TWI386447B - Method for making carbon nanotube array composite - Google Patents
Method for making carbon nanotube array composite Download PDFInfo
- Publication number
- TWI386447B TWI386447B TW97138105A TW97138105A TWI386447B TW I386447 B TWI386447 B TW I386447B TW 97138105 A TW97138105 A TW 97138105A TW 97138105 A TW97138105 A TW 97138105A TW I386447 B TWI386447 B TW I386447B
- Authority
- TW
- Taiwan
- Prior art keywords
- carbon nanotube
- nanotube array
- substrate
- preparing
- polymer precursor
- Prior art date
Links
Landscapes
- Carbon And Carbon Compounds (AREA)
Description
本發明涉及一種複合材料的製備方法,尤其涉及一種奈米碳管陣列複合材料的製備方法。 The invention relates to a preparation method of a composite material, in particular to a preparation method of a carbon nanotube array composite material.
奈米碳管(Carbon Nanotube,CNT)被發現以來(Iilima S.,Nature,vol 354,p56(1991)),立即引起科學界及產業界的極大重視。奈米碳管具有許多的優異性能,可應用於許多領域。奈米碳管係由石墨片卷成的無縫中空管體,由於在奈米碳管內電子的量子限域作用,電子只能在石墨片中沿著奈米碳管的軸向運動,故奈米碳管表現出獨特的電學性能和熱學性能。研究測試結果表明,奈米碳管的平均電導率可達到1000~2000S/m(西門子/米),在室溫下的導熱係數可達6600W/mK(瓦/米.開爾文)。此外,奈米碳管還具有優良的力學性能,如,較高的強度和模量。 Since the discovery of Carbon Nanotube (CNT) (Iilima S., Nature, vol 354, p56 (1991)), it has immediately attracted great attention from the scientific community and industry. Nano carbon tubes have many excellent properties and can be used in many fields. The carbon nanotubes are seamless hollow tubes made of graphite sheets. Due to the quantum confinement of electrons in the carbon nanotubes, electrons can only move along the axial direction of the carbon nanotubes in the graphite sheets. Therefore, the carbon nanotubes exhibit unique electrical and thermal properties. The test results show that the average conductivity of the carbon nanotubes can reach 1000~2000S/m (Siemens/meter), and the thermal conductivity at room temperature can reach 6600W/mK (Watt/m. Kelvin). In addition, the carbon nanotubes also have excellent mechanical properties such as high strength and modulus.
奈米碳管因其優良的力學和導電性能,被認為係複合材料的理想添加物。奈米碳管/聚合物複合材料首次報導後已成為世界科學研究的熱點(Ajayan P.M.,Stephan O.,Colliex C.,Tranth D.,Science.,vol 265,p1212(1994):Calvert P.,Nature,vol 399,p210(1999))。奈米碳管作為增強體和導電體,形成的複合材料具有抗靜電,吸收微波和遮罩電磁等性能,具有廣泛的應用前景。 Nano carbon tubes are considered to be ideal additives for composite materials due to their excellent mechanical and electrical properties. Nanocarbon tubes/polymer composites have become the hotspot of scientific research in the world since their first report (Ajayan PM, Stephan O., Colliex C., Tranth D., Science., vol 265, p1212 (1994): Calvert P., Nature, vol 399, p210 (1999)). As a reinforcement and an electrical conductor, the carbon nanotubes have antistatic properties, absorption of microwaves and electromagnetic shielding, and have broad application prospects.
奈米碳管複合材料的製備方法通常有原位聚合法、溶液 共混法和熔體共混法。原位聚合法係利用奈米碳管表面的官能團參與聚合或利用引發劑打開奈米碳管的π鍵,使其參與聚合反應而達到與有機相的良好相容。溶液共混一般係把奈米碳管分散到聚合物的溶劑中,再將聚合物溶入其中,加工成型後將溶劑清除,從而制得複合材料。熔體共混法係把奈米碳管與聚合物基板材料在大於基板材料熔點的溫度下熔融並均勻混合而得到奈米碳管複合材料。 The preparation method of the carbon nanotube composite material usually has an in situ polymerization method and a solution. Blending and melt blending. The in-situ polymerization method utilizes a functional group on the surface of the carbon nanotube to participate in polymerization or an initiator to open the π bond of the carbon nanotube to participate in the polymerization reaction to achieve good compatibility with the organic phase. Solution blending generally involves dispersing a carbon nanotube into a solvent of a polymer, dissolving the polymer therein, and removing the solvent after processing to obtain a composite material. The melt blending method melts and uniformly mixes the carbon nanotubes and the polymer substrate material at a temperature greater than the melting point of the substrate material to obtain a carbon nanotube composite material.
由於奈米碳管具有優異的機械強度和熱導率,利用定向排列的奈米碳管陣列結構,可製備性能優異的奈米碳管導熱材料和奈米碳管複合增強材料。奈米碳管對複合材料的導熱性能和機械性能增強效果與奈米碳管在複合材料中的密度相關。 Due to the excellent mechanical strength and thermal conductivity of the carbon nanotubes, the aligned carbon nanotube array structure can be used to prepare the carbon nanotube thermal conductive material and the carbon nanotube composite reinforcing material with excellent performance. The thermal conductivity and mechanical properties of the carbon nanotubes on the composite are related to the density of the carbon nanotubes in the composite.
Don N.Futaba等人提供一種奈米碳管陣列複合材料的製備方法(請參見“Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes”,Don N.Futaba et al.,Nature Materials,vol 5,p987(2000))。該方法將經過表面處理後的奈米碳管陣列直接浸泡於高分子溶液中,經熱處理之後獲得奈米碳管陣列複合材料,然而,上述奈米碳管陣列複合材料的製備方法存在以下缺點:其一,要對奈米碳管陣列進行表面處理,故工藝複雜;其二,由於高分子材料與奈米碳管陣列中的奈米碳管之間的毛細管作用,上述方法製備的奈米碳管 陣列複合材料中,奈米碳管陣列發生變形,從而影響了奈米碳管陣列複合材料的整體性能,如力學性能、電學性能或熱學性能;其三,由於奈米碳管陣列中的奈米碳管之間存在以下雜質氣體如二氧化碳、水蒸汽等,故所製備的奈米碳管陣列複合材料電學和熱學性能受到影響。 Don N. Futaba et al. provide a method for preparing a carbon nanotube array composite (see "Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes", Don N. Futaba et al ., Nature Materials, vol 5, p987 (2000)). In this method, the surface-treated carbon nanotube array is directly immersed in a polymer solution, and the carbon nanotube array composite material is obtained after heat treatment. However, the preparation method of the above-mentioned carbon nanotube array composite material has the following disadvantages: First, the surface treatment of the carbon nanotube array is complicated, and the process is complicated. Second, the nanocarbon prepared by the above method is due to capillary action between the polymer material and the carbon nanotubes in the carbon nanotube array. tube In the array composite, the carbon nanotube array is deformed, which affects the overall performance of the carbon nanotube array composite, such as mechanical properties, electrical properties or thermal properties; third, due to the nano-carbon nanotube array The following impurity gases such as carbon dioxide, water vapor, etc. exist between the carbon tubes, so the electrical and thermal properties of the prepared carbon nanotube array composites are affected.
有鑑於此,提供一種操作簡單、可使奈米碳管陣列在複合材料中維持原有的形貌且不會產生雜質的奈米碳管陣列複合材料的製備方法實為必要。 In view of the above, it is necessary to provide a method for preparing a carbon nanotube array composite which is simple in operation and which can maintain the original morphology of the carbon nanotube array in the composite material without generating impurities.
一種奈米碳管陣列複合材料的製備方法,其包括以下步驟:提供一奈米碳管陣列;將奈米碳管陣列中沿奈米碳管延伸方向的兩端分別固定於兩個基板上;提供一高分子前驅體溶液;採用該高分子前驅體溶液浸潤上述奈米碳管陣列,形成一高分子前驅體溶液/奈米碳管陣列混合體;以及,固化高分子前驅體溶液/奈米碳管陣列混合體。 A method for preparing a carbon nanotube array composite material, comprising the steps of: providing a carbon nanotube array; fixing two ends of the carbon nanotube array along the extending direction of the carbon nanotubes on the two substrates; Providing a polymer precursor solution; infiltrating the nanocarbon tube array with the polymer precursor solution to form a polymer precursor solution/nanocarbon tube array mixture; and curing the polymer precursor solution/nano Carbon tube array hybrid.
相較於先前技術,本技術方案所提供的奈米碳管陣列複合材料的製備方法存在以下優點:其一,該製備方法中無需對奈米碳管陣列進行預處理,工藝簡單;其二,由於奈米碳管陣列中奈米碳管延伸方向的兩端分別固定於兩個基板上,故奈米碳管與高分子溶液之間的毛細管作用不會造成奈米碳管陣列的變形,奈米碳管陣列在奈米碳管陣列複合材料中保持原貌,提高了奈米碳管陣列複合材料的整體性能,如力學性能、電學性能或熱學性能 。 Compared with the prior art, the preparation method of the carbon nanotube array composite provided by the technical solution has the following advantages: First, the preparation method does not require pretreatment of the carbon nanotube array, and the process is simple; Since the two ends of the carbon nanotube array in the extending direction of the carbon nanotubes are respectively fixed on the two substrates, the capillary action between the carbon nanotubes and the polymer solution does not cause deformation of the carbon nanotube array. The carbon nanotube array maintains the original appearance in the carbon nanotube array composite, improving the overall performance of the carbon nanotube array composite, such as mechanical properties, electrical properties or thermal properties. .
下面將結合附圖及具體實施例對本發明作進一步的詳細說明。 The invention will be further described in detail below with reference to the drawings and specific embodiments.
請參閱圖1及圖2,本技術方案實施例提供一種奈米碳管陣列複合材料的製備方法,其具體包括以下步驟: Referring to FIG. 1 and FIG. 2 , an embodiment of the present technical solution provides a method for preparing a carbon nanotube array composite material, which specifically includes the following steps:
步驟一、提供一奈米碳管陣列12。 Step 1. A carbon nanotube array 12 is provided.
本實施例中,奈米碳管陣列12形成於一基底14上,所述奈米碳管陣列12包括複數個基本垂直於基底14的奈米碳管,該奈米碳管陣列12包括一第一端122與一與第一端122相對的第二端124,奈米碳管陣列12中的奈米碳管從第二端124向第一端122延伸,第二端124設置於基底14上。 In this embodiment, the carbon nanotube array 12 is formed on a substrate 14. The carbon nanotube array 12 includes a plurality of carbon nanotubes substantially perpendicular to the substrate 14. The carbon nanotube array 12 includes a first An end 122 and a second end 124 opposite the first end 122, the carbon nanotubes in the carbon nanotube array 12 extend from the second end 124 to the first end 122, and the second end 124 is disposed on the substrate 14. .
該奈米碳管陣列12的具體製備方法不限,本技術方案實施例中奈米碳管陣列12的製備方法採用化學氣相沈積法,其具體步驟包括:(a)提供一平整基底14,該基底14材料可選自玻璃、矽、二氧化矽、金屬或金屬氧化物,本技術方案實施例優選為採用二氧化矽基底;(b)在基底14表面均勻形成一催化劑層,該催化劑層材料可選用鐵(Fe)、鈷(Co)、鎳(Ni)或其任意組合的合金之一;(c)將上述形成有催化劑層的基底14在700℃-900℃的空氣中退火約30分鐘-90分鐘;(d)將處理過的基底14置於反應爐中,在保護氣體環境下加熱到500℃-740℃,然後通入碳源氣體反應約5分鐘-30分鐘,生長 得到奈米碳管陣列12。該奈米碳管陣列12為複數個彼此平行且垂直於基底14生長的奈米碳管形成的奈米碳管陣列12。 The specific preparation method of the carbon nanotube array 12 is not limited. The preparation method of the carbon nanotube array 12 in the embodiment of the technical solution adopts a chemical vapor deposition method, and the specific steps thereof include: (a) providing a flat substrate 14, The material of the substrate 14 may be selected from the group consisting of glass, ruthenium, ruthenium dioxide, metal or metal oxide. The embodiment of the technical solution preferably uses a ruthenium dioxide substrate; (b) uniformly forms a catalyst layer on the surface of the substrate 14, the catalyst layer The material may be one of iron (Fe), cobalt (Co), nickel (Ni) or any combination thereof; (c) the substrate 14 on which the catalyst layer is formed is annealed in air at 700 ° C - 900 ° C for about 30 Minutes-90 minutes; (d) The treated substrate 14 is placed in a reaction furnace, heated to 500 ° C - 740 ° C under a protective gas atmosphere, and then reacted with a carbon source gas for about 5 minutes to 30 minutes to grow. A carbon nanotube array 12 is obtained. The carbon nanotube array 12 is a plurality of carbon nanotube arrays 12 formed of carbon nanotubes that are parallel to each other and perpendicular to the substrate 14.
本技術方案實施例中碳源氣可選用乙炔、乙烯、甲烷等化學性質較活潑的碳氫化合物,本技術方案實施例優選的碳源氣為乙炔;保護氣體為氮氣或惰性氣體,本技術方案實施例優選的保護氣體為氬氣。 In the embodiment of the technical solution, the carbon source gas may be a chemically active hydrocarbon such as acetylene, ethylene or methane. The preferred carbon source gas in the embodiment of the technical solution is acetylene; the shielding gas is nitrogen or an inert gas, and the technical solution is The preferred shielding gas for the examples is argon.
可以理解,本技術方案實施例提供的奈米碳管陣列不限於上述製備方法,也可為石墨電極恒流電弧放電沈積法、鐳射蒸發沈積法等。 It can be understood that the carbon nanotube array provided by the embodiments of the present technical solution is not limited to the above preparation method, and may be a graphite electrode constant current arc discharge deposition method, a laser evaporation deposition method, or the like.
步驟二、將奈米碳管陣列12的奈米碳管延伸方向的兩端分別固定於兩個基板上。 Step 2: Fix the two ends of the carbon nanotube array 12 in the extending direction of the carbon nanotubes on the two substrates.
本實施例中,將奈米碳管陣列12的第一端122與第二端124分別固定於一第一基板16與一第二基板20上,其具體包括以下步驟: In this embodiment, the first end 122 and the second end 124 of the carbon nanotube array 12 are respectively fixed on a first substrate 16 and a second substrate 20, which specifically includes the following steps:
(一)提供一第一基板16與一第二基板20。 (1) A first substrate 16 and a second substrate 20 are provided.
所述第一基板16與第二基板20的形狀不限,包括方形、圓形、三角形或其他形狀,其具有一平面即可。所述第一基板16與第二基板20的材料不限,可選擇為玻璃、二氧化矽、金屬或金屬氧化物等。本實施例中,第一基板16與第二基板20為大小相等的長方形玻璃板。 The shapes of the first substrate 16 and the second substrate 20 are not limited, and include square, circular, triangular or other shapes, which have a flat surface. The materials of the first substrate 16 and the second substrate 20 are not limited, and may be selected from glass, cerium oxide, metal or metal oxide. In this embodiment, the first substrate 16 and the second substrate 20 are rectangular glass plates of equal size.
(二)分別塗敷粘結劑於第一基板16和第二基板20的表面,形成一第一粘結劑層18與第二粘結劑層22。 (2) Applying an adhesive to the surfaces of the first substrate 16 and the second substrate 20, respectively, to form a first adhesive layer 18 and a second adhesive layer 22.
所述粘結劑層的粘結劑的材料不限,可為橡膠、聚氨酯膠或矽膠。粘結劑層的厚度具體厚度不限,可根據實際情況而定,優選地,第一粘結劑層18的厚度為1微米-10微米,粘結劑層的面積大於或等於奈米碳管陣列12的面積。本實施例中,在第一基板16上與第二基板20上分別塗敷一第一粘結劑層18與一第二粘結劑層22,第一粘結劑層18和第二粘結劑層22均採用矽膠,其厚度均為5微米。 The material of the binder of the adhesive layer is not limited and may be rubber, polyurethane glue or silicone rubber. The specific thickness of the adhesive layer is not limited, and may be determined according to actual conditions. Preferably, the thickness of the first adhesive layer 18 is from 1 micrometer to 10 micrometers, and the area of the adhesive layer is greater than or equal to the carbon nanotube. The area of the array 12. In this embodiment, a first adhesive layer 18 and a second adhesive layer 22, a first adhesive layer 18 and a second adhesive are respectively applied on the first substrate 16 and the second substrate 20. The agent layer 22 is made of silicone rubber and has a thickness of 5 micrometers.
(三)將奈米碳管陣列12的第一端122通過第一粘結劑層18固定於第一基板16上。 (3) The first end 122 of the carbon nanotube array 12 is fixed to the first substrate 16 by the first adhesive layer 18.
將奈米碳管陣列12的第一端122緩慢與第一粘結劑層18接觸後,一定溫度下加熱烘乾第一粘結劑層18,使奈米碳管陣列12的第一端122與第一基板16結合牢固。所述加熱第一粘結劑層18的溫度與粘結劑材料的固化溫度有關,可為20℃-150℃。本實施例中,粘結劑為矽膠,其在100℃下烘乾。 After the first end 122 of the carbon nanotube array 12 is slowly brought into contact with the first adhesive layer 18, the first adhesive layer 18 is heated and dried at a certain temperature to cause the first end 122 of the carbon nanotube array 12 to be 122. It is firmly bonded to the first substrate 16. The temperature at which the first binder layer 18 is heated is related to the curing temperature of the binder material, and may be from 20 ° C to 150 ° C. In this embodiment, the binder is silicone, which is dried at 100 °C.
(四)將奈米碳管陣列12的第二端124通過第二粘結劑層22固定於第二基板20上。 (4) The second end 124 of the carbon nanotube array 12 is fixed to the second substrate 20 through the second adhesive layer 22.
由於本實施例中奈米碳管陣列12形成於基底14上,故,在將第二端124固定於第二基板20上之前進一步包括一除去奈米碳管陣列12的基底14的步驟。除去奈米碳管陣列12的基底14的方法可選擇為機械研磨、化學腐蝕或直接揭除等方法,本實施例中,採用直接揭除的方法將奈米碳管陣列12的基底14除去,其具體包括以下步驟: 首先,將奈米碳管陣列12的基底14固定。可選用膠帶、粘結劑或夾子等將奈米碳管陣列12的基底固定。 Since the carbon nanotube array 12 is formed on the substrate 14 in this embodiment, a step of removing the substrate 14 of the carbon nanotube array 12 is further included before the second end 124 is fixed to the second substrate 20. The method of removing the substrate 14 of the carbon nanotube array 12 may be selected by mechanical grinding, chemical etching or direct stripping. In this embodiment, the substrate 14 of the carbon nanotube array 12 is removed by direct stripping. It specifically includes the following steps: First, the substrate 14 of the carbon nanotube array 12 is fixed. The base of the carbon nanotube array 12 can be secured by tape, adhesive or clips or the like.
然後,採用一金屬片將奈米碳管陣列12從基底14上鏟下。將金屬片與奈米碳管陣列12的第二端124接觸,緩慢移動金屬片,使其插入奈米碳管陣列12的第二端124與基底14之間,從而將奈米碳管陣列12從基底14上鏟下。金屬片的材料不限,可為銅、鋁或鐵及其任意組合的合金,金屬片的厚度不限,可根據實際情況而定,優選地,金屬片的厚度為5微米-15微米。 The carbon nanotube array 12 is then shoveled from the substrate 14 using a metal sheet. The metal sheet is brought into contact with the second end 124 of the carbon nanotube array 12, and the metal sheet is slowly moved into between the second end 124 of the carbon nanotube array 12 and the substrate 14, thereby arranging the carbon nanotube array 12 Shovel from the base 14. The material of the metal sheet is not limited and may be an alloy of copper, aluminum or iron and any combination thereof. The thickness of the metal sheet is not limited and may be determined according to actual conditions. Preferably, the thickness of the metal sheet is 5 micrometers to 15 micrometers.
除去奈米碳管陣列12的基底14之後,將奈米碳管陣列12的第二端124與第二基板20上的第二粘結劑層22接觸,緩慢與第二粘結劑層22接觸後,一定溫度下加熱第二粘結劑層22,使奈米碳管陣列12的第二端124與第二基板20結合牢固。 After the substrate 14 of the carbon nanotube array 12 is removed, the second end 124 of the carbon nanotube array 12 is brought into contact with the second adhesive layer 22 on the second substrate 20, and is slowly contacted with the second adhesive layer 22. Thereafter, the second adhesive layer 22 is heated at a certain temperature to bond the second end 124 of the carbon nanotube array 12 to the second substrate 20.
可以理解,也可保留基底14,將基底14與第二基板20上的第二粘結劑層22接觸,使奈米碳管陣列12的第二端124通過基底14固定於第二基板20上。另,也可保留基底14,使基底14直接作為第二基板20使用,無需第二粘結劑層22。 It can be understood that the substrate 14 can also be left in contact with the second adhesive layer 22 on the second substrate 20, so that the second end 124 of the carbon nanotube array 12 is fixed to the second substrate 20 through the substrate 14. . Alternatively, the substrate 14 may be retained such that the substrate 14 is used directly as the second substrate 20 without the need for a second adhesive layer 22.
可選擇地,將奈米碳管陣列12的第一端122與第二端124分別固定於第一基板16與第二基板20上之後,進一步包括一將第一基板16與第二基板20封裝形成一模具的步驟。所述封裝第一基板16與第二基板20的方法為通過密封膠將三個板狀的材料粘在第一基板16與第二基板20的三 個邊上,待密封膠凝固後即可形成一模具。所述板狀材料可採用與第一基板16或第二基板20相同的材料或不同的材料。所述密封膠可為706B型號硫化矽橡膠。所述模具頂部具有一開口。所述奈米碳管陣列12位於該模具的模腔內,第一基板16與第二基板20形成該模具的兩個相對的側壁。 Optionally, after the first end 122 and the second end 124 of the carbon nanotube array 12 are respectively fixed on the first substrate 16 and the second substrate 20, the first substrate 16 and the second substrate 20 are further encapsulated. The step of forming a mold. The method of encapsulating the first substrate 16 and the second substrate 20 is to adhere three plate-shaped materials to the first substrate 16 and the second substrate 20 by a sealant. On one side, a mold can be formed after the sealant is solidified. The plate material may be the same material as the first substrate 16 or the second substrate 20 or a different material. The sealant may be a 706B type ruthenium sulfide rubber. The top of the mold has an opening. The carbon nanotube array 12 is located within the mold cavity of the mold, and the first substrate 16 and the second substrate 20 form two opposing side walls of the mold.
步驟三、提供一高分子前驅體溶液。 Step 3. Providing a polymer precursor solution.
高分子前驅體溶液為低粘度的液體,其粘度小於1帕.秒,可為液態的高分子材料本身、高分子材料熔化形成的液體、高分子材料溶於溶劑中形成的溶液或高分子材料的單體與催化劑混合形成的液體。其中,所述之高分子材料為熱固性材料或熱塑性材料。熱固性材料為環氧樹脂、雙馬來醯亞胺樹脂、氰酸酯樹脂或矽橡膠等。熱塑性材料為聚丙烯、聚乙烯、聚乙烯醇或聚甲基丙烯酸酯樹脂等。所述之溶解高分子材料的溶劑為丙酮、四氫呋喃、氯仿或乙酸乙酯等。可以理解,本技術方案中所涉及的高分子材料並不僅限於上述的高分子材料,只要係本身係低粘度的液體、可溶解以及熔化形成低粘度液體的高分子材料均可。 The polymer precursor solution is a low viscosity liquid with a viscosity of less than 1 Pa. In seconds, it may be a liquid polymer material itself, a liquid formed by melting a polymer material, a solution in which a polymer material is dissolved in a solvent, or a liquid in which a monomer of a polymer material is mixed with a catalyst. Wherein, the polymer material is a thermosetting material or a thermoplastic material. The thermosetting material is an epoxy resin, a bismaleimide resin, a cyanate resin or a ruthenium rubber. The thermoplastic material is polypropylene, polyethylene, polyvinyl alcohol or polymethacrylate resin. The solvent for dissolving the polymer material is acetone, tetrahydrofuran, chloroform or ethyl acetate. It is to be understood that the polymer material according to the present invention is not limited to the above-described polymer material, and may be any liquid material which is a low viscosity liquid and which can be dissolved and melted to form a low viscosity liquid.
本實施方式採用的高分子前驅體溶液為環氧樹脂溶液。該環氧樹脂溶液的為環氧樹脂溶於乙酸乙酯中形成的環氧樹脂的溶液。 The polymer precursor solution used in the present embodiment is an epoxy resin solution. The epoxy resin solution is a solution of an epoxy resin in which an epoxy resin is dissolved in ethyl acetate.
步驟四、採用該高分子前驅體溶液浸潤上述奈米碳管陣列12,形成一高分子前驅體/奈米碳管陣列混合體。 Step 4: impregnating the carbon nanotube array 12 with the polymer precursor solution to form a polymer precursor/carbon nanotube array mixture.
本實施例中,將高分子前驅體溶液沿著模具的內壁緩慢注入模腔內,使高分子前驅體溶液沒過奈米碳管陣列12。注入高分子前驅體溶液的速度不易太快,以免高分子前驅體溶液將奈米碳管陣列12破壞,同時,高分子前驅體溶液在模具中的液面要超過奈米碳管陣列12,使高分子前驅體溶液完全浸潤奈米碳管陣列12。待將高分子前驅體溶液注入到模具中後,奈米碳管陣列12與高分子前驅體溶液形成一高分子前驅體/奈米碳管陣列混合體。 In this embodiment, the polymer precursor solution is slowly injected into the cavity along the inner wall of the mold, so that the polymer precursor solution does not pass through the carbon nanotube array 12. The rate of injecting the polymer precursor solution is not too fast, so as to prevent the polymer precursor solution from destroying the carbon nanotube array 12, and at the same time, the liquid surface of the polymer precursor solution in the mold exceeds the carbon nanotube array 12, so that The polymer precursor solution completely infiltrate the carbon nanotube array 12. After the polymer precursor solution is injected into the mold, the carbon nanotube array 12 and the polymer precursor solution form a polymer precursor/nanocarbon tube array mixture.
可以理解,也可將兩端分別固定於兩個基板上的奈米碳管陣列12直接浸泡於高分子前驅體溶液,形成一高分子前驅體/奈米碳管陣列混合體。 It can be understood that the carbon nanotube array 12 fixed on the two substrates respectively can be directly immersed in the polymer precursor solution to form a polymer precursor/carbon nanotube array mixture.
在上述過程中,為防止高分子前驅體溶液溶液固化或粘度增加,使高分子前驅體溶液的粘度維持在小於1帕.秒,可將高分子前驅體溶液的溫度保持在20℃-80℃。本實施例中,環氧樹脂的溶液的溫度保持在60℃。 In the above process, in order to prevent the solid precursor solution solution from solidifying or increasing the viscosity, the viscosity of the polymer precursor solution is maintained at less than 1 Pa. In seconds, the temperature of the polymer precursor solution can be maintained at 20 ° C - 80 ° C. In this embodiment, the temperature of the solution of the epoxy resin was maintained at 60 °C.
步驟五、固化上述高分子前驅體溶液/奈米碳管陣列混合體中的高分子前驅體溶液,形成一奈米碳管陣列複合材料。 Step 5: curing the polymer precursor solution in the polymer precursor solution/carbon nanotube array mixture to form a carbon nanotube array composite.
在固化高分子前驅體溶液/奈米碳管陣列混合體中的高分子前驅體溶液之前,進一步包括一對所述高分子前驅體/奈米碳管陣列混合體進行真空處理的方法,其包括以下步驟:對將分子前驅體/奈米碳管陣列混合體放入一密閉真空室中;採用一抽氣裝置對上述真空室抽真空,高分子前驅體/奈米碳管陣列混合體中有氣泡排出;當高分子 前驅體/奈米碳管陣列混合體中停止排出氣泡時,停止抽真空,保持該真空度一段時間。 Before curing the polymer precursor solution in the polymer precursor solution/carbon nanotube array mixture, further comprising a method of vacuum processing a pair of the polymer precursor/carbon nanotube array mixture, including The following steps: placing the molecular precursor/carbon nanotube array mixture in a closed vacuum chamber; evacuating the vacuum chamber by using an air extracting device, and having a polymer precursor/carbon nanotube array mixture Bubble discharge; when polymer When the discharge of the bubble is stopped in the precursor/carbon nanotube array mixture, the evacuation is stopped, and the vacuum is maintained for a while.
在此過程中,隨著真空室中真空度的增加,高分子前驅體溶液液面處的壓強減小,高分子前驅體/奈米碳管陣列混合體中存在的氣泡排出。當真空室內的真空度達到10-4帕-10-6帕時,高分子前驅體/奈米碳管陣列混合體不再繼續有氣泡排出,此時停止抽真空,保持該真空度10分鐘-30分鐘。 In this process, as the degree of vacuum in the vacuum chamber increases, the pressure at the liquid level of the polymer precursor solution decreases, and the bubbles present in the polymer precursor/carbon nanotube array mixture are discharged. When the vacuum in the vacuum chamber reaches 10 -4 Pa - 10 -6 Pa, the polymer precursor/carbon nanotube array mixture no longer continues to have bubble discharge, at which time the vacuum is stopped and the vacuum is maintained for 10 minutes - 30 minutes.
本實施例中,當真空度達到10-5帕時,高分子前驅體/奈米碳管陣列混合體不再繼續有氣泡排出,此時停止抽真空,保持該真空度20分鐘。 In this embodiment, when the degree of vacuum reaches 10 -5 Pa, the polymer precursor/carbon nanotube array mixture no longer continues to have bubble discharge, at which time the evacuation is stopped and the vacuum is maintained for 20 minutes.
將真空處理後的高分子前驅體/奈米碳管陣列混合體連同模具置於一加熱爐中,在80℃-100℃的溫度下加熱1小時-30小時,然後在120℃-300℃溫度下加熱3小時-20小時後,使高分子前驅體溶液固化,冷卻至室溫即得到奈米碳管陣列複合材料。 The vacuum-treated polymer precursor/carbon nanotube array mixture is placed in a heating furnace together with a mold, and heated at a temperature of 80 ° C to 100 ° C for 1 hour to 30 hours, and then at a temperature of 120 ° C to 300 ° C. After heating for 3 hours to 20 hours, the polymer precursor solution is solidified, and after cooling to room temperature, a carbon nanotube array composite material is obtained.
可以理解,固化高分子前驅體/奈米碳管陣列混合體的溫度與高分子前驅體溶液的成份和高分子材料的固化溫度有關,並不限於上述溫度範圍。 It can be understood that the temperature of the cured polymer precursor/carbon nanotube array mixture is related to the composition of the polymer precursor solution and the curing temperature of the polymer material, and is not limited to the above temperature range.
本實施例中,將該奈米碳管陣列複合材料沿奈米碳管的延伸方向淬斷後,採用掃描電鏡觀察其斷面,其形貌如圖3所示。由圖3可知,奈米碳管陣列在奈米碳管陣列複合材料中保持較好的陣列形態。 In this embodiment, after the carbon nanotube array composite material is quenched along the extending direction of the carbon nanotube tube, the cross section is observed by scanning electron microscopy, and its morphology is shown in FIG. As can be seen from Figure 3, the carbon nanotube array maintains a good array morphology in the carbon nanotube array composite.
本技術方案所提供的奈米碳管陣列複合材料的製備方法 存在以下優點:其一,該製備方法中無需對奈米碳管陣列進行預處理,工藝簡單;其二,由於奈米碳管陣列中奈米碳管延伸方向的兩端分別固定於兩個基板上,故奈米碳管與高分子溶液之間的毛細管作用不會造成奈米碳管陣列的變形,奈米碳管陣列在奈米碳管陣列複合材料中保持原貌,提高了奈米碳管陣列複合材料的整體性能,如力學性能、電學性能或熱學性能;其三,對奈米碳管陣列進行抽真空處理,使奈米碳管陣列中的水蒸氣、二氧化碳等雜質消除。 Preparation method of carbon nanotube array composite material provided by the technical solution There are the following advantages: First, the preparation method does not require pretreatment of the carbon nanotube array, and the process is simple; and second, since both ends of the carbon nanotube array in the extending direction of the carbon nanotube are respectively fixed to the two substrates Above, the capillary action between the carbon nanotube and the polymer solution does not cause deformation of the carbon nanotube array, and the carbon nanotube array maintains the original appearance in the carbon nanotube array composite, and the carbon nanotube is improved. The overall performance of the array composite, such as mechanical properties, electrical properties or thermal properties; third, vacuuming the carbon nanotube array to eliminate impurities such as water vapor and carbon dioxide in the carbon nanotube array.
綜上所述,本發明確已符合發明專利之要件,遂依法提出專利申請。惟,以上所述者僅為本發明之較佳實施例,自不能以此限制本案之申請專利範圍。舉凡熟悉本案技藝之人士援依本發明之精神所作之等效修飾或變化,皆應涵蓋於以下申請專利範圍內。 In summary, the present invention has indeed met the requirements of the invention patent, and has filed a patent application according to law. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application of the present invention. Equivalent modifications or variations made by persons skilled in the art in light of the spirit of the invention are intended to be included within the scope of the following claims.
12‧‧‧奈米碳管陣列 12‧‧‧Nano Carbon Tube Array
122‧‧‧奈米碳管陣列第一端 122‧‧‧ the first end of the carbon nanotube array
124‧‧‧奈米碳管陣列第二端 124‧‧‧Second end of carbon nanotube array
14‧‧‧基底 14‧‧‧Base
16‧‧‧第一基板 16‧‧‧First substrate
18‧‧‧第一粘結劑層 18‧‧‧First adhesive layer
20‧‧‧第二基板 20‧‧‧second substrate
22‧‧‧第二粘結劑層 22‧‧‧Second binder layer
圖1為本技術方案實施例所提供的奈米碳管陣列複合材料的製備方法的流程圖。 FIG. 1 is a flow chart of a method for preparing a carbon nanotube array composite material provided by an embodiment of the present technical solution.
圖2為本技術方案實施例所提供的奈米碳管陣列複合材料製備過程的示意圖。 FIG. 2 is a schematic diagram of a preparation process of a carbon nanotube array composite material provided by an embodiment of the present technical solution.
圖3為本技術方案實施例所提供的奈米碳管陣列複合材料的橫截面的掃描電鏡照片。 3 is a scanning electron micrograph of a cross section of a carbon nanotube array composite provided by an embodiment of the present technical solution.
Claims (14)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW97138105A TWI386447B (en) | 2008-10-03 | 2008-10-03 | Method for making carbon nanotube array composite |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW97138105A TWI386447B (en) | 2008-10-03 | 2008-10-03 | Method for making carbon nanotube array composite |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201014879A TW201014879A (en) | 2010-04-16 |
TWI386447B true TWI386447B (en) | 2013-02-21 |
Family
ID=44829801
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW97138105A TWI386447B (en) | 2008-10-03 | 2008-10-03 | Method for making carbon nanotube array composite |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI386447B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI545082B (en) * | 2013-02-08 | 2016-08-11 | Taiwan Carbon Nano Technology Corp | Manufacturing method of carbon nanotubes with rigid structure |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1846983A (en) * | 2005-04-14 | 2006-10-18 | 清华大学 | Thermal interface material and method of manufacturing the same |
-
2008
- 2008-10-03 TW TW97138105A patent/TWI386447B/en active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1846983A (en) * | 2005-04-14 | 2006-10-18 | 清华大学 | Thermal interface material and method of manufacturing the same |
Also Published As
Publication number | Publication date |
---|---|
TW201014879A (en) | 2010-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101671442A (en) | Preparation method of carbon nano tube array composite material | |
JP4991657B2 (en) | HEAT CONDUCTIVE SHEET CONTAINING HIGH DENSITY CARBON NANOTUBE ARRAY AND METHOD FOR PRODUCING THE SAME | |
CN101456277B (en) | Method for preparing carbon nanotube composite material | |
Harris | Carbon nanotube composites | |
JP4697829B2 (en) | Carbon nanotube composite molded body and method for producing the same | |
CN100591613C (en) | Carbon nanotube composite material and manufacturing method thereof | |
CN101654555B (en) | Method for preparing carbon nano tube/conducting polymer composite material | |
US11167991B2 (en) | Method for preparing carbon nanotube/polymer composite | |
CN101409999B (en) | Composite electromagnetic shielding material and preparation method thereof | |
CN101353785B (en) | Preparation method of high-density carbon nanotube array composite material | |
CN102786756A (en) | Three-dimensional continuous graphene network composite material and its preparation method | |
TW200917947A (en) | Composite for electromagnetic shielding and method for making the same | |
JP2008045124A (en) | CNT / polymer composite material | |
CN102161814A (en) | Preparation method of oriented carbon nano tube/ polymer composite membrane | |
CN102391618A (en) | Preparation method of alignment carbon nano tube/polymer composite membrane | |
CN103921368A (en) | High-orientation carbon nano tube compound prefabricated body and preparation method thereof | |
CN102354608B (en) | Dye sensitized solar cell by utilizing complex film with carbon nanotubes and polymers as counter electrode | |
CN111909521A (en) | Magnetic polymer composite material with efficient photothermal effect and preparation method and application thereof | |
CN101376497B (en) | Carbon nanotube composite material preform and preparation method thereof | |
Friedrich et al. | Carbon nanotube-reinforced polymers: a state of the art review | |
KR101756346B1 (en) | Carbon nano structures-polymer composite and method of preparing the same | |
TWI386447B (en) | Method for making carbon nanotube array composite | |
TWI339189B (en) | Thermal pad with carbon nanotube array and method of making the same | |
TWI422524B (en) | Method for making carbon nanotube composite | |
CN101289329B (en) | A kind of preparation method of bulk carbon nanofiber composite material |