[go: up one dir, main page]

TW219955B - - Google Patents

Download PDF

Info

Publication number
TW219955B
TW219955B TW080110126A TW80110126A TW219955B TW 219955 B TW219955 B TW 219955B TW 080110126 A TW080110126 A TW 080110126A TW 80110126 A TW80110126 A TW 80110126A TW 219955 B TW219955 B TW 219955B
Authority
TW
Taiwan
Prior art keywords
crucible
rod
magnetic field
silicon
single crystal
Prior art date
Application number
TW080110126A
Other languages
English (en)
Original Assignee
Memc Electronic Materials
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Memc Electronic Materials filed Critical Memc Electronic Materials
Application granted granted Critical
Publication of TW219955B publication Critical patent/TW219955B/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/30Mechanisms for rotating or moving either the melt or the crystal
    • C30B15/305Stirring of the melt
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/30Mechanisms for rotating or moving either the melt or the crystal
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B30/00Production of single crystals or homogeneous polycrystalline material with defined structure characterised by the action of electric or magnetic fields, wave energy or other specific physical conditions
    • C30B30/04Production of single crystals or homogeneous polycrystalline material with defined structure characterised by the action of electric or magnetic fields, wave energy or other specific physical conditions using magnetic fields

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Description

219933 A6 B6 五、發明説明() 發明背暑 本發明係關於一種方法經由變動尖端磁場與變動晶體大 小以及坩煱旋轉速率之姐合Μ調節氧在Czochralski拉伸 矽晶體棒中之濃度及分佈之方法。 當晶體自儲存於一個容器中之熔融液體中成長時,此容 器之成分物料是部分溶解於此熔融液體中由是移動至產品 晶體中作為'雜質。於矽之熔融溫度(約14201^ ),與此熔物 接觸之氧化矽(Si 02)坩堝之表面溶解。此溶解的二氧化砂 之一部分自此熔物之表面MSiO (—氧化矽)蒸發。另一部 分溶解的二氧化矽併入成長之晶體中。剌餘之溶解二氧化 矽則保留在-溶融矽中。因此,用於存放此矽熔物之二氧化 矽坩堝是氧之來源,其存在於籍此習用Czochralski技術 生長之矽晶體中。 在矽晶體中之氧可K具有利及不利的影響。在製造多種 電器装置期間之多種熱處理方法中,晶體中之氧可造成晶 體缺陷諸如沈澱*位錯環及堆築層錯或其可K造成電活性 缺陷,结果是得到性能較差的裝置。然而,在晶體中氧之 固態溶液,增加矽晶片之機械強度及此晶體缺陷籍截面重 金靨雜質可能改良與其一致的產品之產率。於是,此矽晶 體之氧含量是產品品質之一項重要因素必須根據此矽晶片 之最後使用之箱求作妥善控制。 在1980年代初期普通用於本工業之Czochralski條件下 生長之矽晶體中之氧濃度沿此晶體之長度變動,例如,此 晶體之種晶端較中間及/或底部或特性端為高。此外,氧 {請先閱讀背面之注意事項再填窵本页) 甲 4(210X297 公角) 19933 A6 B6 五、發明説明() 濃度沿此晶體之横切片之半徑變動。 Frederick等在美國專利4,436,577中提示一種方法用於 調節矽晶體棒中之氧含量及氧含量之公佈,此矽晶體棒是 自種晶對貯於一姐二氧化矽坩堝中之一種矽熔物拉伸,根 據此方法,藉對旋轉此熔物坩堝相反之方向Μ較高速率旋 轉自此熔物拉伸之晶種棒同時阐坩堝熔物水平面下降增加 坩堝旋轉率^控制氧分佈。 然而,更晚近若干年來矽半導體技術方面之進步*已經 獲得比Freder ick等之專利所揭示者直徑更大的矽晶體。 因此,需要增加熔物進料量及更大的坩堝直徑。此外,半 導體製造技/術已演變至通常需要切自錠塊之矽晶片中較低 及更精確控制之氧量。於是,由於更大的物理參數(其限 制晶體之範圍及坩堝旋轉速率於此速率穩定晶體成長才有 可能)所造成之物理限制使均一化氧含量於一切所需之濃 度範圍變成越來越困難。 為解決此越來越困難的氧控制問題,近年來已經注意到 使用一棰袖對稱及經尖端磁場。日本公開專利 58 [1983]-217493中建議此方法。根據此方法,裝設一對 線圈於此熔融液體之上及之下•環形電流Μ相反方向通過 這些線圈。其結果為沿此熔融液體之深度之1/2位置處生 成一個徑水平磁場。根據申請者之說詞•此徑向尖端磁場 限制此熔融液體之流動,於是穩定此熔物及防止來自坩堝 之污染。 Barraclough等在 W0 89/08731(21,09,89)中提出對此尖 ......................................................¾..............................ir..............................# (請先聞讀背面之注意事項再瑱寫本页) 甲 4(210X297 乂廣) -4- 2122ό3 Α6 Β6 五、發明説明() 端磁場法之一種改良方法。根據Barraclough等,此磁場 必須有場之一個姐成與晶體旋轉之軸平行其在成長中的晶 體與熔物之界面間是低於500高斯,在此熔物之其他部分 有數值在500高斯K上及在晶體之成長期間維持磁場於這 樣的分佈。 Hirata等在日本公開專利平1[1989]-2δ2185中提出一種 不同的改良'。根據Hirata等·藉施加一個尖端磁場於此熔 物上,以相反方向旋轉坩堝及晶體,及K比旋轉此晶體較 高的旋轉速率旋轉此坩堝,控制移動的雜質諸如氧。 Hirata等在日本公開專利平2[1990]-55284中提示另一 種改良。根據Hirata等,藉施加一涸尖端磁場於此熔物上 及變動此磁場組成其與熔融液體之表面垂直交叉者之強度 與此磁場組成其與熔融液體之底表面垂直交叉者之強度之 比控制移動的雜質諸如氧。可K藉⑴對此坩堝移動這些線 圈(同時維持這些線圈間之距離恆定),⑵改變這些線圈間 之安培比,或⑶改變這些線圈間之距離變動比。 然而,所提示之尖端磁場法到現在為止沒有完全令人滿 意者。在某些條件下,在尖端磁場中成長之晶體展示不良 的軸向及徑向氧一致性與使用軸向磁埸所得者相同。當烴 歷到此問題時,時常是發生於固化法之後階段可能是接近 此較強的垂直向磁埸此區域之一個滯留界域中氧或含氧化 合物结集之結果》 濂蓉銳明 -5- ......................................................於..............................ίτ.............................. (請先閱讀背面之注意事項再滇寫本页) f 4(21〇X 297 公廣) ^19353 A6 _______ B6 五、發明說明() 在本發明之目的中,於是,可Μ注意到是提供一種方法 用於調節砂晶體棒中之氧含量及此氧含量之分佈,此矽晶 體棒是自一個種晶體對貯於一個二氧化矽坩渦中之矽培物 之作用拉伸,提供如此的一種方法其提供氧含量之一致分 佈Κ及一種所需程度之氧含量,及提供如此的一棰方法其 是適合用供製備矽棒具有較大的直徑及較低的氧含量。 簡言之厂於是,本發明是關於製備矽棒之Czochralski 法,其中一支單晶體矽棒是自含該棒同軸之坩堝中之矽培 物拉伸出,在此方法中’此棒及坩堝是繞其軸以相反方向 旋轉,此棒之旋轉速率較此棒生長時坩堝之旋轉速率大。 隨此棒長度.之增加而增加此坩堝之旋轉速率。施加對此棒 之軸幾乎是旋轉對稱之一個磁埸於此矽熔物直至此矽熔物 之一部分固化,此磁場有姐成其是與此坩堝之底及側壁垂 直交叉。随著固化矽熔物之部分增加,降低與此坩堝之底 及側壁垂直交叉之磁場姐成之強度。 其他目的在此Μ後有些將是顯而易見及有些將予指示。 圖式粧沭 圖1是根據本發明之一涸具賭貫例之一種Czochralski 晶體生長裝置之剖面圖。 圖2S圖1之一部分之放大圖另示出在例中所述之一姐 條件( 1 500安培)下產生之磁場。 圖3示如例中所述拉伸之—支15〇毫丨米矽晶雅棒之氧濃 度之線型模式。· (請先閱讀背面之注意事項再填寫本页) .裳· •訂· .綠· 甲 4 (210X297 2 潘) 2199〇3 A6 B6 五、發明说明(〉 (請先《讀背面之注意事項再填寫本页) 圖4〜9示此例預测將在一個15 0毫米矽單晶體之6種 不同長度得4種不同的氧量之磁場電流及坩煱旋轉速率之 姐合模式。 圖10示此例預測將在一個150毫米矽單晶體得一種 13PPM A之恆定氧量之磁場強度及坩堝旋轉速率之程序組合 模式。 詳钿說明 茲參照圖1 ,說明一種Czochralski晶體生長装置供用 於根據本發明之方法。在真空室1内是被電阻加熱器5環 繞之坩堝3-。坩堝驅動單元7如藉箭頭所示Μ順鐘向旋轉 此坩堝及視需要可Μ將此坩堝升高或降低。在坩堝3內是 矽熔物9水平面11及自其拉伸單晶體13,自種晶體15連接 至拉柱或網17開始。坩堝3與單晶體13有對稱的共同軸 19。拉柱或纜17是以反鐘向旋轉及視需要藉晶體驅動單元 21將其升高或降低。加熱器罨源23給予電阻加熱器5能量 及絕緣25襯此真空室。氬氣是自瓶27經由氣體流量控制器 2S饋入真空室1同時藉真空泵31將氣體移出此真空室。環 繞此真空室是室冷卻套層33冷卻水是自一個儲槽35送入· 然後冷卻水是排出至冷卻水回路歧管37。一支光電管39測 計此熔物表面溫度及直徑轉換器測計此單晶體13之直徑。 它們的信號是藉控制單元43處理。此控制單元可Μ是一台 可程式之數位式或類比式計箕機;其控制坩堝及單晶體驅 動單元7及21*·加熱器電源3,上線圈及下線圈電源49及 甲 4 (210X297 公发) _-7- 219935 A6 B6 五、發明説明() 51,泵31及氬流量控制器29。 環繞真空室1是上螺線管線圈45及下螺線管線圈47分別 位於矽熔物表面11之上及下及有對稱铀19。此上及下線圈 有各別的電源··上線圈電源49及下線圈電源51,各連接至 控制單元43。在這兩個螺線管線圈中電流Μ相反方向流動 Κ產生尖端電磁場。自儲槽53供懕冷卻水至此上及下線圈 及然後排出'至於冷卻水回路歧管37。一個鐵屛55環繞上及 下線圈Κ降低雜散磁場及增進產生之磁埸之強度。 為生長一個矽單晶體,將某一份量之聚矽送入至坩堝3 中及送電流經過加熱器5Μ熔化此進料。此矽熔物也可Μ 含某些摻雜-前其等入之目的是在修改此矽之電性質如此技 藝所知者。將一個種晶體15下降至與此熔物接觸及然後徐 徐自此熔物拉出,在一種鈍性大氣諸如氬中,及此矽固化 在此種晶體上Κ產生一個單晶體之生長。隨著其拉伸時藉 Μ —種預定的速率旋轉此晶體獲得一支柱狀單晶體棒13。 同樣地此坩堝以另一種預定的速率旋轉,但以對此棒相反 的方向。最初控制此拉伸速率及供應至加熱器之電力Μ使 在此晶體之下生成一個頸及然後調節Μ使此晶體之直徑以 錐形形態增大直至達到預定的晶體直徑。然後,控制此拉 出速率及加熱Κ維持恆定直徑直至此製程接近終结。於此 時*增加此拉出速率及加熱以使直徑減小於此單晶體棒之 末端生成一個錐部分。 於此單晶體13達到預定的直徑(例如150毫米或200毫米 )後|控制此單·晶體及坩堝之旋轉速率以調節在此晶體中 8 (請先聞讀背面之注意事項再填寫本頁) k. •打· 中 4 (210X297 公沒)
ο r,.· **·* ^ 1 ί> bO Α6 Β6 五'發明説明() 氧之澹度及分佈,軸向及徑向兩者。此坩堝之旋轉速率典 型上是介於1及lOrpm,Μ至少約4rpm為佳,及此單晶體 之旋轉速率是高於此坩堝之旋轉速率頗多 > 是即,典型上 是約10至20rpm及高於此坩堝之旋轉速率至少約5 rpra。此 外,為避免在此熔融矽中產生波浪,控制此坩堝及單晶體 之旋轉速率Μ使其和不超過一個預定值。對每一個系統此 預定值是由"試驗測定及是視此單晶體之直徑,此坩堝之直 徑速率Μ每分鐘旋轉數(rpm)之和,就一支150毫米棒、 3 50毫米坩堝及34公斤矽進料而言應不超過32及就一支 200毫米棒、450毫米坩堝及40公斤進料而言懕不超過約 25 ° · 在此之前已經發規,併入單晶體之氧含量不僅依此坩堝 與此熔融物之接觸面積而定,也視坩堝之旋轉速率而定( 見美國專利4,436,577,併附於此供參照)。一般而言,就 其一已知的棒及坩堝旋轉速率而論,此棒在軸向方面之氧 含量阐此熔融進料之一部分固化增加而降低。於是•此影 響可K至少部分克服,藉随此部分固化增加增加此坩堝之 旋轉速率。然而*只藉控制旋轉速率Μ調節單晶體棒氧含 量(此棒具較大直徑及較低氧濃度,例如低於約15ΡΡΜΑ ( ASTM Standard F-121-83))顯然已經越來越困難。 玆經發現徜若控制旋轉速率及根據一種指定的程式施加 一個徑向尖端磁場於此矽熔物,可Μ更準確調節較大直徑 之單晶SS棒,特別是於較低氧滬度者,之在軸向及徑向方 向之氧濃度。玆參照圖1及2,將指述用於此處之如此的 ......................................................¾...............................ίτ..............................^ (請先閑讀背面之注意事項再填寫本π) 甲 4(210X297 云尨) 219953
五、發明説明() 一種程式及一種裝置。電流如所指示(” ”指示電流流出 此頁及” X ”指示電流流入此頁)流經此上及下線圈45,47 ,藉Μ產生一個磁場Μ施加於坩堝3及矽熔物9。此磁場 之形狀是由矢量57表示其有如所指示之高斯數值。此磁場 有水平及垂直姐成其是與此坩堝之底及側壁垂直交叉。此 外•此磁場可以有一個垂直組成其是與此矽熔物表面垂直 交叉。然β,與此熔融矽表面垂直交叉之平均磁組成相對 於平均磁姐成垂直交叉此熔融矽接觸之坩堝之底及側壁者 Μ小為佳,是即*與此熔融矽表面垂直交叉之平均磁姐成 不高於平均磁組成垂直交叉與此熔融矽接觸之坩堝之底及 側壁者之約十分之一。與此熔融矽表面垂直交叉之平均磁 組成Μ是零或接近零為最佳,是即,此磁場之零平面是位 於或接近此矽熔物表面。可Μ使用垂直位置,在此兩個線 圈45,4 7中之圈數及相對電流Μ定此零磁場在或接近此熔 物表面Γ1之平面之位置。 於開始此晶體拉伸方法時,通電流經過線圈45* 47 Μ施 加一涸有預定強度之磁場於此矽熔物及坩堝。此預定強度 將視棒之直徑、坩堝之直徑、進料量及所需之氧含量而變 動但可以簡捷測定不裔要很多試驗。一般而言,此磁場將 有最高預定強度低於數千高斯,及Κ有最高預定強度介於 約40 0及.1000高斯為最佳。阐著此單晶體之長度增加,是 即,熔融料固化之部分增加·藉降低通過這些線圈之電流 董,相對坩堝移動這些線圈或藉移動或撤去磁屏遮降低磁 場強度。Μ藉降低通過這些線圈之電流量降低磁埸強度為 ί請先閱讀背面之注意事項再填寫本页) .線. 甲4(210Χ 2972沒) -10-
A6 _____B6 五、發叼説明() 佳。 隨著此磁場之強度降低,垂直交叉此坩堝之底及側壁之 磁場姐成也降低。然而,由於此磁場之零平面是維持於或 接近此矽熔物表面,垂直交叉此矽熔物表面之平均磁埸組 成與垂直交叉與熔融矽接觸之此坩堝之底及側壁之平均磁 場組成之比將不會有顯著的改變。 阐著單晶'體棒之長度增加及熔融料固化之部分增加雖然 可Μ調節此磁場之強度至低於其初對程度之某些數值,在 此熔融料之一個預定部分已固化後Μ完全停止磁場為佳。 典型上,於此熔融料之約50¾至80¾固化後停止此磁場。在 此之後,藉相對此軍晶體旋轉速率增加此坩堝旋轉速率調 節氧含量。 在作業期間之某些階段,可能宜增加施加於此熔物之磁 場強度及/或降低此坩堝旋轉速率,視參數諸如單晶體公 稱直徑、坩堝直徑、進料量及磁埸性質而定。只要是⑻降 低此磁場至低於其初時程度之某些數值及(b>於此熔融料之 一部分已固化後相對此單晶體旋轉速率增加此坩堝之轉旋 速率,此類具體實例是涵蓋於本發明之範圍內。 如說明於Μ次例中,可使用本發明之方法KM精確控制 具有頗低氧濃度,是即低於15ΡΡΜ Α氧,之矽單晶體中之氧 濃度。這些單晶體棒在徑向方向是有低於5S;之氧梯度為佳 及在軸向方向是有低於5¾至10¾之氧梯度為佳,K低於5X 最佳。此例列舉可以用於達成所需之結果之一姐條件。可 以為其他晶體直徑、磁場強度、坩堝旋轉速率、坩堝尺寸 ......................................................¾..............................ίτ..............................蛛 ί請先«讀背面之注意事項再滇寫本页) __-11- 甲 4(210X297乂尨) 219935
五、發明說明( 、及矽進料量創造類似圖3之數據。然後可以推導產生一 種所需的氧之軸向公佈,諸如圖10,之坩堝旋轉速率及磁 場強度程式。於是*不應Μ —種限制性的觀念解釋此例。
Μ次之例說明本發明。Μ_ 使用圖1及2之装置(所不同者是這些線圈是串聯及由 單一個電源供應電流)自一個貯34公斤聚矽進料之350毫米 直徑坩堝拉伸單晶體矽棒。此晶體之旋轉速率是介於12及 24rpni及此坩堝之旋轉速率是固定於4「pm。對一姐試驗, 不施加磁場。在另一組試驗中,以相反方向送1.5千安培 電流經每一個線圈,结果得一個磁埸Μ平均強度約400高 斯施加於矽至晶體之界面如圖2中所示。在另一姐試驗中 ,變動坩堝旋轉速率及磁場強度。 測定氧在此單晶體矽棒中之軸向公佈及將所得之氧數據 配入至一個模式中以氧是因變數。獨立變數是晶體長度、 磁場(Κ線圈激發電流表示),及坩堝旋轉速率。此模式是 線型有6個係數如次: 係數之單位 PPMA(ASTM F121-83) PPMA/CM PPMA/RPM PPMA/K AMP 項目 係 數 變 數 -線型 1 15 . .573 常 數 2 -0 . ‘118 長 度 3 0 . .286 坩 堝 旋轉 4 - 2 , 153 ' 磁 場 強度 甲 4(210X 2971'发) ί請先閱請背面之注意事項再填·"本页) *打. .綠. 12 219955 A6 B6 五、發明説明() 5 0.063 長度/坩堝旋轉PPMA RPM/CM 6 0.037 長度磁場 PPMA/CM/R AMP 全部係數是有效至0.0001或更小及RMS誤差是0.44PPMA。 圖3示配此横式至這些試驗。 圖4〜9示磁場電流與坩堝旋轉速率之姐合此模式將得 6種不同長度之晶體四種不同的氧含量。除另有指出者外 ,全部氧數據是根據ASTM Standard F12卜83測計及長度 是公分。 圖10示磁埸強度與坩堝旋轉速率之一種程式姐合此模式 預測將得13PPMA之恆定氧含量。根據此程式,開始時設定 此坩堝旋轉·速率於5rPm及以約2仟安培K相反方向通過每 一組線圈K產生磁場,於此晶體分別拉伸至10、20、30及 40公分之後,降低磁場強度如所指示,於拉伸至40公分時 ,降低磁場強度至零。與降低磁場強度同時,於晶體已拉 伸至40公分後增加坩堝旋轉速率自5至6rpm,及於已拉 伸至50公分之後增加至lOrpm。 可以為其他晶體直徑、磁場強度、坩堝旋轉速率、坩堝 尺寸,及矽進料量產生類似圖10之數據。然後可以推導一 種坩堝旋轉速率與磁場強度程式K產生所需的氧之袖向分 佈。 縱觀Μ上所述,可Μ看到達成本發明之數姐目的及達到 其他有利结果。 由於Κ上之方法可Μ作多棰改變而不背離本發明之 ,含於以上所述中之一切事物懕解釋為作為說明性而非限 zllz ......................................................^..............................打..............................痒 (請先聞讀背面之注意事項再填寫本頁) 甲 4(21〇X 297d 219955 A6B6 五、發明説明() 性 制 -14- ......................................................^..............................ΐτ.............................. {緖先閱讀背面之注意事項再填寫本頁) 甲 4(210X 297 乂沒)

Claims (1)

  1. 傅上 A Α7 Β7 C7 D7 短濟部中央搮準局印¾ 六、申贺微55 1. 一種產製單晶體矽棒之Czochralski法,其中一支單晶 矽棒是自包含於坩堝中之矽熔融物拉伸出,此單晶體矽 棒與此坩堝是同軸,此法包括 繞其軸以相反方向旋轉此棒及坩堝,此棒之旋轉速率較 此棒生長時坩煱之旋轉速率大, 隨著此棒之長度增加而増加此坩堝之旋轉速率, 對此矽熔物施加一個磁場·該磁場是實質上旋轉地對稱 此棒之軸,直至此砂培物之—部份固化,此磁場具有與 此坩堋之底及側壁垂直交叉之組份,及 陲著矽熔物固化之部份增加*降低垂直交叉此坩堝之底 及側壁-之磁場姐份之強度。 2. 根據申請專利範圍第1項之方法,其中於矽熔物固化之 部分超過約0.5之後,降低垂直交叉此坩堝之底及側壁 之磁場成分至零° 3. 根據申請專利範圍第2項之方法,其中當此矽單晶體棒 被拉伸出,此單晶體旋轉速率超越此坩堝旋轉速率至少 約 5 r p ro。 4. 根據申請專利範圍第2項之方法,其中此單晶體矽棒有 約200毫米之直徑及此坩堝及晶體旋轉速率之和是每分 鐘旋轉數不超過約27。 5. 根據申請專利範圍第2項之方法,其中此單晶體矽棒有 約150亳米之直徑及此坩堝及晶體旋轉速率之和Μ每分 鐘旋轉數不超過約32。 6. 根據申請_利範圍第1項之方法,其中於砂熔物固化之 ::..............................(.................装..............................打......* ...................綠 (請先閱讀背面之注意事項再填寫本页) 74(210X297 公廣) 219955 A7 B7 C7 D7 六、申請專利乾® 蛭 部 中 標 準 局 印 裝 部分已超過約0 . 壁之磁場組成至 7 . 根據申請專利範 被拉伸出,此單 約 5 r p m 0 8 . 根據申請專利範 與矽熔物接觸之 至少約500高斯 9 . 根據申請專利範 部分已超過0. 8 底及側·壁之磁場 10.根據申請專利範 至少約200毫米 ^ 每分鐘旋轉數不 11 .根據申請專利範 至少約200毫米 每分鐘旋轉數不 12.根據申諳專利範 約150毫米之直 鐘旋轉數不超過 1 3 .根據申請專利範 被拉伸出,此單 5 r p m ° 14.根據申謅專利範 圍第8 之後, 姐成至 圍第9 之直徑 超過約 圍第1 之直徑 超過約 圍第1 徑及此 約32。 圍第1 晶體轉 8之後,降低垂直交叉此坩堝之底及側 零。 圍第6項之方法,其中當此矽單晶體棒 晶賭旋轉速\率超越此坩堝旋轉速率至少 圍第1項之方法,其中垂直交叉此坩堝 底及側壁之磁埸姐成之平均值開始時是 項之方法,其中於矽熔物固化之 降低交叉此坩堝與矽熔物接觸之 零。 項之方法,其中此單晶體矽棒有 及此坩堝與晶體旋轉速率之和是 27 〇 項之方法,其中此單晶體矽棒有 及此坩堝與晶婧旋轉速率之和是 27 〇 項之方法,其中此單晶體矽棒有 世塌與晶體旋轉速率之和是每分 方法,其中當此矽單晶體棒 速率超越此坩堝旋轉速率至少約 圍第1項之方法,其中在此棒中軸向氧 (請先閱讀背面之注意事項再填两本页) ?4(210X297 公;#) 219953 A7 B7 C7 D7 六、申請專利Jfe® 棒。 體零 晶約 單是 矽成 此姐 當場 中磁 其均 , 平 法之 方面 之表 。 項物 % 1 溶 5 第矽 約圍此 過範至 超利直 不專垂 度請出 梯申伸 度據拉 濃根被 ,::::........................... ................装..............................ir......-s (請先閑讀背面之注意事項再填駕本百) 經濟部中央橾準局印製 Τ4(210Χ297 公廣)
TW080110126A 1991-08-14 1991-12-26 TW219955B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US07/744,891 US5178720A (en) 1991-08-14 1991-08-14 Method for controlling oxygen content of silicon crystals using a combination of cusp magnetic field and crystal and crucible rotation rates

Publications (1)

Publication Number Publication Date
TW219955B true TW219955B (zh) 1994-02-01

Family

ID=24994361

Family Applications (1)

Application Number Title Priority Date Filing Date
TW080110126A TW219955B (zh) 1991-08-14 1991-12-26

Country Status (12)

Country Link
US (1) US5178720A (zh)
EP (1) EP0527477B1 (zh)
JP (1) JPH0818898B2 (zh)
KR (1) KR960006260B1 (zh)
CN (1) CN1038437C (zh)
CZ (1) CZ244792A3 (zh)
DE (1) DE59205080D1 (zh)
FI (1) FI923611A (zh)
MY (1) MY108707A (zh)
PL (1) PL295632A1 (zh)
SG (1) SG43922A1 (zh)
TW (1) TW219955B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI831742B (zh) * 2017-03-31 2024-02-11 美商希爾費克斯公司 用於形成晶錠的系統與方法

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08143391A (ja) * 1993-06-01 1996-06-04 Texas Instr Inc <Ti> チョクラルスキ結晶引上げ装置に使用する螺旋加熱器
JPH07267776A (ja) * 1994-03-31 1995-10-17 Sumitomo Sitix Corp 結晶成長方法
US5474020A (en) * 1994-05-06 1995-12-12 Texas Instruments Incorporated Oxygen precipitation control in czochralski-grown silicon cyrstals
US5653799A (en) * 1995-06-02 1997-08-05 Memc Electronic Materials, Inc. Method for controlling growth of a silicon crystal
JPH0920595A (ja) * 1995-07-04 1997-01-21 Shin Etsu Handotai Co Ltd シリコン単結晶の製造装置
DE19529481A1 (de) * 1995-08-10 1997-02-13 Wacker Siltronic Halbleitermat Verfahren und Vorrichtung zur Herstellung von Einkristallen
US5656078A (en) 1995-11-14 1997-08-12 Memc Electronic Materials, Inc. Non-distorting video camera for use with a system for controlling growth of a silicon crystal
JP3898247B2 (ja) * 1995-12-06 2007-03-28 信越半導体株式会社 単結晶の製造装置および製造方法
JP3841863B2 (ja) * 1995-12-13 2006-11-08 コマツ電子金属株式会社 シリコン単結晶の引き上げ方法
DE19548845B4 (de) * 1995-12-27 2008-04-10 Crystal Growing Systems Gmbh Vorrichtung und Verfahren zum Ziehen von Einkristallen nach dem Czochralski-Verfahren
JP3520883B2 (ja) * 1995-12-29 2004-04-19 信越半導体株式会社 単結晶の製造方法
JPH09194289A (ja) * 1996-01-12 1997-07-29 Mitsubishi Materials Shilicon Corp 単結晶引上装置
US5746828A (en) * 1996-01-16 1998-05-05 General Signal Corporation Temperature control system for growing high-purity monocrystals
US5676751A (en) 1996-01-22 1997-10-14 Memc Electronic Materials, Inc. Rapid cooling of CZ silicon crystal growth system
JP3969460B2 (ja) * 1996-06-20 2007-09-05 Sumco Techxiv株式会社 磁場印加による半導体単結晶の製造方法
US5795381A (en) * 1996-09-09 1998-08-18 Memc Electrical Materials, Inc. SIO probe for real-time monitoring and control of oxygen during czochralski growth of single crystal silicon
JPH10310485A (ja) 1997-04-30 1998-11-24 Sumitomo Sitix Corp 単結晶育成方法
US5846318A (en) * 1997-07-17 1998-12-08 Memc Electric Materials, Inc. Method and system for controlling growth of a silicon crystal
US5882402A (en) * 1997-09-30 1999-03-16 Memc Electronic Materials, Inc. Method for controlling growth of a silicon crystal
US5922127A (en) * 1997-09-30 1999-07-13 Memc Electronic Materials, Inc. Heat shield for crystal puller
EP0949360A1 (en) * 1998-04-07 1999-10-13 Shin-Etsu Handotai Company Limited Process for producing a silicon single crystal by Czochralski method.
DE19823962A1 (de) 1998-05-28 1999-12-02 Wacker Siltronic Halbleitermat Verfahren zur Herstellung eines Einkristalls
JP2000044387A (ja) 1998-07-27 2000-02-15 Nippon Steel Corp シリコン単結晶製造方法
JP4045666B2 (ja) 1998-09-08 2008-02-13 株式会社Sumco シリコン単結晶の製造方法
US6171391B1 (en) 1998-10-14 2001-01-09 Memc Electronic Materials, Inc. Method and system for controlling growth of a silicon crystal
US6423285B1 (en) * 1999-03-17 2002-07-23 Shin-Etsu Handotai Co., Ltd. Method for producing silicon single crystal and production apparatus therefor, as well as single crystal and silicon wafer produced by the method
US6776840B1 (en) 1999-03-22 2004-08-17 Memc Electronic Materials, Inc. Method and apparatus for controlling diameter of a silicon crystal in a locked seed lift growth process
US6241818B1 (en) 1999-04-07 2001-06-05 Memc Electronic Materials, Inc. Method and system of controlling taper growth in a semiconductor crystal growth process
US6203611B1 (en) 1999-10-19 2001-03-20 Memc Electronic Materials, Inc. Method of controlling growth of a semiconductor crystal to automatically transition from taper growth to target diameter growth
EP1193333A4 (en) * 2000-02-28 2006-10-04 Shinetsu Handotai Kk METHOD FOR PRODUCING SILICON CRYSTALS AND SILICON CRYSTAL
JP3512074B2 (ja) * 2000-03-06 2004-03-29 日本電気株式会社 半導体単結晶育成装置および半導体単結晶育成方法
DE10102126A1 (de) * 2001-01-18 2002-08-22 Wacker Siltronic Halbleitermat Verfahren und Vorrichtung zum Herstellen eines Einkristalls aus Silicium
JP4764007B2 (ja) * 2002-11-12 2011-08-31 エムイーエムシー・エレクトロニック・マテリアルズ・インコーポレイテッド ルツボの回転を利用して温度勾配を制御し単結晶シリコンを製造する方法
KR100588425B1 (ko) * 2003-03-27 2006-06-12 실트로닉 아게 실리콘 단결정, 결정된 결함분포를 가진 실리콘 단결정 및 실리콘 반도체 웨이퍼의 제조방법
US6960254B2 (en) * 2003-07-21 2005-11-01 Memc Electronic Materials, Inc. Method to monitor and control the crystal cooling or quenching rate by measuring crystal surface temperature
US20060005761A1 (en) * 2004-06-07 2006-01-12 Memc Electronic Materials, Inc. Method and apparatus for growing silicon crystal by controlling melt-solid interface shape as a function of axial length
US7223304B2 (en) * 2004-12-30 2007-05-29 Memc Electronic Materials, Inc. Controlling melt-solid interface shape of a growing silicon crystal using a variable magnetic field
US7291221B2 (en) * 2004-12-30 2007-11-06 Memc Electronic Materials, Inc. Electromagnetic pumping of liquid silicon in a crystal growing process
KR100840751B1 (ko) * 2005-07-26 2008-06-24 주식회사 실트론 고품질 실리콘 단결정 잉곳 제조 방법, 성장 장치 및그로부터 제조된 잉곳 , 웨이퍼
JP2007031274A (ja) * 2005-07-27 2007-02-08 Siltron Inc シリコン単結晶インゴット、ウエハ、その成長装置、及びその成長方法
JP4631717B2 (ja) 2006-01-19 2011-02-16 株式会社Sumco Igbt用シリコン単結晶ウェーハ及びigbt用シリコン単結晶ウェーハの製造方法
KR100835293B1 (ko) * 2006-12-29 2008-06-09 주식회사 실트론 실리콘 단결정 잉곳의 제조방법
JP5083001B2 (ja) * 2008-04-08 2012-11-28 株式会社Sumco シリコン単結晶の引上げ方法
JP5077299B2 (ja) * 2009-06-22 2012-11-21 信越半導体株式会社 単結晶製造装置及び単結晶製造方法
CN102360696B (zh) * 2011-06-10 2013-07-31 沈阳隆基电磁科技股份有限公司 一种开合式用于单晶炉的永磁场结构
KR101680213B1 (ko) * 2015-04-06 2016-11-28 주식회사 엘지실트론 실리콘 단결정 잉곳의 성장 방법
KR102060422B1 (ko) * 2015-11-02 2019-12-30 가부시키가이샤 사무코 단결정 실리콘의 제조 방법
EP3831987A1 (en) 2015-12-04 2021-06-09 GlobalWafers Co., Ltd. Systems and methods for production of low oxygen content silicon
JP6680108B2 (ja) * 2016-06-28 2020-04-15 株式会社Sumco シリコン単結晶の製造方法
DE112018006080B4 (de) * 2017-11-29 2025-02-13 Sumco Corporation Silicium-Einkristall, Verfahren zur Herstellung desselben, sowie Siliciumwafer
CN109576785A (zh) * 2018-12-29 2019-04-05 徐州鑫晶半导体科技有限公司 调节单晶硅生长过程中氧含量的方法
CN110359082A (zh) * 2019-08-15 2019-10-22 胡正阳 一种热场稳定的单晶炉
CN117413096A (zh) * 2021-04-28 2024-01-16 环球晶圆股份有限公司 通过水平式磁场柴式法生产硅锭的方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0042901B1 (fr) * 1980-06-26 1984-10-31 International Business Machines Corporation Procédé pour contrôler la teneur en oxygène des barreaux de silicium tirés selon la méthode de Czochralski
US4436577A (en) * 1980-12-29 1984-03-13 Monsanto Company Method of regulating concentration and distribution of oxygen in Czochralski grown silicon
EP0055619B1 (en) * 1980-12-29 1985-05-29 Monsanto Company Method for regulating concentration and distribution of oxygen in czochralski grown silicon
JPS58217493A (ja) * 1982-06-11 1983-12-17 Nippon Telegr & Teleph Corp <Ntt> 単結晶の引上方法
JPS59102893A (ja) * 1982-12-01 1984-06-14 Nippon Telegr & Teleph Corp <Ntt> 結晶の育成方法
JPS6027682A (ja) * 1983-07-26 1985-02-12 Toshiba Corp 単結晶引上装置
JPS6033291A (ja) * 1983-07-29 1985-02-20 Toshiba Ceramics Co Ltd 単結晶シリコンの製造方法
JPS6081086A (ja) * 1983-10-07 1985-05-09 Shin Etsu Handotai Co Ltd 単結晶の成長方法および装置
JPS6144797A (ja) * 1984-08-10 1986-03-04 Toshiba Corp 単結晶育成装置およびその制御方法
US4617173A (en) * 1984-11-30 1986-10-14 General Signal Corporation System for controlling the diameter of a crystal in a crystal growing furnace
JPS61222984A (ja) * 1985-03-28 1986-10-03 Toshiba Corp 単結晶の製造装置
US4659423A (en) * 1986-04-28 1987-04-21 International Business Machines Corporation Semiconductor crystal growth via variable melt rotation
JP2561072B2 (ja) * 1986-04-30 1996-12-04 東芝セラミツクス株式会社 単結晶の育成方法及びその装置
JPS63242991A (ja) * 1987-03-31 1988-10-07 Shin Etsu Handotai Co Ltd 結晶径制御方法
GB8805478D0 (en) * 1988-03-08 1988-04-07 Secr Defence Method & apparatus for growing semi-conductor crystalline materials
JPH01282185A (ja) * 1988-05-09 1989-11-14 Nippon Telegr & Teleph Corp <Ntt> 結晶の育成方法
JPH0255284A (ja) * 1988-08-22 1990-02-23 Nippon Telegr & Teleph Corp <Ntt> 混入不純物濃度の制御方法
JP2765060B2 (ja) * 1989-06-16 1998-06-11 株式会社デンソー 車両用空気調和装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI831742B (zh) * 2017-03-31 2024-02-11 美商希爾費克斯公司 用於形成晶錠的系統與方法

Also Published As

Publication number Publication date
CN1069298A (zh) 1993-02-24
JPH05194077A (ja) 1993-08-03
KR960006260B1 (ko) 1996-05-13
CN1038437C (zh) 1998-05-20
CZ244792A3 (en) 1993-02-17
MY108707A (en) 1996-11-30
DE59205080D1 (de) 1996-02-29
PL295632A1 (en) 1993-02-22
EP0527477B1 (de) 1996-01-17
US5178720A (en) 1993-01-12
JPH0818898B2 (ja) 1996-02-28
KR930004508A (ko) 1993-03-22
SG43922A1 (en) 1997-11-14
FI923611A0 (fi) 1992-08-12
FI923611A (fi) 1993-02-15
EP0527477A1 (de) 1993-02-17

Similar Documents

Publication Publication Date Title
TW219955B (zh)
US7611580B2 (en) Controlling melt-solid interface shape of a growing silicon crystal using a variable magnetic field
JP5240191B2 (ja) シリコン単結晶引上装置
US5851283A (en) Method and apparatus for production of single crystal
JP4710247B2 (ja) 単結晶製造装置及び方法
WO2005073440A1 (ja) シリコン単結晶の引上げ方法
JP4483729B2 (ja) シリコン単結晶製造方法
JP5034247B2 (ja) シリコン単結晶の製造方法
JP2004189559A (ja) 単結晶成長方法
JP2006069841A (ja) 磁場印加式シリコン単結晶の引上げ方法
JP4045666B2 (ja) シリコン単結晶の製造方法
JP3132412B2 (ja) 単結晶引き上げ方法
JP4951186B2 (ja) 単結晶成長方法
JP2000239096A (ja) シリコン単結晶の製造方法
JP4407192B2 (ja) 単結晶の製造方法
JP5056603B2 (ja) シリコン単結晶の引上げ方法及び該方法により引上げられたインゴットから得られたシリコン単結晶ウェーハ
JPH05208887A (ja) Fz法シリコン単結晶棒の成長方法及び装置
JP4801869B2 (ja) 単結晶成長方法
JP5003733B2 (ja) 単結晶成長方法
JP5454625B2 (ja) シリコン単結晶の引上げ方法により引上げられたインゴットから得られたシリコン単結晶ウェーハ
WO2022163091A1 (ja) 単結晶引上げ装置および単結晶引上げ方法
JPH0250077B2 (zh)
JP2007210865A (ja) シリコン単結晶引上装置
JP2005306669A (ja) シリコン単結晶の引上げ装置及びその方法
JPH05105579A (ja) 結晶育成方法

Legal Events

Date Code Title Description
MK4A Expiration of patent term of an invention patent