[go: up one dir, main page]

TW201014879A - Method for making carbon nanotube array composite - Google Patents

Method for making carbon nanotube array composite Download PDF

Info

Publication number
TW201014879A
TW201014879A TW97138105A TW97138105A TW201014879A TW 201014879 A TW201014879 A TW 201014879A TW 97138105 A TW97138105 A TW 97138105A TW 97138105 A TW97138105 A TW 97138105A TW 201014879 A TW201014879 A TW 201014879A
Authority
TW
Taiwan
Prior art keywords
carbon nanotube
nanotube array
substrate
array
carbon
Prior art date
Application number
TW97138105A
Other languages
Chinese (zh)
Other versions
TWI386447B (en
Inventor
Qun-Feng Cheng
Jia-Ping Wang
Kai-Li Jiang
jia-jia Wen
Shou-Shan Fan
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW97138105A priority Critical patent/TWI386447B/en
Publication of TW201014879A publication Critical patent/TW201014879A/en
Application granted granted Critical
Publication of TWI386447B publication Critical patent/TWI386447B/en

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)

Abstract

The present invention relates to a method for making carbon nanotube array composite. The method includes the following steps: providing a carbon nanotube array; fixing the two ends of the carbon nanotube array on two bases respectively; providing a precursor solution of polymers; soaking the carbon nanotube array with the precursor solution of polymers and then forming a mixture of precursor solution of polymers and the carbon nanotube array; and solidifying the mixture of precursor solution of polymers and the carbon nanotube array.

Description

201014879 九、發明說明: 【發明所屬之技術領域】 . 本發明涉及一種複合材料的製備方法,尤其涉及〜種 .奈米碳管陣列複合材料的製備方法。 【先前技術】 奈米碳管(Carbon Nanotube,CNT )被發現以來 S.,Nature,vol 354, p56(1991)),立即引起科學界及產業界 的極大重視。奈米碳管具有許多的優異性能’可*應用 φ 多領域。奈米碳管係由石墨片卷成的無縫中空管體,由於 在奈米碳管内電子的量子限域作用,電子只能在石墨片_ 沿著奈米碳管的轴向運動,故奈米碳管表現出獨特的電$ 性能和熱學性能。研究測試結果表明,奈米碳管的平均電 導率可達到1000〜2〇OOS/m (西門子/米),在室溫下的導熱 係數可達6600W/mK (瓦/米.開爾文)。此外,奈米唆管還 具有優良的力學性能,如,較高的強度和模量° 奈米碳管因其優良的力學和導電性能,被認為係複合 φ材料的理想添加物。奈米碳管/聚合物複合材料首次報導後 已成為世界科學研究的熱點(Ajayan P.M.,Stephan 〇., Colliex C., Tranth D., Science.,, vol 265, pl212(1994): Calvert P·,Nature, vol 399, p210(1999))。奈米碳管作為增 強體和導電體,形成的複合材料具有抗靜電,吸收微波和 遮罩電磁等性能,具有廣泛的應用前景。 奈米碳管複合材料的製備方法通常有原位聚合法、溶 液共混法和熔體共混法。原位聚合法係利用奈米碳管表面 的官能團參與聚合或利用引發劑打開奈米碳管的π鍵,使 7 201014879 其參與聚合反應而達到與有機相的良好相容。溶液共混一 般係把奈米碳管分散到聚合物的溶劑中,再將聚合物溶入 .其中,加工成型後將溶劑清除,從而制得複合材料。熔體 共混法係把奈米碳管與聚合物基板材料在大於基板材料 熔點的溫度下熔融並均勻混合而得到奈米碳管複合材料。 由於奈米碳管具有優異的機械強度和熱導率,利用定 向排列的奈米碳管陣列結構,可製備性能優異的奈米碳管 導熱材料和奈米碳管複合增強材料。奈米碳管對複合材料 @的導熱性能和機械性能增強效果與奈米碳管在複合材料中 的密度相關。201014879 IX. Description of the invention: [Technical field to which the invention pertains] The present invention relates to a method for preparing a composite material, and more particularly to a method for preparing a nanocarbon tube array composite material. [Prior Art] Since the discovery of Carbon Nanotube (CNT), S., Nature, vol 354, p56 (1991), it has immediately attracted great attention from the scientific community and industry. The carbon nanotubes have many excellent properties. The carbon nanotubes are seamless hollow tubes made of graphite sheets. Due to the quantum confinement of electrons in the carbon nanotubes, electrons can only move in the graphite sheet _ along the axial direction of the carbon nanotubes. The carbon nanotubes exhibit unique electrical performance and thermal performance. The test results show that the average conductivity of the carbon nanotubes can reach 1000~2〇OOS/m (Siemens/meter), and the thermal conductivity at room temperature can reach 6600W/mK (Watt/m. Kelvin). In addition, the nanotubes also have excellent mechanical properties, such as high strength and modulus. Nanocarbon tubes are considered to be ideal additions for composite φ materials due to their excellent mechanical and electrical properties. Nanocarbon tubes/polymer composites have become the hotspot of scientific research in the world since their first report (Ajayan PM, Stephan 〇., Colliex C., Tranth D., Science., vol 265, pl 212 (1994): Calvert P· , Nature, vol 399, p210 (1999)). As a reinforcing body and an electric conductor, the carbon nanotubes have antistatic properties, absorb microwaves and shield electromagnetic properties, and have broad application prospects. The preparation method of the carbon nanotube composite material generally includes an in-situ polymerization method, a solution blending method, and a melt blending method. The in-situ polymerization method utilizes the functional groups on the surface of the carbon nanotubes to participate in the polymerization or to open the π bond of the carbon nanotubes with an initiator, so that 7 201014879 participates in the polymerization reaction to achieve good compatibility with the organic phase. Solution blending generally involves dispersing a carbon nanotube into a solvent of a polymer, and then dissolving the polymer therein, wherein the solvent is removed after processing to obtain a composite material. The melt blending method melts and uniformly mixes the carbon nanotubes and the polymer substrate material at a temperature greater than the melting point of the substrate material to obtain a carbon nanotube composite material. Due to the excellent mechanical strength and thermal conductivity of the carbon nanotubes, the carbon nanotube array structure of the aligned arrangement can be used to prepare the carbon nanotube thermal conductive material and the carbon nanotube composite reinforcing material with excellent performance. The thermal conductivity and mechanical properties of the carbon nanotubes on composites are related to the density of the carbon nanotubes in the composite.

Don N.Futaba等人提供一種奈米碳管陣列複合材料的 製備方法(請參見 “Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes’’,Don N.Futaba et al., Nature Materials,vol 5,p987(2000))。該方法將經過表面處理後的 奈米碳管陣列直接浸泡於高分子溶液中,經熱處理之後獲 @得奈米碳管陣列複合材料,然而,上述奈米碳管陣列複合 材料的製備方法存在以下缺點:其一,要對奈米碳管陣列 進行表面處理,故工藝複雜;其二,由於高分子材料與奈 米碳管陣列中的奈米碳管之間的毛細管作用,上述方法製 備的奈米碳管陣列複合材料中,奈米碳管陣列發生變形, 從而影響了奈米碳管陣列複合材料的整體性能,如力學性 能、電學性能或熱學性能;其三,由於奈米碳管陣列中的 奈米碳管之間存在以下雜質氣體如二氧化碳、水蒸汽等, 故所製備的奈米碳管陣列複合材料電學和熱學性能受到影 8 201014879 有鐘於此,提供一種据你館to 在複合材料中維持原有形丄:合I使-米碳管陣列 管陣賴合㈣㈣備方\\貌為且;7產生㈣的奈米碳 【發明内容】 -種奈米碳管陣列複合 下步驟:提供一太丰〆您成 衣丹巴括以 米碳管延伸方向:^ Γ +列’將奈米碳管陣列中沿奈 *八工1 向的兩鳊分別固定於兩個基板上;提供一 同刀子刖驅體溶液;採用兮古 a y' ❹ ❿ 奈米碳管陣列,妒成一^ 刀子刚驅體溶液浸潤上述 混合體;以及,固:::::前驅體溶液/奈米碳管陣列 合體。 四刀子刖驅體溶液/奈米碳管陣列混 =較於先前技術’本技術方案所提供的奈米碳管陣 複口材料的製備方法存在以下優點:其一,該製備 無需對奈米碳管p車列進行預處理, __ 奈米碳管延伸方向的兩端 故不未碳管與高分子溶液之間的毛細管作用不 管降列的變形’奈米碳管陣列在奈米碳管陣列 體,原貌’提高了奈求碳管陣列複合材料的整 體性此,如力學性能、電學性能或熱學性能。 【實施方式】 二下面將結合附圖及具體實施例對本發明作進一步的 洋細說明。 #請參閲圖1及圖2,本技術方案實施例提供—種奈米碳 官陣列複合材料的製備方法,其具體包括以下步驟: 步驟一、提供一奈米碳管陣列12。 本實施例中,奈米碳管陣列12形成於一基底以上,所 9 201014879 f不米%l g陣列12包括複數個基本垂直於基底14的奈米破 &該奈米权管陣列12包括一第一端122與一與第一端122 '相對的第二端124,奈米碳管陣列12中的奈米碳管從第二端 • 124向第一端122延伸,第二端124設置於基底14上。 該奈米碳管陣列12的具體製備方法不限,本技術方 案實施例令奈米碳管俥列12的製備方法採用化學氣相沈 積法,其具體步驟包括:(a)提供一平整基底14,該基 底14材料可選自玻璃、矽、二氧化矽、金屬或金屬氧化 ❹物,本技術方案實施例優選為採用二氧化碎基底;(匕) 在基底14表面均勻形成一催化劑層,該催化劑層材料可 選用鐵(Fe)、銘(Co)、錦(Ni)或其任意組合的合金 之 ’(c)將上述形成有催化劑層的基底14在 700 C -900°C的空氣中退火約3〇分鐘_9〇分鐘;將處 理過的基底14置於反應爐中,在保護氣體環境下加熱到 500°C-740°C,然後通入碳源氣體反應約5分鐘_3〇分鐘, 生長得到奈米碳管陣列12。該奈米碳管陣列12為複數個 ❿彼此平行且垂直於基底14生長的奈米碳管形成的奈米碳 管陣列12。 本技術方案實施例中碳源氣可選用乙炔、乙烯、甲烷 等化學性質較活潑的碳氫化合物,本技術方案實施例優 選的碳源氣為乙炔;保護氣體為氮氣或惰性氣體,本技 術方案實施例優選的保護氣體為氬氣。 可以理解,本技術方案實施例提供的奈米碳管陣列不 限於上述製備方法,也可為石墨電極恒流電弧放電沈積 法、鐳射蒸發沈積法等。 步驟二、將奈米碳管陣列12的奈米碳管延伸方向的兩 201014879 端分別固定於兩個基板上。 „將奈米碳管陣列12的第一端 鳊12“別固定於一第一基板 與第一 具體包括以下步驟: 第一基板20上,其 餘16與—第二基板20。 ,;L 土板16與第一基板20的形狀不限,包括大 形、圓形、三角形或其他形狀 匕括方 第-基心與第二基板20的材料= ^ -氧切、金屬或金屬氧化物^本實施财,第 16與第一二基板2〇為大小相等的長方形玻璃板。土 (二) 分別塗敷㈣劑於第—基板16和第 的表面,形成-第一粘結劑層18與第二粘結劑層二。 所述粘結劑層的粘結劑的材料不限,可 ^膠切膠。㈣·的厚度具體厚度不限,可根據實^ 地,第,劑層18的厚度為1微米二 ❹ =太的面積大於或等於奈米碳管陣歹"2的面 第一基板16上與第二基板20上分別 塗敷第-㈣劑層18與-第二⑽劑層22,第士 =層料第二枯結劑層22均採用石夕膠,其厚度均為 (三) 將奈米碳管陣列12的第一端122 劑層18固定於第一基板16上。 乐枯、、 將奈米碳管陣列12的第一端122緩慢與第一枯結劑層 18接觸後,一定溫度下加熱烘乾第一粘結劑層18, 碳管陣列12的第一端122與第一基板16結合牢固二述 加熱第一粘結劑層18的溫度與粘結劑材料的固化溫度有 11 201014879 關’可為20。<:-15〇。〇本實施例中,枯結劑為發膠, 下烘乾。 /、任 (四)將奈米碳管陣列12的第二端124通過第二 .劑層22固定於第二基板2〇上。 一 由於本實施例中奈米碳管陣列12形成於基底14上, 故’在將第二端124固定於第二基板2〇上之前進一步包括 -除去奈米碳管陣列12的基底14的步驟。除去奈米碳營 陣列12的基底14的方法可選擇為機械研磨、化學腐蝕或 ❹直接揭除等方法,本實施例中,採用直接揭除的方法將^ 米碳管陣列12的基底14除去,其具體包括以下步驟:τ' 首先,將奈米碳管陣列12的基底14固定。可選用膠 帶、粘結劑或夾子等將奈米碳管陣列12的基底固定。 然後,採用一金屬片將奈米碳管陣列12從基底Η 上鏟下。將金屬片與奈米碳管陣列12第 觸,緩慢移動金屬片,使其插入奈米碳4列V的第ί 端124與基底14之間,從而將奈米碳管陣列12從基底 ❹14上鏟下。金屬片的材料不限,可為銅、鋁或鐵及其任 意組合的合金’金屬片的厚度不限,可根據實際情況而 定,優選地,金屬片的厚度為5微米_15微米。 除去奈米碳管陣列12的基底14之後’將奈米碳管 陣列12的第二端124與第二基板2〇上的第二粘結劑層 22接觸,緩慢與第二粘結劑層22接觸後,一定溫度下加 熱第二粘結劑層22,使奈米碳管陣列12的第二端124與 第二基板20結合牢固。 、 可以理解,也可保留基底14,將基底14與第二基板 20上的第二粘結劑層22接觸,使奈米碳管陣列12的第 12 201014879 二端124通過基底14固定於第二基板2〇上。另,也可保 留基底14,使基底14直接作為第二基板2〇使用,無需 , 第—枯結劑層22。 . 可選擇地,將奈米碳管陣列12的第一端122與第二 端124分別固定於第一基板16與第二基板2〇上之後, 進步包括一將第一基板16與第二基板2〇封裝形成一 模具的步驟。所述封裝第一基板16與第二基板2〇的方 法為通過密封膠將三個板狀的材料粘在第一基板16與第 ❹二基板20的三個邊上,待密封膠凝固後即可形成一模 具。所述板狀材料可採用與第一基板16或第二基板2〇 相同的材料或不同的材料。所述密封膠可為7〇6B型號硫 化矽橡膠。所述模具頂部具有一開口。所述奈米碳管陣 列12位於該模具的模腔内,第一基板16與第二基板2〇 瓜成該模具的兩個相對的侧壁。 步驟二、提供一高分子前驅體溶液。 高分子前驅體溶液為低粘度的液體,其粘度小於工 ❹帕.秒’可為液態的高分子材料本身、高分子材料熔化形 成的液體、高分子材料溶於溶劑中形成的溶液或高分子 $料的單體與催化劑混合形成的液體。其中,所述之高 分子$料為熱固性材料或熱塑性材料。熱固性材料為環 氧樹知、雙馬來醯亞胺樹脂、氰酸酯樹脂或矽橡膠等。 熱塑性材料為聚丙烯、聚乙烯、聚乙烯醇或聚甲基丙烯 ,酯樹脂等。所述之溶解高分子材料的溶劑為丙鲷、四 氫呋喃、氯仿或乙酸乙酯等。可以理解,本技術方案尹 所涉及的高分子材料並不僅限於上述的高分子材料,只 要係本身係低粘度的液體、可溶解以及熔化形成低粘度 13 201014879 液體的高分子材料均可。 本實施方式採用的高分子前驅體溶液為環氧樹脂溶 . 液。該環氧樹脂溶液的為環氧樹脂溶於乙酸乙酯中形成 .的環氧樹脂的溶液。 步驟四、採用該高分子前驅體溶液浸潤上述奈米碳 管陣列12,形成一高分子前驅體/奈米碳管陣列混合體。 本實施例中,將高分子前驅體溶液沿著模具的内壁 緩慢注入模腔内,使高分子前驅體溶液沒過奈米碳管陣 ⑩列12。注入高分子前驅體溶液的速度不易太快,以免高 分子前驅體溶液將奈米碳管陣列12破壞,同時,高分子 前驅體溶液在模具中的液面要超過奈米碳管陣列12,使 高分子前驅體溶液完全浸潤奈米碳管陣列12。待將高分 子前驅體溶液注入到模具中後,奈米碳管陣列12與高分 子前驅體溶液形成一高分子前驅體/奈米碳管陣列混合 體。 可以理解,也可將兩端分別固定於兩個基板上的奈 _米碳管陣列12直接浸泡於高分子前驅體溶液,形成一高 分子前驅體/奈米碳管陣列混合體。 在上述過程中,為防止高分子前驅體溶液溶液固化或 枯度增加,使高分子前驅體溶液的枯度維持在小於1帕· 秒,可將高分子前驅體溶液的溫度保持在20°C-80°C。本 實施例中,環氧樹脂的溶液的溫度保持在60°C。 步驟五、固化上述高分子前驅體溶液/奈米碳管陣列 混合體中的高分子前驅體溶液,形成一奈米碳管陣列複 合材料。 在固化高分子前驅體溶液/奈米碳管陣列混合體中的 14 201014879 高分子前驅體溶液之前,進-步包括-對所述高分子前 驅體/奈米碳管陣列混合體進行真空處理的方法,= 以下步驟:對將分子前驅體/奈米碳管陣列混合體放j 密閉真空至中’採用一抽氣裝置對上述真空室 处, 高分子前驅體/奈米碳管陣列混合體中 =^ 分子前=體/奈米碳管陣列混合體_停止排出氣泡時= 止抽真空’保持該真空度一段時間。 ❹ 在此過程中,隨著真空室中真空度的增加,高分子 前驅體溶液液面處的壓強減小’高分子前驅體/奈米碳管 中=的?泡排出。當真空室内的真空度達 到10帕-10 #時’兩分子前驅體/奈米碳管陣列混合體 不再繼續有氣泡排出,此時停止抽真S,Don N. Futaba et al. provide a method for preparing a carbon nanotube array composite (see "Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes", Don N. Futaba et Al., Nature Materials, vol 5, p987 (2000). This method directly immerses the surface-treated carbon nanotube array in a polymer solution, and after heat treatment, obtains a @奈米碳管Array composite material. However, the preparation method of the above carbon nanotube array composite material has the following disadvantages: First, the surface treatment of the carbon nanotube array is complicated, and the process is complicated; and second, due to the polymer material and the carbon nanotube array Capillary interaction between carbon nanotubes, in the carbon nanotube array composite prepared by the above method, the carbon nanotube array is deformed, thereby affecting the overall performance of the carbon nanotube array composite, such as mechanical properties, electrical properties Performance or thermal performance; third, due to the presence of the following impurity gases such as carbon dioxide and water between the carbon nanotubes in the carbon nanotube array The steam and so on, so the electrical and thermal properties of the carbon nanotube array composites prepared by the film 8 201014879 have a clock here, to provide a way to maintain the original shape in the composite material: I make - carbon nanotube array Arrays (4) (4) Prepared squares and appearances; 7 produces (four) nano carbon [invention content] - a variety of carbon nanotube array composite steps: provide a Taifeng 成 your ready-made Danba bracket with carbon nanotube extension Direction: ^ Γ + column 'The two carbon nanotubes in the nanotube array are fixed on the two substrates; the same knife and knives are provided; the ay古 ay' ❹ 奈 nano carbon is used. The tube array is formed into a ^ knife-like solution to infiltrate the above mixture; and, the solid::::: precursor solution/nanocarbon tube array is combined. Four-knife 刖 刖 刖 / / 奈 奈 奈 奈 奈 奈The preparation method of the carbon nanotube array resurfacing material provided by the prior art 'the present technical solution has the following advantages: First, the preparation does not require pretreatment of the carbon nanotube p train, and the __ carbon nanotube extending direction The two ends are not between the carbon tube and the polymer solution The effect of the thin tube regardless of the degraded deformation 'nanocarbon nanotube array in the carbon nanotube array body, the original appearance' improves the integrity of the carbon nanotube array composite, such as mechanical properties, electrical properties or thermal properties. The present invention will be further described in detail with reference to the accompanying drawings and specific embodiments. Referring to FIG. 1 and FIG. 2, the embodiment of the present invention provides a method for preparing a nano carbon official array composite material. Specifically, the following steps are included: Step 1. Provide a carbon nanotube array 12. In this embodiment, the carbon nanotube array 12 is formed on a substrate, and the array 12 includes a plurality of nanowires substantially perpendicular to the substrate 14 and the nano tube array 12 includes a The first end 122 is opposite to the second end 124 opposite to the first end 122', and the carbon nanotubes in the carbon nanotube array 12 extend from the second end 124 to the first end 122, and the second end 124 is disposed at On the substrate 14. The specific preparation method of the carbon nanotube array 12 is not limited. The embodiment of the technical solution adopts a chemical vapor deposition method for preparing the carbon nanotube array 12, and the specific steps include: (a) providing a flat substrate 14, The material of the substrate 14 may be selected from the group consisting of glass, ruthenium, ruthenium dioxide, metal or metal ruthenium oxide. The embodiment of the technical solution preferably uses a oxidized ground substrate; (匕) uniformly forms a catalyst layer on the surface of the substrate 14, the catalyst The layer material may be selected from iron (Fe), ingot (Co), bromine (Ni) or any combination thereof. (c) The substrate 14 on which the catalyst layer is formed is annealed in air at 700 C - 900 ° C. 3 〇 minutes _9 〇 minutes; the treated substrate 14 is placed in a reaction furnace, heated to 500 ° C - 740 ° C under a protective gas atmosphere, and then passed through a carbon source gas reaction for about 5 minutes _ 3 〇 minutes, The carbon nanotube array 12 is grown. The carbon nanotube array 12 is a plurality of carbon nanotube arrays 12 formed of carbon nanotubes that are parallel to each other and grown perpendicular to the substrate 14. In the embodiment of the technical solution, the carbon source gas may be a chemically active hydrocarbon such as acetylene, ethylene or methane. The preferred carbon source gas in the embodiment of the technical solution is acetylene; the shielding gas is nitrogen or an inert gas, and the technical solution is The preferred shielding gas for the examples is argon. It is to be understood that the carbon nanotube array provided by the embodiment of the present technical solution is not limited to the above preparation method, and may be a graphite electrode constant current arc discharge deposition method, a laser evaporation deposition method, or the like. Step 2: Fix two 201014879 ends of the carbon nanotube array 12 in the direction in which the carbon nanotubes are extended on the two substrates. The first end 鳊12 of the carbon nanotube array 12 is affixed to a first substrate and the first portion specifically includes the following steps: on the first substrate 20, the remaining 16 and the second substrate 20. The L-shaped earth plate 16 and the first substrate 20 are not limited in shape, and include a large shape, a circular shape, a triangular shape, or other shapes including the material of the square base and the second substrate 20 = ^ - oxygen cut, metal or metal In the case of the oxide, the 16th and the first substrate 2 are rectangular glass plates of the same size. The soil (2) is coated with a (four) agent on the first substrate 16 and the first surface to form a first binder layer 18 and a second binder layer 2. The material of the binder of the adhesive layer is not limited, and the rubber can be cut. (4) The thickness of the thickness is not limited, and the thickness of the agent layer 18 may be 1 micron or less. The area of the layer 18 is greater than or equal to the surface of the first substrate 16 of the carbon nanotube array " Applying the first (four) agent layer 18 and the second (10) agent layer 22 to the second substrate 20, respectively, the second layer of the second layer of the second layer of the agent layer 22 is used, and the thickness is (3) The first end 122 of the carbon nanotube array 12 is fixed to the first substrate 16 by a layer 18. After the first end 122 of the carbon nanotube array 12 is slowly brought into contact with the first depressant layer 18, the first adhesive layer 18 is heated and dried at a certain temperature, and the first end of the carbon tube array 12 is heated. The combination of the first substrate 16 and the first substrate 16 is as follows: the temperature at which the first adhesive layer 18 is heated and the curing temperature of the binder material are 11 201014879, which may be 20. <:-15〇. In the present embodiment, the dry agent is a hair spray and is dried. / (4) The second end 124 of the carbon nanotube array 12 is fixed to the second substrate 2 through the second agent layer 22. Since the carbon nanotube array 12 is formed on the substrate 14 in the present embodiment, the step of removing the substrate 14 of the carbon nanotube array 12 is further included before the second end 124 is fixed to the second substrate 2 . . The method of removing the substrate 14 of the nanocarbon camp array 12 may be selected by mechanical grinding, chemical etching or direct stripping. In this embodiment, the substrate 14 of the carbon nanotube array 12 is removed by direct stripping. Specifically, the method includes the following steps: τ' First, the substrate 14 of the carbon nanotube array 12 is fixed. The base of the carbon nanotube array 12 can be secured by a tape, adhesive or clip. Then, the carbon nanotube array 12 is shoveled from the substrate crucible using a metal piece. The metal piece is first touched with the carbon nanotube array 12, and the metal piece is slowly moved to be inserted between the Ø end 124 of the nano carbon 4 column V and the substrate 14, thereby placing the carbon nanotube array 12 from the substrate ❹14. Shovel down. The material of the metal sheet is not limited, and the thickness of the metal sheet of copper, aluminum or iron and any combination thereof is not limited, and may be determined according to actual conditions. Preferably, the thickness of the metal sheet is 5 μm to 15 μm. After removing the substrate 14 of the carbon nanotube array 12, the second end 124 of the carbon nanotube array 12 is brought into contact with the second adhesive layer 22 on the second substrate 2, slowly with the second adhesive layer 22 After the contact, the second adhesive layer 22 is heated at a certain temperature to bond the second end 124 of the carbon nanotube array 12 to the second substrate 20. It can be understood that the substrate 14 can also be retained, and the substrate 14 is brought into contact with the second adhesive layer 22 on the second substrate 20, so that the second end 124 of the 12th 201014879 of the carbon nanotube array 12 is fixed to the second through the substrate 14. The substrate 2 is on the top. Alternatively, the substrate 14 may be retained so that the substrate 14 is directly used as the second substrate 2, without the need for the first layer. Optionally, after the first end 122 and the second end 124 of the carbon nanotube array 12 are respectively fixed on the first substrate 16 and the second substrate 2, the advancement includes a first substrate 16 and a second substrate. 2〇 The step of packaging to form a mold. The method of encapsulating the first substrate 16 and the second substrate 2 is to adhere three plate-shaped materials on the three sides of the first substrate 16 and the second substrate 20 by a sealant, and after the sealant is solidified, A mold can be formed. The plate material may be the same material as the first substrate 16 or the second substrate 2 or a different material. The sealant may be a 7〇6B type sulphurized rubber. The top of the mold has an opening. The carbon nanotube array 12 is located in the cavity of the mold, and the first substrate 16 and the second substrate 2 are formed into two opposite side walls of the mold. Step 2: providing a polymer precursor solution. The polymer precursor solution is a low-viscosity liquid, and its viscosity is less than that of the worker. The polymer material itself can be a liquid polymer, a liquid formed by melting a polymer material, or a solution or a polymer formed by dissolving a polymer material in a solvent. The liquid formed by mixing the monomer of the material with the catalyst. Wherein, the high molecular material is a thermosetting material or a thermoplastic material. The thermosetting material is an epoxy resin, a bismaleimide resin, a cyanate resin or a ruthenium rubber. The thermoplastic material is polypropylene, polyethylene, polyvinyl alcohol or polymethyl propylene, an ester resin or the like. The solvent for dissolving the polymer material is propylene carbonate, tetrahydrofuran, chloroform or ethyl acetate. It can be understood that the polymer material involved in the present invention is not limited to the above-mentioned polymer materials, but may be a liquid material which is low in viscosity, soluble and meltable to form a low viscosity polymer material. The polymer precursor solution used in the present embodiment is an epoxy resin solution. The epoxy resin solution is a solution of an epoxy resin in which an epoxy resin is dissolved in ethyl acetate. Step 4: impregnating the carbon nanotube array 12 with the polymer precursor solution to form a polymer precursor/carbon nanotube array mixture. In this embodiment, the polymer precursor solution is slowly injected into the cavity along the inner wall of the mold so that the polymer precursor solution does not pass through the column 10 of the carbon nanotube array. The rate of injecting the polymer precursor solution is not too fast, so as to prevent the polymer precursor solution from destroying the carbon nanotube array 12, and at the same time, the liquid surface of the polymer precursor solution in the mold exceeds the carbon nanotube array 12, so that The polymer precursor solution completely infiltrate the carbon nanotube array 12. After the high molecular precursor solution is injected into the mold, the carbon nanotube array 12 forms a polymer precursor/carbon nanotube array mixture with the polymer precursor solution. It can be understood that the carbon nanotube array 12, which is fixed on both substrates respectively, can be directly immersed in the polymer precursor solution to form a high molecular precursor/carbon nanotube array mixture. In the above process, in order to prevent the solid precursor solution from solidifying or increasing the degree of dryness, the dryness of the polymer precursor solution is maintained at less than 1 Pa·s, and the temperature of the polymer precursor solution can be maintained at 20 ° C. -80 ° C. In this embodiment, the temperature of the solution of the epoxy resin was maintained at 60 °C. Step 5: curing the polymer precursor solution in the polymer precursor solution/carbon nanotube array mixture to form a carbon nanotube array composite. Before curing the 14 201014879 polymer precursor solution in the polymer precursor solution/carbon nanotube array mixture, the step further comprises: vacuum processing the polymer precursor/carbon nanotube array mixture Method, = the following step: placing the molecular precursor/carbon nanotube array mixture in a closed vacuum to the middle of the vacuum chamber, in the polymer precursor/nanocarbon nanotube array mixture =^ Molecular front = body / carbon nanotube array mixture _ stop the bubble discharge = stop vacuum 'keep the vacuum for a while. ❹ In this process, as the vacuum in the vacuum chamber increases, the pressure at the liquid level of the polymer precursor solution decreases. 'In the polymer precursor/nanocarbon tube=? The bubble is discharged. When the vacuum in the vacuum chamber reaches 10 Pa-10 -10, the two-molecule precursor/nanocarbon nanotube array mixture no longer has bubble discharge, and at this time, the pumping is stopped.

10分鐘-30分鐘。 III 本實施例中,當真空度達到10-5帕時,高分子前驅 體/奈米碳管陣列混合體不再繼續有氣泡排出,此時停止 抽真空’保持該真空度20分鐘。 ❿ 將真空處理後的高分子前驅體/奈米碳管陣列混合體 連同模具置於-加熱爐中,在8『c議。c的溫度下加熱 1小時-30小時,然後在12(rc_3〇〇C)c溫度下加熱3小時 -20小時後,使高分子前驅體溶液固化,冷卻至室溫即得 到奈米碳管陣列複合材料。 "T X理解,固化局分子前驅體/奈米碳管陣列混合體 的/JBL度〃、向刀子刖驅體溶液的成份和高分子材料的固化 溫度有關,並不限於上述溫度範圍。 ^本實施例中’將該奈米碳管陣列複合材料沿奈米碳 官的延伸方向淬斷後,採用掃描電鏡觀察其斷面,其形 15 201014879 ,如圖3所示。由圖3可知,奈米碳管陣列在奈米碳管 陣列複合材料中保持較好的陣列形態。 ' 本技術方案所提供的奈米碳管陣列複合材料的製備 存在以下優點:其―,該製備方法中無需對奈米碳 吕陣列進行預處理’工藝簡單;其二,由於奈求碳管陣 列中奈米碳管延伸方向的兩端分別固定於兩個基板上, 故奈米碳管與高分子溶液之間的毛細管作用不會造成奈 米碳管陣列的變形,奈米碳管陣列在奈米碳管陣列複合 ❹材料中保持原貌’提高了奈米碳管陣列複合材料的整體 性能,如力學性能、電學性能或熱學性能;其三,對奈 米碳s陣列進行抽真空處理,使奈求碳管陣 氣、二氧化碳等雜質消除。 的I,、、 θ綜上所述,本發明確已符合發明專利之要件,遂依法 提出專利申請。惟,以上所述者僅為本發明之較佳實施例, 自不能以此限制本案之申請專利範圍。舉凡熟悉本案技藝 之人士援依本發明之精神所作之等效修飾或變化,皆應涵 ❹蓋於以下申請專利範圍内。 “ 【圖式簡單說明】 圖1為本技術方案實施例所提供的奈米碳管陣列複合 材料的製備方法的流程圖。 σ 圖2為本技術方案實施例所提供的奈米碳管陣列複合 材料製備過程的示意圖。 圖3為本技術方案實施例所提供的奈米碳管陣列複合 材料的橫截面的掃描電鏡照片。 16 201014879 【主要元件符號說明】 ,奈米碳管陣列 12 ,奈米碳管陣列第一端 122 奈米碳管陣列第二端 124 基底 14 第一基板 16 第一粘結劑層 18 ❹第二基板 20 第二粘結劑層 22 ❹ 1710 minutes - 30 minutes. III In this embodiment, when the degree of vacuum reaches 10-5 Pa, the polymer precursor/carbon nanotube array mixture no longer continues to have bubble discharge, at which time the evacuation is stopped and the vacuum is maintained for 20 minutes. ❿ Place the vacuum-treated polymer precursor/carbon nanotube array hybrid with the mold in a heating furnace at 8°c. Heating at a temperature of c for 1 hour to 30 hours, and then heating at a temperature of 12 (rc_3〇〇C)c for 3 hours to 20 hours, curing the polymer precursor solution, and cooling to room temperature to obtain a carbon nanotube array Composite material. "T X understands that the /JBL degree 固化 of the solid molecular precursor/carbon nanotube array mixture is related to the curing temperature of the polymer solution of the knives and is not limited to the above temperature range. In the present embodiment, after the carbon nanotube array composite material was quenched along the extending direction of the carbon nanotubes, the cross section was observed by scanning electron microscopy, and its shape was 15 201014879, as shown in FIG. As can be seen from Figure 3, the carbon nanotube array maintains a good array morphology in the carbon nanotube array composite. The preparation of the carbon nanotube array composite provided by the technical solution has the following advantages: - the preparation method does not require pretreatment of the nanocarbon array; the process is simple; second, due to the carbon nanotube array The two ends of the carbon nanotube extension direction are respectively fixed on the two substrates, so the capillary action between the carbon nanotube and the polymer solution does not cause deformation of the carbon nanotube array, and the carbon nanotube array is in the Nai The original appearance of the carbon nanotube array composite crucible material improves the overall performance of the carbon nanotube array composite, such as mechanical properties, electrical properties or thermal properties; thirdly, the vacuum treatment of the nanocarbon array is performed. Eliminate impurities such as carbon tube gas and carbon dioxide. In summary, the present invention has indeed met the requirements of the invention patent, and has filed a patent application according to law. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application in this case. Equivalent modifications or variations made by persons skilled in the art in light of the spirit of the present invention are intended to be included in the scope of the following claims. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a flow chart of a method for preparing a carbon nanotube array composite material provided by an embodiment of the present technical solution. σ FIG. 2 is a composite of a carbon nanotube array provided by an embodiment of the present technical solution. Schematic diagram of the material preparation process. Figure 3 is a scanning electron micrograph of a cross section of a carbon nanotube array composite provided by an embodiment of the present invention. 16 201014879 [Main component symbol description], carbon nanotube array 12, nano Carbon tube array first end 122 carbon nanotube array second end 124 substrate 14 first substrate 16 first adhesive layer 18 ❹ second substrate 20 second adhesive layer 22 ❹ 17

Claims (1)

201014879 申請專利範圍 驟 種奈求碳管陣列複合材料的製備方法,其包括以下步 提供一奈米碳管陣列; 管陣列沿奈米碳管延伸方向的兩端於 長供一高分子前驅體溶液; ❺ ❿ ,用該高分子前驅體溶液浸潤上述奈米碳管陣列 成一咼分子前驅體/奈米碳管陣列混合體;以及 夕 固化高分子前驅體/奈米碳管陣列混合體。 請專利範圍第!項所述之奈 的製備方法,其中,所述太半雄答陆 '早夕】複°材枓 上,奈米碳管陣列具於一基底 端,第二端與基底連接。及與第—端相對的第二 US範所述之奈米碳管陣列複合材料 的I備方法,其中,將奈米碳管陣列沿 向的兩端分別SJ定於兩個基板上的方法包 ::提供-第-基板與一第二基板;:二 板和第二基板的表面,形成-第一二IT 求碳管陣列的第-端通過第-枯結 將奈米碳管陣列的第二端通過 第一枯結劑層固定於第二基板上。 4·::請專利_ 3項所述之奈 的製備方法,其中,所诚之蔣太半β垃平W複口材枓 過第二㈣層固定於第二二;法陣=太第= 陣列的基底與第二基板上的第二枯結劑層為接將觸= 18 201014879 厌Β陣列的第二端通過基底固定於二 ,I::範其圍中第,3項所述之奈米州列複合材料 •=劑固定於第二基板的方法二 ❹ 碳管陣列的第二端與第二基板上η底,將奈米 觸,使奈米碳管陣列的第二端固定於劑層接 6·如申請專利範圍第5項所述之奈碳第上。 法包括以下步驟:將夺去除基底的方 用一金屬片將奈米碳管陣列從基底上鐘下。採 範圍第6項所述之奈米碳管陣列複人材料 S備方法,其i所述之金屬片的厚度為5“2 ο 8二=範Λ第3項所述之奈米碳管陣列複合材料 的製備方法,其中,將奈米碳管陣列沿 :科 向的兩端固定於兩個基板上之後,進一伸方 基板封裝形成-模具的步驟。纟包括-將兩個 9·如申請專利範圍第i項所述之 的製備方法,其中,所述八官陣列複合材料 混合形成的液體。^刀子材料的單體與催化劑 1〇的如專利範圍第9項所述之奈米碳管陣列複人材料 度小於工帕.秒。叙问分子材料前驅體溶液的枯 19 201014879 U的如/Λ專利範圍第9項所述之奈米碳管陣列複合材料 塑2材料法,其中,所述咼分子材料為熱固性材料或熱 12的如/^專鄉圍第1項所述之奈米碳料列複合材料 直 方法,其中,所述固化高分子前驅體/奈米碳管 #焯合體之前’進一步包括一對高分子前驅體/奈米 反&陣列混合體真空處理的步驟。201014879 Patent application scope for preparing a carbon tube array composite material, comprising the steps of providing a carbon nanotube array; the tube array is provided with a polymer precursor solution at both ends of the carbon nanotube extending direction ❺ ❿, the polymer precursor solution is used to infiltrate the carbon nanotube array into a molecular precursor/carbon nanotube array mixture; and a solid polymer precursor/carbon nanotube array mixture. Please patent scope! The method for preparing a naphtha according to the invention, wherein the nano-carbon nanotube array has a base end and the second end is connected to the substrate. And a method for preparing a carbon nanotube array composite according to the second US Fan, which is opposite to the first end, wherein the method of setting the SJ on both sides of the carbon nanotube array on the two substrates is :: providing - the first substrate and a second substrate; the surface of the second plate and the second substrate, forming - the first two of the first tube of the carbon tube array, the first end of the array of carbon nanotubes The two ends are fixed to the second substrate by the first layer of the agent. 4·:: Please refer to the preparation method of the patent described in _3, in which the sacred Jiang Taishui β 垃 平 W 复 枓 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 ; ; ; ; ; ; ; The substrate of the array is connected to the second layer of the binder on the second substrate. The touch is 18=201014879 The second end of the array is fixed to the second through the substrate, I:: Fan Qiwei, the third item The second column of the carbon nanotube array is fixed on the second substrate. The second end of the carbon tube array and the bottom of the second substrate are nano-contacted, so that the second end of the carbon nanotube array is fixed to the agent layer. 6) as described in the fifth paragraph of the patent application scope. The method includes the steps of: removing the substrate from the substrate and using a metal sheet to wind the carbon nanotube array from the substrate. The method for preparing a carbon nanotube array re-manufacturing material S according to the sixth aspect of the invention, wherein the thickness of the metal piece is 5"2 ο 8 2 = the carbon nanotube array described in the third item The method for preparing a composite material, wherein after the carbon nanotube array is fixed on the two substrates along the opposite ends of the branch, the step of forming a square-shaped substrate into the mold is formed. 纟 includes - two of the applications The preparation method according to the invention of claim 1, wherein the quaternary array composite material is mixed with a liquid. The monomer of the knive material and the catalyst 1 奈 carbon nanotube according to claim 9 of the patent scope. The array is replaced by a material of less than a few seconds. The molecular material precursor solution of the molecular material is 19 1914, 14879 U. The carbon nanotube array composite material 2 material method as described in item 9 of the patent scope, wherein The method for straightening a nano-carbon material composite material according to the first aspect of the invention, wherein the molecular material is a thermosetting material or a heat 12, wherein the cured polymer precursor/nanocarbon tube #焯合体Before 'further include a pair of polymer precursors/nano anti-am p; step of vacuum treatment of the array mixture. 13处如申請專利範圍第12項所述之奈米碳管陣列複合材 =製備方法’其中’所述之對高分子前驅體/奈来碳 二列混合體真空處理的方法包括以下步驟:將高分子 則驅體/奈米碳管陣列混合體放入一密閉真空室中;對 真空室抽真空,高分子前驅體/奈米碳管陣列混合 體中有氣泡排出;當高分子前驅體/奈米碳管陣列混合 體中停止排出氣泡時,停止抽真空,保持1〇_4帕-1〇_6 帕的真空度ίο分鐘_30分鐘。 14·如申請專利範圍第12項所述之奈米碳管陣列複合材 料,製備方法,其中,所述之固化高分子前驅體續米 ,管陣列混合體的方法包括以下步驟:將真空處理後的 鬲分子前驅體/奈米碳管陣列混合體在8(rc_1〇〇<3c溫度 下加熱1小時-30小時;在12〇cC_30『c溫度下加熱3 小時-20小時後;冷卻至室溫。 2013 method for vacuum processing of a carbon nanotube array composite according to claim 12, wherein the method for vacuum processing the polymer precursor/neil carbon double column mixture comprises the following steps: The polymer/body/carbon nanotube array mixture is placed in a closed vacuum chamber; the vacuum chamber is evacuated, and the polymer precursor/nanocarbon tube array mixture is bubbled out; when the polymer precursor/ When the bubble is stopped in the carbon nanotube array mixture, the vacuum is stopped, and the vacuum of 1〇_4 Pa-1〇_6 Pa is maintained for _30 minutes. The method for preparing a carbon nanotube array composite according to claim 12, wherein the method for preparing a cured polymer precursor and a tube array mixture comprises the following steps: after vacuum treatment The 鬲 molecular precursor/nanocarbon nanotube array mixture is heated at 8 (rc_1 〇〇 < 3c temperature for 1 hour to 30 hours; after heating at 12 〇 cC_30 "c temperature for 3 hours - 20 hours; cooling to room Warm. 20
TW97138105A 2008-10-03 2008-10-03 Method for making carbon nanotube array composite TWI386447B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97138105A TWI386447B (en) 2008-10-03 2008-10-03 Method for making carbon nanotube array composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97138105A TWI386447B (en) 2008-10-03 2008-10-03 Method for making carbon nanotube array composite

Publications (2)

Publication Number Publication Date
TW201014879A true TW201014879A (en) 2010-04-16
TWI386447B TWI386447B (en) 2013-02-21

Family

ID=44829801

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97138105A TWI386447B (en) 2008-10-03 2008-10-03 Method for making carbon nanotube array composite

Country Status (1)

Country Link
TW (1) TWI386447B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103979519A (en) * 2013-02-08 2014-08-13 台湾奈米碳管股份有限公司 Method for manufacturing carbon nano-tube block material with rigid structure

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100404242C (en) * 2005-04-14 2008-07-23 清华大学 Thermal interface material and method of manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103979519A (en) * 2013-02-08 2014-08-13 台湾奈米碳管股份有限公司 Method for manufacturing carbon nano-tube block material with rigid structure
CN103979519B (en) * 2013-02-08 2017-04-12 台湾奈米碳管股份有限公司 Method for manufacturing carbon nano-tube block material with rigid structure

Also Published As

Publication number Publication date
TWI386447B (en) 2013-02-21

Similar Documents

Publication Publication Date Title
CN101671442A (en) Preparation method of carbon nano tube array composite material
US11086421B2 (en) Touch panel
US7988896B2 (en) Method of preparing carbon nanotube/polymer composite material
CN101654555B (en) Method for preparing carbon nano tube/conducting polymer composite material
US11167991B2 (en) Method for preparing carbon nanotube/polymer composite
CN101372614A (en) Carbon nanotube array composite heat conducting sheet and preparation method thereof
CN104924701B (en) A kind of carbon-based material/polymer composites and preparation method thereof
CN101353785B (en) Preparation method of high-density carbon nanotube array composite material
US8518206B2 (en) Method for making carbon nanotube composite structure
CN102786756A (en) Three-dimensional continuous graphene network composite material and its preparation method
CN103318868B (en) Preparation method for semiconducting single-wall carbon nanotube
CN107141007A (en) A kind of composite heat conduction film based on graphene and preparation method thereof
CN102718983A (en) Preparation method of polymer-based conductive microporous foam composite material
CN104860293B (en) Carbon nanotube three-dimensional network macroscopic body, its polymer composite material and its preparation method
Liu et al. Fabrication and characterization of carbon nanofibers with a multiple tubular porous structure via electrospinning
KR101756346B1 (en) Carbon nano structures-polymer composite and method of preparing the same
CN101376497B (en) Carbon nanotube composite material preform and preparation method thereof
TW200929292A (en) Super capacitor
CN104774432B (en) A kind of poly-3-hexylthiophene/carbon nanotube composite material and its preparation method
TW201014879A (en) Method for making carbon nanotube array composite
TWI339189B (en) Thermal pad with carbon nanotube array and method of making the same
CN102717536A (en) Method for preparing carbon nano-tube electrical-conductive composite film
TW200923991A (en) Super capacitor and method for making the same
Sharma Alignment of carbon nanotubes in polymer matrix
Suzuki et al. Carbon nanotubes on carbon fabrics for flexible field emitter arrays