[go: up one dir, main page]

TW579484B - Method of measuring the movement of an input device and device using the method - Google Patents

Method of measuring the movement of an input device and device using the method Download PDF

Info

Publication number
TW579484B
TW579484B TW090127765A TW90127765A TW579484B TW 579484 B TW579484 B TW 579484B TW 090127765 A TW090127765 A TW 090127765A TW 90127765 A TW90127765 A TW 90127765A TW 579484 B TW579484 B TW 579484B
Authority
TW
Taiwan
Prior art keywords
input device
patent application
laser
scope
measurement
Prior art date
Application number
TW090127765A
Other languages
English (en)
Inventor
Martin Dieter Liess
Aldegonda Lucia Weijers
Olaf Thomas Johan An Vermeulen
Original Assignee
Koninkl Philips Electronics Nv
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=8172226&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=TW579484(B) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Koninkl Philips Electronics Nv filed Critical Koninkl Philips Electronics Nv
Application granted granted Critical
Publication of TW579484B publication Critical patent/TW579484B/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/042Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/042Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means
    • G06F3/0421Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means by interrupting or reflecting a light beam, e.g. optical touch-screen
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02092Self-mixing interferometers, i.e. feedback of light from object into laser cavity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P13/00Indicating or recording presence, absence, or direction, of movement
    • G01P13/02Indicating direction only, e.g. by weather vane
    • G01P13/04Indicating positive or negative direction of a linear movement or clockwise or anti-clockwise direction of a rotational movement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/36Devices characterised by the use of optical means, e.g. using infrared, visible, or ultraviolet light
    • G01P3/366Devices characterised by the use of optical means, e.g. using infrared, visible, or ultraviolet light by using diffraction of light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/50Systems of measurement based on relative movement of target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4811Constructional features, e.g. arrangements of optical elements common to transmitter and receiver
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/491Details of non-pulse systems
    • G01S7/4912Receivers
    • G01S7/4916Receivers using self-mixing in the laser cavity
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K11/00Methods or arrangements for graph-reading or for converting the pattern of mechanical parameters, e.g. force or presence, into electrical signal
    • G06K11/06Devices for converting the position of a manually-operated writing or tracing member into an electrical signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating
    • G01S2007/4975Means for monitoring or calibrating of sensor obstruction by, e.g. dirt- or ice-coating, e.g. by reflection measurement on front-screen
    • G01S2007/4977Means for monitoring or calibrating of sensor obstruction by, e.g. dirt- or ice-coating, e.g. by reflection measurement on front-screen including means to prevent or remove the obstruction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • General Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Human Computer Interaction (AREA)
  • Power Engineering (AREA)
  • Artificial Intelligence (AREA)
  • Computer Hardware Design (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Position Input By Displaying (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Indicating Or Recording The Presence, Absence, Or Direction Of Movement (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Controlling Sheets Or Webs (AREA)
  • Lenses (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Image Input (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Description

579484 發明説明 本發明係有關沿著至少一測量軸而測量與彼此有關的一 輸入裝置及一物件移動之方法,該方法包含下列步驟: -使用每個測量軸的一測量雷射光束來照明一物件表面,及 "將物件表面所反射的一選擇部分的測量光束輻射線轉換 成一電信號,該電信號係代表沿著該測量軸的移動。 本發明亦有關具有用以實施該方法的一光學模組的輸入 裝置’及有關於包含此一輸入裝置的設備。 一 此一方法與輸入裝置可從歐洲專利案號EP-A 0 942 285知 道。輸入裝置可以是用在電腦結構的一光學滑鼠,以便在 一電腦顯示器或監視器上移動一游標,例如選取一顯示選 單的功能。此一光學滑鼠可藉由手指在一滑鼠墊片上移動 ’如同傳統機械滑鼠。如EP-A 0 942 285的描述,輸入裝置 亦可以是一 ”反向”的光學滑鼠。然後,輸入裝置可固定, 而且可例如内建在一桌上型、或筆記型、或掌上型電腦的 鍵盤,而且人類手指可於輸入裝置外殼的例如一透明視窗 上移動。在後者的情況中,輸入裝置可能很小,因爲用以 測量手指移動的光學模組能夠以非常小的體積達成。事實 上’輸入裝置可減少到光學測量模組。此開啓輸入裝置的 新應用方法。例如,一輸入功能可内建在一行動電話,當 作一電視機的遙控裝置使用,而可選取選單上的功能、及 存取網際網路網頁、或内建在虛擬繪筆内。 EP-A 0 942 285係揭露光學測量模組的數個具體實施例, 其中内差式或外差式偵測可使用。所有具體實施例包含於 接近模組視窗配置的一繞射格柵。該格柵可將最好於該等 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐)
*裝 訂
579484 A7 _______B7 五、發明説明(4 ) " ' — 爲了要偵測移動方向,亦即偵測物件是否沿著測量軸而 向前或向後移動’該方法的特徵爲代表雷射空腔操作變化 的信號形狀可決定。 此信號是一不對稱信號,而且一向前移動的不對稱是不 同於一向後移動的不對稱。 在環境下,其中它是不容易決定自我混合信號的不對稱 ,最好是使用另一方法。此方法的特徵爲沿著該至少一測 量軸的移動方向是藉著供應具一週期性變化電流的雷射空 腔而決定,並且將第一及第二測量信號彼此相比較,其中 第一及第二測量信號可分別交互在第一半週期及第二半週 期期間產生。 由二極體雷射所發射的輻射線波長會增加,如此,此輻 射線的頻率會減少,且溫度會增加,如此,具有通過二極 體雷射的電流會增加。經由二極體雷射的週期性電流變化 及輻射線從物件重新進入雷射空腔便會造成每半週期許多 輻射線脈衝,如此在測量的信號中造成對應的許多脈衝。 如果輸入裝置與物件沒有相對移動,信號脈衝數量是與每 半週期相同。如果裝置與物件相對彼此移動,在一半週期 的脈衝數量是大於或小於下一半週期的脈衝數量,其是因 移動方向而定。藉著在一半週期期間的測量信號與在下一 半週期期間測量的信號相比較,移動速度與移動方向可決 定。 此方法的進一步特徵爲該等第一及第二測量信號可從彼 此減去。 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 579484 A7 B7 五、發明説明 測量移動的方法最好進一步特徵爲它可細A、η _ u』π由沿著一軸的 物件與輸入裝置的相對彼此單一移動而執彳干_ 4、 1丁 —按一下動作 ,其中該軸係實質垂直於物件表面。 而且,該單一移動會造成由物件表面朝向雷射空腔散佈 及反射的測量光束輻射線的都卜勒變化,批,、,、 制夂,所以它可決定該 移動是否已經由測量該雷射空腔的一相關參數的變化而執 行。在例如一電腦的游標放置之後,在輸入裝置的乂_和厂 移動測量系統控制下的一顯示選單的想要功能上,此功能 可經由在Ζ -方向的該單一移動而激勵。 測量方法的進一步特徵爲它能以平行於物件表面的一第 一方向、及以實質垂直於物件表面的一第二方向之物件與 輸入裝置彼此相對移動而決定一捲軸動作及一按一下動作。 一捲軸動作可了解到是表示一游標在選單上的一向上或 下向移動。此一動作的實施可在一輸入裝置上藉著以一特 定方向將手指移動。隨著沿著平行於物件表面的一第一測 量軸的此方法測量、及實質平行於此表面一第二測量軸而 實施。第一測量可提供有關捲軸動作的資訊,而且第二測 量可提供有關按一下動作的資訊。或者,兩測量軸可在與 典型物件表面有關的相對角上。然後,兩測量軸的信號包 含有關捲軸動作及按一下動作的資訊。特殊捲軸動作資訊 及特殊按一下動作資訊可藉著適當組合兩測量動作的信鏡 而隔離。 雷射空腔的操作變化能以數個方法決定。 測量方法的一第一具體實施例的特徵爲二極體雷射空腔 • 8 - 本纸張尺度適財關家標準(_ Α4規格(21()X297^f-
裝 訂
線 579484 A7 B7 五、發明説明
輸入裝置的一較佳具體實施例的特徵爲測量裝置是用以 測量由雷射所發射之輻射線線的一輻射線彳貞測器。 輻射線偵測器的配置方式可接收一部分測量光束輻射線。 然而,輸入裝置的此具體實施例的最好特徵爲輻射線偵 測器是在相對於測量光束發射端的雷射空腔端上配置。 通常’二極體雷射在他們的後端具有一監視器二極體。 通常,此一監視器二極體可用來穩定在二極體雷射前端所 發射的雷射光束強度。根據本發明,監視器二極體可用來 偵測經由重新進入雷射空腔的測量光束輻射線所產生的雷 射空腔變化。 一輸入裝置,其可用以在平行於物件照明表面的一平面 中測量有關彼此的一物件及裝置的一移動,該輸入裝置的 特徵是它包含至少兩二極體雷射;及至少一偵測器,用以 測量沿著一第一及一第二測量軸的物件與裝置的相對移動 ’其中該等軸是平行於物件的照明表面。 如稍後的說明,利用兩或多個測量光束的此裝置及其他 裝置具有一個別偵測器,其每個可用以測量光束。然而, 如果使用分時,它亦可使用供所有測量光束的一相同偵測 器。 一輸入裝置,其允許決定物件與裝置的一第三相對移動 ’該輸入裝置的特徵是它包含3個二極體雷射及至少一偵測 器,其可沿著一第一、一第二、及一第三測量軸而測量物 件與裝置的一相對移動,第一及第二軸是平行於物件的照 明表面,而且第三軸是實質垂直於此表面。 -10-
本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 579484 A7 B7 五、發明説明(8 ) 輸入裝置的此具體實施例可認爲是沿著第三測量轴的物 件與裝置的單一移動,並且經由一按一下動作可被決定而 將它轉換成一電信號。 允許決定一捲軸動作及一按一下動作的輸入裝置特徵爲 它包含2個二極體雷射及至少一偵測器,用以測量沿著平行 於物件表面的一第一測量軸、及實質垂直於物件表面的一 第二測量軸的物件與裝置的相對移動。 — 第一測量軸可用來決定一捲軸動作,而且第二測量軸可 用來決定一按一下動作。 或者,此輸入裝置的特徵爲它包含2個二極體雷射及至少 一偵測器,用以測量沿著第一及第二測量軸的物件與裝置 的相對移動,該等測量軸是在與典型物件表面有關的相對 角度。 來自兩測量軸的信號包含有關捲軸動作與按一下動作的 資訊,而且藉由適當組合兩測量軸的資訊,特殊捲轴動作 資訊、及特殊按一下動作資訊可隔離。 輸入裝置具有與結構觀點有關的數個具體實施例。一第 一具體實施例的特徵爲光學裝置包含在該至少一雷射及在 一方面影關偵測器、及在另一方面有關一動作平面之間配 置的一透鏡,該至少一雷射是位於與透鏡有關的離心位置。 一動作平面可被了解到是意謂一移動可被測量,亦即移 動發生及測量光束到達的一平面。動作平面可以是裝置外 殼的一視窗平面、或接近此視窗的一平面。透鏡可是一迴 轉的對稱透鏡、或具有另一形狀。由於與透鏡元件有關的 -11 - 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 579484 A7 _____ _B7 _ 五、發明説明(9 ) 雷射離心位置,可確保對應的照明光束能以一銳角而入射 在裝置的視窗上,所以這些光束具有沿著相關測量轴的元 件。對於下列説明而言,術語光學軸可被引用,而且可了 解是意謂著透鏡、或模組的對稱軸,其中該等模是垂直於 才吴組視窗。 如果此具體實施例包含2個二極體雷射,它的特徵爲二極 體雷射配置可被,以致於將他們中心與透鏡的光¥軸連接 的線條是實質與彼此有關的9 0。角。 如果此具體實施例包含3個二極體雷射,它的特徵爲二極 體雷射可被配置’以致於將他們中心與透鏡的光學轴相連 接的線條是實質與彼此有關的120。角。 偵測器的輸出信號可供應給一共信號處理電路,其中該 等偵測器信號之中至少兩者可用於每個測量軸,以決定沿 著相關轴的移動。如此,移動的更正確値可獲得。 在輸入裝置中,類型VCSEL(垂直空腔表面發射雷射)的 一極體雷射可使用。此一雷射是以垂直方向發射輻射線, 而使它適於本裝置。然而,目前此一雷射是相當昂貴的, 它很不適於消費者大眾產品。 對於此理由而言,一輸入裝置的特徵是每個二極體雷射 是一水平發射雷射,而且對於每個二極體雷射而言,該裝 置包含一反射元件,用以將來自相關二極體雷射的光束反 射到一動作平面。 水平發射二極體雷射是最普遍使用的雷射,而且比一 VCSEL更便宜。具有一反射元件的裝置會略增加此裝置的 -12- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐)—""""---------
發明説明 成本。 相當易於製造及低成本的一輸入裝置具體實施例特徵是 i是由下列組成;一底座,其中至少1個二極體雷射與相關 偵測器可安裝;一蓋子元件,其是固定到底座,而且包含 適於蓋子元件的視窗及一透鏡。 此具體實施例只由三個部分組成,而該等部分易於組裝 ,而且沒有對準需求。 " 甚至更容易製造的一輸入裝置具體實施例的特徵是透鏡 可整合在具有一内部表面的蓋子元件,其中該内部表面是 朝向底座彎曲。 此具體實施例只由兩部分組成。 這些具體實施例的進一步特徵是底座、蓋子元件、與透 鏡是由一塑膠材料製成。 此一材料製成的元件會便宜且重量輕,如此,該等元件 適於消費者產品。只有透鏡的材料應是透明,且具有一些 光學品質。 亦即沒有透鏡的另一具體實施例特徵是每個二極體雷射 是耦合到一個別光導體的入口端,其出口端是放置在裝置 的視窗。 在此具體實施例中,一照明光束的輕射線可充份從它的 環境隔離,所以在沿著不同軸移動之間的串音可免除或強 烈減少。 此具體實施例的特徵爲光導體是光纖。 光纖是彈性,且具有一小截面部分,而且在每長度單位 -13- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐)
裝 訂
k 579484 A7 B7 ΐ、發明説明(11 ) : 會呈現小衰減,如此允許從二極體雷射與偵測器的一較大 距離上允許放置裝置的視窗。 使用光纖的具體實施例特徵是它包含3個二極體雷射及3 個光導體,而且在光導體的出口端是以實質12〇。的一互相 角度間隔的圓形而配置。 如申請專利範圍第2 7至3 3項的定義,輸入裝置可使用在 不同應用,例如用於一桌上型電腦的滑鼠、一桌上"'型或膝 上型電腦的鍵盤、不同裝置的遙控單元、行動電話等。 本發明的這些及其他觀點可經由與描述的具體實施例有 關的非限制範例闡明而更顯然,其中: 圖1 a係根據本發明而顯示裝置的一第一具體實施例截面 圖; 圖1 b是此裝置的一上視圖; 圖2係描述輸入裝置的測量方法原理; 圖3是以裝置與物件彼此移動函數而顯示雷射空腔的光學 頻率與增益的變化; 圖4係描述測量此變化的一方法; 圖5係以光學回授的雷射溫度函數而顯示雷射波長的變化; 圖6係顯示一雷射週期性變化驅動電流使用的影響; 圖7係描述如何偵測移動方向; 圖8係顯示具三個測量軸的一輸入裝置圖; 圖9a和9b係顯示輸入裝置的一第二具體實施例; 圖1 0係顯示此裝置的一第三具體實施例; 圖11a和lib係顯示此裝置的一第四具體實施例; -14- 本紙張尺度適用中國國家標準(CNS) A4規格(210X 297公釐)
•裝 訂
579484 A7 B7 _ 五、發明説明(12 ) 圖1 2係顯示具有輸入裝置的一行動電話; 圖1 3係顯示具有輸入裝置的^無線電話; 圖1 4係顯示具有輸入裝置的一電視機; 圖15係顯示具有輸入裝置的一膝上型電腦; 圖1 6係顯示具有輸入裝置的一桌上型電腦; 圖1 7係顯示具有輸入裝置的一繪筆; · 圖1 8係顯示具有輸入裝置的一虛擬繪筆; 圖1 9係顯示具有輸入裝置的一超音波掃描裝置; 圖20和21係顯示用以捲動及按一下的一輸入裝置的第一 具體實施例,及 圖2 2係顯示此一裝置的一第二具體實施例。 圖la是輸入裝置的一截面圖。該裝置包含在下端的一底 座1,該底座是二極體雷射及例如光電二極體的偵測器的一 載體,其中該二極體雷射在此具體實施例是VCSEL類型的 雷射。在圖1 a中,只有1個二極體雷射3及其相關光電二極 體4可看見·,但是如裝置的圖1 b上視圖所示,通常至少一 第二二極體雷射5及相關偵測器6可於底座上提供。二極體 雷射3和5可分別發射雷射、或測量光束丨3和1 7。在它的上 方’裝置具有例如可經由一人類手指移動的跨越一物件i 5 的透明視窗1 2。例如平凸透鏡之透鏡丨〇是配置在二極體雷 射與視窗之間。此透鏡可在或接近透明視窗上聚焦雷射光 束13和17。如果一物件15出現在此位置上,它便可散播光 束1 3。光束1 3的一部分輻射線能以照明光束丨3的方向散佈 ,而且此部分可在二極體雷射3的發射表面上經由透鏡1〇 -15- 本紙張尺度適财國B冢標準(CNS) A4規格(21()χ 297公爱)- 579484
。物件表面是在它本身平面中移動,而且如圖2中箭號16 的表示。因爲都卜勒變化只發生於光束方向的物件移動, 此移動應該是它在此方向中具有元件16,。藉此,它變 成可測量在一 xz平面的移動,亦即,圖2繪出平面的移動 可稱爲X移冑。圖2係顯示物件表面具有與其餘系統有關的 一傾斜位置。實際上,測量光束通常是一傾斜光束,而且 物件表面的移動會在XY -平面發生。γ_方向是垂直於圖2 繪出的平面。此方向的移動可經由一第二測量光束而測量 ,經由一第二二極體雷射發射,而且其散佈光可經由與第 二二極體雷射有關的一第二光電二極體捕捉。一傾斜照明 光束可如圖1所示,藉由離心配置與透鏡i 〇有關的二極體 雷射有而獲得。 訂 藉由一監視器二極體而測量在背雷射面上的輻射線強度 而測量經由物件移動所引起雷射空腔增益變化是最簡單的 ,如此是最吸的方法。傳統上,此二極體可用於保持雷射 輻射線固定強度,但是目前它亦可用於測量物件的移動。 在測量增益變化的另一方法中,如此,利用雷射輻射線 強度的物件移動是與雷射接合的傳導頻帶中的電子數量成 比例。此數目接著是與接盒阻抗成反比。藉由測量此阻抗 ’物件的移動可決定。此測量方法的一具體實施例是在圖4 描述。在此圖中,二極體雷射的主動層是由參考數字35表 示,而且供應此雷射的電流源是以參考數字3 6表示。在二 極體雷射上的電壓是經由一電容器38而供應給電子電路 4 0。正常流過雷射的此電壓是與雷射空腔的電阻、或阻抗 -18 - 本紙張尺度逋用中國國家標準(CNS) A4規格(210 X 297公釐) 579484
成比例。電感37與二極體雷射串聯可在二極體雷射上形成 高信號阻抗。 除了移動量之外’亦即,物件移動的距離寬度可經由計 算與時間有關的測量速度總而測量,而且移動方向必須偵 測。此表不它必須決定物件是否沿著一移動軸順向或逆向 考夕動。和動的方向可藉由決定自我混合效應產生的信號形 狀而侦'測。如圖3的繪圖3 2所示,此信號是一不對·稱信號 。繪圖3 2係表示物件丨5移向雷射的情況。上升傾斜3 2,比 下降傾斜32 ”更陡峭。上述文獻中的描述可在1992年6月20 日’第31 册,編號8,第 34〇1-34〇8 頁名稱”Applie(i 〇ptics’, 中找到’不對稱是物件遠離雷射的相反移動,亦即下降傾 斜比上升傾斜更陡峭。藉由決定自我混合信號的不對稱類 型’物件移動的方向便可確定。在某種情況下,例如,對 於物件的一較小反射係數或在物件與二極體雷射之間的一 車又大距離而言,它會變成不容易決定自我混合信號的形狀 或不對稱。 在決定移動方向的另一較佳方法中,使用可由雷射輻射 線的波長λ是因二極體雷射的溫度及通過的電流而定。例如 ’如果二極體雷射的溫度增加,雷射空腔的長度便會增加 ’而且放大的輻射線波長會增加。圖5的曲線4 5係顯示發 射輻射線波長λ的溫度(Td)關係。在此圖中,水平軸Td與垂 直軸λ是任意單位。 如同圖6所示,如果由繪圖5 0表示的一週期驅·,動電流I d是 供應給二極體雷射,二極體雷射的溫度Td會如繪圖5 2所示 -19- 本紙張尺度適用中國國家標準(CNS) A4规格(210X 297公釐)
裝 訂
k 579484 五、發明説明 週期性上升與下降。此會在雷射空腔中造成-光學駐波, 而且具有一週期性變化頻率,如此_持續變化相位移是盥 物件所反射的輻射線有關,而且會於一段時間延遲重新進 入空腔。在驅動電流的每個半週期中,目前有連續時間片 段,其中二極體雷射增益會較高及較低,其是因在空腔的 波形相位關係,及重新進入空腔的反射輻射線而定。此會 造成如圖6的繪圖5 4所示的發射輻射線的一與時間-有關的 強度變化(I)。此綠圖係表示一靜止、或非移動物件的情況 。在一第一半週期1/2P( a)的脈衝數量是等於在一第二半 週期l/2p(b)的脈衝數量。 一物件移動會引起重新進入雷射空腔的一輻射線都卜勒 變化,亦即’此頻率的增加或減少會因移動的方向而定。 在順向的一方向中的物件移動會使重新進入輻射線的波長 減少,而且一逆向移動會使輻射線的波長增加。雷射空腔 的光波週期頻率調變的效應是都卜勒變化具有與在雷射空 腔的頻率調變相同符號的情況,重新進入空腔的都卜勒變 化輻射線效應是不同於此輻射線具該頻率調變與都卜勒變 化具有相反符號的情況。如果兩頻率變化具有相同符號, 在波形及以低速率重新進入輻射線變化之間的相位差、及 雷射輻射線的結果調變頻率會較低。如果兩頻率·變化具有 相反符號,在波形及以一較快速率的輻射線變化之間的相 位差,及雷射輻射線的結果調變頻率會較高。在驅動雷射 電流的一第一半週期1/2 p (a)期間,產生的雷射輻射線波 長會增加。在一逆向移動物件的情況中,重新進入輻射線 - -20- 本紙張尺度適用中國國家標準(CNS) A4规格(210 X 297公釐) 579484 A7 ____Β7 五、發明説明(18 ) 的波長亦會增加,所以在空腔的波形頻率與重新進入此空 腔的輻射線頻率之間的差會較低。如此,在重新進入輻射 線波長適於產生的輻射線波長期間的時間片段數量會小於 沒有發射雷射輻射線的電調變情況。此表示,如果物件是 逆向移動’在第一半週期的脈衝數量會小於如果沒有應用 調變。在第二半週期l/2p(b),其中雷射溫度與產生的輻 射線波長會減少,重新進入輻射線的波長適於產生輻射線 波長的時間片段數量會增加。因此,對於一逆向移動物件 而言’在第一半週期的脈衝數量會小於第二半週期的脈衝 數量。此是在圖7的緣圖5 8中描述,此纟會圖係顯示如果物 件是以逆向移動,發射的雷射輻射線強度〗b。將此繪圖與 圖6的續圖5 4相比較係顯不在弟一半週期的脈衝數量減少 ,而且在第二半週期的脈衝數量增加。 從上述的推論可清楚看出如果物件是順向移動,其中物 件散佈及重新進入雷射空腔的輻射線波長會由於都卜勒效 應而減少’在一第一半週期l/2p(a)的脈衝數量是大於在 一第二半週期1/2p(b)的脈衝數量。此可藉由比較圖7的繪 圖5 6而確忍’其係表示在一順向移動物件情況所發射的輕 射線強度if。在一電子處理電路中,在第二半週期W2p(b) 期間計數的光電二極體信號脈衝數量可在第一半週期 1 / 2 p ( a)期間計數的脈衝數量減去。如果結果信號是零, 物件是靜止。如果結果信號是正,物件是順向移動,而且 如果此信號是負’物件是逆向移動。脈衝的結果數目是分 別與順向及逆向移動的速度成比例。 -21 - 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) ' ---—
•裝 訂
579484
在一些情況下,例如,如果在雷射與物件之間的光學路 徑長度相當小,而且電調變的頻率與振幅相當小,然而偵 測的移動是相當快速,它便會發生由都卜勒效應所產生的 脈衝數量會高於由電調變所產生的脈衝數量。在此情沉中 ’移動的方向仍然可藉著在一第一半週期期間的脈衝數量 與在一第二半週期期間的脈衝數量相比較而偵測。然而, 速度然後不是與對這兩數量的差成比例。爲了要美定在此 情況的速度,該等兩數目應該平均,兩且一固定値應該從 結果減去。以此方式獲得的數量是速度的一測量。在技藝 中熟諳此技者可容易設計用以實施此計算的一電子電路。 例如矩形的另一形狀的一驅動電流可使用,而不是用於 圖5和6所述具體實施例的三角形驅動電流Id。 如果增變化可藉由測量二極體雷射空腔的阻抗變化而決 定’測量上述物件移動的速度與方向的方法亦可使用。 例如從對應680毫微米的一雷射波長的1〇〇 kHz的一都卜 勒頻率變化的1,5 . 1(Τ 1 6公尺變化波長的觀點,測量方法只 需要一小都卜勒變化。 在一平面中,沿著兩垂直線(X和γ)方向、或測量軸的物 件移動可使用圖1的輸入裝置測量,其裝置包含兩二極體雷 射及在一垂直方向的相關光電二極體。將一第三二極體雷 射及一相關光電二極體加入該裝置允許此裝置亦可測量沿 著一第三Ζ -方向、或測量軸的移動。第三二極體雷射是配 置在透鏡1 0的光學軸,所以第三照明光束是垂直入射在視 窗12、及物件上,而且在其他方向中沒有元件。ζ方向的 -22- 本紙張尺度適用中國國家標準(CNS) Α4規格(210 X 297公釐)
可;二:::號然後可獲得。爲了要增加Χ*γ測量信號的 J t度與精確,三個-知Μ _ u —極體雷射最好以圓形配置,而且以 ”一的:相互角度距離隔開。此結構是在圖8顯示,其中 極體雷射及第三光電:極體是分別參考數字7和8表 不。如果光電二極體4、η _ ^ 6和8的輸出信號、或阻抗測量信 說疋分別以S 4、S 6和S | - 6 b 8表不,沿著X、Υ、和Ζ測量軸的物 件速度Vx、Vy和、可例如依下列計算: -
Vx=2 S4-S6-S8 Vy = V3.(S8-S6) Vz=1/V2.(S4 + S6 + S8) 用以執行此計算的電子電路包含加算及減法元件,而且 相當容易實施。 速度値,及經由與移動時間持續有關的總和,以此方式 獲得的X和Y方向的移動距離是更可靠及正確,因爲他們是 至少兩光電二極體的輸出信號平均的結果。例如略微升高 手指的移動錯誤、或不想要的移動會在光電二極體的輸出 信號上具有一類似效果。當沿著X _和γ測量軸的移動可藉 著從彼此減去輸出信號而決定,在X和γ測量信號上的一不 想要移動的影響可移除。只藉由增加3個光電二極體輸出信 號而獲得的Z-測量信號Vz是表示手指、或另一物件的上/ 下移動。 在Z方向的一人類手指移動及彼此有關的輸入裝置可用來 -23- 本紙張尺度適用中國國家標準(CNS) A4规格(210 X 297公釐)
裝 訂
k 發明説明(21 執行一按一下功能的應用中,它足夠偵測此一移動發生。 物件更換的一正確測量是不需要,所以z ·測量可能相當粗 輪。甚至移動的方向不需要偵測。 任何需求幾乎不必設定成物件的結構或反射係數,其中 物件的移動是與輸入裝置有關。它已説明一張空白紙的相 對移動與裝置可容易測量。 · 從一光學的觀點,光學模組的規模可能非常小。-輸入裝 置的大小主要是由必須合併在裝置的電子數量及藉由容易 大量製造的觀點而決定。在實際的具體實施例中,視窗具 有3公釐到5公釐平方的一大小。因爲在此裝置中所使用的 測量原理,它的元件不需要正確排列,此對於大量製造是 一明顯優點。 在圖1的具體實施例中,透鏡10可由玻璃或一透明塑膠 材料製成,例如複合碳酸鹽(PC)、或複合甲基丙烯酸酯 (PMMA)。此一透鏡可經由舉例環氧基樹脂的一透明接合 層11而固定到基材,以攜帶二極體雷射、光電二極體與處 理電路。對於此具體實施例而言,假設二極體雷射輻射線 是在垂直方向,所以這些雷射可以是VCSEL類型。此一雷 射可經由一電線束縛技術而容易放置在基板上。 具有一水平空腔的較傳統旁發射二極體雷射可使用,因 爲他們認爲較便宜。此一雷射能以垂直方向輻射的此一方 式安裝。例如,雷射可安裝在一小桌上。然而,它亦能以 水平方向發射的此一方式安裝旁發射二極體雷射。圖9a是 具此雷射的輸入裝置的一具體實施例的垂直截面圖,而且 -24- 本紙張尺度適用中國國家標準(CNS) A4規格(210X 297公釐) 579484 A7 B7 五、發明説明(22 ) 圖9 b是此裝置的較低部分的一上視圖。在這些圖中,1是 是來自從電接觸引腳62凸的基板、或外殼板。此基板具有 此熱傳導,而使它的功能如同二極體雷射的一冷卻元件。 在圖1和8顯示的電子電路可安裝在矽或另一材料層60上, 其中該層是形成一電路板。而且,圖1的具體實施例包含此 一層。元件3、5和7是旁發射二極體雷射。對於這些雷射 之中每一者而言,一反射元件64可提供,而能夠以垂直方 向經由透鏡10而將來自二極體雷射的水平發射光束68、70 反射到裝置頂端的視窗1 2。反射元件最好具有一球形,所 以他們亦具有一些光學強度,並且可將入射分開的光束6 8 、70轉換成一不分開、或一對準、或甚至略聚集的光束。 透鏡1 0的光學強度然後可小於在圖1具體實施例中的透鏡 10光學強度。而且,在圖9a和9b的具體實施例中,透鏡 10可以是一玻璃透鏡,但是最好是一塑膠透鏡。一塑膠透 鏡是較便宜,而且較輕於一玻璃透鏡,且非常適合使用在 此應用,因爲沒有嚴格的光學需求在此透鏡設定。最好是 由塑膠製成及具有一透明視窗1 2的一護帽6 6係形成裝置的 外殼與外殼板1。三個、或在只有兩二極體雷射使用的兩個 反射元件可藉由一反射塗層覆蓋的一塑膠環構成。該環可 形成底座1的一整體部分。輸入裝置然後主要是由塑膠材料 組成,而且可只由容易組裝的3個構成元件組成。這些元件 是:基板1 ’其具有反射環;接觸引腳62及二極體雷射與 相關的光電二極體、透鏡1 〇及具有視窗1 2的護帽6 6。 圖1 0係顯示輸入裝置的一較佳具體實施例,其中元件的 -25-
本紙張尺度逋用中國國家標準(CNS) A4規格(210 X 297公釐) 579484 A7 B7 五、發明説明(: 一進一步整合可實施。在此具體實施例中,圖9&具體實施 例的護帽6 6與透鏡1 〇可由單一塑膠元件7 〇取代,而且其較 低部分是朝向基板彎曲。此彎曲表面在照明光束上的折射 效果是與圖9 a的透鏡1 〇相同。圖1 〇具體實施例的較低部分 的一上視圖並未顯示,因爲此部分是與圖9a和9b的部分相 同。在圖1 0顯示的具體實施例只由兩結構部分組成,而且 比圖9 a和9 b顯示的具體實施例甚至更容易組裝。- 在圖8、9a、9b、10、lla和lib顯示的具體實施例中, 該等照明光束並未聚焦在視窗平面。而且,當這些光束從 基板層的不同位置上發射時,照明光束便會在例如視窗平 面的動作平面中的不同位置上形成照明點。照明光束及其 散佈的輻射線足以在空間分開,所以根據本發明,在不同 測量軸之間的_音在輸入裝置是沒有問題。如必要,一剩 餘争音可藉由使用具略微不同波長的二極體雷射而減少。 對於此目的而言,一數毫微米的波長差是足夠的。 免除争音的另一可能性是使用二極體雷射的一控制驅動 ,其使只有一雷射可隨時啓動。電路接著可啓動不同二極 體雷射的一多工驅動電路可構成此一控制驅動。此多工電 路允許經由一偵測器、或光電二極體而監視兩個或三個二 極體雷射,其中該偵測器或光電二極體可配置在二極體雷 射I中每一者,並且使用在一時間共用模式。具有此一驅 動電路的具體實施例的一額外優點是電路所需的空間及裝 置的電功率消耗可減少。 圖11 a和11 b係顯示輸入裝置的一具體實施例,其中照明 -26- A7 B7
579484 五、發明説明(24 光束可藉由光纖而導向視窗。圖u是一垂直截面部部,而 且圖lib是此具體實施例的一上視圖。光纖72、73和74的 輸入端是以-眾所週知的方式而分別光㈣合到二極體雷 射3、5和7。錢的所有輸出端是位於裝置的視窗。光纖 可内建在堅硬材料的-護帽78,例如,環氧基樹脂或另一 透明或非透明材料。這些光纖之中每一者係形成由此光纖 所引導的一輻射線隔離器,兩者可用於來自相關二極體雷 射的照明輻射線及返回此雷射的散佈輻射線。結果,在不 同測量軸之間的串音可能性是非常小,甚至是零。光纖的 其他優點是他們具有彈性,而且可增加設計可能性,而且 他們可在任意距離上傳送輻射線,所以二極體雷射與光電 二極體可配置距離輸入裝置的視窗相當遠。在圖lu和ub 的具體實施例中,二極體雷射與相關的光電二極體配置可 緊密配置。這些元件可如圖1 la所示以一分開間隔7 9配置, 其間隔可以是與護帽相同材料、或另一材料。 其他光導可使用,例如,在透明或非透明材料的一主體 中的通道,以取代光纖。 圖8-lib的具體實施例具有兩個二極體雷射,而不是代替 三個。如果輸入裝置必須只測量X和γ移動及一 Z測量,此 將會是使用的情況,例如,對於一按一下功能是不需要。 其他小雷射裝置可使用,而不是二極體雷射,而且其他小 輻射線敏感裝置可取代光電二極體。 當上述的輸入裝置能更以低成本製造時,它便非常適合 在大量消費者裝置中實施。因爲它的體積非常小且重量輕 -27- 本纸張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐)
裝 訂
A7 B7
579484 五、發明説明(25 ’此裝置可容易整合在既有的裝置,藉此增加這些裝置的 能力,而無需實質增加他們的成本及重量,而且不用改變 他們的原始設計。 圖1 2係顯示新輸入裝置的一第一及重要的應用,即是在 行動、或細胞式、電話裝置8 0。此裝置的面盤具有一按鍵 登錄部分8 2,其包含撥碼盤登綠及其他功能的許多按紐開 關83。一顯示裝置85是配置在部分82上,而且天線^ 是在電話8 0頂端表面上提供。當例如一 ! 〇個按鍵盤的_撥 號時、或另一命令從按鈕開關8 3輸入時,有關輸入命令的 資訊可經由在電話與天線中一未顯示的傳輸電路傳送給一 電話公司的基地台。經由按鈕開關輸入的其他命令可在電 話電路處理,以啓動在電話電路中建立的不同功能,例如 選取一儲存清單的一特定電話號碼、或從標準訊息的一表 格傳送一特定訊息。藉著將一輸入裝置及額外電路提供給 電話裝置而控制在顯示裝置85上的一游標88移動,一些既 有功flb也以較容易的方式執行,而且新功能可建立。只有 視έ在圖12顯示的輸入裝置89可在電話的數個位置上配置 ’例如於圖1 2所示在按紐開關下面,或在任一側面上。輸 入裝置的視窗最好位在該等位置之中的一者,其中手指通 常可放置握住電話裝置。裝置的電路可顯示一功能選單, 而且在裝置8 9輸入視窗上的一手指移動可將游標$ 8移到一 特定功能。將手指以一垂直方向移到視窗可啓動此功能。 當整合在具有例如WAP協定或!模式網際網路協定的一標 準協定的行動電話時,輸入裝置可提供明顯的優點。經由 -28- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐)
裝 訂
579484 A7 1 B7 五、發明説明(26 ) ^---- 此一協定,裝置可當作& , 1下例如網際網路的一全球通訊網路的 、、’;场機使用。s此變得更廣泛使用時,對於新末端使用 者裝置是需要的。第一考慮是具有一訊號轉換盒及行動電 話的電視機。對於新目的而言,這些裝置應該具有非常適 合例如電視機遙控單元或行動電話的一小輸入裝置。本發 明的輸入裝置可完全符合這些需求。 此輸入裝置亦可使用在與行動電話裝置相同目的-的一無 線電話裝置。一無線電話裝置9〇是在圖13顯示。此裝置是 由一基地台9 2組成,該基地台是連接到一電話或有線網路 及行動裝置94 ’而且可使用在小於距離基地台ι〇〇公尺半 徑的區域。裝置94包含一按鍵登錄部分95及一顯示裝置97 。在類似於行動電話裝置所述的方式中,裝置94具有如上 述的一輸入裝置99。而且,在圖13中,只顯示輸入裝置的 視έ。類似行動電話裝置’裝置9 4應該很小且重量輕,而 且在操線電話裝置中的輸入裝置實施可提供與在行動電話 裝置中實施相同的優點,尤其如果無線裝置具有用以存取 網際網路的例如WAP協定或I-模式協定。 在圖14顯示及包含一接收器與顯示裝置1〇丨及一遙控單元 107的一傳統電視機1〇〇可藉著將訊號轉換盒1〇5加入而可達 成適合網際網路通訊。此訊號轉換盒可經由一電話或有線 網路而存取網際網路,並且將從網際網路接收的信號轉換 成可由電視機處理的一信號,爲了要顯示網際網路資訊。 當電視網際網路的一使用者具有網際網路命令的輸入裝置 時,此輸入裝置應該整合在遙控單元。根據本發明,如前 -29- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) y/9484 A7 - -—-______B7 五、發明説明(2^ ) —"^ 一'一— — -- 述的光學輸人裝£1〇9是内建在遙控單元1Q7。只有視窗顯 π的裝置109可在遙控單元傳統按鈕之間配置、或握住遙控 單元的任何人類手指範圍内的任何其他位置。 本發明的輸入裝置亦可使用在電腦結構,以取代傳統手 驅動軌跡球滑鼠、或一滑鼠塾。圖15係顯示已知是筆記型 或膝上型電腦的-可攜式電腦,包含—底座部分112及具一 LCD,·..員7F器116的盍子部分115。底座部分適於不同電腦模 組與鍵盤im此鍵盤中,本發明的—光學輸人裝置ιΐ9 的配置可取代傳統滑鼠墊。輸入裝置可配置在傳統滑鼠墊 、或任何其他容易易接近位置的部分。如果輸入裝置可用 來測量在兩方向—手指㈣,如此只必、須執行傳统滑鼠整 的功能,它需要只包含兩個二極體雷射。一輸入裝置的使 用最好包含3個二極體雷射,如此具有一按一下功能,所以 它亦可取代筆記型電腦的一傳統按一下按鈕。 一手持式、或掌上型電腦是筆記型電腦的較小版本。而 且,根據本發明,此一掌上型電腦具有一光學輸入裝置, 例如以取代觸摸顯示勞幕的一緣筆,該綠筆通常可用來選 取一顯示選單功能。光學輸入裝置可配置在掌上型電腦的 鍵盤,但是亦可配置在蓋子内部。 圖1 6係顯示一桌上型電腦結構12〇,其中光學輸入裝置能 以數個方法應用,以取代傳統軌跡球滑鼠。電腦結構是由 一鍵盤121、一電腦盒122及一監視器123組成。監视器可以 是如圖所示在一支撑124中固定的一平坦LCD監視器、或一 CRT監視森。一光學輸入裝置129最好整合键盤,所以一分 -30- 本紙張尺度適用中國國家標準(CNS) A4規格(210X 297公釐) 開滑鼠126及電腦盒的電纜不再需要。相反地,可藉著具有 光學輸入裝置的一光學滑鼠而取代軌跡球滑鼠。此裝置然 後可反轉;.亦即,裝置的視窗係面對橫越滑鼠移動。輸入 裝置可測量此移動,而不是如先前應用橫越視窗的一人類 手指移動。使用目前可由明顯敏感度的光學輸入裝置達成 。裝置可偵測與一相當平滑表面有關的移動,例如一張空 白紙。 _ 在上述電腦結構中,輸入裝置可配置在顯示部分,而取 代在鍵盤部分,例如在圖1 5的膝上型電腦蓋子丨15、或在 单上型電腦的盍子。除了電腦顯示之外,輸入裝置亦可 結合在顯示器。 光學輸入裝置亦可結合一正常繪筆或一虛擬繪筆,以測 量此一繪筆的移動。在這些應用中,光纖可用來將來自二 極體雷射的輻射線導引到裝置的視窗,所以裝置的主要部 分可遠離筆尖配置。 圖17係顯示具有一筆桿131及一筆尖132的一正常输筆。 輸入裝置的套筒形外殼136是固定在相對於筆尖的筆桿末端 。外殼136是合輸入裝置的二極體雷射、光電二極體、與電 子電路。光纖133、:134可導引來自二極體雷射的輻射線。 例如,這些光纖是筆尖的中途結束,而且形成輸入裝置的 視窗。它亦可在遠離繪筆的一位置上配置二極體雷射及光 電一極體’並且將來自二極體雷射的輻射線傳送給筆尖, 而且可經由光纖而傳回給光電二極體,其一端是固定到筆 尖。當繪筆用以書寫一文字或繪製一圖畫而移動時,移動 -31 - 本紙張尺度適用中國國家標準(CNS) A4規格(210X 297公釐) 579484 A7 ________ B7 "5T發明説明(29 ~" 可被測量,亦即循著輸入裝置,並且轉換成_電信號。此 信號可例如立即經由一電線138或無線而傳送給電腦。電腦 可處理此信號,所以書寫文字或圖形在一些時間之後或立 即可在電腦顯示器上看見,或傳送給另一電腦或檔案。緣 筆亦可具有用以暫時儲存繪筆所產生的文字或圖形的裝置 。通常’緣筆只可水平平面移動,而且輸入裝置需要只包 含兩個二極體雷射及兩個光纖。在環境下,繪筆的-一垂直 移動測量是很有用的。對於此一情況而言,輸入裝置具有 一第三二極體雷射及光纖。 圖18是一虛擬繪筆的垂直截面圖。此一繪筆可橫越無特 色紙張、或可以是根據字母、字、繪圖等的一必要圖案的 移動。此圖案可經由繪筆的輸入裝置而轉換成位置。這些 位置可藉由一電腦而轉換成虛擬書寫及繪圖,並且可立刻 或稍後由此電腦轉換成字母、字或顯示,或傳送給另一電 腦、或網路。在圖1 8顯示的虛擬繪筆具體實施例係包含具 一筆尖142的繪筆外殼141、在下方部分的一基板143、及在 筆尖的一透明視窗144。在繪筆的下方部分可適合二極體雷 射3、4、與相關光電二極體4、6及電子電路。這些元件可 安裝在一層145,其係對應圖9a和10的層60。光纖146、 147是輕合到二極體雷射,以便將雷射輻射線導引到視窗 144。例如塑膠的一固態材料的套子或套筒148、149可固定 這些光纖。 對於圖17的繪筆與圖18的虛擬繪筆而言,二極體雷射與 光電二極體可配置在遠離繪筆的一位置。來自二極體雷射 -32- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 579484 A7 _B7 1、發明説明(3t)~' — 的輻射線可傳送給筆尖’而且經由光纖而傳回給光電二極 體,其一端係固定到筆尖。 本發明的輸入裝置亦可使用在一傳眞及/或印表機裝置., 以偵測紙張滑動量、或測量紙張前進,所以正確與昂貴的 紙張驅動馬達在此裝置不再需要。 此外,此輸入裝置可使用在用來讀取在一紙張上資訊的 一手持式掃描器’爲了要立即或稍後經由一電腦而-將此資 訊再生。此一手持式掃描器具有一裝置,用以測量在紙張 上的掃描器移動,所以資訊的一可靠再生會變成可能。此 測量裝置應該很小且重量輕,而且輸入裝置非常適合此目 的。手持式掃描器本質是已知,而且不需要在此描述。本 發明的手持式掃描器是不同於已知的掃描器,在於它包含 如上述的輸入裝置。 超音波影像、或回聲繪圖是一醫學診斷技術,其中由人 植、⑺構反射的超音波可用來建立一影像。除了它的整個即 時影像可能性之外,它具有非侵入與非離子化的優點,類 似X-光影像與電腦化斷層攝影術(CT)的競爭性技術。該技 術係使用連接到一電腦的一掃描裝置。超音波系統具有相 當小(甚至可攜式)及比例如亦是非侵入磁共震影像系統更 便宜的額外優點。在超音波掃描裝置中,超音波可被產生 ,其波形可傳送給人體。不同種類組織可反射不同超音波 。反射波可在掃描裝置偵測,而且此偵測的結果可傳送給 死腦,如此可被分析及用來建立一顯示影像。此影像是人 體目拜間檢查部位的二維截面。藉由移動在人體上移動的掃 孓紙張尺度適家料(CNS) A4規格(21G X 297公釐「 -33 579484 A7 B7 五、發明説明(31 ; '~〜 描裝置,此身體的其他部位可檢查。超音波掃描裝置不需 要在此詳細描述,因爲它是一眾所週知的裝置。如圖丨9的 圖式,本發明的輸入裝置可結合在超音波掃描器盒,以記 錄它的移動。此圖係顯示具有一電境152將它連接到電腦的 掃描裝置150,其中該電腦未在圖中顯示。當使用時,裝置 的表面154是面對將檢查的身體。參考159係表示只顯示視 窗的輸入裝置,及經由裝置例如沿著想像線條155移動而記 錄。具有一或兩測量軸的此一輸入裝置可提供超音波掃插 器的新可能性,因爲,除了二維超音波影像之外,有關掃 描森移動的資訊可精由電腦獲得及處理,所以比稍後可建 立要被檢查身體的三維影像。或者,掃描裝置具有一第二 輸入裝置159’。因爲輸入裝置的體積小且便宜,所以它可 容易結合在既有的超音波掃描裝置,而且不會增加成本及 重新設計裝置。 例如圖1 2行動電話的輸入裝置可使用在用以捲動選單圖 表的一上下捲動開關。此一輸入裝置亦具有可決定一按一 下的能力,其中該按一下可啓動經由上下開關控制的一游 標所指向的一選單。此一輸入裝置可容易建立非連續的元 件,以允許快速的新發展。 圖2 0係顯示一捲軸及按一下輸入裝置160的一第一具體實 施例。它包含兩個雷射/二極體單元161、162,其每個包含 一個二極體雷射及一光電二極體。而且,個別的二極體雷 射與光電二極體可使用,以取代此單元。在經由單元161和 162所發射的輻射線路徑之中每一者中,一透鏡163和164可 -34- 本紙張尺度適用中國®家標準(CNS) A4規格(210 X 297公爱)
裝 訂
線 579484 A7 B7 五、發明説明(32 ) 分別配置,該透鏡可在一動作平面167中聚焦相關單元16 1 和162的輻射線光束165和166,其中該動作平面可以是一視 窗平面。此視窗172可形成使用裝置中的一部分該裝置外 殼169,例如在圖2 1侧視圖中所示,的一行動電話。雷射/二 極體單元及相關透鏡亦可配置,以致於光束165和166的主 要光線是在與典型視窗172有關的相對角度上,例如分別在 + 45° 與-45° 角。 一 例如一人類手指168的物件可於一捲動及/或按一下動作 的動作平面上移動。如上述,兩動作可使一都卜勒變化藉 由手指將輻射線反射到雷射/二極體單元161和162。這些單 元的偵測器輸出信號可供應給信號處理及雷射驅動電子電 路170。此電路可評估例如控制手指168的移動,並且在它 的輸出171上供應有關這些移動的資訊。雷射/二極體單元 161和162、透鏡165和166、視窗172及電子電路170與軟體 可整合在一模組。此模組可同樣放置在行動電話或在另一 裝置,而且應具有一捲動及按一下功能。它亦可實施具非 連續元件的輸入裝置。尤其一部分信號處理可藉由一微控 制器、或形成一部分行動電話或其他裝置的其他控制裝置 實私’其中该等其他裝置可以是例如一遙控、一無線電話 、或一可攜式電腦。 如前述,一手指或其他物件離開雷射/二極體單元的一移 動可藉由調變雷射電流及計數由偵測器所接收的脈衝而偵 ’貝J。k這些偵測器的輸出信號Signi* sign2,其中該等輸出 #號係分別代表沿著光束165和166的主要光線的物件速度 -35- 本紙張尺纽财S圈冢棵竿(CNS) A4規格297公釐) 579484 A7 B7 五 、發明説明(33 ) ,平行於視窗的速度(vserQll)與垂直於視窗的速度(veliek)便 可依下列計算:
VscroI1=l/2 V2.(Sign1.Sign2)
Vcllck=l/2 V2.(Sign! + Sign2) 圖2 2係顯示一捲軸及按一下輸入裝置180的一第二具體實 施例。此具體實施例是不同於圖2 0和_2 1,在於兩透鏡1 $ 3 和104與視窗172義由單一元件182取代。此元件可將兩光束 165和166聚焦到形成視窗的上表面184。 大體上,如果圖20-22的輸入裝置需只提供一捲動功能 ,只需要1個二極體雷射、透鏡、與偵測器。 -36 -

Claims (1)

  1. 579484 A BCD
    第090127765號專利申請案 中文申凊專利範圍替換本(92年7月) 六、申請專利範圍 !一 ' — -----------------」 1 . 一種用以測量沿著至少一測量軸的且彼此有關的一輸入 裝置及一物件移動之方法,該方法包含下列步驟: -於每個測量軸使用一測量雷射光束照明一物件表面 ,及 -將由該表面所反射的一選擇部分的測量光束輻射線 轉換成一電信號,其中該電信號係代表沿著該測量軸的 移動,其特徵為下:沿著該測量光束反射回並且重新進 入發射該測量光束的雷射空腔之該測量光束輻射線可被 選取;及由於在雷射空腔中該重新進入的輻射線與該光 波的干涉而且代表該移動的所引起之雷射空腔操作變化 係可被測量。 2 ·如申請專利範圍第1項之方法,其特徵為沿著該至少一 測量軸的移動方向可經由決定代表該雷射空腔操作變化 的號形狀而偵測。 3 ·如申請專利範圍第1項之方法,其特徵為沿著該至少一 測量軸的該移動方向可藉著將一週期性變化的電流供應 給該雷射空腔、及將第一及第二測量信號彼此相比較而 決定,其中第一及第二測量信號可分別在交替的第一半 週期及第二半週期期間產生。 4·如申請專利範圍第3項之方法,其特徵為該等第一及第 二測量信號可從彼此減去。 5·如申請專利範圍第丨項之方法,其特徵為藉由沿著一軸 且與物件及輸入裝置彼此有關的單—移動而決定一按一 下動作,其中該軸是實質垂直於該物件表面。 6.如申請專利範圍第卜2、3、4或51頁之方法,其特徵為 本紙張尺度適用中國國家標準(CNS) A4規格(210x 297公釐) A B c D 1Λ 579484 六、申請專利範圍 經由平行於該物件表面的一第一方向與物件與輸入裝置 彼此有關、及以實質垂直於該物件表面的一第二方向的 移動而決定一捲軸動作及一按一下動作。 7 .如申請專利範圍第1、2、3、4或5項之方法,其特徵為 該二極體雷射空腔的阻抗可測量。 8·如申請專利範圍第1、2、3、4或5項之方法,其特徵為 該雷射輻射線強度可測量。 9 · 一種具有一光學模組而可供實施如申請專利範圍第1項 之方法的輸入裝置,該光學模組包含至少一雷射,該雷 射具有下列:一雷射空腔,用以產生一測量光束;光學 裝置’用以在接近物件的一平面中聚集該測量光束;及 轉換裝置,用以將物件所反射的測量光束轉換成一電信 號’其特徵為該轉換裝置是由該雷射空腔與測量裝置的 組合構成,用以測量雷射空腔操作的變化,此係由於反 射的測量輻射線重新進入雷射空腔與此雷射空腔中光波 的干涉’而且是代表該物件及該模組的一相對移動。 1 0 ·如申請專利範圍第9項之輸入裝置,其特徵為該測量裝 置是用以測量該雷射空腔阻抗變化之裝置。 1 1 .如申請專利範圍第9項之輸入裝置,其特徵為該測量裝 置疋用以測量由該雷射所發射輻射線的一輕射線偵測器 〇 1 2 ·如申請專利範圍第1 i項之輸入裝置,其特徵為該輻射線 偵測器是配置在相對於該發射測量光束端的雷射空腔端 〇 1 3 ·如申請專利範圍第9、;[ 〇、n、或1 2項之輸入裝置,其 -2- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐)
    579484 A8 B8 C8 D8 申請專利範圍 特徵為它包含至少2個二極體雷射及至少一偵測器,用 以測量沿著第一及第二測量軸的物件與裝置的一相對移 動’其中該等測量軸是平行於物件的照明表面。 1 4 ·如申請專利範圍第9、1 〇、i i、或丨2項之輸入裝置,其 特徵為它包含3個二極體雷射及至少一偵測器,用以測 量沿著一第一、一第二及一第三測量軸的物件與裝置的 一相對移動,該等第一及第二軸是平行於物件的照明表 面,而且該第三軸是與此表面垂直。 1 5 ·如申請專利範圍第9、1 〇、u、或i 2項之輸入裝置,用 以決定一捲軸動作及一按一下動作,其特徵為它包含2 個二極體雷射及至少一偵測器,用以測量沿著平行於物 件表面的一第一測量軸、及沿著實質垂直於物件表面的 一第二測量軸的物件與裝置的相對移動。 1 6 ·如申請專利範圍第9、i 〇、n、或丨2項之輸入裝置,用 以決定一捲軸動作及一按一下動作,其特徵為它包含2 個二極體雷射及至少一偵測器,用以測量沿著第一及第 二測量軸的物件與裝置的相對移動,其中該等測量軸是 在與典型物件表面有關的相反角度上。 1 7 ·如申請專利範圍第9、1 0、1 1或1 2項之輸入裝置,其特 徵為該光學裝置包含在該至少一雷射及在一方面的相關 偵測器、及在另一方面的一動作平面之間配置的一透鏡 ,該至少一雷射是位於與透鏡有關的偏離位置。 1 8 ·如申請專利範圍第1 7項之輸入裝置,其包含2個二極體 雷射,其特徵為配置該等二極體雷射,以致於將他們中 心與透鏡光學軸相連接的線條是彼此實質成9 0。角。 本紙張尺度適用中國國家標準(CNS) A4規格(21〇x 297公爱) 579484 A8 B8 C8 D8
    六、申請專利範圍 1 9 ·如申請專利範圍第1 7項之輸入裝置,其包含3個二極體 雷射’其特徵為配置該等二極體雷射,以致於將他們中 心與透鏡光學軸相連接的線條是彼此實質成丨2〇。角。 2 0 ·如申請專利範圍第9、1 0、1 1或1 2項之輸入裝置,其特 徵為每個二極體雷射是一水平發射雷射,而且對於每個 二極體雷射而T,該裝置包含一反射元件,用以將來自 相關一極體雷射的光束反射到一動作平面。 21·如申請專利範圍第9、10、11或12項之輸入裝置,其特 徵為它是由一底座組成,其中安裝至少1個二極體雷射 與相關偵測器,一蓋子元件是固定於該底座,而且包含 適合該蓋子元件的一視窗及一透鏡。 22·如申請專利範圍第21項之輸入裝置,其特徵為該透鏡是 整合在具有一内部表面的蓋子元件,其中該内部表面是 朝向該底座彎曲。 2 3 .如申請專利範圍第2 1項之輸入裝置,其特徵該底座、該 蓋子元件、及該透鏡是由一塑膠材料製成。 2 4 ·如申請專利範圍第9、1 〇、1 1或1 2項之輸入裝置,其特 徵為每個二極體雷射是搞合到一個別光導體的入口端, 其出口端是位於該裝置的視窗。 25·如申請專利範圍第24項之輸入裝置,其特徵為該等光導 體是一光纖。 26·如申請專利範圍第24項之輸入裝置,其特徵為它包含3 個二極體雷射與3個光導體,且該等光導體的出口端是 以實質120。的一互相角間隔而以圓形配置。 2 7· 種用於桌上型電腦之滑鼠’其包含如申請專利範圍第 -4- 本紙中國國家標準(CNS) A4規格(210 χ 297公爱)
    579484 六、申請專利範圍 9、10、11或12項之輸入裝置。 28. —種用於桌上型電腦之鍵盤,其中如申請專利範圍第9 、10、11或12項之輸入裝置係被整合於該鍵盤中。 2 9 · —種膝上型電腦,其中如申請專利範圍第9、i i i戋 1 2項之輸入裝置係被整合於該膝上型電腦中。 3 0 · —種顯示器,其中如申請專利範圍第9、1 〇、丨丨或丨2項 之輸入裝置係被整合於該顯示器中。 3 1· —種超音波診斷裝置,其中至少一個如申請專利範圍第 9、10、11或12項之輸入裝置係被整合於該超音波診斷 裝置中。 ^ 3 2 · —種手持式掃描器裝置,其中至少一個如申請專利範圍 第9、10、11或12項之輸入裝置係被整合於該手持式掃 描器裝置中。 3 3 · —種遙控單元,其中至少一個如申請專利範圍第9、丄〇 、11或12項之輸入裝置係被整合於該遙控單元中。 本紙張尺度適用中國國家標準(CNS) A4規格(210X 297公釐)
TW090127765A 2000-11-06 2001-11-08 Method of measuring the movement of an input device and device using the method TW579484B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP00203875 2000-11-06

Publications (1)

Publication Number Publication Date
TW579484B true TW579484B (en) 2004-03-11

Family

ID=8172226

Family Applications (2)

Application Number Title Priority Date Filing Date
TW090127765A TW579484B (en) 2000-11-06 2001-11-08 Method of measuring the movement of an input device and device using the method
TW090131659A TWI232300B (en) 2000-11-06 2001-12-20 Method of measuring the relative movement of a sheet sensor and a material sheet and an optical sheet sensor for performing the method

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW090131659A TWI232300B (en) 2000-11-06 2001-12-20 Method of measuring the relative movement of a sheet sensor and a material sheet and an optical sheet sensor for performing the method

Country Status (9)

Country Link
US (3) US6759671B2 (zh)
EP (3) EP1334463B1 (zh)
JP (3) JP4087247B2 (zh)
KR (2) KR100813428B1 (zh)
CN (3) CN1227617C (zh)
AT (3) ATE463004T1 (zh)
DE (3) DE60141704D1 (zh)
TW (2) TW579484B (zh)
WO (3) WO2002037410A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI402560B (zh) * 2007-05-08 2013-07-21 Japan Display West Inc 顯示裝置及具備該顯示裝置之電子機器
TWI506532B (zh) * 2009-05-27 2015-11-01 Hewlett Packard Development Co 用以控制資訊顯示的方法與系統

Families Citing this family (328)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9513744B2 (en) * 1994-08-15 2016-12-06 Apple Inc. Control systems employing novel physical controls and touch screens
US20090322499A1 (en) 1995-06-29 2009-12-31 Pryor Timothy R Programmable tactile touch screen displays and man-machine interfaces for improved vehicle instrumentation and telematics
US8228305B2 (en) 1995-06-29 2012-07-24 Apple Inc. Method for providing human input to a computer
US7808479B1 (en) * 2003-09-02 2010-10-05 Apple Inc. Ambidextrous mouse
US8482535B2 (en) * 1999-11-08 2013-07-09 Apple Inc. Programmable tactile touch screen displays and man-machine interfaces for improved vehicle instrumentation and telematics
US8576199B1 (en) 2000-02-22 2013-11-05 Apple Inc. Computer control systems
GB2361327A (en) * 2000-04-11 2001-10-17 Mitel Corp Automatically executing instruction sets in response to network error logs
US7245291B2 (en) * 2000-07-11 2007-07-17 Imran Sharif System and method for internet appliance data entry and navigation
US20080024463A1 (en) * 2001-02-22 2008-01-31 Timothy Pryor Reconfigurable tactile control display applications
US20080088587A1 (en) * 2001-02-22 2008-04-17 Timothy Pryor Compact rtd instrument panels and computer interfaces
US7024662B2 (en) * 2001-03-14 2006-04-04 Microsoft Corporation Executing dynamically assigned functions while providing services
FI117488B (fi) * 2001-05-16 2006-10-31 Myorigo Sarl Informaation selaus näytöllä
CN100511115C (zh) * 2002-03-13 2009-07-08 平蛙实验室股份公司 触摸板以及与触摸板一起使用的触笔和操作触摸板的方法
US20030184520A1 (en) * 2002-03-28 2003-10-02 Patrick Wei Mouse with optical buttons
JP4589007B2 (ja) 2002-04-12 2010-12-01 ヘンリー ケイ. オバーマイヤー, 多軸ジョイスティックおよびそのためのトランスデューサー手段
KR20050000549A (ko) * 2002-05-17 2005-01-05 코닌클리케 필립스 일렉트로닉스 엔.브이. 광 입력 디바이스와 공통 복사선 광원을 가지는 적어도하나의 다른 광 디바이스를 포함하는 장치
US7168047B1 (en) * 2002-05-28 2007-01-23 Apple Computer, Inc. Mouse having a button-less panning and scrolling switch
US7202942B2 (en) * 2003-05-28 2007-04-10 Doppler, Ltd. System and method for measuring velocity using frequency modulation of laser output
JP2006513399A (ja) * 2002-05-29 2006-04-20 ケント・エル・デインズ レーザ出力の周波数変調を用いて速度を測定するためのシステム及び方法
TWI313835B (en) * 2002-06-04 2009-08-21 Koninkl Philips Electronics Nv Method of measuring the movement of an object relative to a user's input device and related input device,mobile phone apparatus, cordless phone apparatus, laptor computer, mouse and remote control
US7339683B2 (en) 2002-06-04 2008-03-04 Koninklijke Philips Electronics, N.V. Method of measuring the movement of an input device
US7656393B2 (en) 2005-03-04 2010-02-02 Apple Inc. Electronic device having display and surrounding touch sensitive bezel for user interface and control
US11275405B2 (en) 2005-03-04 2022-03-15 Apple Inc. Multi-functional hand-held device
JP4152951B2 (ja) * 2002-08-29 2008-09-17 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 光キーボード及び光入力装置を備えた装置
US7358963B2 (en) * 2002-09-09 2008-04-15 Apple Inc. Mouse having an optically-based scrolling feature
US6950091B2 (en) * 2002-09-12 2005-09-27 Opti-Storm, Llc Computer input module using light (infrared or laser) switches
JP4100575B2 (ja) * 2002-10-10 2008-06-11 ワーウー テクノロジー インコーポレイテッド ペン型光マウス
EP1593113A4 (en) * 2002-12-20 2011-03-30 Itac Systems Inc CURSOR CONTROL
US7102617B2 (en) * 2002-12-30 2006-09-05 Motorola, Inc. Compact optical pointing apparatus and method
DE602004020055D1 (de) * 2003-01-28 2009-04-30 Koninkl Philips Electronics Nv Optoelektronische eingabeeinrichtung, verfahren zur herstellung einer solchen einrichtung und verfahren zur messung der bewegung eines objekts mit hilfe einer solchen einrichtung
WO2004068166A1 (de) * 2003-01-31 2004-08-12 Osram Opto Semiconductors Gmbh Optoelektronisches sensormodul
DE10319977A1 (de) * 2003-01-31 2004-08-19 Osram Opto Semiconductors Gmbh Optoelektronisches Sensormodul
WO2004081502A2 (en) * 2003-03-12 2004-09-23 O-Pen Aps A system and a method of determining the position of a radiation emitting element
US7046231B1 (en) * 2003-04-01 2006-05-16 Eric Ni Optical mouse with stationary sensors
KR100465969B1 (ko) * 2003-04-11 2005-01-13 (주)모비솔 손가락 표면을 이용한 소형 포인팅 장치
WO2004090709A1 (en) * 2003-04-11 2004-10-21 Mobisol Inc. Pointing device
US7321359B2 (en) * 2003-07-30 2008-01-22 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Method and device for optical navigation
US20040227954A1 (en) * 2003-05-16 2004-11-18 Tong Xie Interferometer based navigation device
US7313255B2 (en) * 2003-05-19 2007-12-25 Avago Technologies Ecbu Ip Pte Ltd System and method for optically detecting a click event
WO2004107156A2 (en) * 2003-05-27 2004-12-09 Koninklijke Philips Electronics N.V. Diagnostic imaging system control with multiple control functions
WO2004107147A2 (en) * 2003-06-02 2004-12-09 Koninklijke Philips Electronics N.V. Opto-electronic input device, method of manufacturing such a device and method of measuring the movement of an object by means of such a device
US6934037B2 (en) * 2003-10-06 2005-08-23 Agilent Technologies, Inc. System and method for optical navigation using a projected fringe technique
US7859517B2 (en) * 2003-07-31 2010-12-28 Kye Systems Corporation Computer input device for automatically scrolling
US8217896B2 (en) * 2003-07-31 2012-07-10 Kye Systems Corporation Computer input device for automatically scrolling
US7227531B2 (en) * 2003-08-15 2007-06-05 Microsoft Corporation Data input device for tracking and detecting lift-off from a tracking surface by a reflected laser speckle pattern
US7706581B2 (en) 2003-09-11 2010-04-27 Nxp B.V. Fingerprint detection using sweep-type imager with optoelectronic speed sensor
EP1665024B1 (en) 2003-09-12 2011-06-29 FlatFrog Laboratories AB A system and method of determining a position of a radiation scattering/reflecting element
US7442914B2 (en) * 2003-09-12 2008-10-28 Flatfrog Laboratories Ab System and method of determining a position of a radiation emitting element
US7289104B2 (en) * 2003-11-28 2007-10-30 Microsoft Corporation Optical projection system for computer input devices
JP4142592B2 (ja) * 2004-01-07 2008-09-03 シャープ株式会社 光学式移動情報検出装置およびそれを備えた電子機器
JP2007518182A (ja) * 2004-01-15 2007-07-05 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ バーサタイル光学マウス
US20050156874A1 (en) * 2004-01-21 2005-07-21 Microsoft Corporation Data input device and method for detecting life-off from a tracking surface by laser doppler self-mixing effects
US7324086B2 (en) * 2004-01-21 2008-01-29 Microsoft Corporation Data input device and method for detecting lift-off from a tracking surface by laser doppler self-mixing effects
EP1716476B1 (en) * 2004-02-09 2015-05-20 Koninklijke Philips N.V. Optical input device based on doppler shift and laser self-mixing
FI20045078L (fi) * 2004-03-16 2005-09-17 Myorigo Oy Laajakulmaoptiikalla ja säteilysensorilla varustettu mobiililaite
EP1577742A1 (en) * 2004-03-18 2005-09-21 STMicroelectronics Limited Improved optical pointing device
US7242466B2 (en) * 2004-03-31 2007-07-10 Microsoft Corporation Remote pointing system, device, and methods for identifying absolute position and relative movement on an encoded surface by remote optical method
ATE516530T1 (de) * 2004-04-29 2011-07-15 Koninkl Philips Electronics Nv Optische eingabeeinrichtung und verfahren zur messung der relativbewegung eines objekts und einer optischen eingabeeinrichtung
KR20070011396A (ko) * 2004-04-29 2007-01-24 코닌클리케 필립스 일렉트로닉스 엔.브이. 광 입력 및/또는 제어 디바이스
CN1985235B (zh) * 2004-04-29 2010-09-29 皇家飞利浦电子股份有限公司 相对运动传感器
KR101123182B1 (ko) 2004-04-29 2012-03-19 코닌클리케 필립스 일렉트로닉스 엔.브이. 광 입력 디바이스 및 물체와 광 입력 디바이스의 상대 움직임을 측정하는 방법
CN1950027B (zh) 2004-04-29 2010-05-26 皇家飞利浦电子股份有限公司 用于检测血流的设备和方法
US7292232B2 (en) * 2004-04-30 2007-11-06 Microsoft Corporation Data input devices and methods for detecting movement of a tracking surface by a laser speckle pattern
US7773070B2 (en) 2004-05-21 2010-08-10 Cypress Semiconductor Corporation Optical positioning device using telecentric imaging
US7742515B2 (en) 2004-06-25 2010-06-22 Finisar Corporation Vertical cavity surface emitting laser optimized for optical sensitivity
US7746911B2 (en) 2004-06-25 2010-06-29 Finisar Corporation Geometric optimizations for reducing spontaneous emissions in photodiodes
US7184455B2 (en) 2004-06-25 2007-02-27 Finisar Corporation Mirrors for reducing the effects of spontaneous emissions in photodiodes
US7801199B2 (en) 2004-06-25 2010-09-21 Finisar Corporation Vertical cavity surface emitting laser with photodiode having reduced spontaneous emissions
US7366217B2 (en) 2004-06-25 2008-04-29 Finisar Corporation Optimizing mirror reflectivity for reducing spontaneous emissions in photodiodes
US7403553B2 (en) 2004-06-25 2008-07-22 Finisar Corporation Absorbing layers for reduced spontaneous emission effects in an integrated photodiode
US7418021B2 (en) 2004-06-25 2008-08-26 Finisar Corporation Optical apertures for reducing spontaneous emissions in photodiodes
US7359419B2 (en) * 2004-06-25 2008-04-15 Finisar Corporation Vertical cavity surface emitting laser optimized for thermal sensitivity
US7184454B2 (en) 2004-06-25 2007-02-27 Finisar Corporation Light emitting device with an integrated monitor photodiode
US20100231506A1 (en) * 2004-09-07 2010-09-16 Timothy Pryor Control of appliances, kitchen and home
US8870106B2 (en) * 2004-09-10 2014-10-28 Fellowes, Inc. Shredder with thickness detector
US7954737B2 (en) 2007-10-04 2011-06-07 Fellowes, Inc. Shredder thickness with anti-jitter feature
US7631822B2 (en) * 2004-09-10 2009-12-15 Fellowes Inc. Shredder with thickness detector
WO2006029455A1 (en) * 2004-09-14 2006-03-23 Smart Av Pty Ltd Touch sensor with transparent rod
US7126586B2 (en) * 2004-09-17 2006-10-24 Microsoft Corporation Data input devices and methods for detecting movement of a tracking surface by detecting laser doppler self-mixing effects of a frequency modulated laser light beam
DE102004047679B4 (de) * 2004-09-30 2017-05-04 Osram Opto Semiconductors Gmbh Optisches Sensormodul
US7528824B2 (en) * 2004-09-30 2009-05-05 Microsoft Corporation Keyboard or other input device using ranging for detection of control piece movement
TWI252421B (en) * 2004-11-10 2006-04-01 Darfon Electronics Corp Optical pointing sensor and cursor control method thereof
US8981876B2 (en) 2004-11-15 2015-03-17 Avago Technologies General Ip (Singapore) Pte. Ltd. Piezoelectric resonator structures and electrical filters having frame elements
US7791434B2 (en) * 2004-12-22 2010-09-07 Avago Technologies Wireless Ip (Singapore) Pte. Ltd. Acoustic resonator performance enhancement using selective metal etch and having a trench in the piezoelectric
CN100394367C (zh) * 2004-12-29 2008-06-11 达方电子股份有限公司 具有光学式位移传感器的电子装置及其光标控制方法
US7277463B2 (en) 2004-12-30 2007-10-02 Finisar Corporation Integrated light emitting device and photodiode with ohmic contact
TWI263035B (en) * 2005-01-18 2006-10-01 Darfon Electronics Corp Optical movement sensing module and its optical movement sensor
KR100615554B1 (ko) * 2005-01-25 2006-08-25 한국정보통신대학교 산학협력단 초소형 정보기기용 촉각형 정보 입력 시스템 및 장치
US20090297062A1 (en) * 2005-03-04 2009-12-03 Molne Anders L Mobile device with wide-angle optics and a radiation sensor
US20090305727A1 (en) * 2005-03-04 2009-12-10 Heikki Pylkko Mobile device with wide range-angle optics and a radiation sensor
US7244925B2 (en) * 2005-03-21 2007-07-17 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd Compact and low profile optical navigation device
US20060213997A1 (en) * 2005-03-23 2006-09-28 Microsoft Corporation Method and apparatus for a cursor control device barcode reader
JP2008534978A (ja) * 2005-04-07 2008-08-28 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 複数のレーザを有する相対的動きセンサ
US7460578B2 (en) * 2005-04-11 2008-12-02 Finisar Corporation On-chip lenses for diverting vertical cavity surface emitting laser beams
US7710397B2 (en) * 2005-06-03 2010-05-04 Apple Inc. Mouse with improved input mechanisms using touch sensors
US20080208022A1 (en) * 2005-06-07 2008-08-28 Koninklijke Philips Electronics, N.V. Laser Optical Feedback Tomography Sensor and Method
US7268705B2 (en) * 2005-06-17 2007-09-11 Microsoft Corporation Input detection based on speckle-modulated laser self-mixing
US20070002020A1 (en) * 2005-06-29 2007-01-04 Microsoft Corporation Optical mouse
US7557795B2 (en) 2005-06-30 2009-07-07 Microsoft Corporation Input device using laser self-mixing velocimeter
US7898524B2 (en) * 2005-06-30 2011-03-01 Logitech Europe S.A. Optical displacement detection over varied surfaces
US8672247B2 (en) 2005-07-11 2014-03-18 Fellowes, Inc. Shredder with thickness detector
US7399954B2 (en) * 2005-08-16 2008-07-15 Avago Technologies Ecbu Ip Pte Ltd System and method for an optical navigation device configured to generate navigation information through an optically transparent layer and to have skating functionality
US7889353B2 (en) * 2005-08-30 2011-02-15 Koninklijke Philips Electronics N.V. Method of measuring relative movement of an object and an optical input device over a range of speeds
JP5411499B2 (ja) * 2005-08-30 2014-02-12 コーニンクレッカ フィリップス エヌ ヴェ 単一の自己混合レーザを用いて対象と光入力装置の二次元での相対移動を測定する方法
US20070057929A1 (en) * 2005-09-13 2007-03-15 Tong Xie Navigation device with a contoured region that provides tactile feedback
US7889171B2 (en) * 2005-10-03 2011-02-15 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Chirped grating finger navigation
CN100594472C (zh) * 2005-10-12 2010-03-17 达方电子股份有限公司 测量物体的位移的装置及方法
US7283214B2 (en) * 2005-10-14 2007-10-16 Microsoft Corporation Self-mixing laser range sensor
US20070085832A1 (en) * 2005-10-17 2007-04-19 Ertel John P Reducing dust contamination in optical mice
US7543750B2 (en) * 2005-11-08 2009-06-09 Microsoft Corporation Laser velocimetric image scanning
US7654459B2 (en) * 2005-11-14 2010-02-02 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Method of capturing user control inputs
US8917235B2 (en) * 2005-11-14 2014-12-23 Avago Technologies General Ip (Singapore) Pte. Ltd. User control input device
US20070109267A1 (en) * 2005-11-14 2007-05-17 Microsoft Corporation Speckle-based two-dimensional motion tracking
US7505033B2 (en) 2005-11-14 2009-03-17 Microsoft Corporation Speckle-based two-dimensional motion tracking
TWI401460B (zh) * 2005-12-20 2013-07-11 Koninkl Philips Electronics Nv 用以測量相對移動之裝置及方法
US7737948B2 (en) * 2005-12-20 2010-06-15 Cypress Semiconductor Corporation Speckle navigation system
TW200724925A (en) * 2005-12-29 2007-07-01 Benq Corp Sensing method and system, and electronic apparatus using the same
US8077147B2 (en) * 2005-12-30 2011-12-13 Apple Inc. Mouse with optical sensing surface
EP1811073A2 (de) * 2006-01-18 2007-07-25 BERNINA International AG Nähmaschine und Verfahren zum Erfassen von Bewegungen bei Nähmaschinen
DE102006006302B4 (de) * 2006-02-10 2010-09-30 Technische Universität Bergakademie Freiberg Druckmesseinrichtung und Verfahren zur Druckmessung
US7557338B2 (en) * 2006-03-14 2009-07-07 Avago Technologies General Ip (Singapore) Pte. Ltd. Electronic device with integrated optical navigation module and microlens array therefore
KR100808990B1 (ko) * 2006-04-27 2008-03-04 삼성전자주식회사 포인팅 디바이스를 이용하여 메뉴를 선택하는 장치 및 그방법
JP4899617B2 (ja) * 2006-04-28 2012-03-21 オムロン株式会社 光伝送システム、光伝送モジュール、電子機器
US9854975B2 (en) * 2006-06-12 2018-01-02 Koninklijke Philips N.V. Skin monitoring device, method of monitoring the skin, monitoring device, method of irradiating the skin, and use of an OLED
US8743060B2 (en) * 2006-07-06 2014-06-03 Apple Inc. Mutual capacitance touch sensing device
US9360967B2 (en) 2006-07-06 2016-06-07 Apple Inc. Mutual capacitance touch sensing device
US7408718B2 (en) * 2006-09-07 2008-08-05 Avago Technologies General Pte Ltd Lens array imaging with cross-talk inhibiting optical stop structure
EP2074495B1 (en) * 2006-10-03 2015-08-05 Koninklijke Philips N.V. Laser controller
US20080094608A1 (en) * 2006-10-23 2008-04-24 The Regents Of The University Of California Laser velocimetry system
GB2443662A (en) * 2006-11-09 2008-05-14 Firecomms Ltd Laser motion detector
KR20080044017A (ko) * 2006-11-15 2008-05-20 삼성전자주식회사 터치 스크린
CN101535762A (zh) * 2006-11-17 2009-09-16 皇家飞利浦电子股份有限公司 无外部分束镜的自混合光学相干检测器
GB0625387D0 (en) * 2006-12-21 2007-01-31 Renishaw Plc Object detector and method
US8994644B2 (en) 2007-01-26 2015-03-31 Apple Inc. Viewing images with tilt control on a hand-held device
CN101652797B (zh) * 2007-04-04 2013-04-03 索尼株式会社 生物学验证系统
WO2008134653A1 (en) * 2007-04-27 2008-11-06 Swift Distribution, Inc. Percussion instrument support apparatus
US8674971B2 (en) * 2007-05-08 2014-03-18 Japan Display West Inc. Display device and electronic apparatus including display device
US20080284726A1 (en) * 2007-05-17 2008-11-20 Marc Boillot System and Method for Sensory Based Media Control
WO2009001283A2 (en) * 2007-06-27 2008-12-31 Koninklijke Philips Electronics N.V. Optical sensor module and its manufacture
GB2451513B (en) 2007-08-02 2012-04-18 Acco Uk Ltd A shredding machine
JP2010536455A (ja) * 2007-08-20 2010-12-02 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 体パラメータを測定する方法
WO2009027898A1 (en) * 2007-08-24 2009-03-05 Koninklijke Philips Electronics N.V. Method and apparatuses for measuring skin properties
US8085244B2 (en) * 2007-10-22 2011-12-27 Dell Products L.P. Method and apparatus for displaying multiple images on individual keys of a keyboard
US20090135140A1 (en) * 2007-11-27 2009-05-28 Logitech Europe S.A. System and method for accurate lift-detection of an input device
EP2068212A1 (fr) 2007-12-06 2009-06-10 The Swatch Group Research and Development Ltd. Objet portable tel qu'une pièce d'horlogerie comprenant des moyens d'enclenchement d'une fonction de commande électronique
EP2218152B1 (en) 2007-12-11 2011-05-18 Koninklijke Philips Electronics N.V. Semiconductor laser with integrated phototransistor
JP4374049B2 (ja) * 2007-12-27 2009-12-02 株式会社東芝 電子機器
WO2009090593A1 (en) 2008-01-16 2009-07-23 Philips Intellectual Property & Standards Gmbh Laser sensor system based on self-mixing interference
CN101984767B (zh) * 2008-01-21 2014-01-29 普莱姆森斯有限公司 用于使零级减少的光学设计
US8384997B2 (en) 2008-01-21 2013-02-26 Primesense Ltd Optical pattern projection
CN101493738B (zh) * 2008-01-25 2011-01-12 原相科技股份有限公司 侦测使用者的按压动作的方法以及光学操作单元
JP5545916B2 (ja) * 2008-01-31 2014-07-09 アズビル株式会社 物理量センサおよび物理量計測方法
EP2088497B1 (en) * 2008-02-05 2020-06-03 BlackBerry Limited Optically based input mechanism for a handheld electronic communication device
US8294670B2 (en) 2008-02-05 2012-10-23 Research In Motion Limited Optically based input mechanism for a handheld electronic communication device
EP2257833A1 (en) 2008-02-28 2010-12-08 Philips Intellectual Property & Standards GmbH Optical sensor
DE102008012028A1 (de) * 2008-02-29 2009-09-10 Fachhochschule Trier Vorrichtung zur Laser-Doppler-Geschwindigkeitsmessung
EP2257454B1 (en) 2008-03-13 2013-05-15 Philips Intellectual Property & Standards GmbH Sensor system, vehicle control system and driver information system for vehicle safety
TW200947275A (en) * 2008-05-09 2009-11-16 Kye Systems Corp Optical trace detection module
KR101651440B1 (ko) 2008-05-16 2016-08-26 코닌클리케 필립스 엔.브이. 셀프-믹싱 레이저 센서를 포함하는 방어 시스템 및 그러한 방어 시스템을 구동하는 방법
TW200949618A (en) * 2008-05-16 2009-12-01 Kye Systems Corp Input device and the control method thereof
TW200949631A (en) * 2008-05-21 2009-12-01 Kye Systems Corp An optical motion locus module
ATE542107T1 (de) * 2008-07-07 2012-02-15 Koninkl Philips Electronics Nv Selbstmischende lasermessvorrichtung
EP2300803A1 (en) * 2008-07-10 2011-03-30 Philips Intellectual Property & Standards GmbH Gas detection device
TW201011618A (en) 2008-09-05 2010-03-16 Kye Systems Corp Optical multi-point touch-to-control method of windows-based interface
JP4600555B2 (ja) * 2008-09-18 2010-12-15 富士ゼロックス株式会社 計測装置
US8237684B2 (en) * 2008-09-26 2012-08-07 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. User input device with planar light guide illumination plate
US8541727B1 (en) 2008-09-30 2013-09-24 Cypress Semiconductor Corporation Signal monitoring and control system for an optical navigation sensor
KR101151028B1 (ko) * 2008-11-03 2012-05-30 크루셜텍 (주) 포인팅 디바이스가 구비된 단말장치 및 화면 제어 방법
US8847915B2 (en) * 2008-11-26 2014-09-30 Avago Technologies General Ip (Singapore) Pte. Ltd. Light pipe array lens, optical finger navigation device with the lens and method for making the device
SE533704C2 (sv) 2008-12-05 2010-12-07 Flatfrog Lab Ab Pekkänslig apparat och förfarande för drivning av densamma
US8430347B2 (en) 2009-01-05 2013-04-30 Fellowes, Inc. Thickness adjusted motor controller
JP2010160117A (ja) * 2009-01-09 2010-07-22 Fuji Xerox Co Ltd 計測装置
US8487914B2 (en) * 2009-06-18 2013-07-16 Avago Technologies General Ip (Singapore) Pte. Ltd. Optical fingerprint navigation device with light guide film
US8797298B2 (en) * 2009-01-23 2014-08-05 Avago Technologies General Ip (Singapore) Pte. Ltd. Optical fingerprint navigation device with light guide film
US8711096B1 (en) 2009-03-27 2014-04-29 Cypress Semiconductor Corporation Dual protocol input device
KR101731273B1 (ko) * 2009-03-31 2017-05-11 코닌클리케 필립스 엔.브이. 모션을 검출하는 방법 및 디바이스
US8550387B2 (en) * 2009-06-18 2013-10-08 Tai Hoon K. Matlin Restrictive throat mechanism for paper shredders
US8678305B2 (en) * 2009-06-18 2014-03-25 Fellowes, Inc. Restrictive throat mechanism for paper shredders
WO2010149651A1 (en) * 2009-06-23 2010-12-29 Imec Optical tactile sensors
US8902023B2 (en) * 2009-06-24 2014-12-02 Avago Technologies General Ip (Singapore) Pte. Ltd. Acoustic resonator structure having an electrode with a cantilevered portion
US8248185B2 (en) * 2009-06-24 2012-08-21 Avago Technologies Wireless Ip (Singapore) Pte. Ltd. Acoustic resonator structure comprising a bridge
JP5663148B2 (ja) 2009-06-29 2015-02-04 アズビル株式会社 計数装置、物理量センサ、計数方法および物理量計測方法
CN101944898B (zh) * 2009-07-06 2013-08-07 光宝电子(广州)有限公司 触控按键装置以及使用此触控按键装置的电子装置
US8860693B2 (en) * 2009-07-08 2014-10-14 Apple Inc. Image processing for camera based motion tracking
GB2485086B (en) * 2009-07-23 2014-08-06 Hewlett Packard Development Co Display with an optical sensor
JP2011033525A (ja) 2009-08-04 2011-02-17 Yamatake Corp 計数装置、物理量センサ、計数方法および物理量計測方法
WO2011021129A1 (en) 2009-08-17 2011-02-24 Koninklijke Philips Electronics N.V. Method of operating a smi sensor and corresponding sensor device
FR2951275B1 (fr) * 2009-10-09 2012-11-02 Epsiline Dispositif de mesure de la vitesse du vent
EP2491336B1 (en) * 2009-10-23 2013-03-27 Koninklijke Philips Electronics N.V. Self-mixing interference device with wave guide structure
JP5588310B2 (ja) 2009-11-15 2014-09-10 プライムセンス リミテッド ビームモニタ付き光学プロジェクタ
US8711097B2 (en) * 2009-11-22 2014-04-29 Digitaloptics Corporation Optical navigation device with image sensor and inner housing
CN102072743B (zh) * 2009-11-24 2012-09-05 陈法胜 片状高分子成型物尺寸检测及其后处理的方法与用以实施该方法的检测与后处理机
JP5702536B2 (ja) 2010-01-05 2015-04-15 アズビル株式会社 速度計測装置および方法
CN101770303A (zh) * 2010-01-19 2010-07-07 中兴通讯股份有限公司 一种实现光学手指鼠标方向识别的方法及移动终端
US9243316B2 (en) 2010-01-22 2016-01-26 Avago Technologies General Ip (Singapore) Pte. Ltd. Method of fabricating piezoelectric material with selected c-axis orientation
US8796904B2 (en) 2011-10-31 2014-08-05 Avago Technologies General Ip (Singapore) Pte. Ltd. Bulk acoustic resonator comprising piezoelectric layer and inverse piezoelectric layer
US20110188054A1 (en) * 2010-02-02 2011-08-04 Primesense Ltd Integrated photonics module for optical projection
US20110187878A1 (en) 2010-02-02 2011-08-04 Primesense Ltd. Synchronization of projected illumination with rolling shutter of image sensor
US8982336B2 (en) 2010-03-10 2015-03-17 Azbil Corporation Physical quantity sensor and physical quantity measuring method
US8382019B2 (en) 2010-05-03 2013-02-26 Fellowes, Inc. In-rush current jam proof sensor control
US8511593B2 (en) 2010-05-28 2013-08-20 Fellowes, Inc. Differential jam proof sensor for a shredder
US8864393B2 (en) * 2010-06-21 2014-10-21 Hewlett-Packard Development Company, L.P. Media advance
US9677873B2 (en) * 2010-07-26 2017-06-13 Koninklijke Philips Electronics N.V. Apparatus, method and computer program for determining a distance to an object using a determined peak width of a self-mixing interference (SMI) signal
US9036158B2 (en) 2010-08-11 2015-05-19 Apple Inc. Pattern projector
CN103053167B (zh) 2010-08-11 2016-01-20 苹果公司 扫描投影机及用于3d映射的图像捕获模块
WO2012034577A1 (en) * 2010-09-13 2012-03-22 Sony Ericsson Mobile Communications Ab Touch- sensitive device and communication device using the same
WO2012066501A1 (en) 2010-11-19 2012-05-24 Primesense Ltd. Depth mapping using time-coded illumination
US9131136B2 (en) 2010-12-06 2015-09-08 Apple Inc. Lens arrays for pattern projection and imaging
US8575537B2 (en) * 2010-12-09 2013-11-05 Avago Technologies General Ip (Singapore) Pte. Ltd. Compact multi-direction proximity sensor device and method
US8546741B2 (en) 2011-01-13 2013-10-01 Avago Technologies General Ip (Singapore) Pte. Ltd. Compact optical finger navigation system based on speckles with an optical element including an optical redirection surface
US8962443B2 (en) 2011-01-31 2015-02-24 Avago Technologies General Ip (Singapore) Pte. Ltd. Semiconductor device having an airbridge and method of fabricating the same
US9104268B2 (en) 2011-02-03 2015-08-11 Avago Technologies General Ip (Singapore) Pte. Ltd. Compact optical finger navigation system with illumination via redirection surface holes
US9083302B2 (en) 2011-02-28 2015-07-14 Avago Technologies General Ip (Singapore) Pte. Ltd. Stacked bulk acoustic resonator comprising a bridge and an acoustic reflector along a perimeter of the resonator
US9425764B2 (en) 2012-10-25 2016-08-23 Avago Technologies General Ip (Singapore) Pte. Ltd. Accoustic resonator having composite electrodes with integrated lateral features
US9048812B2 (en) 2011-02-28 2015-06-02 Avago Technologies General Ip (Singapore) Pte. Ltd. Bulk acoustic wave resonator comprising bridge formed within piezoelectric layer
US9148117B2 (en) 2011-02-28 2015-09-29 Avago Technologies General Ip (Singapore) Pte. Ltd. Coupled resonator filter comprising a bridge and frame elements
US9203374B2 (en) 2011-02-28 2015-12-01 Avago Technologies General Ip (Singapore) Pte. Ltd. Film bulk acoustic resonator comprising a bridge
US9154112B2 (en) 2011-02-28 2015-10-06 Avago Technologies General Ip (Singapore) Pte. Ltd. Coupled resonator filter comprising a bridge
US9136818B2 (en) 2011-02-28 2015-09-15 Avago Technologies General Ip (Singapore) Pte. Ltd. Stacked acoustic resonator comprising a bridge
US8575820B2 (en) 2011-03-29 2013-11-05 Avago Technologies General Ip (Singapore) Pte. Ltd. Stacked bulk acoustic resonator
US9444426B2 (en) 2012-10-25 2016-09-13 Avago Technologies General Ip (Singapore) Pte. Ltd. Accoustic resonator having integrated lateral feature and temperature compensation feature
US8810561B2 (en) * 2011-05-02 2014-08-19 Microvision, Inc. Dual laser drive method. apparatus, and system
US8594507B2 (en) * 2011-06-16 2013-11-26 Honeywell International Inc. Method and apparatus for measuring gas concentrations
US8350445B1 (en) 2011-06-16 2013-01-08 Avago Technologies Wireless Ip (Singapore) Pte. Ltd. Bulk acoustic resonator comprising non-piezoelectric layer and bridge
US20120321322A1 (en) * 2011-06-16 2012-12-20 Honeywell International Inc. Optical microphone
KR101139849B1 (ko) 2011-07-04 2012-05-02 (주)와이앤지 3차원 광학 트랙 패드 장치 및 이를 이용하는 방법
TWI504026B (zh) * 2011-07-12 2015-10-11 True Light Corp 光學指向模組及其光源單元
CN102880313B (zh) * 2011-07-15 2016-03-02 光环科技股份有限公司 光学指向模块及其光源单元
US8749796B2 (en) 2011-08-09 2014-06-10 Primesense Ltd. Projectors of structured light
US8908277B2 (en) 2011-08-09 2014-12-09 Apple Inc Lens array projector
KR101376907B1 (ko) * 2011-12-16 2014-03-26 삼성전기주식회사 입력 장치
US9363869B2 (en) * 2012-01-04 2016-06-07 Blackberry Limited Optical navigation module with decoration light using interference avoidance method
KR101561487B1 (ko) 2012-03-19 2015-10-19 가부시키가이샤 무라타 세이사쿠쇼 광 센서
WO2013141021A1 (ja) * 2012-03-19 2013-09-26 株式会社村田製作所 光センサ
CN104221059B (zh) 2012-03-22 2017-05-10 苹果公司 基于衍射感测镜子位置
KR101906651B1 (ko) * 2012-04-17 2018-12-07 로베르트 보쉬 게엠베하 레이저 다이오드 제어 신호의 생성을 위한 회로
US10168835B2 (en) 2012-05-23 2019-01-01 Flatfrog Laboratories Ab Spatial resolution in touch displays
WO2014168567A1 (en) 2013-04-11 2014-10-16 Flatfrog Laboratories Ab Tomographic processing for touch detection
CN113745962A (zh) * 2013-06-19 2021-12-03 苹果公司 集成结构化光投影仪
US9874978B2 (en) 2013-07-12 2018-01-23 Flatfrog Laboratories Ab Partial detect mode
JP6126485B2 (ja) * 2013-07-23 2017-05-10 アズビル株式会社 速度計測装置および方法
CN104340710A (zh) * 2013-07-26 2015-02-11 山东新北洋信息技术股份有限公司 薄片类介质运动状态检测方法和装置及介质处理设备
US9528906B1 (en) 2013-12-19 2016-12-27 Apple Inc. Monitoring DOE performance using total internal reflection
WO2015108479A1 (en) 2014-01-16 2015-07-23 Flatfrog Laboratories Ab Light coupling in tir-based optical touch systems
US10126882B2 (en) 2014-01-16 2018-11-13 Flatfrog Laboratories Ab TIR-based optical touch systems of projection-type
CN103995637B (zh) * 2014-04-28 2015-08-12 京东方科技集团股份有限公司 基于多普勒效应的触控识别装置、方法和触摸屏
US10161886B2 (en) 2014-06-27 2018-12-25 Flatfrog Laboratories Ab Detection of surface contamination
US10190891B1 (en) 2014-07-16 2019-01-29 Apple Inc. Optical encoder for detecting rotational and axial movement
CN104571638A (zh) * 2014-12-18 2015-04-29 安沛科技股份有限公司 光标指示器
US11182023B2 (en) 2015-01-28 2021-11-23 Flatfrog Laboratories Ab Dynamic touch quarantine frames
US10318074B2 (en) 2015-01-30 2019-06-11 Flatfrog Laboratories Ab Touch-sensing OLED display with tilted emitters
EP3537269A1 (en) 2015-02-09 2019-09-11 FlatFrog Laboratories AB Optical touch system
CN104656895B (zh) * 2015-02-10 2018-02-02 北京智谷睿拓技术服务有限公司 确定输入信息的方法和设备
CN107250855A (zh) 2015-03-02 2017-10-13 平蛙实验室股份公司 用于光耦合的光学部件
JP6018662B2 (ja) * 2015-03-31 2016-11-02 アズビル株式会社 計数装置、物理量センサ、計数方法および物理量計測方法
JP6753653B2 (ja) * 2015-06-23 2020-09-09 ローム株式会社 近接センサ及びそれを用いた電子機器
BR112018002049A2 (pt) 2015-07-30 2018-09-18 Koninklijke Philips Nv módulo de sensor de laser para detecção de densidade de partículas, método de detecção de densidade de partículas e produto de programa de computador
BR112018001523A2 (pt) 2015-07-30 2018-09-11 Koninklijke Philips N.V. módulo de sensor a laser, dispositivo de interface humana, dispositivo de comunicação móvel, método para detecção de pelo menos dois parâmetros físicos e produto de programa de computador
BR112018001940A2 (pt) 2015-07-30 2018-09-18 Koninklijke Philips Nv módulo de sensor a laser, dispositivo de comunicação móvel, método de detecção de tamanho de partícula, e produto de programa de computador
US10012831B2 (en) 2015-08-03 2018-07-03 Apple Inc. Optical monitoring of scan parameters
US10408604B1 (en) * 2015-09-07 2019-09-10 AI Incorporated Remote distance estimation system and method
KR102400705B1 (ko) 2015-12-09 2022-05-23 플라트프로그 라보라토리즈 에이비 개선된 스타일러스 식별
DE102016203479A1 (de) * 2016-03-03 2017-09-07 Heidelberger Druckmaschinen Ag Bogendruckmaschine mit Sensorsystem sowie Verfahren zum Kalibrieren und Justieren des Sensorsystems
US11119021B2 (en) 2016-03-21 2021-09-14 Trumpf Photonic Components Gmbh Laser sensor for ultra-fine particle size detection
US20190146065A1 (en) 2016-05-19 2019-05-16 Koninklijke Philips N.V. Compact laser sensor
RU2018144790A (ru) 2016-05-19 2020-06-19 Конинклейке Филипс Н.В. Лазерный датчик для детектирования частиц
US11092531B2 (en) 2016-05-19 2021-08-17 Trumpf Photonic Components Gmbh Optical particle sensor
KR20180015441A (ko) * 2016-08-03 2018-02-13 엘지전자 주식회사 롤리 키보드
US10073004B2 (en) 2016-09-19 2018-09-11 Apple Inc. DOE defect monitoring utilizing total internal reflection
CN110100226A (zh) 2016-11-24 2019-08-06 平蛙实验室股份公司 触摸信号的自动优化
DK3667475T3 (da) 2016-12-07 2022-10-17 Flatfrog Lab Ab Buet berøringsapparat
RU2719573C1 (ru) * 2016-12-09 2020-04-21 Конинклейке Филипс Н.В. Модуль оптического датчика частиц
CN110268245B (zh) 2016-12-09 2022-03-04 通快光电器件有限公司 用于颗粒密度探测的激光传感器模块
CN116679845A (zh) 2017-02-06 2023-09-01 平蛙实验室股份公司 触摸感测装置
EP3370311A1 (en) 2017-03-02 2018-09-05 Koninklijke Philips N.V. Method of determining operation conditions of a laser-based particle detector
EP3376204A1 (en) 2017-03-15 2018-09-19 Koninklijke Philips N.V. Laser sensor module for particle detection with offset beam
US20180275830A1 (en) 2017-03-22 2018-09-27 Flatfrog Laboratories Ab Object characterisation for touch displays
EP4036697A1 (en) 2017-03-28 2022-08-03 FlatFrog Laboratories AB Optical touch sensing apparatus
EP3401664A1 (en) 2017-05-12 2018-11-14 Koninklijke Philips N.V. Method of suppressing false positive signals during self mixing interference particle detection
EP3422147A1 (en) 2017-06-28 2019-01-02 Koninklijke Philips N.V. Display apparatus for computer-mediated reality
US10153614B1 (en) 2017-08-31 2018-12-11 Apple Inc. Creating arbitrary patterns on a 2-D uniform grid VCSEL array
CN117311543A (zh) 2017-09-01 2023-12-29 平蛙实验室股份公司 触摸感测设备
EP3470872B1 (en) * 2017-10-11 2021-09-08 Melexis Technologies NV Sensor device
WO2019172826A1 (en) 2018-03-05 2019-09-12 Flatfrog Laboratories Ab Improved touch-sensing apparatus
US11157113B2 (en) 2018-04-13 2021-10-26 Apple Inc. Self-mixing interference based sensors for characterizing touch input
US11243686B2 (en) 2018-04-13 2022-02-08 Apple Inc. Self-mixing interference based sensors for characterizing user input
US11422292B1 (en) 2018-06-10 2022-08-23 Apple Inc. Super-blazed diffractive optical elements with sub-wavelength structures
EP3588055A1 (en) 2018-06-21 2020-01-01 Koninklijke Philips N.V. Laser sensor module with indication of readiness for use
EP3588700A1 (en) 2018-06-26 2020-01-01 Koninklijke Philips N.V. Vcsel device for an smi sensor for recording three-dimensional pictures
EP3588054A1 (en) 2018-06-29 2020-01-01 Koninklijke Philips N.V. Laser sensor module with electro-optical modulator
EP3588057A1 (en) 2018-06-29 2020-01-01 Koninklijke Philips N.V. Method of reducing false-positive particle counts of an interference particle sensor module
US10824275B2 (en) 2018-09-25 2020-11-03 Apple Inc. Waveguide-based interferometric multi-point/distributed force and touch sensors
US10627961B2 (en) 2018-09-25 2020-04-21 Apple Inc. Waveguide-based interferometric multi-point/distributed force and touch sensors
CN112889016A (zh) 2018-10-20 2021-06-01 平蛙实验室股份公司 用于触摸敏感装置的框架及其工具
CN112997115B (zh) 2018-11-08 2022-07-26 佳能株式会社 具有光学输入装置的摄像设备和电子装置
JP7383394B2 (ja) * 2019-04-25 2023-11-20 キヤノン株式会社 光学入力装置を有する電子機器
US11740071B2 (en) 2018-12-21 2023-08-29 Apple Inc. Optical interferometry proximity sensor with temperature variation compensation
US11943563B2 (en) 2019-01-25 2024-03-26 FlatFrog Laboratories, AB Videoconferencing terminal and method of operating the same
US12193802B2 (en) 2019-02-11 2025-01-14 Koh Young Technology Inc. Blood flow measurement device and blood flow measurement method
US11243068B1 (en) * 2019-02-28 2022-02-08 Apple Inc. Configuration and operation of array of self-mixing interferometry sensors
TWI855069B (zh) * 2019-05-08 2024-09-11 安盟生技股份有限公司 光學系統及其檢測方法
US10871820B2 (en) 2019-05-09 2020-12-22 Apple Inc. Self-mixing based 2D/3D user input detection and scanning laser system
US11156456B2 (en) 2019-05-21 2021-10-26 Apple Inc. Optical proximity sensor integrated into a camera module for an electronic device
EP3742193A1 (en) 2019-05-22 2020-11-25 TRUMPF Photonic Components GmbH Laser sensor module with soiling detection
US11473898B2 (en) 2019-05-24 2022-10-18 Apple Inc. Wearable voice-induced vibration or silent gesture sensor
US11422638B2 (en) 2019-07-08 2022-08-23 Apple Inc. Input devices that use self-mixing interferometry to determine movement within an enclosure
CN110261384B (zh) * 2019-07-24 2024-05-17 苏州华楷微电子有限公司 一种碳化硅片的检测装置及检测方法
US11409365B2 (en) 2019-09-06 2022-08-09 Apple Inc. Self-mixing interferometry-based gesture input system including a wearable or handheld device
US11681019B2 (en) 2019-09-18 2023-06-20 Apple Inc. Optical module with stray light baffle
US11419546B2 (en) 2019-09-24 2022-08-23 Apple Inc. Wearable self-mixing interferometry device used to sense physiological conditions
US11506762B1 (en) 2019-09-24 2022-11-22 Apple Inc. Optical module comprising an optical waveguide with reference light path
US12056316B2 (en) 2019-11-25 2024-08-06 Flatfrog Laboratories Ab Touch-sensing apparatus
EP4104042A1 (en) 2020-02-10 2022-12-21 FlatFrog Laboratories AB Improved touch-sensing apparatus
US11754767B1 (en) 2020-03-05 2023-09-12 Apple Inc. Display with overlaid waveguide
US11150332B1 (en) 2020-06-30 2021-10-19 Apple Inc. Self-calibrating optical transceiver system with reduced crosstalk sensitivity for through-display proximity sensing
US11460293B2 (en) 2020-09-25 2022-10-04 Apple Inc. Surface quality sensing using self-mixing interferometry
US11874110B2 (en) 2020-09-25 2024-01-16 Apple Inc. Self-mixing interferometry device configured for non-reciprocal sensing
CN112249758A (zh) * 2020-10-16 2021-01-22 河北光兴半导体技术有限公司 柔性玻璃基板卷绕装置以及方法
US11629948B2 (en) 2021-02-04 2023-04-18 Apple Inc. Optical interferometry proximity sensor with optical path extender
EP4040271A1 (en) * 2021-02-08 2022-08-10 Infineon Technologies AG A pointing device for detecting motion relative to a surface and a method for detecting motion of a pointing device relative to a surface
DE202021100618U1 (de) 2021-02-09 2022-05-10 Sick Ag Vorrichtung zur Vermessung eines Objektes
EP4040188B1 (de) 2021-02-09 2023-08-16 Sick Ag Vorrichtung und verfahren zur vermessung eines objektes
WO2022197339A1 (en) 2021-03-17 2022-09-22 Apple Inc. Waveguide-based transmitters with adjustable lighting
US11640054B2 (en) * 2021-03-19 2023-05-02 Meta Platforms Technologies, Llc Multi-wavelength self-mixing interferometry
US12209890B2 (en) 2022-03-31 2025-01-28 Apple Inc. Optical sensor module including an interferometric sensor and extended depth of focus optics
WO2023227372A1 (en) * 2022-05-23 2023-11-30 Ams International Ag Self-mixing interferometry sensor module, electronic device and method of detecting movement
EP4309573A1 (en) 2022-07-21 2024-01-24 Sonion Nederland B.V. Determination of a parameter related to blood flow in a blood perfused part using a vcsel
DE102022126127A1 (de) * 2022-10-10 2024-04-11 Ams-Osram International Gmbh Vcsel-element, sensorvorrichtung, elektronische vorrichtung und benutzerschnittstelle

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3644042A (en) * 1970-06-15 1972-02-22 Hughes Aircraft Co Laser system for monitoring the motion of objects
US4733609A (en) * 1987-04-03 1988-03-29 Digital Signal Corporation Laser proximity sensor
DE3730543C1 (en) 1987-09-11 1989-04-06 Danfoss As Test method and instrument for determining the magnitude and direction of a movement parameter
JP2885807B2 (ja) * 1988-10-21 1999-04-26 東京航空計器株式会社 距離検出装置
EP0391278B1 (en) * 1989-03-31 1997-10-15 Canon Kabushiki Kaisha Doppler velocity meter
JPH03238354A (ja) * 1990-02-16 1991-10-24 Canon Inc レーザードップラー速度計
JPH04109439A (ja) * 1990-08-29 1992-04-10 Sony Corp 光学式ピックアップ
US5382785A (en) * 1992-05-04 1995-01-17 Diolase Corporation Laser beam delivery path and target proximity sensor
US5262636A (en) * 1992-05-04 1993-11-16 Diolase Corporation Proximity sensor apparatus for laser diode
US5886332A (en) * 1994-04-19 1999-03-23 Geo Labs, Inc. Beam shaping system with surface treated lens and methods for making same
FR2720839A1 (fr) 1994-06-07 1995-12-08 Fis Vélocimètre laser à effet doppler portable.
US5686720A (en) * 1995-03-02 1997-11-11 Hewlett Packard Company Method and device for achieving high contrast surface illumination
US5803729A (en) * 1996-07-17 1998-09-08 Efraim Tsimerman Curing light
US5748295A (en) 1996-07-31 1998-05-05 University Of Georgia Research Foundation Method and apparatus for determining the range, direction and velocity of an object
US6030398A (en) * 1997-05-30 2000-02-29 Summit Technology, Inc. Surgical microtomes
US6424407B1 (en) 1998-03-09 2002-07-23 Otm Technologies Ltd. Optical translation measurement
AU6633798A (en) 1998-03-09 1999-09-27 Gou Lite Ltd. Optical translation measurement
US6391400B1 (en) * 1998-04-08 2002-05-21 Thomas A. Russell Thermal control films suitable for use in glazing
US6233045B1 (en) * 1998-05-18 2001-05-15 Light Works Llc Self-mixing sensor apparatus and method
JP2000018260A (ja) * 1998-07-01 2000-01-18 Nippon Seiko Kk シールリング付転がり軸受
AR019215A1 (es) * 1998-07-02 2001-12-26 Hydrodyne Inc Metodo para tratar un producto alimenticio, aparato de multiples envases y aparato para llevar a cabo el metodo
JP2000029097A (ja) * 1998-07-08 2000-01-28 Sony Corp カメラ
US6275634B1 (en) * 1998-11-16 2001-08-14 Pac-Fab, Inc. Fiber optic perimeter lighting system
US6552713B1 (en) * 1999-12-16 2003-04-22 Hewlett-Packard Company Optical pointing device
US20070042916A1 (en) * 2005-06-30 2007-02-22 Iyer Ramnath N Methods for improved power transmission performance and compositions therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI402560B (zh) * 2007-05-08 2013-07-21 Japan Display West Inc 顯示裝置及具備該顯示裝置之電子機器
TWI506532B (zh) * 2009-05-27 2015-11-01 Hewlett Packard Development Co 用以控制資訊顯示的方法與系統

Also Published As

Publication number Publication date
DE60141241D1 (de) 2010-03-25
CN1227618C (zh) 2005-11-16
US6872931B2 (en) 2005-03-29
EP1334463B1 (en) 2010-03-31
JP2004513441A (ja) 2004-04-30
EP1261877A1 (en) 2002-12-04
CN1227617C (zh) 2005-11-16
EP1334463A1 (en) 2003-08-13
ATE457066T1 (de) 2010-02-15
US6759671B2 (en) 2004-07-06
US20030016365A1 (en) 2003-01-23
US20020104957A1 (en) 2002-08-08
CN1411587A (zh) 2003-04-16
ATE459038T1 (de) 2010-03-15
DE60141412D1 (de) 2010-04-08
US6707027B2 (en) 2004-03-16
JP4180369B2 (ja) 2008-11-12
WO2002037410A1 (en) 2002-05-10
CN1416554A (zh) 2003-05-07
KR100813428B1 (ko) 2008-03-13
US20030006367A1 (en) 2003-01-09
JP2004513348A (ja) 2004-04-30
KR100814268B1 (ko) 2008-03-18
KR20020065638A (ko) 2002-08-13
JP2004513352A (ja) 2004-04-30
TWI232300B (en) 2005-05-11
KR20020063925A (ko) 2002-08-05
CN1235052C (zh) 2006-01-04
WO2002037411A1 (en) 2002-05-10
CN1408064A (zh) 2003-04-02
EP1334464A1 (en) 2003-08-13
EP1334464B1 (en) 2010-02-24
ATE463004T1 (de) 2010-04-15
WO2002037124A1 (en) 2002-05-10
JP4094424B2 (ja) 2008-06-04
EP1261877B1 (en) 2010-02-03
JP4087247B2 (ja) 2008-05-21
DE60141704D1 (de) 2010-05-12

Similar Documents

Publication Publication Date Title
TW579484B (en) Method of measuring the movement of an input device and device using the method
TWI339346B (en) Apparatus equipped with an optical keyboard and optical input device
US7589709B2 (en) Method of measuring the movement of an input device
EP1514167B1 (en) Method of measuring the movement of an input device
JP2005526324A (ja) 光入力装置と、共通の放射源を有する少なくとも一つの他の光装置とを有する装置

Legal Events

Date Code Title Description
MK4A Expiration of patent term of an invention patent