TWI784810B - Boost power conversion device - Google Patents
Boost power conversion device Download PDFInfo
- Publication number
- TWI784810B TWI784810B TW110143664A TW110143664A TWI784810B TW I784810 B TWI784810 B TW I784810B TW 110143664 A TW110143664 A TW 110143664A TW 110143664 A TW110143664 A TW 110143664A TW I784810 B TWI784810 B TW I784810B
- Authority
- TW
- Taiwan
- Prior art keywords
- terminal
- power
- power switch
- coupled
- switch
- Prior art date
Links
Images
Landscapes
- Amplifiers (AREA)
- Dc-Dc Converters (AREA)
Abstract
Description
本發明是有關於一種升壓式電源轉換裝置,且特別是有關於一種具有低漣波電流波動的升壓式電源轉換裝置。The present invention relates to a step-up power conversion device, and more particularly to a step-up power conversion device with low ripple current fluctuation.
一般來說,升壓式轉換器在功率較大的條件下,升壓式轉換器的輸出電流也較大,升壓式轉換器的輸出漣波(ripple)電流也較大。因此,在設計上,升壓式轉換器會利用彼此並聯耦接的多個輸出電容器來抑制輸出漣波電流的波動。然而,多個輸出電容器會增加輸出端迴路及回授補償設計上困難度,也會造成開機瞬間因電容性過大所產生的較大湧浪(inrush)電流,甚至導致保險絲燒斷等風險。因此,升壓式轉換器必須在有限的輸出電容器的設計上來抑制輸出漣波電流的波動,從而防止大型湧浪電流的發生。Generally speaking, under the condition of high power of the boost converter, the output current of the boost converter is also large, and the output ripple (ripple) current of the boost converter is also large. Therefore, in design, the boost converter utilizes a plurality of output capacitors coupled in parallel with each other to suppress the fluctuation of the output ripple current. However, multiple output capacitors will increase the difficulty in the design of the output circuit and feedback compensation, and will also cause a large inrush current due to excessive capacitance at the moment of power-on, and even cause risks such as blown fuses. Therefore, the boost converter must be designed with a limited output capacitor to suppress the fluctuation of the output ripple current, so as to prevent the occurrence of large inrush current.
本發明提供一種新穎且具有低漣波電流波動的升壓式電源轉換裝置。The present invention provides a novel step-up power conversion device with low ripple current fluctuation.
本發明的升壓式電源轉換裝置包括第一升壓電感器、第二升壓電感器、第一同步整流開關、第二同步整流開關、第一功率開關、第二功率開關、輸出電容器以及控制電路。第一升壓電感器的第一端以及第二升壓電感器的第一端接收經整流電源。第一同步整流開關耦接於第一升壓電感器的第二端與升壓式電源轉換裝置的裝置輸出端之間。第二同步整流開關耦接於第二升壓電感器的第二端與裝置輸出端之間。第一功率開關耦接於第一升壓電感器的第二端與接地端之間。第二功率開關耦接於第二升壓電感器的第二端與接地端之間。輸出電容器耦接於裝置輸出端與接地端之間。控制電路耦接於第一同步整流開關的控制端、第二同步整流開關的控制端、第一功率開關的控制端以及第二功率開關的控制端。控制電路對第一功率開關以及第二功率開關進行輪替切換操作。當第一功率開關被導通時,控制電路依據關聯於流經第一功率開關的電力的第一感測值來斷開第一同步整流開關。當第二功率開關被導通時,控制電路依據關聯於流經第二功率開關的電力的第二感測值來斷開第二同步整流開關。The boost power conversion device of the present invention includes a first boost inductor, a second boost inductor, a first synchronous rectification switch, a second synchronous rectification switch, a first power switch, a second power switch, an output capacitor and a control circuit. A first end of the first boost inductor and a first end of the second boost inductor receive rectified power. The first synchronous rectification switch is coupled between the second end of the first boost inductor and the device output end of the boost power conversion device. The second synchronous rectification switch is coupled between the second end of the second boost inductor and the output end of the device. The first power switch is coupled between the second end of the first boost inductor and the ground end. The second power switch is coupled between the second end of the second boost inductor and the ground end. The output capacitor is coupled between the device output terminal and the ground terminal. The control circuit is coupled to the control terminal of the first synchronous rectification switch, the control terminal of the second synchronous rectification switch, the control terminal of the first power switch, and the control terminal of the second power switch. The control circuit performs alternate switching operations on the first power switch and the second power switch. When the first power switch is turned on, the control circuit turns off the first synchronous rectification switch according to a first sensed value associated with power flowing through the first power switch. When the second power switch is turned on, the control circuit turns off the second synchronous rectification switch according to the second sensed value associated with the power flowing through the second power switch.
基於上述,控制電路對第一功率開關以及第二功率開關進行輪替切換操作。控制電路依據第一感測值以及第二感測值來控制第一同步整流開關以及第二同步整流開關。因此,本發明實現了具有採輪替切換操作的兩個升壓電路的升壓式電源轉換裝置。基於上述的兩個升壓電路,控制電路依據關聯於流經第一功率開關的電力來斷開第一同步整流開關。當第二功率開關被導通時,控制電路依據關聯於流經第二功率開關的電力來斷開第二同步整流開關。因此,本發明實現了具有自動同步整流功能的升壓式電源轉換裝置。此外,各個升壓電路被控制以採輪替切換操作來提供輸出電源,並共同在輸出端產生輸出電流。在相同的輸出電流需求下,升壓式電源轉換裝置的輸出漣波電流的波動會被大幅降低。如此一來,輸出電容器的電容值不需要被增加來抑制輸出漣波電流的波動。此外,輸出電容器的電容值不需要被增加的情況下,升壓式電源轉換裝置也防止大型湧浪電流的發生。Based on the above, the control circuit performs alternate switching operations on the first power switch and the second power switch. The control circuit controls the first synchronous rectification switch and the second synchronous rectification switch according to the first sensing value and the second sensing value. Therefore, the present invention realizes a boost type power conversion device having two boost circuits with alternate switching operations. Based on the above two boost circuits, the control circuit turns off the first synchronous rectification switch according to the power associated with the first power switch. When the second power switch is turned on, the control circuit turns off the second synchronous rectification switch according to the power associated with the second power switch. Therefore, the present invention realizes a step-up power conversion device with automatic synchronous rectification function. In addition, each booster circuit is controlled to take turns switching to provide output power and jointly generate output current at the output terminal. Under the same output current requirement, the fluctuation of the output ripple current of the step-up power conversion device can be greatly reduced. In this way, the capacitance of the output capacitor does not need to be increased to suppress the fluctuation of the output ripple current. In addition, the step-up power conversion device also prevents a large inrush current from occurring without the capacitance of the output capacitor needing to be increased.
為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。In order to make the above-mentioned features and advantages of the present invention more comprehensible, the following specific embodiments are described in detail together with the accompanying drawings.
本發明的部份實施例接下來將會配合附圖來詳細描述,以下的描述所引用的元件符號,當不同附圖出現相同的元件符號將視為相同或相似的元件。這些實施例只是本發明的一部份,並未揭示所有本發明的可實施方式。更確切的說,這些實施例只是本發明的專利申請範圍中的範例。Parts of the embodiments of the present invention will be described in detail with reference to the accompanying drawings. For the referenced reference symbols in the following description, when the same reference symbols appear in different drawings, they will be regarded as the same or similar components. These embodiments are only a part of the present invention, and do not reveal all possible implementation modes of the present invention. Rather, these embodiments are only examples within the scope of the patent application of the present invention.
請參考圖1,圖1是依據本發明一實施例所繪示的升壓式電源轉換裝置的示意圖。在本實施例中,升壓式電源轉換裝置100包括升壓電感器LM1、LM2、同步整流開關SR1、SR2、功率開關Q1、Q2、控制電路110以及輸出電容器CO。升壓電感器LM1的第一端接收經整流電源VR。升壓電感器LM2的第一端接收經整流電源VR。同步整流開關SR1耦接於升壓電感器LM1的第二端與升壓式電源轉換裝置100的裝置輸出端之間。裝置輸出端用以輸出輸出電源VO。同步整流開關SR2耦接於升壓電感器LM2的第二端與裝置輸出端之間。功率開關Q1耦接於升壓電感器LM1的第二端與接地端GND之間。功率開關Q2耦接於升壓電感器LM2的第二端與接地端GND之間。輸出電容器CO耦接於裝置輸出端與接地端GND之間。Please refer to FIG. 1 . FIG. 1 is a schematic diagram of a step-up power conversion device according to an embodiment of the present invention. In this embodiment, the boost
在本實施例中,升壓電感器LM1、同步整流開關SR1、功率開關Q1以及輸出電容器CO的組合可以表示為第一升壓電路BC1。升壓電感器LM2、同步整流開關SR2、功率開關Q2以及輸出電容器CO的組合可以表示為第二升壓電路BC2。In this embodiment, the combination of the boost inductor LM1, the synchronous rectification switch SR1, the power switch Q1 and the output capacitor CO can be represented as a first boost circuit BC1. The combination of boost inductor LM2, synchronous rectification switch SR2, power switch Q2 and output capacitor CO can be represented as a second boost circuit BC2.
在本實施例中,控制電路110耦接於同步整流開關SR1的控制端、同步整流開關SR2的控制端、功率開關Q1的控制端以及功率開關Q2的控制端。控制電路110對功率開關Q1、Q2進行輪替切換操作。當功率開關Q1被導通時,控制電路110依據關聯於流經功率開關Q1的電力的第一感測值V1來斷開同步整流開關SR1。當功率開關Q2被導通時,控制電路110依據關聯於流經功率開關Q2的電力的第二感測值V2來斷開同步整流開關SR2。如此一來,本實施例實現了具有採輪替切換操作並且具有自動同步整流功能的兩個升壓電路。In this embodiment, the
請同時參考圖1以及圖2,圖2是依據本發明一實施例所繪示的同步整流開關以及功率開關的狀態時序圖。在本實施例中,控制電路110提供控制訊號GD1至功率開關Q1的控制端,並提供控制訊號GD2至功率開關Q2的控制端。流經功率開關Q1的電力與第一感測值V1呈正相關。流經功率開關Q2的電力與第二感測值V2呈正相關。控制電路110對第一感測值V1以及對第二感測值V2進行判斷。Please refer to FIG. 1 and FIG. 2 at the same time. FIG. 2 is a state timing diagram of a synchronous rectification switch and a power switch according to an embodiment of the present invention. In this embodiment, the
在本實施例中,控制電路110在時間區間T1、T3提供具有高電壓準位的控制訊號GD1。功率開關Q1在時間區間T1、T3反應於具有高電壓準位的控制訊號GD1而被導通。因此,電力會流經功率開關Q1。第一感測值V1會被上升。當第一感測值V1被判斷出大於參考值時,控制電路110會在時間區間T1、T3提供低電壓準位的控制訊號VSR1以斷開第一同步整流開關SR1。因此,第一升壓電路BC1在時間區間T1、T3不提供電力。In this embodiment, the
控制電路110在時間區間T1、T3提供具有低電壓準位的控制訊號GD2。功率開關Q2會在時間區間T1、T3被斷開。沒有電力流經功率開關Q2。因此,第二感測值V2被下降至小於或等於參考值。控制電路110會在時間區間T1、T3提供高電壓準位的控制訊號VSR2以導通同步整流開關SR2。第二升壓電路BC2在時間區間T1、T3提供電力。The
在本實施例中,控制電路110在時間區間T2、T4提供具有低電壓準位的控制訊號GD1。功率開關Q1在時間區間T2、T4被斷開。沒有電力流經功率開關Q1。第一感測值V1下降至小於或等於參考值。因此,控制電路110會在時間區間T2、T4導通同步整流開關SR1。第一升壓電路BC1在時間區間T2、T4提供電力。In this embodiment, the
控制電路110在時間區間T2、T4提供具有高電壓準位的控制訊號GD2。功率開關Q2會在時間區間T2、T4被導通。電力流經功率開關Q2。因此,第二感測值V2會被上升。當第二感測值V2被判斷出大於參考值時,控制電路110會在時間區間T2、T4斷開同步整流開關SR2。因此,第二升壓電路BC2在時間區間T2、T4不提供電力。The
在本實施例中,為了避免同步整流開關SR1、SR2發生同時導通,時間區間T1~T4中的相鄰兩個時間區間之間會設計一死區時間長度。舉例來說,高電壓準位的控制訊號GD1、GD2、VSR1、VSR2基於死區時間長度被延遲提供。In this embodiment, in order to avoid simultaneous conduction of the synchronous rectification switches SR1 and SR2, a dead time length is designed between two adjacent time intervals in the time interval T1-T4. For example, the high voltage level control signals GD1 , GD2 , VSR1 , VSR2 are delayed based on the length of the dead time.
在本實施例中,第一升壓電路BC1以及第二升壓電路BC2採輪替切換操作以共同在輸出端產生預期輸出電流。第一升壓電路BC1會提供第一輸出電源。第二升壓電路BC2則會提供第二輸出電源。第一輸出電源以及第二輸出電源會共同產生預期輸出電流。預期輸出電流大致上是第一輸出電源的電流以及第二輸出電源的電流的加總。In this embodiment, the first booster circuit BC1 and the second booster circuit BC2 are alternately switched to jointly generate a desired output current at the output terminal. The first boost circuit BC1 provides a first output power. The second boost circuit BC2 will provide the second output power. The first output power and the second output power jointly generate a desired output current. The expected output current is substantially the sum of the current of the first output power supply and the current of the second output power supply.
應注意的是,基於輪替切換操作,第一升壓電路BC1所產生的輸出漣波電流的波動與第二升壓電路BC2所產生的輸出漣波電流的波動並不相同。進一步來說,第一升壓電路BC1所產生的第一輸出漣波電流的波動與第二升壓電路BC2所產生的第二輸出漣波電流的波動大致相反。第一輸出漣波電流的波動以及第二輸出漣波電流的波動的加總會縮小位於輸出端處的輸出漣波電流的波動。位於輸出端處的輸出漣波電流的波動會被大幅降低至約50%。因此,在相同的預期輸出電流需求下,上述的輪替切換操作會降低輸出漣波電流的波動。如此一來,輸出電容器CO的電容值不需要被增加來抑制輸出漣波電流的波動。此外,輸出電容器CO的電容值不需要被增加的情況下,升壓式電源轉換裝置100也防止在被啟動時發生大型湧浪電流。It should be noted that, based on the alternate switching operation, the fluctuation of the output ripple current generated by the first boost circuit BC1 is different from the fluctuation of the output ripple current generated by the second boost circuit BC2 . Further, the fluctuation of the first output ripple current generated by the first boost circuit BC1 is substantially opposite to the fluctuation of the second output ripple current generated by the second boost circuit BC2 . The sum of the fluctuation of the first output ripple current and the fluctuation of the second output ripple current will reduce the fluctuation of the output ripple current at the output terminal. The fluctuation of the output ripple current at the output is greatly reduced to about 50%. Therefore, under the same expected output current demand, the aforementioned alternate switching operation will reduce the fluctuation of the output ripple current. In this way, the capacitance of the output capacitor CO does not need to be increased to suppress the fluctuation of the output ripple current. In addition, the step-up
請回到圖1的實施例,在本實施例中,升壓式電源轉換裝置100還包括整流電路BR。整流電路BR耦接於升壓電感器LM1的第一端以及升壓電感器LM2的第一端。整流電路BR接收輸入電源VIN,並對輸入電源VIN進行整流操作以產生經整流電源VR。整流電路BR將經整流電源VR提供至升壓電感器LM1的第一端以及升壓電感器LM2的第一端。Please return to the embodiment shown in FIG. 1 , in this embodiment, the step-up
在本實施例中,升壓式電源轉換裝置100適用於高頻率的輪替切換操作。輪替切換操作的頻率介於150千赫茲(kHz)至250 kHz之間。也就是說,控制訊號GD1、GD2的頻率介於150 kHz至250 kHz之間。In this embodiment, the step-up
請參考圖3,圖3是依據本發明第一實施例所繪示的升壓式電源轉換裝置的電路示意圖。在本實施例中,升壓式電源轉換裝置200包括整流電路BR、升壓電感器LM1、LM2、同步整流開關SR1、SR2、功率開關Q1、Q2、控制電路210以及輸出電容器CO。整流電路BR、升壓電感器LM1、LM2、同步整流開關SR1、SR2、功率開關Q1、Q2以及輸出電容器CO之間的耦接方式已在圖1的實施例中充份說明,因此不再重述。在本實施例中,控制電路210包括控制器211、感測電路212_1、212_2以及比較器CP1、CP2。Please refer to FIG. 3 . FIG. 3 is a schematic circuit diagram of a step-up power conversion device according to a first embodiment of the present invention. In this embodiment, the boost
在本實施例中,控制器211耦接於功率開關Q1的控制端以及功率開關Q2的控制端。控制器211將控制訊號GD1提供至功率開關Q1的控制端,並將控制訊號GD2提供至功率開關Q1的控制端。基於控制訊號GD1、GD2,功率開關Q1、Q2會在不同時間區間被導通。In this embodiment, the
在本實施例中,感測電路212_1耦接於升壓電感器LM1的第二端與功率開關Q1的第一端之間。感測電路212_1將流經功率開關Q1的電力轉換為第一感測值V1。感測電路212_2耦接於升壓電感器LM2的第二端與功率開關Q2的第一端之間。感測電路212_2將流經功率開關Q2的電力轉換為第二感測值V2。In this embodiment, the sensing circuit 212_1 is coupled between the second end of the boost inductor LM1 and the first end of the power switch Q1. The sensing circuit 212_1 converts the power flowing through the power switch Q1 into a first sensing value V1. The sensing circuit 212_2 is coupled between the second end of the boost inductor LM2 and the first end of the power switch Q2. The sensing circuit 212_2 converts the power flowing through the power switch Q2 into a second sensing value V2.
在本實施例中,感測電路212_1包括變壓器TR1、二極體DX1、電阻器RX1以及電容器CX1。變壓器TR1包括繞組N1、N2。繞組N1耦接於升壓電感器LM1的第二端與功率開關Q1的第一端之間。繞組N2的第一端耦接於接地端GND。二極體DX1的陽極耦接於繞組N2的第二端。二極體DX1的陰極作為用以輸出第一感測值V1的感測輸出端。電阻器RX1耦接於二極體DX1的陰極與該接地端GND之間。電容器CX1耦接於二極體DX1的陰極與接地端GND之間。換言之,電容器CX1與電阻器RX1彼此並聯耦接。感測電路212_1透過變壓器TR1將流經功率開關Q1的電力耦合到電阻器RX1上,並透過電阻器RX1定義出關聯於流經功率開關Q1的電力的電壓值,也就是第一感測值V1。此外,電容器CX1被作為穩壓元件。感測電路212_1還透過電容器CX1來穩定第一感測值V1。In this embodiment, the sensing circuit 212_1 includes a transformer TR1 , a diode DX1 , a resistor RX1 and a capacitor CX1 . Transformer TR1 includes windings N1, N2. The winding N1 is coupled between the second end of the boost inductor LM1 and the first end of the power switch Q1. The first terminal of the winding N2 is coupled to the ground terminal GND. The anode of the diode DX1 is coupled to the second end of the winding N2. The cathode of the diode DX1 serves as a sensing output terminal for outputting the first sensing value V1. The resistor RX1 is coupled between the cathode of the diode DX1 and the ground terminal GND. The capacitor CX1 is coupled between the cathode of the diode DX1 and the ground terminal GND. In other words, the capacitor CX1 and the resistor RX1 are coupled in parallel with each other. The sensing circuit 212_1 couples the power flowing through the power switch Q1 to the resistor RX1 through the transformer TR1, and defines a voltage value associated with the power flowing through the power switch Q1 through the resistor RX1, that is, the first sensing value V1 . In addition, capacitor CX1 is used as a voltage stabilizing element. The sensing circuit 212_1 also stabilizes the first sensing value V1 through the capacitor CX1.
在本實施例中,感測電路212_2包括變壓器TR2、二極體DX2、電阻器RX2以及電容器CX2。變壓器TR2包括繞組N3、N4。繞組N3耦接於升壓電感器LM2的第二端與功率開關Q2的第一端之間。繞組N4的第一端耦接於接地端GND。二極體DX2的陽極耦接於繞組N4的第二端。二極體DX2的陰極作為用以輸出第二感測值V2的感測輸出端。電阻器RX2耦接於二極體DX2的陰極與該接地端GND之間。電容器CX2耦接於二極體DX2的陰極與接地端GND之間。換言之,電容器CX2與電阻器RX2彼此並聯耦接。感測電路212_2透過變壓器TR2將流經功率開關Q2的電力耦合到電阻器RX2上,並透過電阻器RX2定義出關聯於流經功率開關Q2的電力的電壓值,也就是第二感測值V2。此外,電容器CX2被作為穩壓元件。感測電路212_2還透過電容器CX2來穩定第二感測值V2。In this embodiment, the sensing circuit 212_2 includes a transformer TR2, a diode DX2, a resistor RX2 and a capacitor CX2. Transformer TR2 includes windings N3, N4. The winding N3 is coupled between the second terminal of the boost inductor LM2 and the first terminal of the power switch Q2. The first terminal of the winding N4 is coupled to the ground terminal GND. The anode of the diode DX2 is coupled to the second end of the winding N4. The cathode of the diode DX2 serves as a sensing output terminal for outputting the second sensing value V2. The resistor RX2 is coupled between the cathode of the diode DX2 and the ground terminal GND. The capacitor CX2 is coupled between the cathode of the diode DX2 and the ground terminal GND. In other words, the capacitor CX2 and the resistor RX2 are coupled in parallel with each other. The sensing circuit 212_2 couples the power flowing through the power switch Q2 to the resistor RX2 through the transformer TR2, and defines a voltage value associated with the power flowing through the power switch Q2 through the resistor RX2, that is, the second sensing value V2 . In addition, capacitor CX2 is used as a voltage stabilizing element. The sensing circuit 212_2 also stabilizes the second sensing value V2 through the capacitor CX2.
在本實施例中,比較器CP1耦接於感測電路212_1、控制器211以及同步整流開關SR1的控制端。比較器CP1接收感測電路212_1所提供的第一感測值V1以及控制器211所提供的參考值VREF。比較器CP1對第一感測值V1與參考值VREF進行比較。當第一感測值V1大於參考值VREF時,比較器CP1斷開同步整流開關SR1。在另一方面,當第一感測值V1小於或等於參考值VREF時,比較器CP1導通同步整流開關SR1。In this embodiment, the comparator CP1 is coupled to the sensing circuit 212_1 , the
比較器CP1的反向輸入端耦接於感測電路212_1。比較器CP1的反向輸入端接收第一感測值V1。比較器CP1的非反向輸入端耦接於控制器211。比較器CP1的非反向輸入端接收參考值VREF。比較器CP1的輸出端耦接於同步整流開關SR1的控制端。當第一感測值V1大於參考值VREF時,比較器CP1會提供具有低電壓準位的控制訊號VSR1。因此,同步整流開關SR1反應於低電壓準位的控制訊號VSR1而被斷開。在另一方面,當第一感測值V1小於或等於參考值VREF時,比較器CP1會提供具有高電壓準位的控制訊號VSR1。因此,同步整流開關SR1反應於高電壓準位的控制訊號VSR1而被導通。The inverting input terminal of the comparator CP1 is coupled to the sensing circuit 212_1 . The inverting input terminal of the comparator CP1 receives the first sensing value V1. The non-inverting input terminal of the comparator CP1 is coupled to the
在本實施例中,比較器CP2耦接於感測電路212_2、控制器211以及同步整流開關SR2的控制端。比較器CP2接收感測電路212_2所提供的第二感測值V2以及控制器211所提供的參考值VREF。比較器CP2對第二感測值V2與參考值VREF進行比較。當第二感測值V2大於參考值VREF時,比較器CP2斷開同步整流開關SR2。在另一方面,當第二感測值V2小於或等於參考值VREF時,比較器CP2導通同步整流開關SR2。In this embodiment, the comparator CP2 is coupled to the sensing circuit 212_2 , the
比較器CP2的反向輸入端耦接於感測電路212_2。比較器CP2的反向輸入端接收第二感測值V2。比較器CP2的非反向輸入端耦接於控制器211。比較器CP2的非反向輸入端接收參考值VREF。比較器CP2的輸出端耦接於同步整流開關SR2的控制端。當第二感測值V2大於參考值VREF時,比較器CP2會提供具有低電壓準位的控制訊號VSR2。因此,同步整流開關SR2反應於低電壓準位的控制訊號VSR2而被斷開。在另一方面,當第二感測值V2小於或等於參考值VREF時,比較器CP2會提供具有高電壓準位的控制訊號VSR2。因此,同步整流開關SR2反應於高電壓準位的控制訊號VSR2而被導通。The inverting input terminal of the comparator CP2 is coupled to the sensing circuit 212_2 . The inverting input terminal of the comparator CP2 receives the second sensed value V2. The non-inverting input terminal of the comparator CP2 is coupled to the
應注意的是,控制訊號VSR1、VSR2並不是由控制器211產生。控制訊號VSR1是由比較器CP1依據第一感測值V1與參考值VREF之間的比較結果來產生。控制訊號VSR2是由比較器CP2依據第二感測值V2與參考值VREF之間的比較結果來產生。因此,控制器211不需要額外提供控制訊號VSR1、VSR2。本實施例實現了具有自動同步整流功能的升壓式電源轉換裝置200。It should be noted that the control signals VSR1 and VSR2 are not generated by the
請參考圖4,圖4是依據本發明第二實施例所繪示的升壓式電源轉換裝置的電路示意圖。與圖3不同的是,本實施例的升壓式電源轉換裝置300還包括放電電阻器RD1、RD2。在本實施例中,放電電阻器RD1的第一端耦接於功率開關Q1的第一端。放電電阻器RD1的第二端耦接於功率開關Q1的第二端以及接地端GND。放電電阻器RD1對位於功率開關Q1的第一端與功率開關Q1的第二端之間的寄生電容C1所儲存的能量進行放電。相似地,放電電阻器RD2的第一端耦接於功率開關Q2的第一端。放電電阻器RD2的第二端耦接於功率開關Q2的第二端以及接地端GND。放電電阻器RD2對位於功率開關Q2的第一端與功率開關Q2的第二端之間的寄生電容C2所儲存的能量進行放電。Please refer to FIG. 4 . FIG. 4 is a schematic circuit diagram of a step-up power conversion device according to a second embodiment of the present invention. Different from FIG. 3 , the step-up
在本實施例中,升壓式電源轉換裝置300可進行介於150 kHz至250 kHz之間的高頻操作。也就是說,功率開關Q1、Q2以及同步整流開關SR1、SR2會進行高頻切換操作。功率開關Q1、Q2被設計為具有高電壓耐受性的元件。功率開關Q1會具有較大的寄生電容C1。功率開關Q2會具有較大的寄生電容C2。因此,在進行高頻切換操作的情況下,放電電阻器RD1、RD2分別對寄生電容C1、C2所儲存的能量進行放電。In this embodiment, the step-up
綜上所述,本發明的控制電路對第一功率開關以及第二功率開關進行輪替切換操作。控制電路依據第一感測值以及第二感測值來控制第一同步整流開關以及第二同步整流開關。因此,本發明的升壓式電源轉換裝置具有採輪替切換操作的第一升壓電路以及第二升壓電路。第一升壓電路以及第二升壓電路以提供輸出電源,並共同在輸出端產生預期輸出電流。在相同的預期輸出電流需求下,上述的輪替切換操作大幅會降低輸出漣波電流的波動。如此一來,輸出電容器的電容值不需要被增加來抑制輸出漣波電流的波動。此外,輸出電容器的電容值不需要被增加的情況下,升壓式電源轉換裝置也防止大型湧浪電流的發生。此外,本發明還實現了具有自動同步整流功能的升壓式電源轉換裝置。In summary, the control circuit of the present invention performs alternate switching operations on the first power switch and the second power switch. The control circuit controls the first synchronous rectification switch and the second synchronous rectification switch according to the first sensing value and the second sensing value. Therefore, the step-up power conversion device of the present invention has a first boost circuit and a second boost circuit that operate alternately. The first boost circuit and the second boost circuit provide output power and jointly generate a desired output current at the output terminal. Under the same expected output current demand, the aforementioned alternate switching operation will greatly reduce the fluctuation of the output ripple current. In this way, the capacitance of the output capacitor does not need to be increased to suppress the fluctuation of the output ripple current. In addition, the step-up power conversion device also prevents a large inrush current from occurring without the capacitance of the output capacitor needing to be increased. In addition, the invention also realizes a step-up power conversion device with automatic synchronous rectification function.
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed above with the embodiments, it is not intended to limit the present invention. Anyone with ordinary knowledge in the technical field may make some changes and modifications without departing from the spirit and scope of the present invention. The scope of protection of the present invention should be defined by the scope of the appended patent application.
100、200、300:升壓式電源轉換裝置
110、210:控制電路
211:控制器
212_1、212_2:感測電路
BC1:第一升壓電路
BC2:第二升壓電路
BR:整流電路
C1、C2:寄生電容
CO:輸出電容器
CP1、CP2:比較器
CX1、CX2:電容器
DX1、DX2:二極體
GD1、GD2、VSR1、VSR2:控制訊號
GND:接地端
LM1、LM2:升壓電感器
N1~N4:繞組
Q1、Q2:功率開關
RD1、RD2:放電電阻器
RX1、RX2:電阻器
SR1、SR2:同步整流開關
t:時間
T1~T4:時間區間
TR1、TR2:變壓器
V1:第一感測值
V2:第二感測值
VIN:輸入電源
VO:輸出電源
VR:經整流電源
VREF:參考值100, 200, 300: step-up
圖1是依據本發明一實施例所繪示的升壓式電源轉換裝置的示意圖。 圖2是依據本發明一實施例所繪示的同步整流開關以及功率開關的狀態時序圖。 圖3是依據本發明第一實施例所繪示的升壓式電源轉換裝置的電路示意圖。 圖4是依據本發明第二實施例所繪示的升壓式電源轉換裝置的電路示意圖。 FIG. 1 is a schematic diagram of a step-up power conversion device according to an embodiment of the present invention. FIG. 2 is a timing diagram of states of a synchronous rectification switch and a power switch according to an embodiment of the present invention. FIG. 3 is a schematic circuit diagram of a step-up power conversion device according to a first embodiment of the present invention. FIG. 4 is a schematic circuit diagram of a step-up power conversion device according to a second embodiment of the present invention.
100:升壓式電源轉換裝置 100: Step-up power conversion device
110:控制電路 110: control circuit
BC1:第一升壓電路 BC1: the first boost circuit
BC2:第二升壓電路 BC2: The second boost circuit
BR:整流電路 BR: rectifier circuit
CO:輸出電容器 CO: output capacitor
GD1、GD2、VSR1、VSR2:控制訊號 GD1, GD2, VSR1, VSR2: control signal
GND:接地端 GND: ground terminal
LM1、LM2:升壓電感器 LM1, LM2: boost inductor
Q1、Q2:功率開關 Q1, Q2: Power switch
SR1、SR2:同步整流開關 SR1, SR2: Synchronous rectification switch
V1:第一感測值 V1: first sensing value
V2:第二感測值 V2: Second sensing value
VIN:輸入電源 VIN: input power
VO:輸出電源 VO: output power
VR:經整流電源 VR: rectified power supply
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW110143664A TWI784810B (en) | 2021-11-24 | 2021-11-24 | Boost power conversion device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW110143664A TWI784810B (en) | 2021-11-24 | 2021-11-24 | Boost power conversion device |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI784810B true TWI784810B (en) | 2022-11-21 |
TW202322527A TW202322527A (en) | 2023-06-01 |
Family
ID=85794658
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW110143664A TWI784810B (en) | 2021-11-24 | 2021-11-24 | Boost power conversion device |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI784810B (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040207373A1 (en) * | 2003-01-08 | 2004-10-21 | Siemens Aktiengesellschaft | Low-cost DC-DC voltage switching converter regulator device |
CN106130335A (en) * | 2016-07-22 | 2016-11-16 | 电子科技大学 | It is applied to the start-up circuit of boost Topology Switch power supply |
TWI731772B (en) * | 2020-08-13 | 2021-06-21 | 宏碁股份有限公司 | Boost converter with low noise |
TWI740686B (en) * | 2020-10-22 | 2021-09-21 | 宏碁股份有限公司 | Boost converter for reducing total harmonic distortion |
-
2021
- 2021-11-24 TW TW110143664A patent/TWI784810B/en active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040207373A1 (en) * | 2003-01-08 | 2004-10-21 | Siemens Aktiengesellschaft | Low-cost DC-DC voltage switching converter regulator device |
US7242168B2 (en) * | 2003-01-08 | 2007-07-10 | Siemens Aktiengesellschaft | Wide input range buck/boost switching regulator |
CN106130335A (en) * | 2016-07-22 | 2016-11-16 | 电子科技大学 | It is applied to the start-up circuit of boost Topology Switch power supply |
TWI731772B (en) * | 2020-08-13 | 2021-06-21 | 宏碁股份有限公司 | Boost converter with low noise |
TWI740686B (en) * | 2020-10-22 | 2021-09-21 | 宏碁股份有限公司 | Boost converter for reducing total harmonic distortion |
Also Published As
Publication number | Publication date |
---|---|
TW202322527A (en) | 2023-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104980009B (en) | Power supply device | |
CN106300956B (en) | High-efficiency power factor improving circuit and switching power supply device | |
US20060244430A1 (en) | DC/DC converter | |
JP2004064994A (en) | Switching power supply and switching power supply system | |
US11038423B2 (en) | Frequency control circuit, control method and switching converter | |
JP2016123185A (en) | Insulation synchronous rectification type dc/dc converter, synchronous rectification controller, power supply employing the same, power supply adapter, electronic apparatus, and control method for synchronous rectification controller | |
US10122257B2 (en) | Ripple suppression method, circuit and load driving circuit thereof | |
TW201628324A (en) | Switching power supplies and switch controllers | |
CN102017378A (en) | Power converter, discharge lamp ballast and headlight ballast | |
CN104539154A (en) | Switch converter and control circuit thereof | |
TWI496399B (en) | Control module of constant on-time mode and voltage converting device thereof | |
TW201524095A (en) | Power factor correction circuit of power converter | |
US8030992B2 (en) | Low-pass filter | |
US9660541B2 (en) | Switching power supply device | |
KR20080086798A (en) | Method and apparatus for high voltage power supply circuit | |
US10924021B2 (en) | Control apparatus for controlling switching power supply | |
JP2001008452A (en) | Power supply device | |
US20170126128A1 (en) | Boost converter and the method thereof | |
TWI784810B (en) | Boost power conversion device | |
US8476883B2 (en) | Compensation circuits and control methods of switched mode power supply | |
CN106487222B (en) | Power supply operating in ripple control mode and control method thereof | |
CN111830424B (en) | Load status detection device | |
TWM653794U (en) | Power converter circuit and control circuit thereof | |
US20230107131A1 (en) | Switching mode power supply with stable zero crossing detection, the control circuit and the method thereof | |
TWM580684U (en) | Load status detecting device |