[go: up one dir, main page]

TWI433964B - 複數層之混合金屬氧化物電極及其製法 - Google Patents

複數層之混合金屬氧化物電極及其製法 Download PDF

Info

Publication number
TWI433964B
TWI433964B TW099145873A TW99145873A TWI433964B TW I433964 B TWI433964 B TW I433964B TW 099145873 A TW099145873 A TW 099145873A TW 99145873 A TW99145873 A TW 99145873A TW I433964 B TWI433964 B TW I433964B
Authority
TW
Taiwan
Prior art keywords
electrode
layer
metal oxide
platinum group
concentration
Prior art date
Application number
TW099145873A
Other languages
English (en)
Other versions
TW201215708A (en
Inventor
Marilyn J Niksa
Andrew J Niksa
Original Assignee
Water Star Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=45924243&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=TWI433964(B) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Water Star Inc filed Critical Water Star Inc
Publication of TW201215708A publication Critical patent/TW201215708A/zh
Application granted granted Critical
Publication of TWI433964B publication Critical patent/TWI433964B/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/10Electrodes, e.g. composition, counter electrode
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1225Deposition of multilayers of inorganic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • C23C26/02Coating not provided for in groups C23C2/00 - C23C24/00 applying molten material to the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • C25B11/093Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds at least one noble metal or noble metal oxide and at least one non-noble metal oxide
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C7/00Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
    • C25C7/02Electrodes; Connections thereof

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

複數層之混合金屬氧化物電極及其製法
本發明一般係關於電極及製造該等電極之方法。該電極可用於所選之電-氧化作用製程,尤其是,陽極反應為釋出氧之製程,例如電鍍、電煉(electrowinning)、金屬回收、水電解、水處理、及「機能水」之產製。本發明之電極亦可用於在電解質水溶液中產製強氧化劑(如過硫酸鹽、過氧化氫、臭氧、及羥基自由基)。
電化學製程,如釋出氯及釋出氧,其重要性不可言喻。氯之釋出為全球最龐大的工業電化學製程之一,其依據該生產單元(cell)設計及操作條件而與氯離子之電-氧化作用而產製氯、氯酸鈉、次氯酸鈉、或次氯酸有關。氧為水分子之電-氧化作用之產物,且大多數具商業重要性且發生於電解質水溶液中的工業製程,如電鍍、電煉、金屬回收、及水電解,常伴隨著氧之釋出。
自西元1970年代起,稱為混合金屬氧化物電極(mixed metal oxide electrode),在技術與經濟層面上,改變了關於釋出氯及釋出氧兩者之製程。「混合金屬氧化物電極」意指一電極包括沈積於導電基材(通常為鈦)上之含有閥金屬(valve metal)氧化物及鉑族金屬(platinum group metal)氧化物之層或塗層(coating),該閥金屬氧化物例如氧化鈦或氧化鉭,該鉑族金屬例如釕、銥、或鉑。許多鉑族金屬氧化物與閥金屬氧化物之組合已被製備及定性,但目前以TiO2 -RuO2 、TiO2 -RuO2 -IrO2 、TiO2 -RuO2 -SnO2 、TiO2 -IrO2 、及Ta2 O3 -IrO2 之混合物為主,用於不同的商業電化學製程上。混合金屬氧化物電極得以實現商業上的成功,大部分應歸因於其性質,即良好的電催化性質、高表面積、良好的導電性,以及於腐蝕性環境中長期操作下優異的化學及機械穩定性。
電催化作用係概括地定義為一電極可影響電化反應速率的能力。此係關於該電極表面與該電活性物質(其擴散並移動至該電極表面)之間的物理及/或化學交互作用。此交互作用,其幾乎完全與混合金屬氧化物電極中的鉑族金屬氧化物相關,係降低驅使該反應進行所需的能量、有效降低該電極電位(electrode potential)、並因此降低生產單元之整體電壓。因此,可降低電化製程所消耗的能量。該混合金屬氧化物電極之高表面積係有效降低所施用的電流密度、由其所致之電極電位及生產單元電壓,再次地,其導致該製程所消耗的能量減少。類似地,該電極結構之導電性亦為重要,可使對通過該結構之電流之阻抗最小化,即,降低歐姆過電位(ohmic overpotential),此為該生產單元電壓之構成要素。
鉑族金屬氧化物於該塗層中的分佈係影響該電極之電化活性及導電性兩者。該閥金屬氧化物必為非導電性,因此其導電性係依賴該鉑族金屬氧化物之顆粒,此已於S.Trasatti所著,標題為「陶瓷氧化物之物理電化性」之文獻中被討論[Electrochimica Acta,36(2),225-241(1991)]。已顯示該等層之表形係影響其導電性,如,緻密層之導電性較「泥裂(mud-cracked)」層為高,後者為商業可購得之混合金屬氧化物電極的典型表形。該電極製造過程中所使用的熱程序亦可影響導電性。
該塗層中的鉑族金屬氧化物顆粒係提供電催化活性,尤其是催化無機離子的氧化作用(如氯離子、水分子(釋出氧)),及催化脂肪族及芳香族有機分子的氧化作用。據信,商業可購得之混合金屬氧化物電極及頂塗覆電極之多孔性為重要,其使電活性物質能輕易進入至催化位置。美國專利第6,251,254號(公告日為2001年6月26日)係描述於包含氧化銥之塗層表面所形成之多孔層可作為陽極,用於鉻電鍍(由鉻(III)離子轉為鉻)。美國專利第7,247,229號(公告日為2007年7月24日)係描述增加多孔性頂塗層,其使水分子進入至下方催化活性層,但抑制較大的有機分子或較大的無機離子擴散至該等位置。此電極被描述用於電鍍、電煉及金屬回收製程中作為陽極。美國專利第7,378,005號(公告日為2008年5月27日)之標的亦為於混合金屬氧化物塗層上施用多孔性頂塗層,其係描述用於產製消毒及殺菌程序用之臭氧稀釋水溶液之電極。於該專利中,該頂塗層之多孔性係以頂塗層形成之熱程序而特別建構,即將該塗覆基質加熱至600℃至700℃之溫度範圍。又,其主張以此法所得之多孔性,對於以水溶液電解作用之臭氧生成具有特殊重要性。美國專利第7,156,962號(公告日為2007年1月2日)係揭露用於電解之水處理以產製臭氧或活性氧之電極。該電極具有形成於導電基材表面之電極催化表層,其中該電極催化表層包含貴金屬或金屬氧化物。
然而,於美國專利第7,247,229及7,378,005號中,已描述該頂塗層之多孔性本質及該頂塗層孔洞中之氣體形成,其造成長時間操作中的機械不穩定性。該頂塗層會變成粉末狀且會自電極表面分離。又,該界面層及頂塗層之表面粗糙度可增加活性表面積,並因此降低操作電極期間的電流密度及所致電壓。然而於產製強氧化劑(如過氧化氫及臭氧)中,據信於較高的陽極電壓下操作可更為有效。
近來業界有意建構對氧釋出反應催化性較低之陽極,以期能以高陽極電壓操作電解質水溶液中之強氧化劑(如過氧化氫及臭氧)生成。另外,為了去除工業廢水中的有機污染物,須發展高階氧化技術。使用高過電位電極之直接電-氧化作用係提供一可能方案,而考慮以摻雜銻之氧化錫及摻雜硼之鑽石作為此應用之候選材料。其主張於該摻雜硼之鑽石電極表面形成羥基自由基,且此等自由基係迅速氧化水中廣泛不同的有機污染物。此亦由Comninellis等人所發表之文獻所證明,於該電極表面之羥基自由基之重組反應會形成過氧化氫[J.Electrochemical Society,150(3),D79-D83,(2003)]。然而,目前無論是氧化錫或摻雜硼之鑽石電極均未被商業化,此顯示氧化錫之穩定性有限,且塗覆鑽石之鈦基板之大量製造仍有困難且昂貴。
藉由製造具有包括複數混合金屬氧化物層之塗層之電極,而避免使用頂塗層係有其優點,其中,該鉑族金屬及閥金屬之濃度隨塗層厚度增加而不同。又,形成一薄且相對平滑(多孔性低於典型的混合金屬氧化物塗層)之塗層係有其優點。該種電極可為特定應用目的而量身定作,例如產製強氧化劑(如臭氧或過氧化氫);或於電鍍製程中作為氧釋出陽極,其中係有效抑制添加物(如整平劑及增亮劑)之氧化作用;或於水處理及廢水純化製程中作為氧釋出陽極。又,可利用已建立的、大規模的、且具成本效益的方法製造該電極,亦為其優點。本發明係關於一複數層混合金屬氧化物電極及其製法,可提供前述及其他優點。
本發明係關於用於電-氧化反應之不同電極及製造該等電極之方法。各電極係包括導電基材及沈積其上之塗層。該塗層係由複數之混合金屬氧化物層所形成,即,一種或多種鉑族金屬氧化物(即,釕(ruthenium)、銠(rhodium)、鈀(palladium)、鋨(osmium)、銥(iridium)、及鉑(platinum))及一種或多種閥金屬氧化物之混合物。視需要,於該等金屬氧化物層中,上述兩種金屬之濃度可於各層不同。各混合金屬氧化物層之形成,係藉由對包含鉑族金屬鹽類及閥金屬鹽類之溶液之塗層進行熱處理,以產生緻密且相對平滑的塗層。又,依據本發明,該導電基材為閥金屬,例如鈦、鉭(tantalum)、鋯(zirconium)、或鈮(niobium)。該導電基材可為不同型式,如平板狀、有孔平板狀、篩網狀、管狀或柱狀結構、或棒狀結構等。
本發明電極之製造方法與習知混合金屬氧化物電極(如廣泛用於電化工業之電極)之製造方法類似。於進行蝕刻或噴砂以獲得所需表面粗糙度前,先於該導電基材之表面進行去油污及清潔。接著,以包含一種或多種鉑族金屬之鹽類(如IrCl3 )及一種或多種閥金屬之鹽類(如TaCl5 )之溶液薄薄地塗覆於該導電基材。將經塗覆之基材乾燥,再於含氧氛圍中加熱以獲得個別的金屬氧化物。對於連續層,則重複該溶液塗布、乾燥、加熱處理等步驟,以形成一包括複數混合金屬氧化物層之塗層。該塗層為平滑、緻密的塗層,其中,對於各層之鉑族金屬濃度對閥金屬濃度之比例,係自鄰接該基材之層(即,該基材-塗層之界面)至該電極表面之層(即,該塗層之表面層)逐漸降低。所形成之層數及各層之鉑族金屬濃度對閥金屬濃度之比例,則視所欲應用而定。
依據本發明,係提供一電極,其於電解質水溶液中的操作電位將達到能有效進行選定之電-氧化製程所需之操作電位,該電-氧化製程為例如電解水或電鍍之氧釋出、及金屬回收製程、或產製強氧化劑(如過氧化氫及臭氧)。
依據本發明,係提供一用於電解製程之具有經控制之電催化活性之電極。該電極係包括導電基材及形成於該導電基材上之塗層,該塗層係包括複數之層。該複數層之各層係包含鉑族金屬之氧化物及閥金屬之氧化物,其中,於該複數層中,該鉑族金屬濃度對該閥金屬濃度之比例為各層不同。
依據本發明之另一面向,係提供一種電極之製造方法,該電極具有經控制之電催化活性並用於電解製程,其中該電極係由導電基材及具有複數層之塗層所構成,該複數層係包含鉑族金屬氧化物及閥金屬氧化物。該方法包括下列步驟:(1)於該導電基材上沈積該塗層之第一層,其中,該第一層係藉由下列步驟沈積:(a)施用一種或多種塗料(coat)溶液至該導電基材,該溶液係包括鉑族金屬鹽類及閥金屬鹽類,及(b)於施用各塗料溶液至該導電基材後,將該塗料溶液乾燥及於含氧氛圍中熱處理;及(2)於該導電基材上沈積該塗層之至少一連續層,其中該至少一連續層係藉由步驟(a)及(b)沈積。
依據本發明之又一面向,係提供一種控制用於電解製程之電極之電催化活性之方法,其中,該電極係具有由複數的混合金屬氧化物層所構成之塗層,該塗層係沈積於導電基材上。該方法包括下列步驟:以飽和甘汞電極(SCE)作為參考電極,於環境溫度及每平方英吋1安培之電流密度下,於包含每公升28公克之氯鹽之水溶液中測量經控制之電催化活性之該電極之電極電位;及調整沈積於該導電基材上之混合金屬氧化物層之數目,以及調整各混合金屬氧化物層之鉑族金屬濃度對閥金屬濃度之比例,以產生所欲電極。
於下詳述具有經控制之電化活性之電極之一實施例,該電極可設計用於不同的電-氧化製程。該電極包含一導電基材及形成於該導電基材上之塗層,該塗層係包括光滑、緻密之複數層。各層係包含鉑族金屬氧化物及閥金屬氧化物之混合物。
該導電基材包括閥金屬,如鈦、鉭、鋯、或鈮,或兩種或更多種閥金屬之合金。基於成本、可利用性、工作性能、及於腐蝕性液態環境之抗蝕性之考量,通常以鈦為導電基材之較佳選擇。該導電基材可為多種型式,包括但非限於平板狀、有孔平板狀、篩網狀、棒狀、刃狀、線狀、柱狀或管狀結構。
於該導電基材上形成一系列之層,從而提供複數層之塗層。各層係包括下列之混合物:(1)鉑族金屬(包含但非限於釕、銥、或鉑)之氧化物,及(2)閥金屬(如鈦、鉭、鋯、或鈮)之氧化物。
又,該塗層之各層可包括(1)一種或多種鉑族金屬氧化物,及(2)一種或多種閥金屬氧化物。其中一層可具有複數種鉑族金屬氧化物,則鉑族金屬之濃度為該複數種鉑族金屬之濃度之總和。同理,其中一層可具有複數種閥金屬氧化物,則閥金屬之濃度為該複數種閥金屬之濃度之總和。
依所欲應用,於該複數層之塗層中,該鉑族金屬濃度對該閥金屬濃度之比例可於層與層之間為不同。依據本發明之一實施例,於該等層中的鉑族金屬濃度,係自鄰接該導電基材之層為80重量%(wt%),而改變至位在該電極表面之層為0.0005 wt%;而於該等層中的閥金屬濃度,係自鄰接該導電基材之層為20 wt%,而變化至位在該電極表面之層為99.9995 wt%。
於本發明電極之製程中,應注意該導電基材的其中一表面或兩面可具有塗層,該塗層係包括該混合金屬氧化物之複數層,當將本發明電極配置於電化生產單元中以面對相對電極,即單極配置(monopolar configuration)時,僅該導電基材之一表面具有該塗層。於雙極配置中,該導電基材的兩個表面皆具有該塗層。
該導電基材之表面可經研磨以移除髒污、油脂、或油性沈澱物、及任何可能存在於基材表面之氧化膜。此研磨程序可使用砂紙、或以砂子或砂礫進行表面噴砂。經研磨之表面係以有機溶劑如丙酮潤洗,以移除殘留的有機污染物,而後於85-90℃中以濃鹽酸(20%)進行蝕刻。亦可使用其他蝕刻溶液如草酸、硫酸、或氫氟酸,對該導電基材表面進行蝕刻。該蝕刻程序為連續,直至獲得預定的表面條件(形貌(topography))。
以一塗層溶液之薄層塗覆經蝕刻之導電基材表面,該塗層溶液包含(1)鉑族金屬鹽類如氯化銥(即IrCl3 ),及(2)閥金屬(如鈦或鉭)鹽類,即TiCl4 或TaCl5 ,其係溶解於水或有機溶劑(如異丙醇或正丁醇)其中一者。應注意該鉑族金屬可包含於合金中,其中該合金可由兩種或更多種鉑族金屬所構成。同理,該閥金屬可包含於合金中,其中該合金可由兩種或更多種閥金屬所構成。
無論該塗層溶液為水或醇基底,可添加小量的濃鹽酸至該塗層溶液中。藉由施用一含有鉑族鹽類及閥金屬鹽類之稀釋溶液之薄層,特別有用於塗布該導電基材。此方案提供了該金屬鹽類於該塗層中的均勻分佈,故於熱處理後使該氧化物均勻分佈於該層中。又,與商業可購得的混合金屬氧化物電極的典型「泥裂」表面不同,該層為緻密,且其導電性更優於具有「泥裂」表面的電極。
此處所述塗層溶液之任一者均可施用至該導電基材,施用方法可為任何用以將液體施用至固體表面之方法。該等方法包括以刷子或滾筒施用、噴霧塗覆、浸漬迴旋及浸漬吊掛技術、旋轉塗覆及噴霧塗覆,例如靜電噴霧塗覆。另外,亦可使用上述塗覆方法之組合,例如浸漬吊掛與噴霧施用。
將該經塗覆之基材於室溫下乾燥數分鐘,接著在含氧氛圍下加熱10分鐘,加熱溫度為150℃及250℃之間,以210℃至230℃為佳。接著,進行進一步的熱處理,加熱溫度為450℃及550℃之間,以480℃至510℃為佳,將該經塗覆之基材再度於含氧氛圍下加熱10分鐘以完全分解該金屬鹽類。以此方法所形成的塗層為平滑且緻密的鉑族金屬氧化物及閥金屬氧化物之均勻混合物。重要的是,須避免更高溫度的熱處理,以防止閥金屬氧化物(如氧化鉭)結晶化的可能性,結晶化會造成該塗層形成裂縫及孔洞。在施用任何額外的塗料溶液(包括鉑族金屬鹽類及閥金屬鹽類)至該基材之前,先將該經塗覆之基材冷卻至室溫;並對各額外的塗層重複前述乾燥步驟及加熱步驟。
前述方案可控制塗層厚度及塗層中鉑族金屬氧化物及閥金屬氧化物之承載量(即,每單位面積之貴金屬特定量)。鉑族金屬氧化物之承載量,通常以幾何面積之每平方公尺之公克數表示,其可藉由該塗層溶液之鹽濃度及施用至該導電基材的塗層數目而輕易控制。應留意,該承載量係以金屬重量為基準,金屬之確切型式則非所問。
於該塗層之各層中,可以改變該鉑族金屬濃度及該閥金屬濃度,從而控制各層之電催化活性及導電度。另外,可製造緻密且相對平滑的層(具有較佳導電性及對導電基材及其他層之優異附著性),從而確保長期操作的耐久性。然而,對所有所欲應用層面,該塗層有足夠的多孔性;且造孔劑之使用並非必須。對於在塗層中生成裂縫及孔洞的方式可參照美國專利第7,378,005號(公告日:2008年5月27日),而且使用機械方法形成孔洞亦非必須。於本發明一實施例中,該鉑族金屬氧化物及閥金屬氧化物之承載量範圍為自0.01公克/平方英尺至0.13公克/平方英尺,以限制該層之裂縫。
沈積於該導電基材上之一層或多層,除了包含鉑族金屬氧化物及閥金屬氧化物外,還包含氧化錫,此亦涵蓋於本發明。氧化錫係以氯化錫(SnCl4 )或硫酸錫(SnSO4 )或其他適當的無機錫鹽的型式導入該塗層溶液中。氧化錫可與摻雜劑(如銻或氧化銦)一起使用,以增進該層的導電性。
本發明之混合金屬氧化物電催化性電極,係以施用複數之貴金屬塗漆(paint)之塗料(coat)而製備。該等塗漆之製備,係藉由將鉑族金屬鹽類(通常為氯鹽)及閥金屬鹽類(有時為氯鹽,但亦可為可溶性有機金屬材料)溶解於液態載體流體中,從而形成塗層溶液。典型的液態載體流體為醇或強酸(如HCl)。使用滾筒、塗刷、或以噴霧方式,施用該塗層溶液至所預備的導電基材上。續將該電極乾燥以移除液態載體流體,故於該表面留下該鉑族金屬鹽及該閥金屬化合物。接著,將該電極在含氧氛圍下,以預定溫度及時間於烤箱中處理。
施用該塗層溶液之複數塗料以形成各層,以確保該鉑族金屬及閥金屬均勻遍佈於該導電基材表面。另外,複數的薄薄塗料為所欲,係避免形成顆粒狀沈積。複數薄塗料係造成更緻密、更少裂縫、更耐久的電極。可依所欲承載量(即,每單位面積之貴金屬總量)而指定各層的「塗料」數目。
依據本發明之一實施例,該複數層混合金屬氧化物電極之塗層之各層,係藉由施用複數之塗層溶液(具有相同的鉑族金屬對閥金屬的濃度比例)之塗料所形成。然而,該塗層之各層具有不同的鉑族金屬對閥金屬的濃度比例。該濃度比例係單獨以該鉑族金屬重量與該閥金屬重量為基準。
於一實施例中,該塗層之各層係由複數鉑族金屬氧化物及複數閥金屬氧化物所構成,複數鉑族金屬前驅物及複數閥金屬前驅物之混合物被「刷塗」至該導電基材上。此等前驅物經處理以形成各種鉑族金屬氧化物及閥金屬氧化物之混合物。舉例而言,含有20公克/公升之銥(以金屬為基準,以下皆同)及20公克/公升之鉑的前驅物溶液,係提供一具有總和為40公克/公升之鉑族金屬濃度之溶液。於此鉑族金屬鹽類溶液中添加20公克/公升之鈦鹽及20公克/公升之鉭鹽,則該溶液具有總和為40公克/公升之閥金屬濃度。於此溶液中,該鉑族金屬濃度對閥金屬濃度之比例為50:50。當沈積至該導電基材表面時,以金屬為基準,鉑族金屬對閥金屬之濃度比例為50:50。
參照第1圖,為依據本發明之一例示性實施例之電極2。所繪示之電極2係由導電基材8及塗層10所構成,該塗層具有七層混合金屬氧化物層11-17,其中,各混合金屬氧化物層係由鉑族金屬之氧化物(即銥)及閥金屬之氧化物(即鉭)。依據本發明,該等混合金屬氧化物層11-17之各層具有不同的鉑族金屬及閥金屬的濃度,其百分比如圖中所示。於層11-17中,該鉑族金屬之濃度係自於鄰接該導電基材之層(層11)中為75 wt%,而變化至位在該電極表面之層中為0.005 wt%;而該閥金屬之濃度係自於鄰接該導電基材之層中為25 wt%,而變化至位在該電極表面之層中為99.995 wt%。
製備用於特定應用或製程之本發明之電極,可藉由測量電極電位而控制或監測。已發現於包含約30公克/公升氯離子濃度之溶液(即,於此處主要的陽極反應應為氯離子氧化成氯)中測量所得之電極電位,與當首要陽極製程為氧釋出時所須的電極性能具有極高的關連性。據信,該緻密塗層限制了氯離子進入至該塗層中的活化位置,抑制氯之形成。
為了說明控制該電化活性(以電極電位表示)之能力,係製備一參考電極及一系列之12個測試電極(參見下表1)。以商業可購得之混合金屬氧化物電極之製造方法製備該參考電極。該12個測試電極則依據本發明之製程製備,以提供緻密的複數層塗層,其具有各層不同的鉑族金屬及閥金屬濃度。以下詳述該參考電極之製備,以及具有經控制之電催化活性的該參考電極的部分實施例:
實施例1
依據Henri Beer之兩篇英國專利,英國專利第1,147,442(西元1965年)及1,195,871(西元1967年)號,所述技術製備混合金屬氧化物電極,且此塗層係用以提供參考值,而與下列實施例中依據本發明所製備之電極作比較。於28公克/公升之食鹽水及1安培/平方英吋(square inch)下測量,相對於飽和甘汞電極,實施例1之電極測得單電極電位為1.1伏特(volt)。於下表1中,實施例1之電極係標示為陽極編號1。
實施例2
依據本發明製程製備具有經控制之電化活性之混合金屬氧化物電極。將三氯化銥及五氯化鉭溶解於正丁醇中,以獲得分別具有下列鉑族金屬濃度及閥金屬濃度(以金屬重量為基準)之三種塗層溶液。
應留意,「層編號1」意指鄰接該導電基材表面之層。經蝕刻之鈦基材依序以該三種不同塗層溶液之複數薄塗料塗覆,鄰接該鈦導電基材之層中具有最高濃度的銥,而於表面之層中具有最低濃度的銥。於該電極之製備中,將每一塗料乾燥,接著以480℃至510℃之間的溫度進行熱處理約10分鐘,再施用其他塗料。相對於飽和甘汞電極,該單電極電位(SEP)為1.2伏特,且氯電流效能(chlorine current efficiency)為42%。於下表1中,實施例2之電極係標示為陽極編號2。
實施例3
依據本發明製程製備具有經控制之電化活性之混合金屬氧化物電 極,係如實施例2所述,但以具有下列銥濃度及鉭濃度(以金屬重量為基準)之塗層溶液進行。
相對於飽和甘汞電極,該單電極電位為1.6伏特,且氯效能為29%。實施例3之電極係標示為陽極編號4。
實施例4
依據本發明製程製備具有經控制之電化活性之混合金屬氧化物電極,係如實施例2及3所述,但以具有下列鉭濃度及銥濃度(以金屬重量為基準)之塗層溶液進行。
相對於飽和甘汞電極,該單電極電位為2.4伏特,且氯效能為23%。實施例4之電極係標示為陽極編號9。
實施例5
依據本發明製程製備具有經控制之電化活性之混合金屬氧化物電極,係如實施例2及3所述,但以具有下列鉭濃度及銥濃度(以金屬重量為基準)之塗層溶液進行。
相對於飽和甘汞電極,該單電極電位為3.1伏特,且氯電流效率為16%。臭氧經檢測為0.2ppm。實施例5之電極係標示為陽極編號11。
實施例6
依據本發明製程製備具有經控制之電化活性之混合金屬氧化物電極,係如實施例2及3所述,但以具有下列鉭濃度及銥濃度(以金屬重量為基準)之塗層溶液進行。
相對於飽和甘汞電極,該單電極電位為4.3伏特,且氯效能為約2%。臭氧經檢測為0.6ppm。實施例6之電極係標示為陽極編號13。
電極電位及氯效能
除上述實施例之電極外,另依據本發明製程製備了7個電極。並檢測各電極之電極電位、氯效能、及臭氧濃度值,結果如下表1所示。將表1所收集的數據繪示如第2圖所示之氯效能與單電極電位(伏特)(與飽和甘汞電極(SCE)相較)之函數曲線圖。針對該電極電位與氯效能,係將各電極於環境溫度(例如25℃)及1安培/平方英吋之電流密度 下,於包含28公克/公升之氯鹽(氯化鈉)之水溶液中測量。
於安裝至電化生產單元(與鈦陰極相對)前,各陽極表面先經遮罩並保留1平方英吋的面積。以1安培電流施用20分鐘,於此期間劇烈攪拌該溶液,並以「Sensafe」試紙檢測釋出氣體是否有臭氧存在。以飽和甘汞電極(SCE)為對照,測量陽極電位。於測試終點分析該溶液,以檢測活性氯之濃度(即,溶解的氯、次氯酸及次氯酸鈉的總和濃度)。此分析必須添加碘化鉀至該電解質樣本中,並於澱粉指示劑的存在下,以硫代硫酸鈉對所釋出的碘進行滴定。
參照表1及第2圖,以陽極編號1為參考陽極(實施例1)。數據顯示氯離子的氧化作用明顯被抑制(陽極編號2-4),推測是由於:(a)該塗層的緻密表形限制了氯離子進入至塗層中的活化位置,及(b)於電極表面之層中,鉑族金屬濃度的階段變化。當該塗層之組成物改變,氯離子之氧化作用效能係持續性緩慢衰退,伴隨著氧釋出成為主要的陽極反應及該電極電位增加。當與SCE相較之電位高於2.4伏特,會展示出更為顯著的改變,伴隨著氯離子之氧化作用大幅地衰退,最後臭氧生成(陽極編號10-13)。
於製造電解製程用電極之製程中,該電極之電催化活性可藉由下述方式控制:以飽和甘汞電極(SCE)作為參考電極,於環境溫度及每平方英吋1安培之電流密度下,於包含28公克/公升氯鹽之水溶液中測量該電極之電極電位;及調整沈積於該導電基材上之混合金屬氧化物層之數目,以及調整各混合金屬氧化物層之鉑族金屬濃度對閥金屬濃度之比例,以產生所欲電極電位。於電解質中,用於減少氯活性及緩解有機物質之破壞之電極電位範圍為1.6至2.4伏特(與飽和甘汞電極(SCE)相較)。生成氧化劑物質(如臭氧)之電極電位為高於3.0伏特。
依據本發明之一實施例,所欲電極電位可藉由下述步驟達成:於一導電基材上沈積第一層,其具有濃度範圍自75 wt%至80 wt%之鉑族金屬及濃度範圍自20 wt%至25 wt%之閥金屬;及於該導電基材上沈積一層或多層連續層,其具有濃度範圍自80 wt%至0.0005 wt%之鉑族金屬及濃度範圍自20 wt%至99.9995 wt%之閥金屬。
上述特定實施例之內容係為了詳細說明本發明,然而,該等實施例係僅用於說明,並非意欲限制本發明。熟習本領域之技藝者可理解,在不悖離後附申請專利範圍所界定之範疇下針對本發明所進行之各種變化或修改係落入本發明之一部分。
2...電極
8...導電基材
10...塗層
11、12、13、14、15、16、17...混合金屬氧化物層
第1圖係繪示本發明之實施例之電極之剖面圖。
第2圖係說明氯效能(%)與單電極電位(伏特)(與飽和甘汞電極(SCE)相較)之函數曲線圖。
2...電極
8...導電基材
10...塗層
11、12、13、14、15、16、17...混合金屬氧化物層

Claims (16)

  1. 一種用於電解製程之具有經控制電催化活性的電極,該電極包括:導電基材;及形成於該導電基材上之塗層,該塗層由複數之混合金屬氧化物層所構成,該複數之混合金屬氧化物層係3至7層,每一層係包含:鉑族金屬之氧化物,及閥金屬之氧化物,其中,該鉑族金屬濃度對該閥金屬濃度之比例在該複數之混合金屬氧化物層中不同,則該複數之混合金屬氧化物層之各層係具有不同之鉑族金屬對閥金屬之濃度比例;其中,該鉑族金屬濃度對該閥金屬濃度之比例,於最靠近該導電基材之該層中為最高,而於位在該電極表面之該層中為最低。
  2. 如申請專利範圍第1項之電極,其中該導電基材為閥金屬或兩種以上之閥金屬之合金,且其中該複數之混合金屬氧化物層之每一層包含一種或多種鉑族金屬氧化物及一種或多種閥金屬氧化物,其中,於該濃度之比例中,前述鉑族金屬濃度為該一種或多種鉑族金屬之濃度之總和,且前述閥金屬濃度為該一種或多種閥金屬之濃度之總和。
  3. 如申請專利範圍第1項之電極,其中該鉑族金屬氧化物之顆粒係提供穿過該複數之混合金屬氧化物層之連續導電途徑。
  4. 如申請專利範圍第1項之電極,其中該鉑族金屬為釕、銥、或鉑。
  5. 如申請專利範圍第1項之電極,其中該閥金屬為鈦、鉭、鋯、或鈮。
  6. 如申請專利範圍第1項之電極,其中於該複數之混合金屬氧化物層中的鉑族金屬濃度係自最靠近該導電基材之該層中為75wt%變化至位在該電極表面之該層中為0.0005wt%;且於該複數之混合金屬氧化物層中的閥金屬濃度係自最靠近該導電基材之該層中為25wt%變化至位在該電極表面之該層中為99.9995wt%。
  7. 如申請專利範圍第1項之電極,其中該導電基材由鈦所構成。
  8. 如申請專利範圍第1項之電極,其中該複數之混合金屬氧化物層之各層係施用單一種塗層溶液之複數塗料所形成,其中,形成該一層之該塗層溶液之複數塗料係具有相同的鉑族金屬對閥金屬的濃度比例。
  9. 如申請專利範圍第1項之電極,其中,於該複數之混合金屬氧化物層中,該鉑族金屬濃度對該閥金屬濃度之比例,自最靠近該導電基材之層至位在該電極表面之層為逐層降低。
  10. 如申請專利範圍第1項之電極,其中,於該複數之混合金屬氧化物層之各層中,該鉑族金屬氧化物與該閥金屬氧化物之裝載量範圍係自每平方英尺0.01公克至每平方英尺0.13公克。
  11. 一種用於電解製程之電極,該電極包括導電基材及形成於該導電基材上之塗層;該塗層由複數之混合金屬氧化物層所構成,該複數之混合金屬氧化物層係3至7層,每一層係包含鉑族金屬之氧化物及閥金屬之氧化物;該鉑族金屬濃度對該閥金屬濃度之比例在該複數之混合金屬氧化物層中不同;且,於該複數之混合金屬氧化物層中,該鉑族金屬濃度對該閥金屬濃度之比例,自最靠近該導電基材之層至位在該電極表面之層為逐層降低;且,其中該複數之混合金屬氧化物層之各層係施用單一種塗層溶液之複數塗料所形成,其中,形成該一層之該塗層溶液之複數塗料係具有相同的鉑族金屬對閥金屬的濃度比例。
  12. 如申請專利範圍第11項之電極,其中該鉑族金屬氧化物之顆粒係提供穿過該複數混合金屬氧化物層之塗料之全部之連續導電途徑。
  13. 如申請專利範圍第11項之電極,其中該鉑族金屬為釕、銥、或鉑。
  14. 如申請專利範圍第13項之電極,其中該閥金屬為鈦、鉭、鋯、或鈮。
  15. 如申請專利範圍第11項之電極,其中該導電基材由鈦所構成。
  16. 如申請專利範圍第11項之電極,其中,於該複數之混合金屬氧化物層之各層中,該鉑族金屬氧化物與該閥金屬氧化物之裝載量範圍係自每平方英尺0.01公克至每平方英尺0.13公克。
TW099145873A 2010-10-08 2010-12-24 複數層之混合金屬氧化物電極及其製法 TWI433964B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US39123210P 2010-10-08 2010-10-08

Publications (2)

Publication Number Publication Date
TW201215708A TW201215708A (en) 2012-04-16
TWI433964B true TWI433964B (zh) 2014-04-11

Family

ID=45924243

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099145873A TWI433964B (zh) 2010-10-08 2010-12-24 複數層之混合金屬氧化物電極及其製法

Country Status (8)

Country Link
US (1) US8580091B2 (zh)
KR (1) KR20120036779A (zh)
CN (1) CN102443818B (zh)
AU (1) AU2011203275A1 (zh)
BR (1) BRPI1107135B8 (zh)
CA (1) CA2744764C (zh)
MX (1) MX2011010531A (zh)
TW (1) TWI433964B (zh)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10343939B2 (en) 2006-06-06 2019-07-09 Evoqua Water Technologies Llc Ultraviolet light activated oxidation process for the reduction of organic carbon in semiconductor process water
US12103874B2 (en) 2006-06-06 2024-10-01 Evoqua Water Technologies Llc Ultraviolet light activated oxidation process for the reduction of organic carbon in semiconductor process water
TWI441239B (zh) * 2006-12-12 2014-06-11 Asml Netherlands Bv 製造微影元件的方法、微影單元及電腦程式產品
JP6206419B2 (ja) 2012-02-23 2017-10-04 トレードストーン テクノロジーズ インク 金属基板表面の被覆方法、電気化学的装置および燃料電池用プレート
JP6700260B2 (ja) 2014-10-21 2020-05-27 エヴォクア ウォーター テクノロジーズ エルエルシーEvoqua Water Technologies LLC 二層コーティングを備える電極、その使用方法および製造方法
CA2966834C (en) 2014-11-10 2022-08-30 National University Corporation Yokohama National University Oxygen-generating anode
CA2918564C (en) 2015-01-21 2023-09-19 Evoqua Water Technologies Llc Advanced oxidation process for ex-situ groundwater remediation
US11161762B2 (en) 2015-01-21 2021-11-02 Evoqua Water Technologies Llc Advanced oxidation process for ex-situ groundwater remediation
AR106069A1 (es) * 2015-09-25 2017-12-06 Akzo Nobel Chemicals Int Bv Electrodo y proceso para su manufactura
ITUB20159439A1 (it) * 2015-12-21 2017-06-21 Industrie De Nora Spa Rivestimento anticorrosivo e metodo per il suo ottenimento
CN108299868A (zh) * 2016-08-25 2018-07-20 先丰通讯股份有限公司 触媒涂料及使用其的阳极
CN107312958A (zh) * 2017-06-07 2017-11-03 北京科技大学 一种金刚石‑阀金属复合电极材料及其制备方法
CN107555548B (zh) * 2017-10-10 2020-09-22 河南科技大学 镍-硼-锑共掺杂二氧化锡电催化阳极及制备方法和应用
CN108048862B (zh) * 2017-11-16 2020-04-28 江苏安凯特科技股份有限公司 一种析氯用阳极及其制备方法
US11668017B2 (en) * 2018-07-30 2023-06-06 Water Star, Inc. Current reversal tolerant multilayer material, method of making the same, use as an electrode, and use in electrochemical processes
CN109234757B (zh) * 2018-10-18 2020-07-28 任杰 一种均匀稳定的钌铱双金属掺杂钛电极的制备方法
KR102355824B1 (ko) * 2018-12-27 2022-01-26 코웨이 주식회사 팔라듐, 이리듐 및 탄탈럼으로 구성된 전극용 촉매층 및 상기 전극용 촉매가 코팅된 살균수 생성 모듈
KR102305334B1 (ko) * 2019-10-04 2021-09-28 주식회사 웨스코일렉트로드 아연도금장치의 양극판
US20230295819A1 (en) * 2020-11-12 2023-09-21 Lg Chem, Ltd. Electrode for Electrolysis
US20230132969A1 (en) * 2021-10-29 2023-05-04 Robert Bosch Gmbh Membrane electrode assembly catalyst material
WO2023164641A2 (en) * 2022-02-25 2023-08-31 The Johns Hopkins University Electrochemical production of lithium hydroxide
WO2023188992A1 (ja) * 2022-03-31 2023-10-05 パナソニックIpマネジメント株式会社 電解用電極及び次亜塩素酸発生機器
JP2024053494A (ja) * 2022-10-03 2024-04-15 株式会社東芝 電極、膜電極接合体、電気化学セル、スタック、電解装置

Family Cites Families (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2972572A (en) 1958-12-09 1961-02-21 Westinghouse Electric Corp Acid copper addition agent
NL235848A (zh) 1959-02-06
GB964913A (en) 1961-07-06 1964-07-29 Henri Bernard Beer A method of chemically plating base layers with precious metals
NL291575A (zh) 1962-04-16
NL128866C (zh) 1965-05-12
US3751296A (en) 1967-02-10 1973-08-07 Chemnor Ag Electrode and coating therefor
US3933616A (en) 1967-02-10 1976-01-20 Chemnor Corporation Coating of protected electrocatalytic material on an electrode
GB1195871A (en) 1967-02-10 1970-06-24 Chemnor Ag Improvements in or relating to the Manufacture of Electrodes.
US3778307A (en) 1967-02-10 1973-12-11 Chemnor Corp Electrode and coating therefor
US3840443A (en) 1967-02-10 1974-10-08 Chemnor Corp Method of making an electrode having a coating comprising a platinum metal oxide
US3654121A (en) 1968-12-23 1972-04-04 Engelhard Min & Chem Electrolytic anode
GB1294373A (en) 1970-03-18 1972-10-25 Ici Ltd Electrodes for electrochemical processes
US3775284A (en) 1970-03-23 1973-11-27 J Bennett Non-passivating barrier layer electrodes
US3711385A (en) 1970-09-25 1973-01-16 Chemnor Corp Electrode having platinum metal oxide coating thereon,and method of use thereof
US3711397A (en) 1970-11-02 1973-01-16 Ppg Industries Inc Electrode and process for making same
DE2100652A1 (de) 1971-01-08 1972-07-20 Metallgesellschaft Ag Elektrode für die Chloralkalielektrolyse und Verfahren zu ihrer Herstellung
GB1352872A (en) 1971-03-18 1974-05-15 Ici Ltd Electrodes for electrochemical processes
US3926751A (en) 1972-05-18 1975-12-16 Electronor Corp Method of electrowinning metals
IT959730B (it) 1972-05-18 1973-11-10 Oronzio De Nura Impianti Elett Anodo per sviluppo di ossigeno
US4086157A (en) 1974-01-31 1978-04-25 C. Conradty Electrode for electrochemical processes
US3940323A (en) 1974-08-02 1976-02-24 Hooker Chemicals & Plastics Corporation Anode for electrolytic processes
US3882002A (en) 1974-08-02 1975-05-06 Hooker Chemicals Plastics Corp Anode for electrolytic processes
SE425412B (sv) 1974-10-29 1982-09-27 Diamond Shamrock Techn Forfarande for framstellning av en elektrod lemplig for anvendning i elektrolytiska forfaranden
US4005003A (en) 1975-04-15 1977-01-25 Olin Corporation Multi-component metal electrode
US3950240A (en) 1975-05-05 1976-04-13 Hooker Chemicals & Plastics Corporation Anode for electrolytic processes
CA1088026A (en) * 1977-11-09 1980-10-21 Raouf O. Loutfy Stable electrode for electrochemical applications
JPS55500123A (zh) 1978-03-28 1980-03-06
US4310391A (en) 1979-12-21 1982-01-12 Bell Telephone Laboratories, Incorporated Electrolytic gold plating
DE3024611A1 (de) 1980-06-28 1982-01-28 Basf Ag, 6700 Ludwigshafen Edelmetallfreie elektrode
CA1225066A (en) 1980-08-18 1987-08-04 Jean M. Hinden Electrode with surface film of oxide of valve metal incorporating platinum group metal or oxide
US4437948A (en) 1981-10-16 1984-03-20 Bell Telephone Laboratories, Incorporated Copper plating procedure
WO1983002288A1 (en) 1981-12-28 1983-07-07 Hinden, Jean, Marcel Electrocatalytic electrode
US4426262A (en) 1982-04-29 1984-01-17 Engelhard Corporation Promotion of Pt-Ir catalytic electrodes with lead, tantalum, ruthenium and oxygen
JPS58171589A (ja) 1982-03-31 1983-10-08 Ishifuku Kinzoku Kogyo Kk 電解用電極及びその製造方法
US4469564A (en) 1982-08-11 1984-09-04 At&T Bell Laboratories Copper electroplating process
US4589969A (en) 1984-10-12 1986-05-20 Yurkov Leonid I Electrode for electrolysis of solutions of electrolytes and process for producing same
US5156726A (en) 1987-03-24 1992-10-20 Tdk Corporation Oxygen-generating electrode and method for the preparation thereof
NL8802822A (nl) 1988-11-16 1990-06-18 Bekaert Sa Nv Afdichtingselement voor het doorvoeren van tenminste een langwerpig voorwerp zoals draad en van een of meer afdichtingselementen voorziene vacuuminrichting.
US5006321A (en) 1989-01-04 1991-04-09 The Perkin-Elmer Corporation Thermal spray method for producing glass mold plungers
US5314601A (en) 1989-06-30 1994-05-24 Eltech Systems Corporation Electrodes of improved service life
US5262040A (en) 1989-06-30 1993-11-16 Eltech Systems Corporation Method of using a metal substrate of improved surface morphology
US5324407A (en) 1989-06-30 1994-06-28 Eltech Systems Corporation Substrate of improved plasma sprayed surface morphology and its use as an electrode in an electrolytic cell
US5167788A (en) 1989-06-30 1992-12-01 Eltech Systems Corporation Metal substrate of improved surface morphology
JP2713788B2 (ja) * 1989-12-22 1998-02-16 ティーディーケイ株式会社 酸素発生用電極及びその製造方法
US5207889A (en) 1991-01-16 1993-05-04 Circuit Foil Usa, Inc. Method of producing treated copper foil, products thereof and electrolyte useful in such method
NL9101753A (nl) 1991-10-21 1993-05-17 Magneto Chemie Bv Anodes met verlengde levensduur en werkwijzen voor hun vervaardiging.
JP2963266B2 (ja) 1992-01-28 1999-10-18 ペルメレック電極株式会社 不溶性電極構造体
JP3124847B2 (ja) 1992-11-06 2001-01-15 ペルメレック電極株式会社 金属箔の電解による製造方法
JP3124848B2 (ja) 1992-11-11 2001-01-15 ペルメレック電極株式会社 金属箔の電解による製造方法
US5783050A (en) 1995-05-04 1998-07-21 Eltech Systems Corporation Electrode for electrochemical cell
EP0867527B1 (fr) 1997-02-27 2001-03-21 Aragonesas Industrias Y Energia, S.A. Electrode à recouvrement catalytique pour des processus électrochimiques et procédé de fabrication de celle-ci
US5908540A (en) 1997-08-07 1999-06-01 International Business Machines Corporation Copper anode assembly for stabilizing organic additives in electroplating of copper
US6368489B1 (en) 1998-05-06 2002-04-09 Eltech Systems Corporation Copper electrowinning
JP3810043B2 (ja) 1998-09-30 2006-08-16 ペルメレック電極株式会社 クロムめっき用電極
US6527939B1 (en) 1999-06-28 2003-03-04 Eltech Systems Corporation Method of producing copper foil with an anode having multiple coating layers
US7247229B2 (en) 1999-06-28 2007-07-24 Eltech Systems Corporation Coatings for the inhibition of undesirable oxidation in an electrochemical cell
JP3619828B2 (ja) 2001-06-21 2005-02-16 三洋電機株式会社 電解用電極及びその製造方法及び電解用電極を用いた電解方法及び電解水生成装置
ITMI20021128A1 (it) * 2002-05-24 2003-11-24 De Nora Elettrodi Spa Elettrodo per sviluppo di gas e metodo per il suo ottenimento
BRPI0409985B1 (pt) 2003-05-07 2014-05-20 Eltech Systems Corp Artigo de metal de um substrato de metal de válvula para uso em processos eletrocatalíticos e processo para a produção do referido artigo de metal
US7566389B2 (en) * 2003-10-08 2009-07-28 Akzo Nobel N.V. Electrode
JP2006097122A (ja) 2004-08-31 2006-04-13 Sanyo Electric Co Ltd 電解用電極及び電解用電極の製造方法
US7494583B2 (en) 2005-06-29 2009-02-24 Oleh Weres Electrode with surface comprising oxides of titanium and bismuth and water purification process using this electrode
JP4972991B2 (ja) 2006-05-09 2012-07-11 アタカ大機株式会社 酸素発生用電極
US8124556B2 (en) 2008-05-24 2012-02-28 Freeport-Mcmoran Corporation Electrochemically active composition, methods of making, and uses thereof
US8075751B2 (en) 2008-10-16 2011-12-13 Finnchem Usa, Inc. Water chlorinator having dual functioning electrodes

Also Published As

Publication number Publication date
TW201215708A (en) 2012-04-16
AU2011203275A1 (en) 2012-04-26
CA2744764C (en) 2014-08-05
US8580091B2 (en) 2013-11-12
US20120085571A1 (en) 2012-04-12
CA2744764A1 (en) 2012-04-08
CN102443818A (zh) 2012-05-09
BRPI1107135B8 (pt) 2023-02-14
KR20120036779A (ko) 2012-04-18
CN102443818B (zh) 2016-01-13
MX2011010531A (es) 2012-04-09
BRPI1107135B1 (pt) 2020-08-25
BRPI1107135A2 (pt) 2013-03-05

Similar Documents

Publication Publication Date Title
TWI433964B (zh) 複數層之混合金屬氧化物電極及其製法
Chen et al. Corrosion resistance mechanism of a novel porous Ti/Sn-Sb-RuOx/β-PbO2 anode for zinc electrowinning
Abbasi et al. An investigation of the effect of RuO2 on the deactivation and corrosion mechanism of a Ti/IrO2+ Ta2O5 coating in an OER application
US7247229B2 (en) Coatings for the inhibition of undesirable oxidation in an electrochemical cell
RU2326991C2 (ru) Электрод для выделения газа и способ его изготовления
EP1670973B1 (en) Electrode
CN1764743A (zh) 具有铂族金属的电催化涂层和由其制造的电极
JP2010095764A (ja) 電解用電極及びその製造方法
US20230107452A1 (en) A New Interlayer Can Withstand Polarity Reversal
RU2388850C2 (ru) Анод для выделения кислорода
CN101338437A (zh) 一种梯度多元金属混合氧化物阳极的制备方法
Jović et al. Ru layers electrodeposited onto highly stable Ti2AlC substrates as cathodes for hydrogen evolution in sulfuric acid solutions
CN107075702A (zh) 具有双层涂层的电极、其使用和制备方法
CN1772955A (zh) 一种混合金属氧化物电极及其制备方法
CN111137953A (zh) 一种钛基锡铱系氧化物涂层电极的制备工艺
US7566389B2 (en) Electrode
JP2024502947A (ja) 電気塩素化方法のための電解槽および自己洗浄型電気塩素化システム
US20230257893A1 (en) Current Reversal Tolerant Multilayer Material, Method of Making the Same, Use as an Electrode, and Use in Electrochemical Processes
KR100770736B1 (ko) 수처리용 세라믹 전극 및 그 제조방법 그리고 이를 이용한전극구성체
US3677917A (en) Electrode coatings
WO2023073037A1 (en) Electrode for hypochlorite evolution
JPH0246674B2 (zh)