[go: up one dir, main page]

TW200929292A - Super capacitor - Google Patents

Super capacitor Download PDF

Info

Publication number
TW200929292A
TW200929292A TW96151263A TW96151263A TW200929292A TW 200929292 A TW200929292 A TW 200929292A TW 96151263 A TW96151263 A TW 96151263A TW 96151263 A TW96151263 A TW 96151263A TW 200929292 A TW200929292 A TW 200929292A
Authority
TW
Taiwan
Prior art keywords
carbon nanotube
supercapacitor
carbon
nanotube film
carbon nanotubes
Prior art date
Application number
TW96151263A
Other languages
Chinese (zh)
Other versions
TWI464762B (en
Inventor
Kai-Li Jiang
Shou-Shan Fan
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW096151263A priority Critical patent/TWI464762B/en
Publication of TW200929292A publication Critical patent/TW200929292A/en
Application granted granted Critical
Publication of TWI464762B publication Critical patent/TWI464762B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

The present invention relates to a super capacitor. The super capacitor includes two electrodes, two current collector, a separator, an electrolyte and a shell. Each of the electrodes includes a carbon nanotube structure. The carbon nanotube structure includes at least one carbon nanotube layer. The carbon nanotube layer includes a plurality of carbon nanotubes aligned along the same direction.

Description

200929292 九、發明說明: 【發明所屬之技術領域】 本發明涉及一種超級電容器,尤其涉及一種基於奈米 碳管的超級電容器。 【先前技術】 超級電各器(supercapacitor),又叫電化學電容、電 雙層電容器。超級電容器具有較高的比功率和較長的循環 ❹哥命,工作溫度範圍寬。在移動通訊、資訊技術、電動汽 車、航空航天和國防科技等方面都有著極其重要和廣闊的 應用前景。 先前的超級電容器一般包括電極、隔膜和電解液溶 液,該電極和隔膜都設置在該電解液溶液中。該電極包括 一集電體及設置在該集電體上的電崎料。先前超級電容 器的製備方法通常係將電極材料充分研磨後,在其中加入 ❹ 一定量的㈣賴拌均勾,再通過模麗法、冷等靜壓法、 熱等靜壓法等壓制方法壓制在泡沫鎳、石墨片 ::銅片等集電體上’即可製成一定形狀的電極;然後將 Π 置在含隔膜的電解液溶液中即可製成超級電容 器。該製備方法較複雜。 =電容器中影響其容量的決定因素係電極材料。理 料要求結晶度高、導電性好、比表面積大、微 範圍内(要求微孔大於2奈米)。先前的超 物==料主要有··活性碳系列和過糊 物系歹h舌性碳系列的材料導電性較差,採用活性碳系列 6 200929292 的材料作電極的電容器等效串聯電阻大。而且該活性碳系 列的比表面積實際利用率不超過30%,電解質離子難以進 入。過渡金屬氧化物用作電極材料在提高超級電容器的容 量方面具有良好的效果,但其成本太高,無法推廣使用。 奈米碳管(Carbon Nanotube,CNT )的出現為超級電 容器的開發提供了新的機遇。奈米碳管係一種奈米級無缝 管狀石墨結構碳材料,管徑為幾奈米到幾十奈米,管長為 幾微米到幾十微米。奈米碳管比表面積大,結晶度高,導 ®電性好,管内外徑可通過合成工藝加以控制,可使比表面 利用率達到100%,因而可以成為一種理想的超級電容器 材料。 奈米碳管用作超級電容器材料的研究最早見諸於 Chunming Niu 等的報導(請參見 High power electrochemical capacitors based on carbon nanotube electrodes, Apply Physics Letter, Chunming Niu et al., vol ❹70, pl480-1482(1997))。他們將純的多壁奈米碳管粉末製 成薄膜電極後,封裝制得一超級電容器。在該薄膜電極的 製備方法中,由於所用的奈米碳管原料為粉末狀,極易發 生團聚,製成的薄膜電極中奈米碳管分佈不均勻且無序排 列,故需要對奈米碳管進行化學改性。然而,即使經過化 學改性後的奈米碳管仍然會出現團聚現象,造成所制得的 薄膜電極韌性差,容易斷裂,影響了超級電容器的性能。 有鑒于此,提供一種具有電容量高和功率密度大的超 級電容器實為必要。 7 200929292 【發明内容】 一種超級電容器,其包括:一第一電極,一 一筮一鳌带μ 乐一電極, 一外/、所第二集電體,一隔膜’一電解液溶液和 汗双。所述電解液溶液設置在該外殼内。所述第—集 體和第二集電體間隔設置在所述電解液溶液内。所述 電極i括第一奈米碳管薄膜結構並設置在所述第二集電 體表面:所述第二電極包括—第二奈米碳管薄膜結構並設 ❹置在所述第二集電體表面。所述隔膜設置在所述的第一^ 極和第二電極之間,並分別與所述第一電極和第二電極間 隔設置。所述的第一奈米碳管薄膜結構和第二奈米碳管薄 膜結構中均包括至少一奈米碳管層,該奈米碳管層包括多 個沿同一方向定向排列的奈米碳管。 與先前技術相比較,所述的超級電容器具有以下優 點:其一 ’奈米碳管具有良好的導電性能且本身的比表面 積大’制得的超級電容器具有較高的比電容量和電導率; 〇其二’由於奈米碳管陣列中奈米碳管生長均勻,因而所製 備的奈米碳管薄膜結構中的奈米碳管分散均勻,且製備方 法簡單’易於實際應用;其三’該奈米碳管薄膜結構包括 多個首尾相連且定向排列的奈米碳管,相鄰的奈米碳管之 間具有多個微孔結構,使得奈米碳管薄膜結構中形成大量 的均勻且規則分佈的微孔結構,這有利於充分的利用奈米 碳管的表面微孔結構’使之成為導電性良好的電荷通路。 【實施方式】 以下將結合附圖詳細說明本技術方案超級電容器及其 8 200929292 製備方法。 請參閱圖1,本技術方案實施例提供一種超級電容器200929292 IX. Description of the Invention: [Technical Field] The present invention relates to a supercapacitor, and more particularly to a supercapacitor based on a carbon nanotube. [Prior Art] Supercapacitors, also known as electrochemical capacitors, electric double layer capacitors. Supercapacitors have a higher specific power and a longer cycle. The operating temperature range is wide. It has extremely important and broad application prospects in mobile communication, information technology, electric vehicles, aerospace and defense technology. Previous supercapacitors typically included an electrode, a membrane, and an electrolyte solution, both of which were disposed in the electrolyte solution. The electrode includes a current collector and an electric batter disposed on the current collector. In the prior art, the preparation method of the supercapacitor is usually after the electrode material is sufficiently ground, and a certain amount of (4) slag is added thereto, and then pressed by a mold method, a cold isostatic pressing method, a hot isostatic pressing method or the like. Foam nickel, graphite sheet:: On a current collector such as a copper sheet, an electrode can be formed into a shape; then the crucible can be placed in an electrolyte solution containing a separator to form a supercapacitor. This preparation method is complicated. = The determinant of the capacitor's influence on its capacity is the electrode material. The material requires high crystallinity, good electrical conductivity, large specific surface area, and micro-range (requires micropores greater than 2 nm). The previous super-material == material mainly has ···················································· Moreover, the actual utilization ratio of the specific surface area of the activated carbon series is not more than 30%, and electrolyte ions are difficult to enter. The use of transition metal oxides as electrode materials has a good effect in increasing the capacity of supercapacitors, but its cost is too high to be promoted. The advent of Carbon Nanotubes (CNTs) offers new opportunities for the development of supercapacitors. The carbon nanotube is a nano-series seamless tubular graphite structure carbon material having a diameter of several nanometers to several tens of nanometers and a tube length of several micrometers to several tens of micrometers. The carbon nanotubes have a large specific surface area, high crystallinity, and good electrical conductivity. The inner and outer diameters of the tubes can be controlled by a synthetic process, which can achieve a specific surface utilization rate of 100%, and thus can be an ideal supercapacitor material. The research on the use of carbon nanotubes as a supercapacitor material was first reported in Chunming Niu et al. (See High power electrochemical capacitors based on carbon nanotube electrodes, Apply Physics Letter, Chunming Niu et al., vol ❹ 70, pl480-1482 (1997). )). They made a pure multi-walled carbon nanotube powder into a thin film electrode and packaged it to make a supercapacitor. In the preparation method of the thin film electrode, since the raw material of the carbon nanotube used is powdery, agglomeration is extremely likely to occur, and the carbon nanotubes in the prepared thin film electrode are unevenly distributed and disorderly arranged, so that it is necessary to have a nano carbon. The tube is chemically modified. However, even after the chemically modified carbon nanotubes, agglomeration occurs, resulting in poor toughness and easy fracture of the film electrode, which affects the performance of the supercapacitor. In view of this, it is necessary to provide a super capacitor having a high capacitance and a high power density. 7 200929292 SUMMARY OF THE INVENTION A supercapacitor includes: a first electrode, a 筮 鳌 μ belt μ 乐 electrode, an outer /, a second collector, a diaphragm 'an electrolyte solution and a sweat double . The electrolyte solution is disposed within the outer casing. The first collector and the second collector are disposed in the electrolyte solution at intervals. The electrode i includes a first carbon nanotube film structure and is disposed on the surface of the second current collector: the second electrode includes a second carbon nanotube film structure and is disposed in the second set The surface of the electric body. The diaphragm is disposed between the first electrode and the second electrode and is spaced apart from the first electrode and the second electrode, respectively. The first carbon nanotube film structure and the second carbon nanotube film structure each include at least one carbon nanotube layer, and the carbon nanotube layer comprises a plurality of carbon nanotubes aligned in the same direction . Compared with the prior art, the supercapacitor has the following advantages: a 'nanocarbon tube has good electrical conductivity and a large specific surface area itself', and the obtained supercapacitor has a higher specific capacitance and electrical conductivity; 〇二二' Due to the uniform growth of the carbon nanotubes in the carbon nanotube array, the carbon nanotubes in the prepared carbon nanotube film structure are uniformly dispersed, and the preparation method is simple 'easy to practical use; The carbon nanotube film structure comprises a plurality of carbon nanotubes connected end to end and oriented, and a plurality of microporous structures between the adjacent carbon nanotubes form a large number of uniform and regular structures in the carbon nanotube film structure. The distributed microporous structure, which is beneficial to make full use of the surface microporous structure of the carbon nanotubes, makes it a conductive path with good conductivity. [Embodiment] Hereinafter, a supercapacitor of the present technical solution and a manufacturing method thereof will be described in detail with reference to the accompanying drawings. Referring to FIG. 1 , an embodiment of the technical solution provides a super capacitor.

10’該超級電容器具有平板型的結構,包括:一第一電椏 101,一第二電極102,一第一集電體1〇3,一第二集電體 1〇4,一隔膜1〇5,一電解液溶液1〇6和一外殼1〇7。所述 電解液溶液106没置在該外殼ίο?内。所述第一集電體ι〇3 和第一集電體104間隔設置在所述電解液溶液1〇6内。所 述第一電極101包括一第一奈米碳管薄膜結構並設置在所 述第一集電體103表面。所述第二電極1〇2包括一第二奈 米碳管薄膜結構並設置在所述第二集電體1〇4表面。所述 隔膜105設置在所述的第一電極逝和第二電極1〇2之 間並刀別與所述第一電極1〇1和第二電極1〇2間隔設置。 所述的第-奈米碳管薄膜結構和第二奈米碳管薄膜結構中 均包括至少-奈米碳管層,該奈米碳管層包括多個沿同一 方向定向排列的奈米碳管。10' The supercapacitor has a flat type structure, comprising: a first electric pole 101, a second electrode 102, a first current collector 1〇3, a second current collector 1〇4, and a diaphragm 1〇. 5. An electrolyte solution 1〇6 and an outer casing 1〇7. The electrolyte solution 106 is not placed in the outer casing ίο?. The first collector ι 3 and the first collector 104 are spaced apart from each other in the electrolyte solution 1〇6. The first electrode 101 includes a first carbon nanotube film structure and is disposed on a surface of the first current collector 103. The second electrode 1〇2 includes a second carbon nanotube film structure and is disposed on the surface of the second current collector 1〇4. The diaphragm 105 is disposed between the first electrode and the second electrode 1〇2 and is spaced apart from the first electrode 1〇1 and the second electrode 1〇2. The carbon nanotube film structure and the second carbon nanotube film structure both include at least a carbon nanotube layer, and the carbon nanotube layer comprises a plurality of carbon nanotubes aligned in the same direction. .

所述奈米碳官薄膜結構包括一奈米碳管層或者至少兩 =重疊設置的奈米碳管層’每個奈米碳管層中奈米碳管沿 方向定向排列。所述至少兩個重叠設置的奈米碳管層 中相鄰的兩個奈米碳管層中的奈求碳管排列方向具有一交 2度a,G。泌9G。,具體可依據實際需求製備。相鄰兩 相不米碳管層之間通過凡德瓦爾力緊密結合。所述至少兩 ::叠設置的奈米碳管層中的奈来碳管之間具有多個微孔 ;構二微孔結構均句且規則分佈于奈米碳管薄膜結構 、中微孔直控為1奈米〜微米。所述奈米碳管層包 9 200929292 括I米碳官薄膜或者至少兩個平行且無間隙鋪設的奈米 碳管薄膜。所述奈米碳管薄膜包括多個首尾相連且定向排 列的奈米礙管纟,該奈米碳管束包括多個長度相等且相互 平行排列的奈米碳管。所述奈米碳管薄膜中的奈米碳管束 的長度基本相同’奈米碳管束之間通過凡德瓦爾力緊密連 接。請參閱圖2,所述奈米碳管薄膜包括多個奈米碳管片 段,每個奈米碳管片段具有大致相等的長度且每個奈米碳 管片段由多個相互平行的奈米碳管束構成,奈米碳管片段 兩端通過凡德瓦爾力相互連接。 一所述奈米碳官薄膜的厚度為0.5奈米〜1〇〇微米。該奈 来碳管薄膜中的奈米碳管為單壁奈米碳管、雙壁奈米碳管 及多壁奈米碳管中的一種。該奈米碳管的長度為5〇微米 〜5毫米。當所述奈米碳管薄膜中的奈米碳管為單壁奈米碳 管時,該單壁奈米碳管的直徑為〇·5奈米〜5〇奈米。當所 述奈米碳管薄膜中的奈米碳管為雙壁奈米碳管時,該雙壁 〇奈米碳管的直徑為1.0奈米〜5〇奈米。當所述奈米碳管薄 膜中的奈米碳管為多壁奈米碳管時,該多壁奈米碳管的直 徑為1.5奈米〜50奈米。 所述的隔膜105為玻璃纖維或者聚合物膜,其允許上 述電解液溶液106中的電解質離子流通而阻止所述第一電 極101和第二電極1〇2相接觸。 所述的電解液溶液106為氳氧化納水溶液、氫氧化鉀 Τ溶液、硫酸水溶液、硝酸水溶液、高氯酸鋰的碳酸丙烯 曰;谷液四氟领酸四乙基鞍的碳酸丙稀醋溶液,或以上任 200929292 意組合的混合液。 所述的外殼107為玻璃外殼或者不銹鋼外殼。 所述集電體的材料可為石墨、錄、銘或鋼等等,兮华 電體可為一金屬基板,優選為銅片。該集電體的形狀大小 不限,可依據實際需要進行改變。上述奈米碳管薄膜結構 本身具有較強的粘性,故作為電極的奈米碳管薄膜結構可 以直接粘附在所述集電體的表面,或將所述奈米碳管薄膜 結構通過一粘結劑粘附在所述集電體的表面。 所述超級電容器10中的第一集電體103和第二集電體 104均為一可選擇的結構,因為奈米碳管薄膜結構具有良 好的導電性能和-定的自支撐性及穩定性’實際應用時, 可直接在該奈米碳管薄膜結構表面塗覆一層導電膠而不需 要上述的集電體。 可以理解,該超級電容器的結構類型不限,還可以係 硬幣型或者捲繞型。 ❹ 請參閱圖2,本技術方案實施例提供一種製備上述超 級電谷器1〇的方法,具體包括以下步驟: 步驟一 ··提供一第一集電體1〇3和一第二集電體⑽。 本技術方案實施例的集電體優選為一銅片,該銅片的 面積與奈米碳管陣列面積基本相同。 步驟二:製備至少一奈米碳管薄膜。 該奈来碳管薄膜的製備方法包括以下步驟: ⑴提供—奈米碳管陣列形成於—基底,優選地,該 陣列為超順排奈米碳管陣列。 11 200929292 r ^本實施例中,超順排奈米碳管陣列的製備方法採用化 學氣相沈積法’其具體步驟包括:(a)提供_平整基底, 該基底可選用P型或N型石夕基底,或選用形成有氧化層的 矽基底,本實施例優選為採用4英寸的矽基底;(b)在基 底表面均勻形成一催化劑層,該催化劑層材料可選用鐵 )銘(Co)、錄(Ni)或其任意組合的合金之一;(c) 將上述形成有催化劑層的基底在7〇(TC〜90CTC的空氣中退 ❹、 刀鐘90为鐘,(d)將處理過的基底置於反應爐中, 在保護氣體環境下加熱到5〇〇〇c〜74〇。〇,然後通入破源氣 體=應約5分鐘〜30分鐘,生長得到超順排奈米碳管陣列, 其局度為50微米〜5毫米。該超順排奈米碳管陣列為至少 ^固彼此平行^垂直於基底生長的奈米碳管形成的純奈米 反3陣歹】通過上述控制生長條件,該超順排奈米碳管陣 列中基本不含有雜質,如無定型碳或殘留的催化劑金屬顆 粒等。該奈米碳管陣列中的奈米碳管彼此通過凡德瓦爾力 0緊密接觸形成陣列。該奈米碳管陣列的面積與上述基底面 積基本相同。 上述碳源氣可選用乙炔、乙烯、曱烷等化學性質較活 潑的碳氫化合物,本實施例優選的碳源氣為乙炔;保護氣 體為氮氣或惰性氣體,本實施例優選的保護氣體為氬氣。 可以理解,本實施例提供的奈米碳管陣列不限於上述 製備方法,也可為石墨電極恒流電弧放電沈積法、鐳射蒸 發沈積法等。 (2)採用一拉伸工具拉取上述奈米碳管陣列從而獲得 12 200929292 一奈米碳管薄膜。 本實施例中,採用一拉伸工具拉取上述奈米碳管陣列 從而獲得一奈米碳管薄膜的方法包括以下步驟:(a)從上 述奈米碳管陣列中選定一定寬度的多個奈米碳管束片斷; (b)以一定速度沿基本垂直于奈米碳管陣列生長方向拉伸 該多個奈米碳管束片斷,獲得一連續的奈米碳管薄膜,該 不米奴盲薄膜中奈米被管的排列方向平行于奈米碳管薄膜 的拉伸方向。 、 在上述拉伸過程中,該多個奈米碳管束片斷在拉力作 用下/口拉伸方向逐漸脫離基底的同時,由於凡德瓦爾力作 用,該選定的多個奈米碳管束片斷分別與其他奈米碳管束 片斷首尾相連地連續地被拉出,從而形成一奈米碳管薄 膜。該奈米碳管薄膜為定向排列的多個奈来 連形成的具有-定寬度的奈米碳管薄膜。5束首尾相 步驟一中直接拉伸獲得的定向排列的奈米碳管薄膜具 〇有較好的均勻性,即具有均勻的厚度及均勻的導電性能。、 同時該直接拉伸獲得奈来碳管薄膜的方法簡單快速,適宜 進行工業化應用。 步驟一.將至少一奈米碳管薄膜鋪設在所述第一集電 體103和第二集電體104的表面分別形成-奈米碳管薄膜 結構。 所述將至少-奈米碳管薄膜分別鋪設在第—集電體 103和第二集電體1〇4的表面分別形成一奈米碳管薄膜壯 構的方法包括以下步驟··提供一基板;將至少-個奈米碳 13 200929292 .管薄膜鋪設於基板表面,去除基板外多餘的奈米碳管薄 膜;移除基板,形成-自支撐的奈米碳管薄膜結構;將該 奈米碳管薄膜結構鋪設在所述集電體的表面。由於本實施 例提供的超順排奈米碳管陣列中的奈米碳管非常純淨,且 由於奈米碳管本身的比表面積非常大,故該奈米碳管薄膜 本身具有較強的枯性,該奈米碳管薄膜可利用其本身的點 性直接粘附於基板。 〇 上述基板也可選用一框架結構,上述奈米碳管薄膜可 利用其本身的枯性直接枯附於固定框架結構,使奈米碳管 薄膜的四周通過固定框架結構固定,該奈米碳管薄膜的中 間部分懸空;奈米碳管薄膜黏附在框架結構表面,框架結 構外多餘的奈求碳管薄膜部分可以用小刀刮去;移除框架 、:構得到-自支撐的奈米碳管薄膜結構;將該奈米碳管 薄膜結構鋪設在所述集電體的表面。 本實施例中,上述基板或框架結構的大小可依據實際 0需求確定。當基板或框架結構的寬度大於上述奈米碳管薄 膜的寬度時,可以將至少兩個奈米碳管薄膜平行且無間隙 或/和重疊鋪設於基板或框架結構上,形.奈米碳管薄膜 $構。所述至少兩個重疊設置的奈米碳管薄财的奈米碳 管之間具有多個微孔結構,該微孔結構均勻且規則分 奈米碳管薄膜結構中,其中微孔直徑為1奈米〜〇·5微米。 可以理解,還可以將至少一個奈米碳管薄膜直接料 在所述集電體的表面。或者將至少兩個奈米碳管薄 且無間隙或/和重疊鋪設在所述集電體的表面。所述至少兩 200929292 個重疊設置的奈米碳管薄膜中的奈米碳管之間具有多個微 孔結構,該微孔結構均勻且規則分佈于奈米碳管薄膜結構 中’其中微孔直徑為1奈米〜〇.5微米。所述的奈米碳管薄 膜結構具有很好㈣性,故上述奈米碳管薄膜結構可以利 用自身的粘性比較牢固地固定於所述集電體的表面。進一 步’還可以通過-導電㈣劑將上述奈米碳管薄膜結構固 定於所述集電體的表面。 * .上返佘禾碳管薄膜結構可直接使用,或者也可 =有機溶劑處理後再使用。使时機溶劑處理所述奈米 碳=薄膜結構的過程包括:通過試管將有機溶劑滴落在奈 米碳管薄膜結構表面浸潤整個奈米碳管薄膜結構,或者將 整個奈米碳管薄膜結構浸入盛有有機溶劑的容器中浸潤。 ,有機溶劑為揮發性有機溶劑,如乙醇、甲醇、丙_、二 氯^院或氯仿,本技術方案實施例令採用乙醇。所述的: =薄膜結構經有機溶劑浸潤處理後,在揮發性有機: Γ 張力的作用下,奈来碳管薄膜中平行的奈米碳管 二:會^分聚集成奈米碳管束。因此, 構表=積比小,餘性’且具^料機度及^ 步驟四·提供一隔膜1〇5,將上述兩個分 米碳管薄膜結構的第一集電體有不 汕机要—斗 示一果電體104間隔 地叹置在該隔膜1〇5的兩側,並裝入一外殼1〇7中。^ 體= 5有奈米碳管薄臈結構的第-集電 置在所述兩置,並將所述隔膜105設 刀別覆蓋有奈米碳管薄膜結構的第—集電體 15 200929292 103和第二集電體ι〇4之間 布作為隔膜105。 本技術方案實施例採用無紡 所述超級電容器電極1〇中的第一集電體1〇3和第二集 電體104為-可選擇的結構’因為奈米碳管薄膜具有良好 的導電性能和-定的自支樓性及穩定性,實際應用時,可 直接在該奈米碳管薄膜結構表面塗覆—層導電膠而不需要 上述的第一集電體103和第二集電體1〇4。The nano carbon official film structure comprises a carbon nanotube layer or at least two layers of carbon nanotube layers disposed in an overlapping manner. The carbon nanotubes in each of the carbon nanotube layers are oriented in the direction. The alignment direction of the carbon nanotubes in the adjacent two carbon nanotube layers in the at least two overlapping carbon nanotube layers has a degree of intersection a, G. Secret 9G. Specifically, it can be prepared according to actual needs. The adjacent two-phase non-carbon nanotube layers are tightly bonded by van der Waals force. The at least two:: stacked carbon nanotube layers have a plurality of micropores between the carbon nanotubes; the two microporous structures are uniformly distributed in the carbon nanotube film structure, and the micropores are straight Control is 1 nm ~ micron. The carbon nanotube layer 9 200929292 comprises an I meter carbon official film or at least two parallel and gaplessly disposed carbon nanotube films. The carbon nanotube film comprises a plurality of end-to-end aligned aligned nano-tubes comprising a plurality of carbon nanotubes of equal length and arranged in parallel with one another. The lengths of the carbon nanotube bundles in the carbon nanotube film are substantially the same 'the carbon nanotube bundles are closely connected by van der Waals force. Referring to FIG. 2, the carbon nanotube film comprises a plurality of carbon nanotube segments, each of the carbon nanotube segments having substantially equal lengths and each of the carbon nanotube segments being composed of a plurality of mutually parallel nanocarbons. The tube bundle is formed, and the carbon nanotube segments are connected to each other by Van der Waals force. The thickness of the nano carbon official film is from 0.5 nm to 1 μm. The carbon nanotubes in the carbon nanotube film are one of a single-walled carbon nanotube, a double-walled carbon nanotube, and a multi-walled carbon nanotube. The length of the carbon nanotubes is 5 〇 micrometers to 5 mm. When the carbon nanotube in the carbon nanotube film is a single-walled carbon nanotube, the diameter of the single-walled carbon nanotube is 〇·5 nm to 5 〇N. When the carbon nanotube in the carbon nanotube film is a double-walled carbon nanotube, the diameter of the double-walled carbon nanotube is 1.0 nm to 5 Å. When the carbon nanotubes in the carbon nanotube film are multi-walled carbon nanotubes, the diameter of the multi-walled carbon nanotubes is from 1.5 nm to 50 nm. The separator 105 is a glass fiber or a polymer film which allows electrolyte ions in the electrolyte solution 106 to circulate to prevent the first electrode 101 and the second electrode 1〇2 from coming into contact. The electrolyte solution 106 is an aqueous solution of cerium oxide, a solution of potassium hydroxide, a solution of sulfuric acid, an aqueous solution of nitric acid, a propylene carbonate of lithium perchlorate, and a solution of propylene carbonate in a tetraethyl saddle of tetrafluoroethylene tetraacetate. , or a mixture of the above 200929292 combination. The outer casing 107 is a glass outer casing or a stainless steel outer casing. The material of the current collector may be graphite, magnet, quartz or the like, and the ceramic body may be a metal substrate, preferably a copper sheet. The shape and size of the current collector are not limited and can be changed according to actual needs. The above-mentioned carbon nanotube film structure itself has strong viscosity, so that the carbon nanotube film structure as an electrode can directly adhere to the surface of the current collector, or pass the carbon nanotube film structure through a viscosity The junction adheres to the surface of the current collector. The first current collector 103 and the second current collector 104 in the ultracapacitor 10 are both an optional structure because the carbon nanotube film structure has good electrical conductivity and self-supporting stability. 'In practical applications, a layer of conductive paste can be directly applied to the surface of the carbon nanotube film structure without the above-mentioned current collector. It is to be understood that the structure of the supercapacitor is not limited, and it may be of a coin type or a winding type. Referring to FIG. 2, an embodiment of the present technical solution provides a method for preparing the above-mentioned super electric grid device, which specifically includes the following steps: Step 1: providing a first current collector 1〇3 and a second current collector (10). The current collector of the embodiment of the present technical solution is preferably a copper sheet having an area substantially the same as that of the carbon nanotube array. Step 2: Prepare at least one carbon nanotube film. The preparation method of the carbon nanotube film comprises the following steps: (1) Providing - a carbon nanotube array is formed on the substrate, preferably, the array is a super-sequential carbon nanotube array. 11 200929292 r ^ In this embodiment, the preparation method of the super-sequential carbon nanotube array adopts chemical vapor deposition method, and the specific steps thereof include: (a) providing a flat substrate, the substrate may be selected from P type or N type stone The base substrate, or the tantalum substrate formed with the oxide layer, is preferably a 4-inch tantalum substrate in this embodiment; (b) a catalyst layer is uniformly formed on the surface of the substrate, and the catalyst layer material may be iron (M), Recording (Ni) or one of the alloys of any combination thereof; (c) decomposing the substrate on which the catalyst layer is formed in the air of 7 〇 (TC~90 CTC, the knife clock 90 is the clock, (d) the treated substrate It is placed in a reaction furnace and heated to 5〇〇〇c~74〇 in a protective gas atmosphere. 〇, then pass through the source gas = about 5 minutes to 30 minutes, and grow to obtain a super-sequential carbon nanotube array. The degree of the super-sequential carbon nanotube array is at least the solid nano-reverses formed by the carbon nanotubes which are parallel to each other and grown perpendicular to the substrate. The super-sequential carbon nanotube array contains substantially no impurities, such as Forming carbon or residual catalyst metal particles, etc. The carbon nanotubes in the carbon nanotube array are in close contact with each other to form an array by van der Waals force 0. The area of the carbon nanotube array is substantially the same as the above-mentioned substrate area. The carbon source gas may be a chemically active hydrocarbon such as acetylene, ethylene or decane. The preferred carbon source gas in this embodiment is acetylene; the shielding gas is nitrogen or an inert gas, and the preferred shielding gas in this embodiment is argon. It can be understood that the carbon nanotube array provided in this embodiment is not limited to the above preparation method, and may also be a graphite electrode constant current arc discharge deposition method, a laser evaporation deposition method, etc. (2) using a stretching tool to pull the above-mentioned nai The carbon nanotube array thus obtains 12 200929292 one carbon nanotube film. In this embodiment, the method for drawing the carbon nanotube array by using a stretching tool to obtain a carbon nanotube film comprises the following steps: (a) Selecting a plurality of carbon nanotube bundle segments of a certain width from the array of carbon nanotubes; (b) stretching at a constant speed along a growth direction substantially perpendicular to the growth of the carbon nanotube array A plurality of carbon nanotube bundle segments obtain a continuous carbon nanotube film, wherein the orientation of the nanotubes in the non-minol blind film is parallel to the stretching direction of the carbon nanotube film. Wherein, the plurality of carbon nanotube bundle segments are gradually separated from the substrate under the tensile force/port stretching direction, and the selected plurality of carbon nanotube bundle segments are respectively separated from the other carbon nanotube bundle segments due to the van der Waals force. The carbon nanotube film is continuously drawn end to end to form a carbon nanotube film. The carbon nanotube film is a multi-necked carbon nanotube film having a constant width formed by aligning a plurality of nematic rings. The aligned carbon nanotube film obtained by direct stretching in the first step has better uniformity, that is, has uniform thickness and uniform electrical conductivity. At the same time, the direct stretching method for obtaining the carbon nanotube film Simple and fast, suitable for industrial applications. Step 1. Laying at least one carbon nanotube film on the surfaces of the first collector 103 and the second collector 104 respectively to form a carbon nanotube film structure. The method of forming at least a carbon nanotube film on the surfaces of the first current collector 103 and the second current collector 1〇4 respectively to form a carbon nanotube film comprises the following steps: providing a substrate At least one nanocarbon 13 200929292. The tube film is laid on the surface of the substrate to remove excess carbon nanotube film outside the substrate; the substrate is removed to form a self-supporting carbon nanotube film structure; the nano carbon A tube film structure is laid on the surface of the current collector. Since the carbon nanotubes in the super-sequential carbon nanotube array provided by the embodiment are very pure, and the specific surface area of the carbon nanotube itself is very large, the carbon nanotube film itself has strong dryness. The carbon nanotube film can be directly adhered to the substrate by its own punctuation. 〇 The above substrate may also adopt a frame structure, and the above-mentioned carbon nanotube film can be directly adhered to the fixed frame structure by its own dryness, so that the periphery of the carbon nanotube film is fixed by the fixed frame structure, the carbon nanotube The middle portion of the film is suspended; the carbon nanotube film adheres to the surface of the frame structure, and the excess portion of the carbon nanotube film outside the frame structure can be scraped off with a knife; the frame is removed, and the self-supporting carbon nanotube film is obtained. Structure; laying the carbon nanotube film structure on the surface of the current collector. In this embodiment, the size of the above substrate or frame structure can be determined according to actual 0 requirements. When the width of the substrate or the frame structure is larger than the width of the above-mentioned carbon nanotube film, at least two carbon nanotube films may be laid in parallel and without gaps or/and overlapping on the substrate or the frame structure, forming a carbon nanotube Film structure. The at least two overlapping carbon nanotubes have a plurality of microporous structures between the carbon nanotubes, and the microporous structure is uniform and regular in the carbon nanotube film structure, wherein the micropore diameter is 1 Nano ~ 〇 · 5 microns. It will be appreciated that at least one carbon nanotube film may also be directly applied to the surface of the current collector. Alternatively, at least two carbon nanotubes may be thin and have no gaps or/and overlaps laid on the surface of the current collector. The at least two 200929292 overlapping carbon nanotube films have a plurality of microporous structures between the carbon nanotubes, and the microporous structure is uniform and regularly distributed in the carbon nanotube film structure, wherein the micropore diameter It is 1 nm ~ 〇. 5 microns. The carbon nanotube film structure has a good (four) property, so that the above-mentioned carbon nanotube film structure can be relatively firmly fixed to the surface of the current collector by its own viscosity. Further, the above-mentioned carbon nanotube film structure can be fixed to the surface of the current collector by a conductive (tetra) agent. * The upper and lower carbon tube film structure can be used directly, or it can be used after organic solvent treatment. The process of treating the nanocarbon=film structure by the solvent of the timing comprises: dropping the organic solvent on the surface of the carbon nanotube film structure through a test tube to infiltrate the entire carbon nanotube film structure, or constructing the entire carbon nanotube film structure Immerse in a container filled with an organic solvent. The organic solvent is a volatile organic solvent such as ethanol, methanol, propane, dichlorobenzene or chloroform, and the embodiment of the present invention uses ethanol. The following: = After the film structure is infiltrated by the organic solvent, under the action of volatile organic: 张力 tension, the parallel carbon nanotubes in the carbon nanotube film will be integrated into the carbon nanotube bundle. Therefore, the composition table = small product ratio, the balance 'and the machine degree and ^ step four · provide a diaphragm 1 〇 5, the first two collectors of the two carbon nanotube film structure is not defective It is desired that the electric power body 104 is slanted on both sides of the diaphragm 1〇5 and placed in a casing 1〇7. ^ Body = 5 The first collector of the carbon nanotube thin crucible structure is placed in the two places, and the separator 105 is provided with a first collector 15 covered with a carbon nanotube film structure. 200929292 103 A separator 105 is disposed between the second collector and the second current collector ι 4 . The embodiment of the present technical solution adopts the first current collector 1〇3 and the second current collector 104 in the non-woven supercapacitor electrode 1〇 as an optional structure' because the carbon nanotube film has good electrical conductivity. And the self-supporting property and stability of the self-supporting structure, in practical application, the layer of conductive adhesive can be directly coated on the surface of the carbon nanotube film structure without the need for the first current collector 103 and the second current collector described above. 1〇4.

❹ 步驟五:提供一電解液溶液1〇6,將該電解液溶液忉6 注入進上述外殼1G7中’封裝制得—超級電容器1〇。 該電解液溶& 106注入進該外殼1〇7巾,上述兩個分 別覆蓋有奈米碳管薄膜結構的第一集電體1〇3和第二集電 體1〇4及隔膜105肖設置在該電解液溶液1〇6巾。整個超 、及電令器1G #封裝過程都在充滿惰性氬氣的手套乾燥箱 請參閲圖4,該圖係本技術方案實施例的超級電容器 在電流為3毫安培時的充放電循環曲線圖。從圖中可以看 出’該充放電曲線具有明顯的近似三角形對稱分佈,在恒 流充放電的條件下’電壓隨時間變化具有明顯的線性關 係。這表明該超級電容器電極反應的可逆性很好。經恒流 放電測試得出該電流強度下該超級電容器的比於 100法/克。 該超級電容n 1G採用了上述的奈米破管薄膜結構作 為電極。該奈米碳管薄膜結構中奈米衫分佈均勻,❹ Step 5: An electrolyte solution 1〇6 is supplied, and the electrolyte solution 忉6 is injected into the above-mentioned outer casing 1G7 to package the supercapacitor 1〇. The electrolyte solution & 106 is injected into the outer casing 1 〇 7 towel, the first two current collectors 1 〇 3 and the second current collector 1 〇 4 and the diaphragm 105 respectively covered with a carbon nanotube film structure Set in the electrolyte solution 1 〇 6 towels. The entire super and electric actuator 1G # packaging process is in a glove drying oven filled with inert argon. Please refer to FIG. 4 , which is a charge and discharge cycle curve of the supercapacitor of the embodiment of the present invention at a current of 3 milliamperes. Figure. It can be seen from the figure that the charge-discharge curve has a distinct approximation of a triangular symmetry, and the voltage has a significant linear relationship with time under constant current charge and discharge conditions. This indicates that the reluctance of the supercapacitor electrode reaction is very good. The constant current discharge test shows that the ratio of the supercapacitor at the current intensity is 100 gram/g. The supercapacitor n 1G employs the above-described nanotube film structure as an electrode. The nano-shirt in the carbon nanotube film structure is evenly distributed.

的奈米碳管之間具有多個微孔結構,其中微孔直徑為U 16 200929292 米〜0.5微米。所述奈米碳管薄瞑結構在作支 ^為超級電容器的 電極時’具有很高的比表面積利用率,且· 〇σ 表價方法簡單, 易於實際的應用。 综上所述,本發明確已符合發明專利之要件,遂依法 提出專利申請。惟,以上所述者僅為本發明之較佳實施例, 自不能以此限制本案之申請專利範圍。舉凡熟悉本案技藝 之人士援依本發明之精神所作之等效修飾或變化,皆應涵 蓋於以下申請專利範圍内。There are a plurality of microporous structures between the carbon nanotubes, wherein the micropore diameter is U 16 200929292 m ~ 0.5 μm. The carbon nanotube thin crucible structure has a high specific surface area utilization when it is used as an electrode of a supercapacitor, and the method of 〇σ is simple and easy to be practically applied. In summary, the present invention has indeed met the requirements of the invention patent, and has filed a patent application according to law. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application in this case. Equivalent modifications or variations made by persons skilled in the art in light of the spirit of the present invention are intended to be included in the scope of the following claims.

17 200929292 【圖式簡單說明】 -圖1係本技術方案實施例的超級電容器的結構示意 圖。 、 圖2係本技術方案實施例獲得的奈米碳管薄膜的掃描 電鏡照片。 圖3係本技術方案實施例的超級電容器的製備方法的 流程示意圖。 圖4係本技術方案實施例的超級電容器的恒流充放電 曲線。 【主要元件符號說明】 超級電容器 10 第一電極 101 第二電極 102 第一集電體 103 第二集電體 104 © 隔膜 105 電解液 106 外殼 107 1817 200929292 [Simple description of the drawings] - Fig. 1 is a schematic structural view of a supercapacitor according to an embodiment of the present technical solution. 2 is a scanning electron micrograph of a carbon nanotube film obtained in an embodiment of the present technical solution. FIG. 3 is a schematic flow chart of a method for preparing a supercapacitor according to an embodiment of the present technical solution. Fig. 4 is a graph showing a constant current charge and discharge curve of a supercapacitor according to an embodiment of the present technical solution. [Description of main component symbols] Supercapacitor 10 First electrode 101 Second electrode 102 First collector 103 Second collector 104 © Diaphragm 105 Electrolyte 106 Housing 107 18

Claims (1)

200929292 申請專利範圍 1. =超級電谷H ’包括:—電解液溶液 ?個:極間隔設置在所述的電解液溶液中;=,; 隔膜,又置在所述的兩個電極 、δ" 間隔設置,其改良在於,㈣二的兩個電極 碳管薄膜結構,該夺乎碳敦電極均包括-奈米 〜 再通不水碳管薄膜結構包括至少一太半端 官層,該奈米碳管層包括多 不/、 Ο Ο 米碳管。 少似b Η方向疋向排列的奈 2·^申請專利範圍第1項所述的超級電容器,其中,所 述的奈米碳管薄膜結構進— 的奈米碳管層。構34纟包括至少兩個重疊設置 如申明專利範圍第2項所述的超級電容器,其中,所 述至夕兩個重疊設置的奈米碳管層中的奈米碳管排列 方向具有一交叉角度α’ 〇γα$9()。。 〇申請專利_第3項所述的超級電容器,其中,所 返至少兩個重疊設置的奈米碳管層中的奈米碳管之間 /、有夕個微孔結構,該微孔的直徑為i奈米〜〇 5微米。 如申》月專利範圍第1項所述的超級電容器,其中,所 述的奈米碳管層包括一奈米破管薄膜或者至少兩個平 行且無間隙鋪設的奈米碳管薄膜。 如申δ月專利範圍第5項所述的超級電容器,其中,所 7述奈米奴管薄膜的厚度為〇·5奈米〜1〇〇微米。 =申睛專利範圍第5項所述的超級電容器,其中,所 述奈米碳管薄膜中的奈米碳管為單壁奈米碳管、雙壁 19 200929292 . 奈米碳管及多壁奈米碳營中的一種。 8. 如:明專利範圍第7項所述的超級電容器,其中,所 述單壁奈^ ^皆的直徑為G·5奈米〜50奈米,所述雙壁 不米碳g的直徑為1〇奈米〜奈米所述多壁奈米碳 管的直徑為1.5奈米〜5〇奈米。 9. 如申請專利範圍第5項所的超級電容器,其中,所 f奈米碳管薄膜包括多個首尾相連且^向排列的奈米 奴管束,該奈米碳管束包括多個長度相等且相互平行 〇 排列的奈米碳管。 ι〇·如申5|專利範圍第i項所述的超級電容器,其甲,所 述的超級電容器具有平板型的結構。 11·如申清專利範圍第i項所述的超級電容器,其中,所 述的超級電容器進-步包括兩個集電體,所述的兩個 電極分別設置在所述兩個集電體的表面,且所述電極 設置在所述集電體和所述隔膜之間。 〇 12·如申請專利範圍第1項所述的超級電容器,其中,所 述的超級電容器包括一外殼,所述的兩個電極、隔膜 和電解液均設置在該外殼内。 ' 20200929292 Patent application scope 1. = Super electric valley H 'includes: - electrolyte solution? One: the pole interval is set in the electrolyte solution; =,; the diaphragm, which is placed on the two electrodes, δ" The spacing arrangement is improved by (4) two electrode carbon tube film structures, wherein the carbon nanotube electrodes comprise - nanometer ~ re-passing carbon nanotube film structure including at least one semi-terminal layer, the nanocarbon The pipe layer includes a plurality of carbon nanotubes. The supercapacitor according to the first aspect of the invention, wherein the carbon nanotube film structure is formed into a carbon nanotube layer. The structure includes: at least two supercapacitors according to claim 2, wherein the carbon nanotubes in the two overlapping carbon nanotube layers have an intersection angle α' 〇γα$9(). . The supercapacitor of claim 3, wherein between the carbon nanotubes in the at least two overlapping carbon nanotube layers, there is a microporous structure, and the diameter of the micropores For i nano ~ 〇 5 microns. The supercapacitor of claim 1, wherein the carbon nanotube layer comprises a nanotube film or at least two parallel and gapless carbon nanotube films. The supercapacitor according to claim 5, wherein the thickness of the nanotube film is 〇·5 nm to 1 μm. The supercapacitor according to the fifth aspect of the invention, wherein the carbon nanotubes in the carbon nanotube film are single-walled carbon nanotubes and double-walled 19 200929292. The carbon nanotubes and the multi-walled naphthalene One of the carbon camps. 8. The supercapacitor according to claim 7, wherein the diameter of the single-walled nanometer is G·5 nm to 50 nm, and the diameter of the double-walled carbon m is The diameter of the multi-walled carbon nanotubes of 1 〇 nanometer ~ nanometer is 1.5 nm ~ 5 〇 nanometer. 9. The supercapacitor of claim 5, wherein the carbon nanotube film comprises a plurality of endo-tubes arranged in an end-to-end orientation, the bundle of carbon nanotubes comprising a plurality of equal lengths and mutual Carbon nanotubes arranged in parallel. The supercapacitor according to the item i of the patent scope, wherein the supercapacitor has a flat type structure. 11. The supercapacitor of claim 1, wherein the supercapacitor further includes two current collectors, and the two electrodes are respectively disposed on the two current collectors. a surface, and the electrode is disposed between the current collector and the separator. The supercapacitor of claim 1, wherein the supercapacitor comprises a casing, and the two electrodes, the separator and the electrolyte are disposed in the casing. ' 20
TW096151263A 2007-12-31 2007-12-31 Super capacitor TWI464762B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW096151263A TWI464762B (en) 2007-12-31 2007-12-31 Super capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW096151263A TWI464762B (en) 2007-12-31 2007-12-31 Super capacitor

Publications (2)

Publication Number Publication Date
TW200929292A true TW200929292A (en) 2009-07-01
TWI464762B TWI464762B (en) 2014-12-11

Family

ID=44864438

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096151263A TWI464762B (en) 2007-12-31 2007-12-31 Super capacitor

Country Status (1)

Country Link
TW (1) TWI464762B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8822059B2 (en) 2011-12-28 2014-09-02 Tsinghua University Lithium ion battery
TWI456823B (en) * 2011-12-28 2014-10-11 Hon Hai Prec Ind Co Ltd Thin film lithium ion battery
US9466826B2 (en) 2011-12-28 2016-10-11 Tsinghua University Method for making lithium ion battery electrode
TWI560732B (en) * 2011-02-04 2016-12-01 Vishay Sprague Inc Hermetically sealed electrolytic capacitor, an implantable device, and a method of manufacturing a capacitor
US9537151B2 (en) 2011-12-28 2017-01-03 Tsinghua University Lithium ion battery electrode
US9774028B2 (en) 2011-12-28 2017-09-26 Tsinghua University Method for making thin film lithium ion battery

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100487069B1 (en) * 2000-04-12 2005-05-03 일진나노텍 주식회사 Supercapacitor using electrode of new material and manufacturing method the same
JP4811712B2 (en) * 2005-11-25 2011-11-09 独立行政法人産業技術総合研究所 Carbon nanotube bulk structure and manufacturing method thereof
CN100500556C (en) * 2005-12-16 2009-06-17 清华大学 Carbon nanotube filament and method for making the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI560732B (en) * 2011-02-04 2016-12-01 Vishay Sprague Inc Hermetically sealed electrolytic capacitor, an implantable device, and a method of manufacturing a capacitor
US8822059B2 (en) 2011-12-28 2014-09-02 Tsinghua University Lithium ion battery
TWI456823B (en) * 2011-12-28 2014-10-11 Hon Hai Prec Ind Co Ltd Thin film lithium ion battery
US9466826B2 (en) 2011-12-28 2016-10-11 Tsinghua University Method for making lithium ion battery electrode
US9537151B2 (en) 2011-12-28 2017-01-03 Tsinghua University Lithium ion battery electrode
US9577265B2 (en) 2011-12-28 2017-02-21 Tsinghua University Thin film lithium ion battery
US9774028B2 (en) 2011-12-28 2017-09-26 Tsinghua University Method for making thin film lithium ion battery

Also Published As

Publication number Publication date
TWI464762B (en) 2014-12-11

Similar Documents

Publication Publication Date Title
CN101471184B (en) Super capacitor
CN101425380B (en) Super capacitor and preparing method therefor
Liu et al. Hierarchical NiCo2S4@ PANI core/shell nanowires grown on carbon fiber with enhanced electrochemical performance for hybrid supercapacitors
CN101425381B (en) Super capacitor and preparing method therefor
Niu et al. A “skeleton/skin” strategy for preparing ultrathin free-standing single-walled carbon nanotube/polyaniline films for high performance supercapacitor electrodes
CN101497438B (en) Carbon nano-tube compound film
JP5363260B2 (en) Carbon nanotube composite material and manufacturing method thereof
JP5313811B2 (en) Method for producing carbon nanotube / polymer composite material
Di et al. Dry‐Processable Carbon Nanotubes for Functional Devices and Composites
JP2010053033A (en) Method for manufacturing carbon nanotube/polymer composite
US20140166496A1 (en) Method for producing shaped graphene sheets
Guo et al. Well‐Defined Fullerene Nanowire Arrays
JP5253943B2 (en) Conductive material and method for producing the same
TW200929292A (en) Super capacitor
CN104726965B (en) A kind of preparation method of flexible high connductivity three-dimensional communication hollow carbon fiber
TWI339465B (en) Electromagnetic shielding layer and method for making the same
JP2019129142A (en) Method for manufacturing battery electrode
CN1789120A (en) Carbon wool ball material and its preparation method and uses
CN103011124B (en) The preparation method of carbon nano-tube compound film
Lee et al. High-performance field emission from a carbonized cork
TWI486971B (en) Superconducting wire
TWI387987B (en) Super capacitor and method for making the same
US9093199B2 (en) Method for making superconducting wire
TWI337172B (en) Method of making high-density carbon nanotube array
TWI363449B (en) Cathode of lithium-ion battery and method for making same