TW202207595A - Boost converter with low noise - Google Patents
Boost converter with low noise Download PDFInfo
- Publication number
- TW202207595A TW202207595A TW109127508A TW109127508A TW202207595A TW 202207595 A TW202207595 A TW 202207595A TW 109127508 A TW109127508 A TW 109127508A TW 109127508 A TW109127508 A TW 109127508A TW 202207595 A TW202207595 A TW 202207595A
- Authority
- TW
- Taiwan
- Prior art keywords
- coupled
- inductor
- node
- diode
- potential
- Prior art date
Links
Images
Landscapes
- Dc-Dc Converters (AREA)
Abstract
Description
本發明係關於一種升壓轉換器,特別係關於一種低雜訊之升壓轉換器。The present invention relates to a boost converter, in particular to a low noise boost converter.
傳統升壓轉換器通常會採用電流模式控制。然而,當其功率切換器之責任週期大於50%時,傳統升壓轉換器容易產生次諧波振盪,並造成相關雜訊上升。有鑑於此,勢必要提出一種全新之解決方案,以克服先前技術所面臨之困境。Traditional boost converters typically employ current-mode control. However, when the duty cycle of the power switch is greater than 50%, the conventional boost converter is prone to sub-harmonic oscillation, and the associated noise rises. In view of this, it is necessary to propose a new solution to overcome the difficulties faced by the previous technology.
在較佳實施例中,本發明提出一種低雜訊之升壓轉換器,包括:一橋式整流器,根據一第一輸入電位和一第二輸入電位來產生一整流電位;一第一電感器,接收該整流電位;一第一功率切換器,根據一第一脈衝寬度調變電位來選擇性地將該第一電感器耦接至一接地電位;一第二電感器,接收該整流電位;一第二功率切換器,根據一第二脈衝寬度調變電位來選擇性地將該第二電感器耦接至該接地電位;一脈衝寬度調變積體電路,產生該第一脈衝寬度調變電位和該第二脈衝寬度調變電位;一能量釋放電路;一能量回收電路,與該能量釋放電路並聯耦接;以及一輸出級電路,包括一能量補償電路,並產生一輸出電位,其中該輸出級電路係耦接至該第一電感器、該第二電感器、該能量釋放電路,以及該能量回收電路;其中該第一電感器和該第二電感器所儲存之電磁能係經由該能量回收電路和該能量釋放電路再轉移至該能量補償電路。In a preferred embodiment, the present invention provides a low-noise boost converter, comprising: a bridge rectifier for generating a rectified potential according to a first input potential and a second input potential; a first inductor, receiving the rectified potential; a first power switch selectively coupling the first inductor to a ground potential according to a first pulse width modulation potential; a second inductor receiving the rectified potential; a second power switch selectively coupling the second inductor to the ground potential according to a second PWM potential; a PWM integrated circuit generating the first PWM variable potential and the second pulse width modulated potential; an energy release circuit; an energy recovery circuit coupled in parallel with the energy release circuit; and an output stage circuit including an energy compensation circuit and generating an output potential , wherein the output stage circuit is coupled to the first inductor, the second inductor, the energy release circuit, and the energy recovery circuit; wherein the electromagnetic energy stored by the first inductor and the second inductor It is transferred to the energy compensation circuit via the energy recovery circuit and the energy release circuit.
為讓本發明之目的、特徵和優點能更明顯易懂,下文特舉出本發明之具體實施例,並配合所附圖式,作詳細說明如下。In order to make the objects, features and advantages of the present invention more obvious and easy to understand, specific embodiments of the present invention are given in the following, and are described in detail as follows in conjunction with the accompanying drawings.
在說明書及申請專利範圍當中使用了某些詞彙來指稱特定的元件。本領域技術人員應可理解,硬體製造商可能會用不同的名詞來稱呼同一個元件。本說明書及申請專利範圍並不以名稱的差異來作為區分元件的方式,而是以元件在功能上的差異來作為區分的準則。在通篇說明書及申請專利範圍當中所提及的「包含」及「包括」一詞為開放式的用語,故應解釋成「包含但不僅限定於」。「大致」一詞則是指在可接受的誤差範圍內,本領域技術人員能夠在一定誤差範圍內解決所述技術問題,達到所述基本之技術效果。此外,「耦接」一詞在本說明書中包含任何直接及間接的電性連接手段。因此,若文中描述一第一裝置耦接至一第二裝置,則代表該第一裝置可直接電性連接至該第二裝置,或經由其它裝置或連接手段而間接地電性連接至該第二裝置。Certain terms are used throughout the specification and claims to refer to particular elements. It should be understood by those skilled in the art that hardware manufacturers may refer to the same element by different nouns. This specification and the scope of the patent application do not use the difference in name as a way to distinguish elements, but use the difference in function of the elements as a criterion for distinguishing. The words "including" and "including" mentioned in the entire specification and the scope of the patent application are open-ended terms, so they should be interpreted as "including but not limited to". The word "substantially" means that within an acceptable error range, those skilled in the art can solve the technical problem within a certain error range and achieve the basic technical effect. Furthermore, the term "coupled" in this specification includes any direct and indirect electrical connection means. Therefore, if a first device is described as being coupled to a second device, it means that the first device can be directly electrically connected to the second device, or indirectly electrically connected to the second device through other devices or connecting means. Second device.
第1圖係顯示根據本發明一實施例所述之升壓轉換器100之示意圖。例如,升壓轉換器100可應用於桌上型電腦、筆記型電腦,或一體成形電腦。如第1圖所示,升壓轉換器100包括:一橋式整流器110、一第一電感器L1、一第二電感器L2、一第一功率切換器120、一第二功率切換器130、一脈衝寬度調變積體電路140、一能量釋放電路150、一能量回收電路160,以及一輸出級電路170,其中輸出級電路170包括一能量補償電路180。必須注意的是,雖然未顯示於第1圖中,但升壓轉換器100更可包括其他元件,例如:一穩壓器或(且)一負回授電路。FIG. 1 shows a schematic diagram of a
橋式整流器110可根據一第一輸入電位VIN1和一第二輸入電位VIN2來產生一整流電位VR。第一輸入電位VIN1和第二輸入電位VIN2皆可來自一外部輸入電源,其中第一輸入電位VIN1和第二輸入電位VIN2之間可形成具有任意頻率和任意振幅之一交流電壓。例如,交流電壓之頻率可約為50Hz或60Hz,而交流電壓之方均根值可由90V至264V,但亦不僅限於此。第一電感器L1可接收整流電位VR。第一功率切換器120可根據一第一脈衝寬度調變電位VM1來選擇性地將第一電感器L1耦接至一接地電位VSS(例如:0V)。例如,若第一脈衝寬度調變電位VM1為高邏輯位準,則第一功率切換器120即可將第一電感器L1耦接至接地電位VSS(亦即,第一功率切換器120可近似於一短路路徑);反之,若第一脈衝寬度調變電位VM1為低邏輯位準,則第一功率切換器120不會將第一電感器L1耦接至接地電位VSS(亦即,第一功率切換器120可近似於一開路路徑)。第二電感器L2亦可接收整流電位VR。第二功率切換器130可根據一第二脈衝寬度調變電位VM2來選擇性地將第二電感器L2耦接至接地電位VSS。例如,若第二脈衝寬度調變電位VM2為高邏輯位準,則第二功率切換器130即可將第二電感器L2耦接至接地電位VSS(亦即,第二功率切換器130可近似於一短路路徑);反之,若第二脈衝寬度調變電位VM2為低邏輯位準,則第二功率切換器130不會將第二電感器L2耦接至接地電位VSS(亦即,第二功率切換器130可近似於一開路路徑)。脈衝寬度調變積體電路140可產生第一脈衝寬度調變電位VM1和第二脈衝寬度調變電位VM2。在一些實施例中,第一脈衝寬度調變電位VM1和第二脈衝寬度調變電位VM2可具有相同波形但其間存在一相位差,使得兩者不會同時為高邏輯位準。能量回收電路160可與能量釋放電路150作並聯耦接。輸出級電路170可產生一輸出電位VOUT。例如,輸出電位VOUT可大致為一直流電位,其位準可約為400V,但亦不僅限於此。輸出級電路170可同時耦接至第一電感器L1、第二電感器L2、能量釋放電路150,以及能量回收電路160。必須注意的是,第一電感器L1和第二電感器L2所儲存之電磁能可經由能量回收電路160和能量釋放電路150再轉移至輸出級電路170之能量補償電路180。在此設計下,第一功率切換器120和第二功率切換器130之每一者之責任週期皆可小於50%,以抑制升壓轉換器100中不必要之次諧波振盪。因此,升壓轉換器100之相關雜訊將可被有效降低。The
以下實施例將介紹升壓轉換器100之詳細結構及操作方式。必須理解的是,這些圖式和敘述僅為舉例,而非用於限制本發明之範圍。The following embodiments will introduce the detailed structure and operation of the
第2圖係顯示根據本發明一實施例所述之升壓轉換器200之示意圖。在第2圖之實施例中,升壓轉換器200具有一第一輸入節點NIN1、一第二輸入節點NIN2,以及一輸出節點NOUT,並包括:一橋式整流器210、一第一電感器L1、一第二電感器L2、一第一功率切換器220、一第二功率切換器230、一脈衝寬度調變積體電路240、一能量釋放電路250、一能量回收電路260,以及一輸出級電路270,其中輸出級電路270包括一能量補償電路280。升壓轉換器200之第一輸入節點NIN1和第二輸入節點NIN2可分別由一外部輸入電源處接收一第一輸入電位VIN1和一第二輸入電位VIN2,而升壓轉換器200之輸出節點NOUT可用於輸出一輸出電位VOUT至一電子裝置(未顯示)。FIG. 2 shows a schematic diagram of a
橋式整流器210包括一第一二極體D1、一第二二極體D2、一第三二極體D3,以及一第四二極體D4。第一二極體D1之陽極係耦接至第一輸入節點NIN1,而第一二極體D1之陰極係耦接至一第一節點N1以輸出一整流電位VR。第二二極體D2之陽極係耦接至第二輸入節點NIN2,而第二二極體D2之陰極係耦接至第一節點N1。第三二極體D3之陽極係耦接至一接地電位VSS,而第三二極體D3之陰極係耦接至第一輸入節點NIN1。第四二極體D4之陽極係耦接至接地電位VSS,而第四二極體D4之陰極係耦接至第二輸入節點NIN2。The
第一電感器L1之第一端係耦接至第一節點N1以接收整流電位VR,而第一電感器L1之第二端係耦接至一第二節點N2。The first end of the first inductor L1 is coupled to the first node N1 to receive the rectified potential VR, and the second end of the first inductor L1 is coupled to a second node N2.
第二電感器L2之第一端係耦接至第一節點N1以接收整流電位VR,而第二電感器L2之第二端係耦接至一第三節點N3。The first end of the second inductor L2 is coupled to the first node N1 to receive the rectified potential VR, and the second end of the second inductor L2 is coupled to a third node N3.
第一功率切換器220包括一第一電晶體M1。第一電晶體M1可為一N型金氧半場效電晶體。第一電晶體M1具有一控制端(例如:一閘極)、一第一端(例如:一源極),以及一第二端(例如:一汲極),其中第一電晶體M1之控制端係用於接收一第一脈衝寬度調變電位VM1,第一電晶體M1之第一端係耦接至接地電位VSS,而第一電晶體M1之第二端係耦接至第二節點N2。第一脈衝寬度調變電位VM1可用於調整第一功率切換器220之責任週期。例如,若第一脈衝寬度調變電位VM1為高邏輯位準,則第一電晶體M1將可被致能;反之,若第一脈衝寬度調變電位VM1為低邏輯位準,則第一電晶體M1將可被禁能。The
第二功率切換器230包括一第二電晶體M2。第二電晶體M2可為一N型金氧半場效電晶體。第二電晶體M2之控制端係用於接收一第二脈衝寬度調變電位VM2,第二電晶體M2之第一端係耦接至接地電位VSS,而第二電晶體M2之第二端係耦接至第三節點N3。第二脈衝寬度調變電位VM2可用於調整第二功率切換器230之責任週期。例如,若第二脈衝寬度調變電位VM2為高邏輯位準,則第二電晶體M2將可被致能;反之,若第二脈衝寬度調變電位VM2為低邏輯位準,則第二電晶體M2將可被禁能。The second power switch 230 includes a second transistor M2. The second transistor M2 can be an N-type MOSFET. The control terminal of the second transistor M2 is used for receiving a second PWM potential VM2, the first terminal of the second transistor M2 is coupled to the ground potential VSS, and the second terminal of the second transistor M2 is coupled to the third node N3. The second PWM potential VM2 can be used to adjust the duty cycle of the second power switch 230 . For example, if the second PWM potential VM2 is at a high logic level, the second transistor M2 will be enabled; on the contrary, if the second PWM potential VM2 is at a low logic level, the first transistor M2 will be enabled. The second transistor M2 will be disabled.
脈衝寬度調變積體電路240可產生第一脈衝寬度調變電位VM1和第二脈衝寬度調變電位VM2。例如,第一脈衝寬度調變電位VM1和第二脈衝寬度調變電位VM2於升壓轉換器200初始化時可維持於一固定電位,而在升壓轉換器200進入正常使用階段後則可提供週期性之時脈波形。The PWM integrated
能量釋放電路250包括一第五二極體D5和一第三電感器L3。第五二極體D5之陽極係耦接至接地電位VSS,而第五二極體D5之陰極係耦接至一第四節點N4。第三電感器L3之第一端係耦接至第四節點N4,而第三電感器L3之第二端係耦接至一第五節點N5。The
能量回收電路260包括一第四電感器L4、一第一電阻器R1,以及一第六二極體D6。第四電感器L4之第一端係耦接至接地電位VSS,而第四電感器L4之第二端係耦接至一第六節點N6。第一電阻器R1之第一端係耦接至第六節點N6,而第一電阻器R1之第二端係耦接至一第七節點N7。第六二極體D6之陽極係耦接至第五節點N5,而第六二極體D6之陰極係耦接至第七節點N7。在一些實施例中,第一電感器L1係與第四電感器L4互相耦合,而第二電感器L2亦與第四電感器L4互相耦合。The
輸出級電路270之能量補償電路280包括一第一電容器C1、一第二電阻器R2、一第五電感器L5,以及一第七二極體D7。第一電容器C1之第一端係耦接至第五節點N5,而第一電容器C1之第二端係耦接至一共同節點NCM。例如,共同節點NCM可提供另一接地電位,其可與前述之接地電位VSS相同或相異。第二電阻器R2之第一端係耦接至一第八節點N8,而第二電阻器R2之第二端係耦接至第五節點N5。第五電感器L5之第一端係耦接至第八節點N8,而第五電感器L5之第二端係耦接至一第九節點N9。第七二極體D7之陽極係耦接至共同節點NCM,而第七二極體D7之陰極係耦接至第九節點N9。在一些實施例中,第三電感器L3係與第五電感器L5互相耦合。The
除了能量補償電路280之外,輸出級電路270更包括一第八二極體D8、一第九二極體D9、一第二電容器C2,以及一第三電容器C3。第八二極體D8之陽極係耦接至第二節點N2,而第八二極體D8之陰極係耦接至輸出節點NOUT。第九二極體D9之陽極係耦接至第三節點N3,而第九二極體D9之陰極係耦接至輸出節點NOUT。第二電容器C2具有一第一端和一第二端,其中第二電容器C2之第一端係耦接至輸出節點NOUT,而第二電容器C2之第二端係耦接至第五節點N5。第三電容器C3之第一端係耦接至輸出節點NOUT,而第三電容器C3之第二端係耦接至共同節點NCM。In addition to the
第3圖係顯示根據本發明一實施例所述之升壓轉換器200之電位波形圖,其中橫軸代表時間,而縱軸代表電位位準。根據第3圖之量測結果,升壓轉換器200可逐一操作於一第一階段T1、一第二階段T2、一第三階段T3,以及一第四階段T4,其原理可如下列所述。必須注意的是,第一電容器C1之第一端和第二端之間具有一第一電位差VD1,第二電容器C2之第一端和第二端之間具有一第二電位差VD2,而第三電容器C3之第一端和第二端之間具有一第三電位差VD3。當共同節點NCM之電位設定為0V時,輸出電位VOUT之電位位準可大致等於第三電位差VD3。FIG. 3 shows a potential waveform diagram of the
在第一階段T1期間,第一脈衝寬度調變電位VM1為高邏輯位準且第二脈衝寬度調變電位VM2為低邏輯位準,使得第一電晶體M1被致能,而第二電晶體M2被禁能。此時,第一電感器L1逐漸儲存電磁能。能量釋放電路250和能量回收電路260皆不動作。第一電容器C1之第一電位差VD1、第二電容器C2之第二電位差VD2,以及第三電容器C3之第三電位差VD3皆維持於0V。During the first phase T1, the first PWM potential VM1 is at a high logic level and the second PWM potential VM2 is at a low logic level, so that the first transistor M1 is enabled, and the second Transistor M2 is disabled. At this time, the first inductor L1 gradually stores electromagnetic energy. Neither the
在第二階段T2期間,第一脈衝寬度調變電位VM1和第二脈衝寬度調變電位VM2皆為低邏輯位準,使得第一電晶體M1和第二電晶體M2皆被禁能。此時,儲存於第一電感器L1之電磁能將經由第八二極體D8對第二電容器C2進行充電。能量回收電路260之第四電感器L4逐漸儲存電磁能,但能量釋放電路250則不動作。由於第一電容器C1尚未充電,故第三電容器C3之第三電位差VD3會等於第二電容器C2之第二電位差VD2,其並由0V逐漸上升。During the second phase T2, both the first PWM potential VM1 and the second PWM potential VM2 are at low logic levels, so that both the first transistor M1 and the second transistor M2 are disabled. At this time, the electromagnetic energy stored in the first inductor L1 will charge the second capacitor C2 through the eighth diode D8. The fourth inductor L4 of the
在第三階段T3期間,第一脈衝寬度調變電位VM1為低邏輯位準且第二脈衝寬度調變電位VM2為高邏輯位準,使得第一電晶體M1被禁能,而第二電晶體M2被致能。此時,能量回收電路260之第四電感器L4因為冷次定律發生電壓反轉,並迫使能量釋放電路250之第五二極體D5被致能。由於第四電感器L4所儲存之電磁能會經由第三電感器L3和第五電感器L5轉移至第一電容器C1,故第一電容器C1會被充電。因此,第三電容器C3之第三電位差VD3會大致等於第一電位差VD1和第二電位差VD2之總和。During the third phase T3, the first PWM potential VM1 is at a low logic level and the second PWM potential VM2 is at a high logic level, so that the first transistor M1 is disabled and the second transistor M1 is disabled. Transistor M2 is enabled. At this time, the voltage of the fourth inductor L4 of the
在第四階段T4期間,第一脈衝寬度調變電位VM1和第二脈衝寬度調變電位VM2皆為低邏輯位準,使得第一電晶體M1和第二電晶體M2皆被禁能。此時,儲存於第二電感器L2之電磁能將經由第九二極體D9對第二電容器C2進行充電。能量回收電路260之第四電感器L4逐漸儲存電磁能,但能量釋放電路250則不動作。因為能量補償電路280之第七二極體D7被禁能,第一電容器C1之第一電位差VD1可維持不變。因此,第三電容器C3之第三電位差VD3亦會大致等於第一電位差VD1和第二電位差VD2之總和。During the fourth phase T4, both the first PWM potential VM1 and the second PWM potential VM2 are at low logic levels, so that both the first transistor M1 and the second transistor M2 are disabled. At this time, the electromagnetic energy stored in the second inductor L2 will charge the second capacitor C2 through the ninth diode D9. The fourth inductor L4 of the
簡而言之,升壓轉換器200之不同操作階段可如下表一所述:
根據第3圖之量測結果,本發明額外使用第一電容器C1之第一電位差VD1來補償第三電容器C3之第三電位差VD3(或是輸出電位VOUT),是以第二電容器C2之第二電位差VD2可設定為一相對較低值(例如,傳統第二電位差VD2必須等於400V,但本發明之第二電位差VD2可僅約為250V,惟亦不僅限於此)。在此設計下,所提之升壓轉換器200可保證第一功率切換器220和第二功率切換器230之每一者之責任週期皆能小於50%,從而可有效降低升壓轉換器200之相關雜訊。According to the measurement result in Fig. 3, the present invention additionally uses the first potential difference VD1 of the first capacitor C1 to compensate the third potential difference VD3 (or the output potential VOUT) of the third capacitor C3, so that the second potential difference of the second capacitor C2 The potential difference VD2 can be set to a relatively low value (eg, the conventional second potential difference VD2 must be equal to 400V, but the second potential difference VD2 of the present invention can be only about 250V, but not limited thereto). Under this design, the proposed
在一些實施例中,升壓轉換器200之元件參數可如下列所述。第一電容器C1之電容值可介於544μF至816μF之間,較佳可為680μF。第二電容器C2之電容值可介於544μF至816μF之間,較佳可為680μF。第三電容器C3之電容值可介於1200μF至1800μF之間,較佳可為1500μF。第一電感器L1之電感值可介於315μH至385μH之間,較佳可為350μH。第二電感器L2之電感值可介於315μH至385μH之間,較佳可為350μH。第三電感器L3之電感值可介於127.5μH至172.5μH之間,較佳可為150μH。第四電感器L4之電感值可介於187μH至253μH之間,較佳可為220μH。第五電感器L5之電感值可介於382.5μH至517.5μH之間,較佳可為450μH。第一電阻器R1之電阻值可介於90Ω至110Ω之間,較佳可為100Ω。第二電阻器R2之電阻值可介於0.9KΩ至1.1KΩ之間,較佳可為1KΩ。第一功率切換器220和第二功率切換器230之每一者之最大責任週期可約為49.2%。第一電位差VD1之最大值可約為150V。第二電位差VD2之最大值可約為250V。第三電位差VD3之最大值可約為400V。以上參數範圍係根據多次實驗結果而得出,其有助於最小化升壓轉換器200之次諧波振盪。In some embodiments, the component parameters of the
本發明提出一種新穎之升壓轉換器,其包括能量釋放電路和能量回收電路以最小化功率切換器之責任週期。根據實際量測結果,使用前述設計之升壓轉換器可大幅降低相關雜訊,故其很適合應用於各種各式之裝置當中。The present invention proposes a novel boost converter that includes an energy release circuit and an energy recovery circuit to minimize the duty cycle of the power switch. According to the actual measurement results, using the boost converter of the above design can greatly reduce the related noise, so it is very suitable for use in various devices.
值得注意的是,以上所述之電位、電流、電阻值、電感值、電容值,以及其餘元件參數均非為本發明之限制條件。設計者可以根據不同需要調整這些設定值。本發明之升壓轉換器並不僅限於第1-3圖所圖示之狀態。本發明可以僅包括第1-3圖之任何一或複數個實施例之任何一或複數項特徵。換言之,並非所有圖示之特徵均須同時實施於本發明之升壓轉換器當中。It should be noted that the potential, current, resistance value, inductance value, capacitance value and other component parameters mentioned above are not limitations of the present invention. Designers can adjust these settings according to different needs. The boost converter of the present invention is not limited to the state illustrated in FIGS. 1-3. The present invention may include only any one or more of the features of any one or more of the embodiments of Figures 1-3. In other words, not all of the features shown must be simultaneously implemented in the boost converter of the present invention.
本發明雖以較佳實施例揭露如上,然其並非用以限定本發明的範圍,任何熟習此項技藝者,在不脫離本發明之精神和範圍內,當可做些許的更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。Although the present invention is disclosed above with preferred embodiments, it is not intended to limit the scope of the present invention. Anyone skilled in the art can make some changes and modifications without departing from the spirit and scope of the present invention. Therefore, The protection scope of the present invention shall be determined by the scope of the appended patent application.
100,200:升壓轉換器 110,210:橋式整流器 120,220:第一功率切換器 130,230:第二功率切換器 140,240:脈衝寬度調變積體電路 150,250:能量釋放電路 160,260:能量回收電路 170,270:輸出級電路 180,280:能量補償電路 C1:第一電容器 C2:第二電容器 C3:第三電容器 D1:第一二極體 D2:第二二極體 D3:第三二極體 D4:第四二極體 D5:第五二極體 D6:第六二極體 D7:第七二極體 D8:第八二極體 D9:第九二極體 L1:第一電感器 L2:第二電感器 L3:第三電感器 L4:第四電感器 L5:第五電感器 M1:第一電晶體 M2:第二電晶體 N1:第一節點 N2:第二節點 N3:第三節點 N4:第四節點 N5:第五節點 N6:第六節點 N7:第七節點 N8:第八節點 N9:第九節點 NCM:共同節點 NIN1:第一輸入節點 NIN2:第二輸入節點 NOUT:輸出節點 R1:第一電阻器 R2:第二電阻器 T1:第一階段 T2:第二階段 T3:第三階段 T4:第四階段 VD1:第一電位差 VD2:第二電位差 VD3:第三電位差 VIN1:第一輸入電位 VIN2:第二輸入電位 VM1:第一脈衝寬度調變電位 VM2:第二脈衝寬度調變電位 VOUT:輸出電位 VR:整流電位 VSS:接地電位100,200: Boost Converter 110, 210: Bridge Rectifiers 120,220: First power switch 130,230: Second power switch 140, 240: Pulse Width Modulation Integrated Circuits 150,250: Energy Release Circuit 160, 260: Energy Recovery Circuits 170, 270: Output stage circuit 180,280: Energy Compensation Circuit C1: first capacitor C2: Second capacitor C3: Third capacitor D1: first diode D2: Second diode D3: Third diode D4: Fourth diode D5: Fifth diode D6: sixth diode D7: seventh diode D8: Eighth diode D9: ninth diode L1: first inductor L2: Second Inductor L3: Third Inductor L4: Fourth Inductor L5: Fifth inductor M1: first transistor M2: second transistor N1: the first node N2: second node N3: The third node N4: Fourth Node N5: Fifth node N6: sixth node N7: seventh node N8: Eighth Node N9: ninth node NCM: Common Node NIN1: The first input node NIN2: Second input node NOUT: output node R1: first resistor R2: Second resistor T1: Phase 1 T2: Phase 2 T3: Stage Three T4: Stage Four VD1: The first potential difference VD2: The second potential difference VD3: The third potential difference VIN1: the first input potential VIN2: The second input potential VM1: The first PWM potential VM2: The second PWM potential VOUT: output potential VR: rectified potential VSS: ground potential
第1圖係顯示根據本發明一實施例所述之升壓轉換器之示意圖。 第2圖係顯示根據本發明一實施例所述之升壓轉換器之示意圖。 第3圖係顯示根據本發明一實施例所述之升壓轉換器之電位波形圖。FIG. 1 shows a schematic diagram of a boost converter according to an embodiment of the present invention. FIG. 2 shows a schematic diagram of a boost converter according to an embodiment of the present invention. FIG. 3 shows a potential waveform diagram of a boost converter according to an embodiment of the present invention.
100:升壓轉換器100: Boost Converter
110:橋式整流器110: Bridge Rectifier
120:第一功率切換器120: The first power switch
130:第二功率切換器130: Second power switch
140:脈衝寬度調變積體電路140: Pulse width modulation integrated circuit
150:能量釋放電路150: Energy release circuit
160:能量回收電路160: Energy Recovery Circuit
170:輸出級電路170: Output stage circuit
180:能量補償電路180: Energy compensation circuit
L1:第一電感器L1: first inductor
L2:第二電感器L2: Second Inductor
VIN1:第一輸入電位VIN1: the first input potential
VIN2:第二輸入電位VIN2: The second input potential
VM1:第一脈衝寬度調變電位VM1: The first PWM potential
VM2:第二脈衝寬度調變電位VM2: The second PWM potential
VOUT:輸出電位VOUT: output potential
VR:整流電位VR: rectified potential
VSS:接地電位VSS: ground potential
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW109127508A TWI731772B (en) | 2020-08-13 | 2020-08-13 | Boost converter with low noise |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW109127508A TWI731772B (en) | 2020-08-13 | 2020-08-13 | Boost converter with low noise |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI731772B TWI731772B (en) | 2021-06-21 |
TW202207595A true TW202207595A (en) | 2022-02-16 |
Family
ID=77517316
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW109127508A TWI731772B (en) | 2020-08-13 | 2020-08-13 | Boost converter with low noise |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI731772B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI784810B (en) * | 2021-11-24 | 2022-11-21 | 宏碁股份有限公司 | Boost power conversion device |
TWI826135B (en) * | 2022-11-22 | 2023-12-11 | 宏碁股份有限公司 | Boost converter with high conversion efficiency |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7269034B2 (en) * | 1997-01-24 | 2007-09-11 | Synqor, Inc. | High efficiency power converter |
TWI223135B (en) * | 2003-07-31 | 2004-11-01 | Acbel Polytech Inc | Zero-current switching power factor corrector with energy recycling |
US7541791B2 (en) * | 2006-03-14 | 2009-06-02 | Energy Conservation Technologies, Inc. | Switch mode power converter having multiple inductor windings equipped with snubber circuits |
TWI687031B (en) * | 2018-09-18 | 2020-03-01 | 遠東科技大學 | High step-down ration direct current power converter |
CN210183223U (en) * | 2019-08-05 | 2020-03-24 | 芯好半导体(成都)有限公司 | Energy recovery circuit, energy recovery module, energy recovery system, switching power supply and intelligent control switching power supply |
-
2020
- 2020-08-13 TW TW109127508A patent/TWI731772B/en active
Also Published As
Publication number | Publication date |
---|---|
TWI731772B (en) | 2021-06-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113972848B (en) | Boost Converter with High Power Factor | |
TWI731772B (en) | Boost converter with low noise | |
TWI740686B (en) | Boost converter for reducing total harmonic distortion | |
TWI751768B (en) | Soft-start boost converter | |
TWI726758B (en) | Power supply device for eliminating ringing effect | |
TW202123592A (en) | Boost converter | |
TWI704757B (en) | Boost converter | |
TWI757667B (en) | Boost converter | |
TWI731675B (en) | Power supply device for eliminating ringing effect | |
TWI806548B (en) | Boost converter | |
TWI751658B (en) | Boost converter with low loss | |
TWI844324B (en) | Boost converter with high conversion efficiency | |
TWI832742B (en) | Boost converter for suppressing magnetic saturation | |
CN113541512B (en) | boost converter | |
TWI817491B (en) | Boost converter with high efficiency | |
TWI715468B (en) | Buck converter | |
TWI826135B (en) | Boost converter with high conversion efficiency | |
CN113938014B (en) | Power supplies that eliminate ringing | |
TWI806609B (en) | Boost converter with high output stability | |
TWI837670B (en) | Power supply device | |
TWI837944B (en) | Power supply device with high output stability | |
TWI817586B (en) | Power supply device with tunable heat dissipation function | |
TW202406291A (en) | Power supply device with high efficiency | |
TWI763057B (en) | Boost converter for eliminating start-up overshoot | |
CN113765415B (en) | buck converter |