fourth high-pressure pipe
450‧‧‧高壓控制閥 450‧‧‧High pressure control valve
500‧‧‧抽氣泵 500‧‧‧Air pump
550‧‧‧抽氣管 550‧‧‧Exhaust pipe
600‧‧‧第二半導體層 600‧‧‧Second semiconductor layer
61‧‧‧第一電極 61‧‧‧first electrode
62‧‧‧第二電極 62‧‧‧Second electrode
620‧‧‧金屬層 620‧‧‧metal layer
640‧‧‧石墨烯層 640‧‧‧graphene layer
650‧‧‧石墨烯層 650‧‧‧graphene layer
N1‧‧‧第一法線 N1‧‧‧First Normal
N2‧‧‧第二法線 N2‧‧‧second normal
900‧‧‧腔體 900‧‧‧ Cavity
第1圖顯示的是根據本發明的薄膜沉積裝置的剖面示意圖。 FIG. 1 is a schematic cross-sectional view of a thin film deposition apparatus according to the present invention.
第2A圖顯示的是第1圖所示的薄膜沉積裝置用的噴灑頭150的第一階氣盤150A和第二階氣盤150B的俯視圖。 FIG. 2A is a plan view of the first-stage gas plate 150A and the second-stage gas plate 150B of the sprinkler head 150 for the thin-film deposition apparatus shown in FIG. 1.
第2B圖顯示的是第2A圖所示的第一階氣盤150A和位在B-B’剖面線上的第一排氣孔153及第二排氣孔154的排氣方向示意圖。 FIG. 2B shows the exhaust directions of the first-stage air disc 150A and the first exhaust holes 153 and the second exhaust holes 154 on the B-B 'section line shown in FIG. 2A.
第2C圖顯示的是第2A圖所示的第一階氣盤150A和第二階氣盤150B組合成氣相沉基用的噴灑頭150且沿B-B’剖面線所呈現的剖面示意圖。 FIG. 2C shows a schematic cross-sectional view of the first-stage air disc 150A and the second-stage air disc 150B shown in FIG. 2A, which are combined into a vapor-sinking sprinkler head 150 along a section line B-B '.
第2D圖顯示的是第1圖所示的電漿氣體分散盤170剖面放大圖。 FIG. 2D is an enlarged sectional view of the plasma gas dispersion plate 170 shown in FIG. 1.
第2E圖及第2E’圖顯示的是第2D圖之偏壓電極177及電漿產生部的詳細剖面圖示意圖。 Figures 2E and 2E 'show detailed sectional views of the bias electrode 177 and the plasma generating portion of Figure 2D.
第2F圖顯示的是沿第2A圖所示的第二階氣盤150B的A-A’剖面線所呈現的剖面示意圖。 Fig. 2F is a schematic cross-sectional view taken along the A-A 'section line of the second-stage air disc 150B shown in Fig. 2A.
第3圖顯示的是第1圖所示的承載座140的俯視圖。 FIG. 3 shows a top view of the carrier 140 shown in FIG. 1.
第4圖顯示的是根據本發明以進行第一薄膜沉積模式時,薄膜沉積裝置內的製程氣體流動示意圖。 FIG. 4 is a schematic diagram of a process gas flow in a thin film deposition apparatus when a first thin film deposition mode is performed according to the present invention.
第5圖顯示的是根據本發明以進行第二薄膜沉積模式時,薄膜沉積裝置內的製程氣體流動示意圖。 FIG. 5 is a schematic diagram of a process gas flow in a thin film deposition apparatus when a second thin film deposition mode is performed according to the present invention.
第6A~6B圖是利用根據本發明的薄膜沉積裝置在p-GaN上形成含石墨烯及金屬圖案層的複合層電極的剖面製程。 6A to 6B are cross-sectional processes of forming a composite layer electrode containing graphene and a metal pattern layer on p-GaN using a thin film deposition apparatus according to the present invention.
第7A~7C圖是利用根據本發明的薄膜沉積裝置在p-GaN上形成石墨烯電極的剖面製程。 7A to 7C are cross-sectional processes of forming a graphene electrode on p-GaN using a thin film deposition apparatus according to the present invention.
以下將詳細說明本發明實施例之製作與使用方式。然應注意的是,本發明提供許多可供應用的發明概念,其可以多種特定形式實施。文中所舉例討論之特定實施例僅為製造與使用本發明之特定方式,非用以限制本發明之範圍。 The following will explain in detail the manufacturing and using methods of the embodiments of the present invention. It should be noted, however, that the present invention provides many applicable inventive concepts that can be embodied in many specific forms. The specific embodiments discussed by way of example are merely specific ways of making and using the invention, and are not intended to limit the scope of the invention.
實施例:Example:
首先,請參照第1圖,其顯示的是根據本發明的薄膜沉積裝置的剖面示意圖。如第1圖所示,根據本發明的薄膜沉積裝置包括一腔體100,其係由一上腔體110、一下腔體120及一固定裝置130所構成,上腔體110包括一上腔體上部件110A及一上腔體下部件110B所組成。腔體100內包括一表面環繞有一阻氣環145的承載座140,設置於下腔體120內,用以承載一基板200、一設置於承載座140上方且位在上腔體上部件110A的電漿產生系統,其包括一進氣室180及一電漿氣體分散盤170。此外,根據本發明的薄膜沉積裝置更包括一第一進氣系統300適於提供一第一薄膜沉積模式時所需的第一製程氣體,及一第二進氣系統400連接於電漿產生系統,適於提供一第二薄膜沉積模式時所需的第二製程氣體。腔體100內更包括一氣相沉積用的噴灑頭150,其包括一第一階氣盤150A以及一第二階氣盤150B,設置於承載座140上方與電漿產生系統之間的上腔體下部件110B內。 First, please refer to FIG. 1, which shows a schematic cross-sectional view of a thin film deposition apparatus according to the present invention. As shown in FIG. 1, the thin film deposition apparatus according to the present invention includes a cavity 100, which is composed of an upper cavity 110, a lower cavity 120, and a fixing device 130. The upper cavity 110 includes an upper cavity The upper part 110A and an upper cavity lower part 110B are composed. The cavity 100 includes a bearing seat 140 surrounded by a gas blocking ring 145 on the surface, and is disposed in the lower cavity 120 to carry a substrate 200 and a component 110A disposed above the bearing seat 140 and positioned on the upper cavity 110A. The plasma generating system includes an air inlet chamber 180 and a plasma gas dispersion plate 170. In addition, the thin film deposition apparatus according to the present invention further includes a first air inlet system 300 adapted to provide a first process gas required in a first thin film deposition mode, and a second air inlet system 400 connected to the plasma generation system. It is suitable for providing a second process gas required in a second thin film deposition mode. The cavity 100 further includes a spraying head 150 for vapor deposition, which includes a first-stage gas plate 150A and a second-stage gas plate 150B, which are disposed on the upper cavity above the carrier 140 and between the plasma generation system. Inside the lower part 110B.
接著,請參照第2A圖,其所顯示的是如第1圖所示的噴灑頭150的第一階氣盤150A和第二接氣盤150B的俯視 圖。如第2A圖所示,第一階氣盤150A具有相對的一第一上表面150A1及一第一下表面150A2,且包括複數個具第一孔徑r1(介於3mm以及9mm之間)的第一凹穴151,以第一距離d1彼此互相間隔排列形成於第一上表面150A1,且每一第一凹穴151包括一第一排氣孔153貫穿第一階氣盤150A至第一下表面150A2且具第二孔徑r2(介於0.5mm以及2.5mm之間);以及複數個具第三孔徑r3(介於5mm以及15mm之間)的第二凹穴152,以第二距離d2彼此互相間隔排列形成於第一上表面150A1,且每一第二凹穴152包括一貫穿第一下表面150A2且具第四孔徑r4(介於0.5mm以及2.5mm之間)的第二排氣孔154。其中,第一凹穴151與第二凹穴152彼此交錯排列。 Next, please refer to FIG. 2A, which shows a top view of the first-stage air tray 150A and the second air-tray tray 150B of the spray head 150 shown in FIG. Illustration. As shown in FIG. 2A, the first-stage air disc 150A has a first upper surface 150A1 and a first lower surface 150A2 opposite to each other, and includes a plurality of first air holes with a first aperture r1 (between 3mm and 9mm). A cavity 151 is formed on the first upper surface 150A1 at a distance from each other at a first distance d1, and each first cavity 151 includes a first exhaust hole 153 penetrating the first-stage air plate 150A to the first lower surface. 150A2 with a second aperture r2 (between 0.5mm and 2.5mm); and a plurality of second recesses 152 with a third aperture r3 (between 5mm and 15mm), each other with a second distance d2 The space is formed on the first upper surface 150A1 at intervals, and each of the second recesses 152 includes a second exhaust hole 154 passing through the first lower surface 150A2 and having a fourth aperture r4 (between 0.5mm and 2.5mm). . The first cavities 151 and the second cavities 152 are staggered with each other.
同樣地,如第2A圖所示,第二階氣盤150B具有相對的一第二上表面150B1及一第二下表面150B2,且第二階氣盤150B包括一第一製程氣體進氣口165,連接於一第一進氣系統300(如第1圖所示),以在第一薄膜沉積模式啟動時導入第一製程氣體。第二階氣盤150B更包括一主氣體供應管160連接第一製程氣體進氣口165且設置於第二階氣盤150B內、複數個彼此相間隔的分支氣體供應管162分別與主氣體供應管160連接且設置於第二階氣盤150B內、複數個歧管164形成於主氣體供應管160及此些分支氣體供應管162上,此些歧管164以第一距離d1彼此互相間隔排列且貫穿第二階氣盤150B第二下表面150B2,且每一歧管164分別對應於第一階氣盤150A上的每一 第一凹穴151。在第一薄模沉積模式啟動時,在本實施例為原子層沉積模式,第一製程氣體經第一製程氣體進氣口165進入主氣體供應管160以及分支氣體供應管162,然後再經由連接於主氣體供應管160以及分支氣體供應管162的歧管164被導入第一凹穴151內,然後再經由每一第一凹穴151內的第一排氣孔153均勻噴灑於基板200表面。 Similarly, as shown in FIG. 2A, the second-stage air plate 150B has a second upper surface 150B1 and a second lower surface 150B2 opposite to each other, and the second-stage air plate 150B includes a first process gas inlet 165 Is connected to a first air inlet system 300 (as shown in FIG. 1) to introduce the first process gas when the first thin film deposition mode is started. The second-stage gas plate 150B further includes a main gas supply pipe 160 connected to the first process gas inlet 165 and provided in the second-stage gas plate 150B. A plurality of branch gas supply pipes 162 spaced from each other are respectively provided with the main gas supply. The tubes 160 are connected and arranged in the second-stage gas disc 150B. A plurality of manifolds 164 are formed on the main gas supply pipe 160 and the branch gas supply pipes 162. The manifolds 164 are spaced from each other at a first distance d1. And penetrates the second lower surface 150B2 of the second-stage air disc 150B, and each manifold 164 corresponds to each of the first-stage air disc 150A First depression 151. When the first thin film deposition mode is started, in this embodiment, the atomic layer deposition mode, the first process gas enters the main gas supply pipe 160 and the branch gas supply pipe 162 through the first process gas inlet 165, and then connects through The manifold 164 in the main gas supply pipe 160 and the branch gas supply pipe 162 is introduced into the first recesses 151, and then sprayed uniformly on the surface of the substrate 200 through the first exhaust holes 153 in each of the first recesses 151.
此外,第二階氣盤150B更包括複數個第一開口166,形成於主氣體供應管160及些分支氣體供應管162以外的區域,第一開口166以第二距離d2彼此互相間隔排列方式貫穿第二上表面150B1及第二下表面150B2,且每一第一開口166分別對應於第一階氣盤150A上的每一第二凹穴152,使得第二薄膜沉積模式啟動時所產生的電漿可經第一開口166進入第二凹穴152,以形成複數個矩陣排列的電漿源,並經由每一第二凹穴152內的第二排氣孔154將電漿均勻噴灑於基板200表面。 In addition, the second-stage gas plate 150B further includes a plurality of first openings 166 formed in a region other than the main gas supply pipe 160 and the branch gas supply pipes 162. The first openings 166 pass through at a second distance d2 spaced from each other. The second upper surface 150B1 and the second lower surface 150B2, and each of the first openings 166 respectively corresponds to each of the second recesses 152 in the first-stage gas plate 150A, so that the electricity generated when the second thin film deposition mode is activated The plasma can enter the second cavity 152 through the first opening 166 to form a plurality of plasma sources arranged in a matrix, and spray the plasma evenly on the substrate 200 through the second exhaust holes 154 in each second cavity 152. surface.
接著,請參照第2B圖,其顯示的是第2A圖所示的第一階氣盤150A和位在B-B’剖面線上的第一排氣孔153及第二排氣孔154的排氣方向示意圖。其中,位在B-B’剖面線上的第一排氣孔153及第二排氣孔154,其排氣方向相對於垂直第一階氣盤150A的第二法線N2均傾斜一銳角β,且其水平方向分量垂直於第一排氣孔153及第二排氣孔154與通過第一階氣盤150A中心軸法線Nc所形成的連線,位在其他位置的第一排氣孔153及第二排氣孔154也是以相同方式設置於第一階氣 盤150A上。在一實施例中,30°≦β≦60°。在本實施例中,各第一排氣孔153及各第二排氣孔154由於是以相對於垂直第一階氣盤150A的法線N2傾斜一銳角β方式排氣,故除了垂直噴灑於基板200表面外,其水平排氣方向分量形成一順時針渦旋,使得反應氣體可更均勻地分佈於腔體100內。雖然本實施例的渦旋是順時針方向旋轉,但本領域熟悉此技藝者,當可視需要調整第一排氣孔153及第二排氣孔154的排氣方向,使各第一排氣孔153及各第二排氣孔154的水平排氣方向分量形成一逆時針旋轉的渦旋。 Next, please refer to FIG. 2B, which shows the exhaust of the first-stage air disc 150A and the first exhaust hole 153 and the second exhaust hole 154 located on the BB ′ section line shown in FIG. 2A. Direction illustration. Among them, the exhaust direction of the first exhaust hole 153 and the second exhaust hole 154 located on the BB ′ section line is inclined at an acute angle β with respect to the second normal line N2 perpendicular to the first-order air disc 150A. And its horizontal component is perpendicular to the line formed by the first exhaust hole 153 and the second exhaust hole 154 and the central axis normal line Nc of the first-stage air disc 150A, and the first exhaust hole 153 located at another position And the second exhaust hole 154 are also provided in the first stage gas in the same manner On the tray 150A. In one embodiment, 30 ° ≦ β ≦ 60 °. In this embodiment, since each of the first exhaust holes 153 and each of the second exhaust holes 154 is exhausted in an oblique angle β manner with respect to the normal line N2 of the vertical first-order air disc 150A, in addition to spraying vertically Outside the surface of the substrate 200, the horizontal exhaust direction component forms a clockwise vortex, so that the reaction gas can be more uniformly distributed in the cavity 100. Although the scroll of this embodiment rotates clockwise, those skilled in the art are familiar with this art. When the exhaust direction of the first exhaust hole 153 and the second exhaust hole 154 can be adjusted as needed, the first exhaust holes The horizontal exhaust direction components of 153 and each second exhaust hole 154 form a vortex rotating counterclockwise.
接著,請參照第2C圖,其顯示的是如第2A圖所示的第一階氣盤150A和第二階氣盤150B組合成一氣相沉積用的噴灑頭150,且沿剖面線B-B’所呈現的剖面示意圖。如第2C圖所示,連接於位在第二階氣盤150B上的主氣體供應管160或分支氣體供應管162的各個歧管164,乃對準伸入位在第一階氣盤150A上的各個第一凹穴151內,在第一薄膜沉積模式啟動時,使第一製程氣體經由第一排氣孔153均勻噴灑於基板表面;位在第二階氣盤150B上的第一開口166乃對準於位在第一階氣盤150A上的第二凹穴152,且在第二薄膜沉積模式啟動時,使容納於進氣室180(如第1圖所示)內的第二製程氣體190(如第5圖所示),通過如第1圖所示的電漿氣體分散盤170,產生第二薄膜沉積模式所需的電漿,然後先經第二階氣盤150B上的第一開口166進入第二凹穴152,形成複數個矩陣排 列的電漿源,然後再經由每一第二凹穴152內的第二排氣孔154將電漿均勻噴灑於基板200表面。 Next, please refer to FIG. 2C, which shows that the first-stage air disc 150A and the second-stage air disc 150B shown in FIG. 2A are combined into a spray head 150 for vapor deposition, and along the section line B-B 'A schematic representation of the cross section presented. As shown in FIG. 2C, each of the manifolds 164 connected to the main gas supply pipe 160 or the branch gas supply pipe 162 on the second-stage gas plate 150B is aligned with the first-stage gas plate 150A. In each of the first recesses 151, when the first thin film deposition mode is started, the first process gas is uniformly sprayed on the surface of the substrate through the first exhaust hole 153; the first opening 166 on the second-stage gas plate 150B The second process is aimed at the second cavity 152 located on the first-stage air plate 150A, and the second process is to be accommodated in the intake chamber 180 (as shown in FIG. 1) when the second thin film deposition mode is started. The gas 190 (as shown in FIG. 5) passes through the plasma gas dispersion plate 170 as shown in FIG. 1 to generate the plasma required for the second film deposition mode, and then passes through the first layer on the second-stage gas plate 150B. An opening 166 enters the second cavity 152, forming a plurality of matrix rows The plasma source, and then spray the plasma uniformly on the surface of the substrate 200 through the second exhaust holes 154 in each second cavity 152.
如上所述,第一排氣孔153及第二排氣孔154之排氣方向,均相對於垂直第一階氣盤150A的法線N1傾斜一銳角β。此外,為了使第一排氣孔153在噴灑第一製程氣體時的效率更好,第一排氣孔153可以設計成如第2C圖所示般,使其截面積隨接近第一下表面150A2之距離逐漸增加,使得第一排氣孔153具有較大的噴灑覆蓋面積,且相鄰的第一排氣孔所噴出的第一製程氣體彼此互相重疊。同樣地,第二排氣孔153也可以相同的原理設計。 As described above, the exhaust directions of the first exhaust hole 153 and the second exhaust hole 154 are inclined at an acute angle β with respect to the normal line N1 perpendicular to the first-stage air disc 150A. In addition, in order to make the first exhaust hole 153 more efficient when spraying the first process gas, the first exhaust hole 153 may be designed as shown in FIG. 2C so that its cross-sectional area approaches the first lower surface 150A2. The distance gradually increases, so that the first exhaust holes 153 have a larger spray coverage area, and the first process gases ejected from adjacent first exhaust holes overlap each other. Similarly, the second exhaust hole 153 can also be designed by the same principle.
接著,請參照第2D圖所示,其顯示的是第1圖所示的電漿氣體分散盤170的剖面放大圖,其包括一第一電漿氣體分散盤170A、一第二電漿氣體分散盤170B以及一第三電漿氣體分散盤170C,且利用一石英固定環178夾持固定,其中第一電漿氣體分散盤170A及第三電漿氣體分散盤170C均由絕緣材質(例如石英)所構成。第一電漿氣體分散盤170A包括複數個以第二距離d2互相間隔排列且具第五孔徑r5(介於0.5mm以及2.5mm之間)並貫穿第一電漿氣體分散盤170A的第三排氣孔172;第二電漿氣體分散盤170B設置於第一電漿氣體分散盤170A下方,且第二電漿氣體分散盤170B包括複數個以第二距離d2互相間隔排列且具第六孔徑r6(介於0.5mm以及5mm之間)並貫穿第二電漿氣體分散盤170B的第四排氣孔174,每一 第四排氣孔174對應於每一第三排氣孔172;第三電漿氣體分散盤170C,設置於第二電漿氣體分散盤170B與氣相沉積用的噴灑頭150的第二階氣盤150B之間,且第三電漿氣體分散盤170C包括複數個以第二距離d2互相間隔排列並貫穿第三電漿氣體分散盤170C的偏壓電極177,其內部設置有具第七孔徑r7的第五排氣孔176。此外,第三排氣孔172的孔徑小於第四排氣孔174的孔徑。 Next, please refer to FIG. 2D, which shows an enlarged sectional view of the plasma gas dispersion plate 170 shown in FIG. 1, which includes a first plasma gas dispersion plate 170A and a second plasma gas dispersion plate. The plate 170B and a third plasma gas dispersion plate 170C are clamped and fixed by a quartz fixing ring 178. The first plasma gas dispersion plate 170A and the third plasma gas dispersion plate 170C are both made of an insulating material (such as quartz). Made up. The first plasma gas dispersion plate 170A includes a plurality of third rows arranged at a distance from each other with a second distance d2 and having a fifth aperture r5 (between 0.5mm and 2.5mm) and penetrating the first plasma gas dispersion plate 170A. Air holes 172; the second plasma gas dispersion plate 170B is disposed below the first plasma gas dispersion plate 170A, and the second plasma gas dispersion plate 170B includes a plurality of mutually spaced arrays at a second distance d2 and having a sixth aperture r6 (Between 0.5mm and 5mm) and pass through the fourth exhaust hole 174 of the second plasma gas dispersion plate 170B, each The fourth exhaust hole 174 corresponds to each third exhaust hole 172; the third plasma gas dispersion plate 170C is provided in the second plasma gas dispersion plate 170B and the second-stage gas of the spray head 150 for vapor deposition Between the plates 150B, and the third plasma gas dispersion plate 170C includes a plurality of bias electrodes 177 arranged at a second distance d2 from each other and penetrating the third plasma gas dispersion plate 170C, and a seventh aperture r7 Of the fifth exhaust hole 176. In addition, the diameter of the third exhaust hole 172 is smaller than that of the fourth exhaust hole 174.
接著,請參照第2E圖及第2E’圖。其中,第2E圖顯示的是上述偏壓電極177及電漿產生部的詳細剖面圖,其中偏壓電極177包括一金屬電極177B以及上、下夾持金屬電極177B的介電層177A、177C。如第2E圖所示,電漿氣體經第五排氣孔176通過偏壓電極177時,會被金屬電極177B施加一偏壓,接著經氣相沉積用的噴灑頭150的第二階氣盤150B上的第一開口166進入第一階氣盤150A上的第二凹穴152,形成複數個矩陣排列的電漿源,然後再經由每一第二凹穴152內的第二排氣孔154將電漿均勻噴灑出來。第2E圖所顯示的是一種圓柱形電漿產生部,其電極177B是平面電極。在根據本發明的其他實施例中,可將平面電極之圓柱形電漿產生部修改為同心球形之上、下電極,如第2E’圖所示,形成碗狀之電漿產生部在同電位面上各點至電極177B的距離D相等,相較圓柱形電漿產生部有較均勻之電位分佈,電漿密度亦較均勻,電漿反應產生的熱可均勻分散, 不易集中於特定點,且可消除圓柱形底部周圍之死角,減少製程應用時particle之產生。 Next, please refer to FIG. 2E and FIG. 2E '. FIG. 2E shows a detailed cross-sectional view of the bias electrode 177 and the plasma generating portion. The bias electrode 177 includes a metal electrode 177B and dielectric layers 177A and 177C sandwiching the metal electrode 177B. As shown in FIG. 2E, when the plasma gas passes the bias electrode 177 through the fifth exhaust hole 176, a bias voltage is applied by the metal electrode 177B, and then the second-stage gas plate of the spray head 150 for vapor deposition The first opening 166 in 150B enters the second recesses 152 in the first-stage air plate 150A to form a plurality of plasma sources arranged in a matrix, and then passes through the second exhaust holes 154 in each second recess 152 Spray the plasma evenly. Figure 2E shows a cylindrical plasma generating part, whose electrode 177B is a planar electrode. In other embodiments according to the present invention, the cylindrical plasma generating portion of the planar electrode may be modified into concentric spherical upper and lower electrodes. As shown in FIG. 2E ′, the bowl-shaped plasma generating portion is at the same potential. The distance D from each point on the surface to the electrode 177B is equal. Compared to the cylindrical plasma generating part, the potential distribution is more uniform, the plasma density is more uniform, and the heat generated by the plasma reaction can be evenly dispersed. It is not easy to focus on a specific point, and it can eliminate the dead angle around the cylindrical bottom, reducing the generation of particles when the process is applied.
接著,請參照第2F圖,其顯示的是沿第2A圖所示的第二階氣盤150B的A-A’剖面線所呈現的主氣體供應管160和歧管164的剖面示意圖。如第2F圖所示,本發明為了解決第一製程氣體在主氣體供應管160內流速不均的缺點,故本發明所揭露的主氣體供應管160在鄰近第二階氣盤150的第二下表面150B2處具有一第一傾斜管壁161,使得主氣體供應管160的橫截面隨著與進氣口165的距離增加而逐漸減小。第一傾斜管壁161上具有複數個以第一距離d1彼此互相間隔排列的氣孔163,而原本垂直於第二上表面150B1且連接於氣孔163的歧管164,更可設計成包括一彎曲部164A及一垂直部164B的彎曲歧管164’,其中彎曲部164A與通過第二上表面150B1的第一法線N1間夾一銳角α,而垂直部164B則垂直於第二上表面150B1,藉此使得進入主氣體供應管160內的第一製程氣體較容易流入彎曲部164A。此外,更可在歧管164及/或彎曲歧管164’所連接的氣孔邊緣的下風處上形成一阻流塊167,以增加進入歧管164及/或彎曲歧管164’內的第一製程氣體流量。同樣地,分支氣體供應管162也可依照上述方式設計,在此將不再贅述。 Next, please refer to FIG. 2F, which shows a schematic cross-sectional view of the main gas supply pipe 160 and the manifold 164 shown along the A-A 'section line of the second-stage gas disc 150B shown in FIG. 2A. As shown in FIG. 2F, in order to solve the disadvantage of uneven flow velocity of the first process gas in the main gas supply pipe 160, the main gas supply pipe 160 disclosed in the present invention The lower surface 150B2 has a first inclined pipe wall 161, so that the cross section of the main gas supply pipe 160 gradually decreases as the distance from the air inlet 165 increases. The first inclined pipe wall 161 has a plurality of air holes 163 arranged at a distance from each other at a first distance d1. The manifold 164, which is originally perpendicular to the second upper surface 150B1 and connected to the air holes 163, can be designed to include a bent portion. 164A and a curved manifold 164 'of a vertical portion 164B, wherein the curved portion 164A and the first normal N1 passing through the second upper surface 150B1 form an acute angle α, and the vertical portion 164B is perpendicular to the second upper surface 150B1. This makes it easier for the first process gas entering the main gas supply pipe 160 to flow into the bent portion 164A. In addition, a baffle block 167 may be formed on the downwind of the edge of the air hole to which the manifold 164 and / or the curved manifold 164 'are connected, so as to increase the number of inlets into the manifold 164 and / or the curved manifold 164'. One process gas flow. Similarly, the branch gas supply pipe 162 can also be designed in the above manner, and will not be described again here.
接著,請參照第3圖,其顯示的是第1圖所示的承載座140的俯視圖。如第3圖所示,承載座140表面承載一待 沉積薄膜於其表面的基板200,且承載座140上包括一呈環狀體之阻氣環145環繞於其周圍。在另一實施例中,阻氣環145與承載座140間隔一距離。阻氣環上包括複數個彼此互相間隔的抽引流道148,此抽引流道148可設置於阻氣環145之上表面或下表面,並內凹於該環狀體,且每一抽引流道148的方向均對應於渦旋氣流的切線方向。換句話說,每一抽引流道148的方向與阻氣環145之環狀體之圓心向圓周之徑向具有一夾角,因而使第一製程氣體或第二製程氣體構成的電漿在抽氣系統運作時,經由抽引流道148被抽離腔體100,藉此增加第一排氣孔153及/或第二排氣孔排氣時所造成的順時針或逆時針渦旋的效果,如圖中環狀體內部之兩圓弧箭頭所示,此渦旋氣流大致環繞環狀體之圓心流動,使反應氣體可更均勻地分佈於腔體100內。 Next, please refer to FIG. 3, which shows a top view of the carrier 140 shown in FIG. 1. As shown in FIG. 3, the surface of the bearing seat 140 The substrate 200 having a thin film deposited on its surface, and the carrier 140 includes a ring-shaped gas blocking ring 145 surrounding it. In another embodiment, the gas blocking ring 145 is spaced apart from the carrier 140 by a distance. The choke ring includes a plurality of mutually spaced suction draft channels 148. The suction draft channels 148 may be disposed on the upper or lower surface of the choke ring 145 and recessed in the ring body, and each of the suction draft channels The directions of 148 all correspond to the tangential direction of the vortex airflow. In other words, the direction of each extraction channel 148 and the center of the ring of the gas blocking ring 145 have an angle to the radial direction of the circumference, so that the plasma formed by the first process gas or the second process gas is pumped. When the system is in operation, it is pulled out of the cavity 100 through the suction channel 148, thereby increasing the effect of clockwise or counterclockwise vortex caused by the first exhaust hole 153 and / or the second exhaust hole, such as As shown by two circular arrows inside the annular body in the figure, this vortex airflow flows approximately around the center of the annular body, so that the reaction gas can be more uniformly distributed in the cavity 100.
如第1圖所示,本實施例所揭示的第一進氣系統300,其包括原子層沉積模式所需的第一前驅物氣體供應源310、第二前驅物氣體供應源320、潔淨氣體供應源330、第一製程氣體導管125,其一端連接第二階氣盤150B的第一製程氣體進氣口165,而另一相異端則連接一高壓控制閥350、一第一高壓管315連接於第一前驅物氣體供應源310與高壓控制閥350之間、一第二高壓管325連接於第二前驅物氣體供應源320與高壓控制閥350之間、以及一第三高壓管335連接於潔淨氣體供應源330與高壓控制閥350之間。其中,第一進氣系統300 藉由控制高壓控制閥350切換第一前驅物氣體、第二前驅物氣體或潔淨氣體供應進入第一製程氣體進氣口165。潔淨氣體可選自不會與第一前驅物氣體和第二前區域氣體產生化學反應的惰性氣體,例如氮氣或鈍氣。 As shown in FIG. 1, the first air intake system 300 disclosed in this embodiment includes a first precursor gas supply source 310, a second precursor gas supply source 320, and a clean gas supply required for an atomic layer deposition mode. The source 330 and the first process gas conduit 125 have one end connected to the first process gas inlet 165 of the second-stage gas disc 150B, and the other end connected to a high-pressure control valve 350 and a first high-pressure pipe 315 to A first precursor gas supply source 310 and the high pressure control valve 350, a second high pressure pipe 325 is connected between the second precursor gas supply source 320 and the high pressure control valve 350, and a third high pressure pipe 335 is connected to the clean Between the gas supply source 330 and the high-pressure control valve 350. Among them, the first air intake system 300 The first precursor gas, the second precursor gas, or the clean gas is switched into the first process gas inlet 165 by controlling the high-pressure control valve 350. The clean gas may be selected from an inert gas, such as nitrogen or inert gas, which does not chemically react with the first precursor gas and the second front region gas.
請參照第4圖,其顯示的是根據本發明以進行第一薄膜沉積模式時,薄膜沉積裝置內的製程氣體流動示意圖。如上所述,本發明所揭示的第一薄膜沉積模式是原子層沉積製程,當第一薄膜沉積模式啟動時,第一進氣系統300中的第一前驅物氣體供應源310被開啟,使得第一前驅物氣體自第一高壓管315經高壓控制閥350進入第一製程氣體導管125,然後進入氣相沉積用的噴灑頭150中的第二階氣盤150B的進氣口165,接著再通過主氣體供應管160和分支氣體供應管162,並藉由連接於主氣體供應管160和分支氣體供應管162的歧管164將第一前驅物氣體導入第一凹穴151內,然後再經由每一第一凹穴151內的第一排氣孔153使第一前驅物氣體被均勻噴灑於基板200表面。之後,先關閉第一前驅物氣體供應源310,然後開啟潔淨氣體供應源330,以如上所述的方式將潔淨氣體沿第三高壓管335導入氣相沉積用的噴灑頭150內,並且藉由抽氣泵500使得殘留的第一前驅物氣體以及潔淨氣體經由抽氣管550被抽出腔體100。接著,先關閉潔淨氣體供應源330,然後開啟第二前驅物氣體供應源320,使第二前驅物氣體供應源320以如上所述的方式將第二前驅物氣體沿第二高壓管325導 入氣相沉積用的噴灑頭150內,並噴灑於附著有第一前驅物的基板200表面,使第二前驅物與基板200表面的第一前驅物進行反應,形成所要的薄膜。最後,先關閉第二前驅物氣體供應源320,然後開啟潔淨氣體供應源330,以如上所述的方式將潔淨氣體沿第三高壓管335導入氣相沉積用的噴灑頭150內,並且開啟抽氣泵500,使得殘留的第二前驅物氣體以及潔淨氣體經由抽氣管550被抽出腔體100,以上便可完成一個原子層沉積製程循環。上述的原子層沉積製程循環次數,可視所需要的薄膜厚度,多次重複進行。 Please refer to FIG. 4, which shows a schematic diagram of a process gas flow in a thin film deposition apparatus when a first thin film deposition mode is performed according to the present invention. As described above, the first thin film deposition mode disclosed in the present invention is an atomic layer deposition process. When the first thin film deposition mode is activated, the first precursor gas supply source 310 in the first intake system 300 is turned on, so that the first A precursor gas enters the first process gas conduit 125 from the first high-pressure pipe 315 through the high-pressure control valve 350, and then enters the air inlet 165 of the second-stage gas disc 150B in the spray head 150 for vapor deposition, and then passes through The main gas supply pipe 160 and the branch gas supply pipe 162, and the first precursor gas is introduced into the first cavity 151 through the manifold 164 connected to the main gas supply pipe 160 and the branch gas supply pipe 162, and then passes through each of the A first exhaust hole 153 in a first cavity 151 allows the first precursor gas to be uniformly sprayed on the surface of the substrate 200. After that, the first precursor gas supply source 310 is turned off, and then the clean gas supply source 330 is turned on, and the clean gas is introduced into the spray head 150 for vapor deposition along the third high pressure pipe 335 in the manner as described above, and by The suction pump 500 allows the residual first precursor gas and the clean gas to be drawn out of the cavity 100 through the suction pipe 550. Next, the clean gas supply source 330 is closed first, and then the second precursor gas supply source 320 is turned on, so that the second precursor gas supply source 320 guides the second precursor gas along the second high-pressure pipe 325 in the manner described above. It is sprayed into the spray head 150 for vapor deposition and sprayed on the surface of the substrate 200 to which the first precursor is attached, so that the second precursor reacts with the first precursor on the surface of the substrate 200 to form a desired thin film. Finally, the second precursor gas supply source 320 is closed first, and then the clean gas supply source 330 is turned on. The clean gas is introduced into the spray head 150 for vapor deposition along the third high-pressure pipe 335 in the manner as described above, and the extraction is turned on. The air pump 500 enables the remaining second precursor gas and the clean gas to be drawn out of the cavity 100 through the exhaust pipe 550, and the above can complete an atomic layer deposition process cycle. The number of cycles of the atomic layer deposition process described above can be repeated several times depending on the required film thickness.
如第1圖所示,本實施例所揭示的第二進氣系統400包括一第二製程氣體供應源410、一第四高壓管415以及一高壓控制閥450,藉由控制高壓控制閥450,在第二薄膜沉積模式啟動時將第二製程氣體經由第四高壓管415輸送至進氣室180的第二製程氣體導管115,然後進入進氣室180內。 As shown in FIG. 1, the second intake system 400 disclosed in this embodiment includes a second process gas supply source 410, a fourth high pressure pipe 415, and a high pressure control valve 450. By controlling the high pressure control valve 450, When the second thin film deposition mode is started, the second process gas is delivered to the second process gas conduit 115 of the intake chamber 180 through the fourth high-pressure pipe 415, and then enters the intake chamber 180.
請參照第5圖,其顯示的是根據本發明以進行第二薄膜沉積模式時,薄膜沉積裝置內的製程氣體流動示意圖。如上所述,本發明所揭示的第二薄膜沉積模式是電漿輔助化學氣相沉積製程,當第二薄膜沉積模式被啟動時,第二進氣系統400的第二製程氣體供應源被開啟,且第二製程氣體在高壓控制閥450控制下,經由第四高壓管415進入第二製程氣體導管115,並輸入進氣室180內。進入進氣室180的第二製程氣體190先經第三排氣孔172通過第一電漿氣體分散盤170A,然後經過 第四排氣孔174通過第二電漿氣體分散盤170B,接著進入第三電漿氣體分散盤170C的第五排氣孔176並被偏壓電極177施加一偏壓。接著,經氣相沉積用的噴灑頭150的第二階氣盤150B上的第一開口166進入第一階氣盤150A上的第二凹穴152,形成複數個矩陣排列的電漿源,然後再經由每一第二凹穴152內的第二排氣孔154將電漿均勻噴灑於基板200表面,形成一想要的電漿輔助的化學氣相沉積薄膜。本實施例的第二製程氣體例如包括矽甲烷(silane)、氬氣、氫氣、氧氣其中之一或其組合。 Please refer to FIG. 5, which shows a schematic diagram of a process gas flow in a thin film deposition apparatus when the second thin film deposition mode is performed according to the present invention. As mentioned above, the second thin film deposition mode disclosed in the present invention is a plasma-assisted chemical vapor deposition process. When the second thin film deposition mode is activated, the second process gas supply source of the second intake system 400 is turned on. And the second process gas is controlled by the high-pressure control valve 450, enters the second process gas conduit 115 through the fourth high-pressure pipe 415, and is input into the intake chamber 180. The second process gas 190 entering the intake chamber 180 first passes through the first plasma gas dispersion plate 170A through the third exhaust hole 172, and then passes through The fourth exhaust hole 174 passes through the second plasma gas dispersion plate 170B, then enters the fifth exhaust hole 176 of the third plasma gas dispersion plate 170C, and is biased by the bias electrode 177. Next, through the first opening 166 in the second-stage air plate 150B of the spray head 150 for vapor deposition, it enters the second cavity 152 in the first-stage air plate 150A to form a plurality of plasma sources arranged in a matrix. Then, the plasma is uniformly sprayed on the surface of the substrate 200 through the second exhaust holes 154 in each second cavity 152 to form a desired plasma-assisted chemical vapor deposition film. The second process gas in this embodiment includes, for example, one of silane, argon, hydrogen, and oxygen, or a combination thereof.
第6A以及6B圖顯示一實施例係利用本發明的薄膜沉積裝置以形成半導體元件之各步驟結構示意圖。 6A and 6B are schematic structural diagrams of steps in forming a semiconductor device using the thin film deposition apparatus of the present invention according to an embodiment.
請先參照第6A圖,半導體元件之形成方法包括提供一半導體基底10,在半導體基底10上形成一磊晶疊層1000,依序包括一半導體基底10、一緩衝層20、一第一半導體層30、一主動層40、一第二半導體層600。在本實施例中,第一半導體層30包含n型氮化鎵層(n-GaN),第二半導體層600包含p型氮化鎵層(p-GaN),主動層40包含氮化鎵系列的材料所形成之多重量子井結構(Multiple Quantum Well,MQW)用以發出光。然後利用本發明的薄膜沉積裝置100,在第二半導體層600表面以第一薄膜沉積模式,例如為前述之原子層沉積法(ALD)沉積一厚度介於1~10nm的金屬層620,其中金屬層620與第二半導體層600為歐姆接觸。此金屬層620之材料可選 自銅、箔或鎳。然後利用本發明的薄膜沉積裝置以一第二薄膜沉積模式,例如為前述之電漿輔助化學氣相沉積法(PECVD),於溫度小於攝氏350度C的條件下,在上述的金屬層620表面沉積一厚度介於1~5nm的石墨烯層640,以形成一包含金屬層620與石墨烯層640的複合電流擴散層,其中金屬層620與石墨烯層640為歐姆接觸用以提高橫向電流散佈的能力。 Please refer to FIG. 6A first. A method for forming a semiconductor device includes providing a semiconductor substrate 10, forming an epitaxial stack 1000 on the semiconductor substrate 10, and sequentially including a semiconductor substrate 10, a buffer layer 20, and a first semiconductor layer. 30. An active layer 40 and a second semiconductor layer 600. In this embodiment, the first semiconductor layer 30 includes an n-type gallium nitride layer (n-GaN), the second semiconductor layer 600 includes a p-type gallium nitride layer (p-GaN), and the active layer 40 includes a gallium nitride series. Multiple Quantum Well (MQW) structures formed by the materials used to emit light. Then, the thin film deposition apparatus 100 of the present invention is used to deposit a metal layer 620 with a thickness of 1 to 10 nm in a first thin film deposition mode on the surface of the second semiconductor layer 600, such as the aforementioned atomic layer deposition (ALD) method. The layer 620 is in ohmic contact with the second semiconductor layer 600. The material of this metal layer 620 is optional From copper, foil or nickel. Then, the thin film deposition apparatus of the present invention is used in a second thin film deposition mode, such as the aforementioned plasma-assisted chemical vapor deposition (PECVD) method, at a temperature lower than 350 ° C on the surface of the metal layer 620. A graphene layer 640 having a thickness of 1 to 5 nm is deposited to form a composite current diffusion layer including a metal layer 620 and a graphene layer 640, wherein the metal layer 620 and the graphene layer 640 are in ohmic contact to improve lateral current spread Ability.
其次,請參照第6B圖,薄膜沉積利用習知的微影及蝕刻製程,去除部分的金屬層620、石墨烯層640、第二半導體層600以及主動層40,露出第一半導體層30,接著分別在石墨烯層640與露出的第一半導體層30上分別形成第一電極61與第二電極62用以引入外部電流。 Next, referring to FIG. 6B, the thin film deposition uses a conventional lithography and etching process to remove a portion of the metal layer 620, the graphene layer 640, the second semiconductor layer 600, and the active layer 40 to expose the first semiconductor layer 30, and then A first electrode 61 and a second electrode 62 are respectively formed on the graphene layer 640 and the exposed first semiconductor layer 30 to introduce external current.
第7A~7C圖顯示另一實施例係利用本發明的薄膜沉積裝置以形成半導體元件之各步驟結構示意圖。 7A to 7C are structural schematic diagrams of each step of forming a semiconductor element by using the thin film deposition apparatus of the present invention in another embodiment.
請先參照第7A圖,半導體元件之形成方法包括提供一半導體基底10,在半導體基底10上形成一磊晶疊層1000,依序包含一緩衝層20、一第一半導體層30、一主動層40以及一第二半導體層600。在本實施例中,第一半導體層30包含n型氮化鎵層(n-GaN),主動層40包含氮化鎵系列的材料所形成之多重量子井結構(Multiple Quantum Well,MQW)用以發出光,第二半導體層600包含p型氮化鎵層(p-GaN)。然後利用本發明的薄膜沉積裝置100在第二半導體層600表面以第 一薄膜沉積模式,例如為前述之原子層沉積法(ALD)沉積一厚度介於1~10nm的金屬層620。此金屬層620之材料可選自銅、箔或鎳。 Please refer to FIG. 7A first. A method for forming a semiconductor device includes providing a semiconductor substrate 10, forming an epitaxial stack 1000 on the semiconductor substrate 10, and sequentially including a buffer layer 20, a first semiconductor layer 30, and an active layer. 40 and a second semiconductor layer 600. In this embodiment, the first semiconductor layer 30 includes an n-GaN layer, and the active layer 40 includes a multiple quantum well (MQW) structure formed of a gallium nitride series material. Light is emitted, and the second semiconductor layer 600 includes a p-type gallium nitride layer (p-GaN). Then, the thin film deposition apparatus 100 of the present invention is used to A thin film deposition mode is, for example, the aforementioned atomic layer deposition (ALD) method to deposit a metal layer 620 with a thickness of 1-10 nm. The material of the metal layer 620 may be selected from copper, foil or nickel.
其次,請參照第7B圖,然後利用本發明的薄膜沉積裝置以一第二薄膜沉積模式,例如為前述之電漿輔助化學氣相沉積法(PECVD),於溫度約攝氏700~1000度C的條件下,使碳原子穿透金屬層620而到達第二半導體層600的表面,在第二半導體層600與金屬層620之間形成一厚度介於1~5nm的石墨烯層650,其中,石墨烯層650與第二半導體層600形成歐姆接觸。 Secondly, please refer to FIG. 7B, and then use the thin film deposition apparatus of the present invention in a second thin film deposition mode, such as the aforementioned plasma-assisted chemical vapor deposition (PECVD) method, at a temperature of about 700 to 1000 degrees C. Under conditions, carbon atoms penetrate the metal layer 620 to reach the surface of the second semiconductor layer 600, and a graphene layer 650 having a thickness of 1 to 5 nm is formed between the second semiconductor layer 600 and the metal layer 620. Among them, graphite The olefin layer 650 makes an ohmic contact with the second semiconductor layer 600.
最後,請參照第7C圖,利用蝕刻製程去除金屬層620,露出石墨烯層650以形成一透明的電流擴散層,用以提高橫向電流散佈的能力。接著,利用習知的微影及蝕刻製程,去除部分的石墨烯層650、第二半導體層600以及主動層40,以露出第一半導體層30,接著分別在石墨烯層650與露出的第一半導體層30上分別形成第一電極61與第二電極62用以引入外部電流。 Finally, referring to FIG. 7C, the metal layer 620 is removed by an etching process, and the graphene layer 650 is exposed to form a transparent current diffusion layer to improve the ability of lateral current spreading. Next, using a conventional lithography and etching process, a part of the graphene layer 650, the second semiconductor layer 600, and the active layer 40 are removed to expose the first semiconductor layer 30, and then the graphene layer 650 and the exposed first A first electrode 61 and a second electrode 62 are formed on the semiconductor layer 30 to introduce external current.
綜上所述,本發明實施例已提供一種適用於原子層沉積及電漿輔助化學氣相沉積的噴灑頭以及一種含有噴灑頭的薄膜沉積裝置,可在同一腔體內視需要切換不同沉積模式的薄膜沉積製程,解決現有無法不同模式的薄膜沉積製程於同一腔體的缺點。 In summary, the embodiments of the present invention have provided a spray head suitable for atomic layer deposition and plasma-assisted chemical vapor deposition, and a thin film deposition device containing the spray head, which can switch different deposition modes in the same cavity as needed. The thin film deposition process solves the disadvantage that the existing thin film deposition processes of different modes cannot be in the same cavity.
雖然本發明已以較佳實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可更動與組合上述各種實施例。 Although the present invention has been disclosed as above with a preferred embodiment, it is not intended to limit the present invention. Any person with ordinary knowledge in the technical field can change and combine the above various implementations without departing from the spirit and scope of the present invention. example.
Claims (10)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW104121230A TWI671431B (en) | 2015-06-30 | 2015-06-30 | Showerhead for thin-film deposition and thin-film deposition apparatus comprising the same |
US15/198,649 US20170002463A1 (en) | 2015-06-30 | 2016-06-30 | Showerhead and a thin-film deposition apparatus containing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW104121230A TWI671431B (en) | 2015-06-30 | 2015-06-30 | Showerhead for thin-film deposition and thin-film deposition apparatus comprising the same |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201700782A TW201700782A (en) | 2017-01-01 |
TWI671431B true TWI671431B (en) | 2019-09-11 |
Family
ID=58400670
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW104121230A TWI671431B (en) | 2015-06-30 | 2015-06-30 | Showerhead for thin-film deposition and thin-film deposition apparatus comprising the same |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI671431B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI746222B (en) | 2020-10-21 | 2021-11-11 | 財團法人工業技術研究院 | Deposition apparatus |
US11961716B2 (en) | 2021-12-09 | 2024-04-16 | Industrial Technology Research Institute | Atomic layer deposition method |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100024727A1 (en) * | 2008-08-04 | 2010-02-04 | Samsung Electro-Mechanics Co., Ltd | Showerhead and chemical vapor deposition apparatus including the same |
-
2015
- 2015-06-30 TW TW104121230A patent/TWI671431B/en active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100024727A1 (en) * | 2008-08-04 | 2010-02-04 | Samsung Electro-Mechanics Co., Ltd | Showerhead and chemical vapor deposition apparatus including the same |
Also Published As
Publication number | Publication date |
---|---|
TW201700782A (en) | 2017-01-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI838594B (en) | Substrate processing apparatus | |
US20210032754A1 (en) | Showerhead assembly and components thereof | |
US20170002463A1 (en) | Showerhead and a thin-film deposition apparatus containing the same | |
US9175392B2 (en) | System for multi-region processing | |
US8197599B2 (en) | Gas head and thin-film manufacturing apparatus | |
US20060196420A1 (en) | High density plasma chemical vapor deposition apparatus | |
KR102025717B1 (en) | Chemical vapor deposition apparatus and method of manufacturing led using the same | |
US20130306758A1 (en) | Precursor distribution features for improved deposition uniformity | |
TW202106922A (en) | Deposition apparatus and method of forming metal oxide layer using the same | |
TWI671431B (en) | Showerhead for thin-film deposition and thin-film deposition apparatus comprising the same | |
CN105839074A (en) | Metal organic chemical vapor deposition apparatus for solar cell | |
TW201935712A (en) | Graphene based contact layers for electronic devices | |
TWM519316U (en) | Guide element for thin-film deposition and thin-film deposition apparatus comprising the same | |
TW201700784A (en) | A showerhead for thin-film deposition and the thin-film deposition apparatus containing the same | |
TWI709661B (en) | Semiconductor light-emitting device and the method thereof | |
TWI652372B (en) | Semiconductor light-emitting device and the method thereof | |
CN104233230A (en) | Reaction device and reaction manufacturing process for chemical vapor deposition | |
KR20040014760A (en) | Semiconductor device fabrication apparatus having multi-hole angled gas injection system and semiconductor device fabrication method using the same | |
TWM512591U (en) | Thin-film deposition apparatus | |
TW201700181A (en) | Showerhead for thin-film deposition and thin-film deposition apparatus comprising the same | |
US20230294116A1 (en) | Dual channel showerhead assembly | |
TWI777297B (en) | metal organic chemical vapor deposition reactor | |
TW201700783A (en) | A showerhead for thin-film deposition and the thin-film deposition apparatus containing the same | |
JP2009010279A (en) | Thin film manufacturing device | |
CN217438298U (en) | Epitaxial growth equipment |