[go: up one dir, main page]

RU2670177C2 - Оптический коллиматор для светодиодных источников света - Google Patents

Оптический коллиматор для светодиодных источников света Download PDF

Info

Publication number
RU2670177C2
RU2670177C2 RU2014128527A RU2014128527A RU2670177C2 RU 2670177 C2 RU2670177 C2 RU 2670177C2 RU 2014128527 A RU2014128527 A RU 2014128527A RU 2014128527 A RU2014128527 A RU 2014128527A RU 2670177 C2 RU2670177 C2 RU 2670177C2
Authority
RU
Russia
Prior art keywords
convex lens
optical system
hole
collimation optical
light
Prior art date
Application number
RU2014128527A
Other languages
English (en)
Other versions
RU2014128527A (ru
Inventor
Ли Вэй СУНЬ
Ли ЮН
Ли ЧЭН
Янг Мэн СУНЬ
Original Assignee
Филипс Лайтинг Холдинг Б.В.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Филипс Лайтинг Холдинг Б.В. filed Critical Филипс Лайтинг Холдинг Б.В.
Publication of RU2014128527A publication Critical patent/RU2014128527A/ru
Application granted granted Critical
Publication of RU2670177C2 publication Critical patent/RU2670177C2/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V13/00Producing particular characteristics or distribution of the light emitted by means of a combination of elements specified in two or more of main groups F21V1/00 - F21V11/00
    • F21V13/02Combinations of only two kinds of elements
    • F21V13/04Combinations of only two kinds of elements the elements being reflectors and refractors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/20Light sources comprising attachment means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/0091Reflectors for light sources using total internal reflection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/20Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring contours or curvatures, e.g. determining profile
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/08Catadioptric systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/08Catadioptric systems
    • G02B17/0864Catadioptric systems having non-imaging properties
    • G02B17/0868Catadioptric systems having non-imaging properties for light condensing, e.g. for use with a light emitter
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0028Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed refractive and reflective surfaces, e.g. non-imaging catadioptric systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0047Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source
    • G02B19/0061Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source the light source comprising a LED
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0047Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source
    • G02B19/0061Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source the light source comprising a LED
    • G02B19/0066Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source the light source comprising a LED in the form of an LED array
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0916Adapting the beam shape of a semiconductor light source such as a laser diode or an LED, e.g. for efficiently coupling into optical fibers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/04Refractors for light sources of lens shape
    • F21V5/045Refractors for light sources of lens shape the lens having discontinuous faces, e.g. Fresnel lenses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2105/00Planar light sources
    • F21Y2105/10Planar light sources comprising a two-dimensional array of point-like light-generating elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Lenses (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Securing Globes, Refractors, Reflectors Or The Like (AREA)
  • Led Device Packages (AREA)

Abstract

Коллимационная оптическая система содержит отражающий коллиматор, имеющий чашеобразную форму, содержит первое отверстие в центре нижней стороны чаши для приема светодиодного источника света, второе отверстие в верхнем отверстии чаши для обеспечения возможности исходящему свету выходить из упомянутого отражающего коллиматора и элемент стенки, проходящий от первого отверстия ко второму отверстию и имеющий внутреннюю отражающую поверхность, первую выпуклую линзу, соединенную с отражающим коллиматором через крепежное средство и размещенную на расстоянии от первого отверстия между первым и вторым отверстиями, вторую выпуклую линзу, размещенную на поверхностной пластине, которая покрывает по меньшей мере часть второго отверстия. Технический результат - повышение коллимационной способности без увеличения размера оптической системы. 3 н. и 11 з.п. ф-лы, 3 ил.

Description

Область техники, к которой относится изобретение
Изобретение в целом относится к области коллимации света. В частности, оно относится к коллимационной оптической системе для светодиодных (СИД) источников света.
Уровень техники
Замена галогенных ламп направленного освещения на СИД является растущим рынком. Замена галогенных ламп на СИД является весьма непростой задачей, поскольку галогенные лампы и СИД обладают разными свойствами. В частности, различие между галогенными лампами и СИД состоит в том, что СИД имеют ограниченный выходной поток по сравнению с галогенными лампами. Чтобы светодиодный прожектор имел такую же максимальную интенсивность при конкретных углах раствора пучка, как галогенный прожектор, оптическая система светодиодного прожектора должна обеспечивать гораздо более высокую интенсивность в центре пучка на единицу потока для компенсации ограниченного выходного потока. Интенсивность в центре пучка на единицу потока часто именуется значением силы света в центре пучка (CBCP) на люмен, или просто кд/лм или CBCP/лм.
Ввиду вышеизложенного, в области светодиодной оптики направленного освещения существует задача конструирования компактной и экономичной оптической системы в очень ограниченном пространстве для получения более высокого значения CBCP/лм для конкретных углов раствора пучка.
Светодиодная оптическая система направленного освещения обычно содержит коллиматор на основе полного внутреннего отражения (ПВО), имеющий отверстие для приема СИД и центральную выпуклую линзу, которая располагается на расстоянии от отверстия, куда вставлен СИД. Однако такая конфигурация затрудняет коллимацию и перераспределение света, проходящего через центральную выпуклую линзу, поскольку линза располагается слишком близко к светодиодному источнику, размер которого пренебрежимо мал. Вследствие этого ограничения центральной линзы, распределение интенсивности света выходного светового пучка приобретает нежелательно тяжелые хвосты, что затрудняет получение определенной характеристики направленности, имеющей высокие значения CBCP/лм при конкретных углах раствора пучка, соответствующих полной ширине на полумаксимуме (FWHM). Углы раствора пучка FWHM задаются углами относительно центра пучка, для которых интенсивность света составляет половину интенсивности света в центре пучка.
Раскрытие изобретения
Задача настоящего изобретения состоит в преодолении или по меньшей мере уменьшении рассмотренных выше проблем и создании коллимационной оптической системы и осветительного устройства, имеющих повышенный показатель CBCP на люмен. В частности, его задача состоит в создании коллимационной оптической системы и осветительного устройства, обладающих повышенной коллимационной способностью, без увеличения размера оптической системы.
Согласно первому аспекту изобретения эта и другие задачи решаются коллимационной оптической системой для светодиодных (СИД) источников света, содержащей: отражающий коллиматор, имеющий первое отверстие для приема светодиодного источника света и для обеспечения возможности входящему свету из светодиодного источника света входить в коллиматор и второе отверстие для обеспечения возможности исходящему свету выходить из коллиматора, причем отражающий коллиматор дополнительно имеет элемент стенки, проходящий от первого отверстия ко второму отверстию и имеющий внутреннюю отражающую поверхность для направления входящего света от первого отверстия ко второму отверстию; первую выпуклую линзу, размещенную на расстоянии от первого отверстия для преломления входящего света; и вторую выпуклую линзу, размещенную на втором отверстии для преломления исходящего света для коллимации исходящего света.
Предпочтительно первая выпуклая линза размещена на расстоянии от первого отверстия таким образом, что первая выпуклая линза располагается между первым отверстием и вторым отверстием. Благодаря обеспечению второй выпуклой линзы на втором отверстии световые пучки, преломленные первой выпуклой линзой, дополнительно преломляются и коллимируются второй выпуклой линзой. Таким образом, коллимационная способность коллимационной оптической системы повышается, хотя размер коллимационной оптической системы не увеличивается. В частности, для фиксированного значения потока, максимальное значение интенсивности может увеличиваться, поскольку вторая выпуклая линза перераспределяет свет таким образом, что распределение интенсивности света больше концентрируется к центру светового пучка по сравнению со случаем отсутствия второй выпуклой линзы. Одновременно с повышением максимального значения интенсивности, угол раствора пучка FWHM остается по существу неизменным. Другими словами, показатель CBCP на люмен повышается. В результате, можно использовать меньше светодиодных ламп, то есть более низкий поток, в случае, когда CBCP нужно поддерживать на том же уровне, что и раньше. В качестве альтернативы, в случае использования одного и того же количества светодиодных ламп, можно добиться более высокого значения CBCP.
Первая и вторая выпуклые линзы могут быть линзами Френеля, каждая из которых имеет множество граней. Грани иногда именуются зонами Френеля. В случае использования простой выпуклой линзы изображение формы кристалла СИД может быть видимым в пятне освещения, обусловленном коллимационной оптической системой. Однако этого не происходит, если используются линзы Френеля, поскольку линзы Френеля перераспределяют свет в режиме перемежения. В частности, взаимный порядок световых лучей в пучке световых лучей, падающих на первую выпуклую линзу, изменяется по мере того, как пучок световых лучей проходит через и преломляется первой и второй выпуклыми линзами. В результате, визуальная однородность пятна освещения, обусловленного коллимационной оптической системой, повышается.
Визуальная однородность возрастает с увеличением количества граней линз Френеля. В одном варианте осуществления, количество граней первой выпуклой линзы и/или второй выпуклой линзы равно 3, 4 или 5.
Коллимационная оптическая система может дополнительно содержать поверхностную пластину, покрывающую по меньшей мере часть второго отверстия. Вторая выпуклая линза может располагаться на поверхностной пластине. Это имеет преимущество в обеспечении простого и гибкого способа размещения второй выпуклой линзы. Кроме того, вторую выпуклую линзу можно легко включать в состав существующей коллимационной оптической системы. Например, вторая выпуклая линза может располагаться в выемке поверхностной пластины. В качестве альтернативы, вторая выпуклая линза может располагаться на внешней поверхности поверхностной пластины. В качестве еще одной альтернативы, вторая выпуклая линза может располагаться на внутренней поверхности поверхностной пластины.
Предпочтительно оптическая ось первой выпуклой линзы и оптическая ось второй выпуклой линзы совмещены с оптической осью коллимационной оптической системы, причем оптическая ось отражающего коллиматора проходит от первого отверстия ко второму отверстию. Этого можно добиться в случае, когда линзы размещены по существу поперек оптической оси отражающего коллиматора. Это имеет преимущество симметрии коллимационной оптической системы, что обеспечивает изотропию коллимации световых пучков.
Элемент стенки отражающего коллиматора может дополнительно содержать первый участок, содержащий первое отверстие, и второй участок, содержащий второе отверстие, причем первый участок элемента стенки выполнен с возможностью разведения входящего света, падающего на первый участок, для направления входящего света от второй выпуклой линзы, и второй участок элемента стенки выполнен с возможностью коллимации входящего света. Это особенно полезно в случае, когда диаметр второй выпуклой линзы больше диаметра дна отражающего коллиматора. В таком случае, значительная часть световых лучей, отражаемых отражающим коллиматором для направления ко второму отверстию, может блокироваться второй выпуклой линзой, приводя к потере оптической эффективности и потере в значении CBCP. Вышеописанная конфигурация позволяет избежать такой блокировки световых лучей второй выпуклой линзой и, следовательно, повысить эффективность и значение CBCP.
Согласно второму аспекту изобретения, эта и другие задачи решаются посредством осветительного устройства, содержащего по меньшей мере одну коллимационную оптическую систему согласно первому аспекту и по меньшей мере один светодиод, СИД, выполненный с возможностью излучения света через первое отверстие одной из по меньшей мере одной коллимационной оптической системы.
Каждый СИД осветительного устройства может иметь соответствующую коллимационную оптическую систему. Кроме того, каждый СИД может быть выполнен с возможностью излучения света через первое отверстие его соответствующей коллимационной оптической системы. Это имеет преимущество увеличения потока благодаря наличию нескольких СИД и индивидуальной коллимации света каждого СИД для получения повышенного значения CBCP для каждого СИД.
Осветительное устройство может содержать по меньшей мере два СИД, выполненных с возможностью излучения света через первое отверстие общей коллимационной оптической системы. Благодаря наличию по меньшей мере двух СИД, совместно использующих общую коллимационную оптическую систему, осветительное устройство можно сделать более компактным.
Согласно третьему аспекту изобретения, эта и другие задачи решаются способом определения параметров коллимационной оптической системы согласно первой задаче, причем параметры относятся к форме первой и второй выпуклых линз и к форме элемента стенки отражающего коллиматора, причем способ содержит этапы, на которых: определяют начальные значения параметров на основании теоретической модели коллимационной оптической системы, оптимизируют функцию качества по отношению к параметрам коллимационной оптической системы с использованием определенных начальных значений в качестве начальных значений, причем функция качества содержит первую целевую функцию, относящуюся к желаемому углу раствора пучка, соответствующему полной ширине на полумаксимуме (FWHM), и вторую целевую функцию, относящуюся к максимальной интенсивности света в центре светового пучка, выводимого из коллимационной оптической системы.
Функция качества может дополнительно содержать третью целевую функцию, относящуюся к желаемому профилю пучка.
Форму элемента стенки можно дополнительно моделировать посредством набора кривых Безье, имеющих соответствующий набор параметров Безье, причем параметры коллимационной оптической системы содержат радиус кривизны первой выпуклой линзы, радиус кривизны второй выпуклой линзы и набор параметров Безье.
Преимущества и признаки первого аспекта, в целом, применимы ко второму и третьему аспектам.
Следует отметить, что изобретение относится к всевозможным комбинациям признаков, указанных в формуле изобретения.
Краткое описание чертежей
Эти и другие аспекты настоящего изобретения будут более подробно описаны ниже со ссылкой на прилагаемые чертежи, демонстрирующие вариант(ы) осуществления изобретения.
Фиг. 1-2 - виды в разрезе осветительных устройств, содержащих коллимационную оптическую систему согласно вариантам осуществления.
Фиг. 3a-b и 4a-b - траектории пучков осветительных устройств согласно вариантам осуществления и соответствующие пятна освещения.
Фиг. 5a-b - траектории пучков осветительных устройств согласно вариантам осуществления.
Фиг. 6a - вид в разрезе осветительного устройства согласно вариантам осуществления.
Фиг. 6b - вид в плане сверху осветительного устройства, показанного на фиг. 6a.
Фиг. 7 - вид в разрезе осветительного устройства согласно вариантам осуществления.
Фиг. 8 - график нормализованного распределения интенсивности как функции угла наблюдения.
Фиг. 9 - блок-схема способа согласно вариантам осуществления.
Как показано на чертежах, размеры слоев и областей в целях иллюстрации преувеличены и таким образом призваны иллюстрировать общие структуры вариантов осуществления настоящего изобретения. Сходные ссылочные позиции обозначают сходные элементы на всех чертежах.
Осуществление изобретения
Настоящее изобретение будет описано ниже более подробно со ссылкой на прилагаемые чертежи, в которых показаны предпочтительные в настоящее время варианты осуществления изобретения. Однако это изобретение можно реализовать во многих других формах и не следует рассматривать как ограниченное изложенными здесь вариантами осуществления; напротив, эти варианты осуществления приведены для основательности и полноты и полностью доносят объем изобретения до специалиста в данной области техники.
Фиг. 1 иллюстрирует осветительное устройство 100, содержащее коллимационную оптическую систему 2 и светодиодный источник 5 света. Коллимационная оптическая система 2 содержит отражающий коллиматор 3, например, коллиматор на основе полного внутреннего отражения. Отражающий коллиматор 3 имеет первое отверстие, или отверстие 7 для приема светодиодного источника 5 света и для обеспечения возможности входящему свету из светодиодного источника 5 света входить в коллиматор 3. Кроме того, отражающий коллиматор 3 имеет второе отверстие, или отверстие 9 для обеспечения возможности исходящему свету выходить из отражающего коллиматора 3. Второе отверстие 9 обычно имеет больший размер (диаметр), чем первое отверстие 7. Отражающий коллиматор 3 дополнительно имеет элемент 15 стенки, проходящий от первого отверстия 7 ко второму отверстию 9. Внутренняя поверхность элемента 15 стенки способна отражать свет, чтобы направлять входящий свет от первого отверстия 7 ко второму отверстию 9, таким образом образуя коллиматор на основе полного внутреннего отражения.
Отражающий коллиматор 3 может обладать поворотной симметрией относительно оптической оси A отражающего коллиматора 3, проходящей в направлении от центра первого отверстия 7 к центру второго отверстия 9. В данном случае отражающий коллиматор 3 имеет в общем чашеобразную форму, причем первое отверстие 7 располагается в центре дна чаши, и второе отверстие 9 соответствует верхнему отверстию чаши.
Первая выпуклая линза 11, имеющая диаметр D1, располагается на расстоянии S1 от первого отверстия 7. Расстояние S1 может быть приблизительно равно или близким к фокусному расстоянию первой выпуклой линзы 11. Первая выпуклая линза 11 имеет радиус кривизны r1. Проиллюстрированная первая выпуклая линза 11 является плосковыпуклой линзой. Плоская поверхность плосковыпуклой линзы обращена от первого отверстия 7. В ряде случаев первая выпуклая линза может быть конической выпуклой линзой. Различные другие асферические линзовые структуры можно использовать взамен сферической поверхности первой выпуклой линзы 11.
Предпочтительно, оптическая ось первой выпуклой линзы 11 соответствует оптической оси A отражающего коллиматора 3. В этом случае говорят, что первая выпуклая линза 11 размещена поперек оптической оси A.
Первая выпуклая линза 11, в целом, может быть соединена с, или поддерживаться, отражающим коллиматором 3 с помощью крепежного средства 19. Крепежное средство 19 может входить в состав отражающего коллиматора 3. Например, первая выпуклая линза 11 может быть соединена с отражающим коллиматором 3 с помощью крепежного средства 19, которое присоединено к отражающему коллиматору 3 и выполнено с возможностью удержания первой выпуклой линзы 11 на расстоянии от первого отверстия 7. В иллюстрируемом примере крепежное средство 19 реализовано посредством элемента 19 внутренней стенки, входящего в состав отражающего коллиматора 3 и проходящего от первого отверстия 7 в направлении второго отверстия 9. Верхний конец элемента 19 внутренней стенки образует отверстие, расположенное на расстоянии S1 от первого отверстия 7. Отверстие может принимать и удерживать первую выпуклую линзу 11. В альтернативных вариантах осуществления, крепежное средство 19 может содержать раму, которая располагается в отражающем коллиматоре 3 и выполнена с возможностью удержания первой выпуклой линзы 11. В качестве альтернативы, первая выпуклая линза 11 может быть соединена с отражающим коллиматором 3 стержнями.
Вторая выпуклая линза 13, имеющая диаметр D2, располагается на втором отверстии 9 на расстоянии S2 от первого отверстия 7. Точнее говоря, вторая выпуклая линза 13 выполнена с возможностью покрытия по меньшей мере частей второго отверстия 9. Вторая выпуклая линза 13 имеет радиус кривизны r2. Проиллюстрированная вторая выпуклая линза 13 является плосковыпуклой линзой. Плоская поверхность плосковыпуклой линзы обращена ко второму отверстию 9. В ряде случаев вторая выпуклая линза 13 может быть конической выпуклой линзой. Различные другие асферические линзовые структуры можно использовать взамен сферической поверхности второй выпуклой линзы 13. Вторая выпуклая линза 13 обычно имеет такой же показатель преломления n, скажем, как первая выпуклая линза 11.
Предпочтительно, оптическая ось второй выпуклой линзы 13 соответствует оптической оси A отражающего коллиматора 3. В этом случае говорят, что первая выпуклая линза размещена поперек оптической оси A.
Существует много возможных альтернатив размещения второй выпуклой линзы 13 на втором отверстии 9. В проиллюстрированном варианте осуществления, коллимационная оптическая система 2 содержит поверхностную пластину 17. В целом, поверхностная пластина 17 может покрывать по меньшей мере часть второго отверстия 9. В данном случае поверхностная пластина 17 покрывает все второе отверстие 9. Поверхностная пластина 17 предпочтительно выполнена из полупрозрачного материала. Поверхностная пластина 17 выполнена с возможностью удержания второй выпуклой линзы 13. Точнее говоря, поверхностная пластина 17 может содержать выемку 21, которая, предпочтительно, центрирована относительно оптической оси A и в которой может располагаться вторая выпуклая линза 13. В качестве альтернативы, вторая выпуклая линза 13 может располагаться поверх поверхностной пластины 17. В порядке еще одной альтернативы, поверхностная пластина 17 может содержать отверстие, центрированное относительно оптической оси A, в котором может располагаться вторая выпуклая линза 13.
В других вариантах осуществления, вторая выпуклая линза 13 не удерживается и не поддерживается поверхностной пластиной 17. Например, вторая выпуклая линза 13 может удерживаться рамой, которая присоединена к отражающему коллиматору 3 или стержнями, проходящими от отражающего коллиматора 3.
Диаметры D1 и D2 и радиусы кривизны r1 и r2 могут изменяться таким образом, чтобы получались предписанный угол раствора пучка и желаемая характеристика направленности. Точнее говоря, диаметры D1 и D2 и, в частности, радиусы кривизны r1 и r2 можно определять согласно процедуре оптимизации, которая будет описана ниже со ссылкой на блок-схему операций, приведенную на фиг. 9.
На первом этапе S100 такой процедуры оптимизации определяются начальное значение диаметров D1 и D2 и радиусов r1 и r2. Например, начальные значения можно вычислять на основании теоретического вычисления, опирающегося на модель точечного источника и параксиальные условия. Точнее говоря, начальные значения можно определять согласно нижеследующим уравнениям:
Figure 00000001
Figure 00000002
Figure 00000003
где n - показатель преломления первой выпуклой линзы 11 и второй выпуклой линзы 13. Начальное значение D 1 можно определять на основании желаемого отношения между световой энергией, которая проходит через первую выпуклую линзу 11, и световой энергией, которая направляется к элементу 15 стенки отражающего коллиматора 3. Желаемое отношение можно определить, приняв во внимание несколько практических соображений. Например, элемент 15 стенки отражающего коллиматора 3 более эффективно перераспределяет характеристику направленности светодиодного источника для получения высокого CBCP по сравнению с первой выпуклой линзой 11. По этой причине, преимущественно, если D 1 настолько мал, что как можно больше световой энергии направляется к элементу 15 стенки, не проходя через первую выпуклую линзу 11. Однако, в то же время, D 1 не должен быть слишком мал, поскольку слишком малый диаметр D1 может приводить к потерям энергии на поверхностной пластине 17. Точнее говоря, для данного оптического пространства, элемент 15 стенки отражающего коллиматора 3 обладает ограниченной способностью к перераспределению света. В результате, свет может испытывать полное отражение на поверхностной пластине 17. Другими факторами, влияющими на выбор D 1 , являются размер и первоначальная характеристика направленности используемого источника света и данный оптический размер.
Поскольку все реальные источники имеют геометрические размеры, вышеупомянутые начальные значения обычно не дают желаемой характеристики направленности. Поэтому на следующем этапе S102 способа вышеупомянутые начальные значения используются в качестве входных данных алгоритма оптимизации.
Функция качества, используемая в оптимизации, содержит несколько целевых функций. Например, функция качества может быть суммой нескольких целевых функций. Во-первых, функция качества базируется на желаемом угле раствора пучка FWHM. Важно учитывать угол раствора пучка FWHM, поскольку желательно увеличивать CBCP, оставляя при этом угол раствора пучка FWHM по существу постоянным.
Во-вторых, функция качества базируется на максимальном значении CBCP/лм. Объединяя желаемый угол раствора пучка FWHM и значение CBCP/лм в одной и той же функции качества, можно получить локальное или глобальное оптимальное значение CBCP для желаемого угла раствора пучка FWHM.
В-третьих, и в необязательном порядке, функция качества может базироваться на желаемом профиле пучка. Например, желаемый профиль пучка может быть параметрическим профилем пучка, например, гауссовым профилем пучка. Предпочтительно, функция качества базируется на желаемом профиле пучка только в случае, когда трудно найти решение на основании первой и второй целевых функций.
Параметры оптимизации можно разделить на две группы, а именно, параметры, относящиеся к первой и второй выпуклым линзам 11 и 13, и параметры, относящиеся к форме элемента 15 стенки отражающего коллиматора 3.
Точнее говоря, параметры оптимизации могут содержать радиус кривизны r 1 первой выпуклой линзы 11 и радиус кривизны r 2 второй выпуклой линзы 13 для оптимизации коллимации световой энергии, которая проходит через линзы 11 и 13. В случае использования асферических линз, параметры оптимизации могут вместо этого содержать соответствующие параметры для асферических линз. В необязательном порядке, оптимизация также может содержать диаметры D 1 и D 2 первой и второй выпуклых линз 11 и 13.
Для оптимизации коллимации световой энергии, которая отражается отражающим коллиматором 3, не проходя через первую выпуклую линзу 11, параметры оптимизации могут содержать параметры, относящиеся к форме элемента 15 стенки отражающего коллиматора 3. Начальные значения этих параметров также можно определить на этапе S100. Например, элемент 15 стенки можно моделировать посредством кривых Безье. В этом случае, параметры оптимизации могут содержать коэффициенты кривых Безье. В случае, когда кривые Безье непригодны для моделирования формы элемента 15 стенки, другие типы кривых асферического профиля можно использовать для моделирования формы элемента 15 стенки. В этом случае, параметры оптимизации могут содержать коэффициенты кривых асферического профиля.
В качестве альтернативы, оптимизацию можно осуществлять в последовательном режиме. Например, сначала параметры можно оптимизировать по отношению к первой целевой функции. Затем, на отдельном этапе, параметры можно оптимизировать по отношению ко второй целевой функции. Аналогичным образом, параметры можно оптимизировать отдельно по отношению к третьей целевой функции.
Функция осветительного устройства 100 будет описана ниже со ссылкой на фиг. 3a-b и фиг. 8.
На фиг. 3b проиллюстрированы траектории пучков осветительного устройства 100 в ходе его эксплуатации. Входящий свет, исходящий из светодиодного источника 5 света, входит в отражающий коллиматор 3 через первое отверстие 7. Входящий свет, который не попадает в первую выпуклую линзу 11, отражается отражающей поверхностью 15 отражающего коллиматора 3, направляясь ко второму отверстию 9.
Входящий свет, который попадает в первую выпуклую линзу 11, коллимируется первой выпуклой линзой 11. В случае, когда светодиодный источник 5 света располагается в фокальной точке первой выпуклой линзы 11, первая выпуклая линза 11 коллимирует свет, падающий на линзу, в пучок по существу параллельных лучей. Однако вследствие ограничений по размеру отражающего коллиматора 3, первая выпуклая линза 11 обычно располагается на расстоянии от СИД, которое короче фокусного расстояния. В результате, пучок лучей, покидающий первую выпуклую линзу 11, является расходящимся.
Затем пучок лучей, коллимированный первой выпуклой линзой 11, попадает во вторую выпуклую линзу 13. Предпочтительно, вторая выпуклая линза 13 превосходит по размеру первую выпуклую линзу 11, благодаря чему, каждый луч света в пучке лучей, прошедшем через первую выпуклую линзу 11, попадает во вторую выпуклую линзу 13. Вторая выпуклая линза 13 дополнительно коллимирует входящий пучок лучей. Таким образом, благодаря обеспечению второй выпуклой линзы 13, коллимационная способность коллимационной оптической системы 2 повышается без увеличения размера оптической системы.
На фиг. 8, характеристики коллимационной оптической системы 2, содержащей вторую выпуклую линзу 13 сравниваются с характеристиками коллимационной оптической системы без второй выпуклой линзы 13. Фиг. 8 демонстрирует нормализованные распределения 25 и 27 интенсивности коллимационной оптической системы 2 со второй выпуклой линзой 13 и без второй выпуклой линзы 13, соответственно. Оба распределения интенсивности соответствуют полной ширине на полумаксимуме (FWHM) в 21 градус. На графике показано, что сила света в центре пучка (CBCP), то есть центральная максимальная интенсивность, примерно на 25% выше для коллимационной оптической системы 2, имеющей вторую выпуклую линзу 13. Кроме того, хвосты распределения 25 гораздо легче, чем хвосты распределения 27. Это означает, что интенсивность света оптического коллиматора 2, имеющего вторую выпуклую линзу 13, лучше фокусируется в центр пучка по сравнению с интенсивностью света оптического коллиматора без второй выпуклой линзы. Таким образом, благодаря обеспечению второй выпуклой линзы 13, интенсивность света можно перераспределять таким образом, чтобы получать распределение интенсивности света, которое лучше сфокусировано вокруг центра пучка и имеет более высокий центральный максимум.
На практике, обеспечение второй выпуклой линзы 13 имеет несколько последствий. С одной стороны, для одного и того же светового потока, можно получить более высокую центральную максимальную интенсивность, чем с помощью оптического коллиматора без второй выпуклой линзы. С другой стороны, такую же центральную максимальную интенсивность, как и для коллимационной оптической системы без второй выпуклой линзы, можно получить при более низком световом потоке. Последний факт, таким образом, означает, что можно использовать меньше СИД.
Фиг. 3a иллюстрирует пятно 29 освещения, которое можно получить, направляя осветительное устройство 100 к поверхности. Центр пятна 29 пучка имеет форму, близкую к квадратной. Это обусловлено тем, что кристалл СИД обычно имеет прямоугольную форму, и тем, что эта форма изображается первой и второй выпуклыми линзами 11 и 13.
Фиг. 2 иллюстрирует осветительное устройство 200, содержащее коллимационную оптическую систему 2 и светодиодный источник 5 света. Коллимационная оптическая система 2 осветительного устройства 200 отличается от коллимационной оптической системы 2 осветительного устройства 100 тем, что первая и вторая выпуклые линзы 11 и 13 являются линзами Френеля. Каждая из первой и второй выпуклых линз 11 и 13 содержит множество граней 23 и 24, соответственно, также известных как зоны Френеля. Грани 23 являются концентрическими кольцевыми секциями линз 11 и 13. Количество граней 23 первой выпуклой линзы 11 и второй выпуклой линзы 13 может различаться. В одном варианте осуществления количество граней первой выпуклой линзы и/или второй выпуклой линзы равно 3, 4 или 5. В проиллюстрированном варианте осуществления, первая выпуклая линза 11 имеет четыре грани, и вторая выпуклая линза 13 имеет пять граней. Варьируя количество граней 23 и 24 и согласовывая размеры первой выпуклой линзы 11 и второй выпуклой линзы 13, можно оптимизировать значение интенсивности центрального пучка выходного света. Таким образом, количества граней 23 и 24 являются параметрами, которые можно регулировать для оптимизации характеристик оптического коллиматора 2.
По аналогии с раскрытием, представленным на фиг. 1, вторая выпуклая линза 13 может по-разному располагаться на втором отверстии 9. В иллюстрируемом примере вторая выпуклая линза 13 располагается на внутренней поверхности поверхностной пластины 17. Предпочтительно, для упрощения изготовления коллимационной оптической системы 1, вторая выпуклая линза 13 формируется воедино с поверхностной пластиной 17. Кроме того, коллимационная оптическая система 1 в целом, предпочтительно формируется из одного куска, содержащего только один вид материала, например пластмассу.
Функция осветительного устройства, содержащего линзы Френеля в качестве первой и второй выпуклых линз 11 и 13 будет описана ниже со ссылкой на фиг. 4a-b.
Фиг. 4b иллюстрирует осветительное устройство 400, имеющее первую выпуклую линзу 11, которая является линзой Френеля с тремя гранями 23a-b, и вторую выпуклую линзу 13, которая является линзой Френеля с тремя гранями 24a-c.
Входящий свет, исходящий из СИД 5 входит в отражающий коллиматор 3 через первое отверстие 7. Входящий свет, который попадает на первую выпуклую линзу 11, коллимируется первой выпуклой линзой 11. Благодаря структуре с гранями первой выпуклой линзы 11, входящие световые лучи коллимируются попеременно, в том смысле, что взаимный порядок лучей во входящем пучке лучей отличается от взаимного порядка лучей в исходящем пучке. Точнее говоря, преломление входящих световых лучей зависит от того, на какую грань 23a-c падают световые лучи.
В иллюстрируемом примере, первая и вторая выпуклые линзы 11 и 13 размещены так, что световые лучи, попадающие на грань 23a первой выпуклой линзы 11, преломляются и направляются к грани 24a второй выпуклой линзы 13. Кроме того, световые лучи, попадающие на грань 23b первой выпуклой линзы 11, преломляются и направляются к грани 24c второй выпуклой линзы 13. Аналогично, световые лучи, попадающие на грань 23c первой выпуклой линзы 11, преломляются и направляются к грани 24b второй выпуклой линзы 13. Затем пучок световых лучей, коллимированный и перемеженный первой выпуклой линзой 11 дополнительно коллимируется выпуклой линзой 13.
Характеристики осветительных устройств 200 и 400, содержащих линзы Френеля, сравнимы с характеристиками осветительного устройства 100 в отношении максимальной интенсивности света в центре пучка. Однако осветительные устройства 200 и 400 имеют дополнительные преимущества, которые будут объяснены со ссылкой на фиг. 4a.
Фиг. 4a иллюстрирует пятно 31 пучка, полученное направлением осветительного устройства 200 или 400, содержащего первую и вторую выпуклые линзы 11 и 13, обе из которых являются линзами Френеля, к поверхности. Пятно 31 пучка имеет однородный и кругосимметричный внешний вид. В частности, пятно 31 пучка не содержит изображения прямоугольной формы кристалла СИД. Это обусловлено тем, что линзы Френеля перемежают, т.е. перераспределяют пути света, исходящего из СИД 5, как объяснено выше.
Увеличивая количество граней 23 и 24, применяемое во Френелевой структуре, можно повысить показатель однородности пятна 31 пучка. Это обусловлено тем, что увеличение количества граней приводит к усилению способности к перераспределению или перемежению световых лучей из СИД 5. Таким образом, количества граней 23 и 24 являются параметрами, которые можно регулировать для оптимизации показателя однородности пятна 31 пучка, а также для оптимизации максимальной интенсивности центрального пучка выходного света.
Фиг. 5a иллюстрирует осветительное устройство 500a, аналогичное показанному на фиг. 1. В частности, фиг. 5a иллюстрирует траектории пучков для световых пучков, отражаемых отражающим коллиматором 3. Пучки, отражаемые внутренней поверхностью 15, направляются ко второму отверстию 9. Однако, когда диаметр второй выпуклой линзы 13 больше диаметра дна отражающего коллиматора 3, некоторые из пучков направляются ко второй выпуклой линзе 13. Это нежелательный признак, поскольку пучки, попадающие на вторую выпуклую линзу 13, сильно коллимируются, что может приводить к падению интенсивности центрального пучка. Падение интенсивности зависит от того, сколько света попадает в верхнюю центральную линзу после отражения отражающим коллиматором 3.
Фиг. 5b иллюстрирует осветительное устройство 500b согласно альтернативному варианту осуществления. Осветительное устройство 500b имеет отражающий коллиматор 3, где элемент стенки имеет два участка P1 и P2. Участок P1 содержит первое отверстие 7, и второй участок P2 содержит второе отверстие 9. Первый участок P1 выполнен с возможностью разведения входящего света. Точнее говоря, кривизна элемента стенки на первом участке P1 установлена такой, что падающий пучок световых лучей отражается с расхождением относительно оптической оси A осветительного устройства 500b. Обычно кривизна элемента стенки на первом участке P1 больше кривизны соответствующего участка элемента стенки осветительного устройства 500a. Таким образом, входящий свет направляется от второй выпуклой линзы 13. Аналогично, второй участок P2 выполнен с возможностью коллимации входящего света. В частности, кривизна элемента стенки на втором участке P2 установлена такой, что падающий пучок световых лучей отражается с коллимацией относительно оптической оси A осветительного устройства 500b.
На практике форму элемента 15 стенки на первом участке P1 можно моделировать первым набором кривых Безье, имеющих первый набор параметров Безье. Аналогичным образом, форму элемента 15 стенки на втором участке P2 можно моделировать вторым набором кривых Безье, имеющих второй набор параметров Безье. Первый набор параметров Безье и второй набор параметров Безье можно оптимизировать в соответствии с раскрытым выше способом оптимизации. В частности, начальные значения для оптимизации первого набора параметров Безье можно выбирать таким образом, чтобы пучок световых лучей, падающий на первый участок P1, отражался с расхождением. Аналогично, второй набор параметров Безье можно выбирать таким образом, чтобы пучок световых лучей падающий на второй участок P2, коллимировался или отражался со схождением. Поскольку первый и второй участки P1 и P2 имеют свои собственные наборы параметров Безье, оптимизацию можно осуществлять по отдельности для двух участков P1 и P2.
Фиг. 6a и 6b иллюстрируют осветительное устройство 600, содержащий несколько СИД и несколько коллимационных оптических систем. В принципе возможно любое количество СИД и коллимационных оптических систем. В данном случае, в целях иллюстрации, показаны четыре СИД 5a-d и четыре коллимационных оптических систем 3a-d.
Каждый СИД 5a-d соответствует одной коллимационной оптической системе 3a-d. Например, в иллюстрируемом примере, СИД 5a соответствует коллимационной оптической системе 3a, и СИД 5b соответствует коллимационной оптической системе 3b. Коллимационная оптическая система 3a-d может относиться к любому из раскрытых здесь типов. В частности, СИД 5a-d могут размещаться в первом отверстии своих соответствующих коллимационных оптических систем 3a-d, благодаря чему СИД выполнены с возможностью излучения света через первое отверстие своей соответствующей коллимационной оптической системы.
Осветительное устройство 600 дополнительно содержит поверхностную пластину 17, которая полностью покрывает вторые отверстия 9a-d коллимационной оптической системы 3a-d. Проиллюстрированная поверхностная пластина 17 может иметь круглую форму в виде сверху.
Фиг. 7 иллюстрирует альтернативный вариант осуществления осветительного устройства 700, содержащего несколько СИД. Осветительное устройство 700 содержит множество СИД. В данном случае в целях иллюстрации показано два СИД 5a-b. Осветительное устройство 700 дополнительно содержит коллимационную оптическую систему 3 согласно любому из ранее раскрытых вариантов осуществления. Множество СИД 5a-b выполнено с возможностью размещения в первом отверстии 7 коллимационной оптической системы 3. Таким образом, множество СИД выполнено с возможностью излучения света через первое отверстие 7 общей коллимационной оптической системы 3.
Специалисту в данной области техники понятно, что настоящее изобретение никоим образом не ограничено вышеописанными предпочтительными вариантами осуществления. Напротив, в объеме нижеследующей формулы изобретения возможны многочисленные модификации и вариации. Например, варианты осуществления, раскрытые со ссылкой на фиг. 6 и 7, можно объединять в осветительное устройство, содержащее несколько коллимационных оптических систем, по аналогии с вариантом осуществления, представленным на фиг. 6a и 6b, но в котором каждая коллимационная оптическая система связана с несколькими СИД, как показано на фиг. 7.
Дополнительно, специалист в данной области техники может понять и использовать вариации раскрытых вариантов осуществления, практически осуществляя заявленное изобретение, изучая чертежи, раскрытие и нижеследующую формулу изобретения. В формуле изобретения, слово «содержащий» не исключает наличия других элементов или этапов, и их упоминание в единственном числе не исключает наличия их множества. Лишь тот факт, что определенные средства упомянуты в различных зависимых пунктах формулы изобретения не означает, что нельзя с пользой применять сочетание этих средств.

Claims (21)

1. Коллимационная оптическая система (2) для светодиодных источников (5) света, содержащая:
- отражающий коллиматор (3), имеющий чашеобразную форму с нижней стороной и верхней стороной, причем упомянутый отражающий коллиматор (3) дополнительно содержит первое отверстие (7), расположенное в центре нижней стороны чаши, для приема светодиодного источника (5) света и для обеспечения возможности входящему свету из светодиодного источника света входить в упомянутый отражающий коллиматор (3), и второе отверстие (9), расположенное в верхнем отверстии чаши, для обеспечения возможности исходящему свету выходить из упомянутого отражающего коллиматора (3), причем отражающий коллиматор (3) дополнительно имеет элемент (15) стенки, проходящий от упомянутого первого отверстия (7) к упомянутому второму отверстию (9) и имеющий внутреннюю отражающую поверхность для направления упомянутого входящего света от упомянутого первого отверстия (7) к упомянутому второму отверстию (9),
- первую выпуклую линзу (11), соединенную с отражающим коллиматором (3) через крепежное средство (19), размещенную на расстоянии от первого отверстия (7) между первым отверстием (7) и вторым отверстием (9), для преломления упомянутого входящего света и
- вторую выпуклую линзу (13), размещенную на поверхностной пластине (17), которая покрывает по меньшей мере часть второго отверстия (9), для преломления упомянутого исходящего света для коллимации упомянутого исходящего света.
2. Коллимационная оптическая система по п. 1, в которой первая и вторая выпуклые линзы являются линзами Френеля, каждая из которых имеет множество граней.
3. Коллимационная оптическая система по п. 2, в которой количество граней первой выпуклой линзы и второй выпуклой линзы различны.
4. Коллимационная оптическая система по п. 3, в которой количество граней первой выпуклой линзы и/или второй выпуклой линзы равно 3, 4 или 5.
5. Коллимационная оптическая система по п. 1 или 2, в которой вторая выпуклая линза расположена в выемке поверхностной пластины.
6. Коллимационная оптическая система по п. 1 или 2, в которой вторая выпуклая линза расположена на внешней поверхности поверхностной пластины.
7. Коллимационная оптическая система по п. 1, в которой оптическая ось первой выпуклой линзы и оптическая ось второй выпуклой линзы совмещены с оптической осью отражающего коллиматора, причем оптическая ось отражающего коллиматора проходит от первого отверстия ко второму отверстию.
8. Коллимационная оптическая система по п. 1, в которой элемент стенки содержит первый участок, содержащий первое отверстие, и второй участок, содержащий второе отверстие, причем первый участок элемента стенки выполнен с возможностью разведения входящего света, падающего на первый участок, таким образом, чтобы направить входящий свет от второй выпуклой линзы, и второй участок элемента стенки выполнен с возможностью коллимации входящего света.
9. Осветительное устройство (100), содержащее
- по меньшей мере одну коллимационную оптическую систему (2) по п. 1 и
- по меньшей мере один светодиод (5) (СИД), выполненный с возможностью излучения света через первое отверстие (7) одной из по меньшей мере одной коллимационной оптической системы (2).
10. Осветительное устройство по п. 9, в котором каждый СИД (5) по меньшей мере одного светодиодного источника имеет соответствующую коллимационную оптическую систему, причем каждый СИД выполнен с возможностью излучения света через первое отверстие его соответствующей коллимационной оптической системы.
11. Осветительное устройство по п. 9, содержащее по меньшей мере два СИД, выполненных с возможностью излучения света через первое отверстие общей коллимационной оптической системы.
12. Способ определения параметров коллимационной оптической системы (2) по п. 1, причем параметры относятся к форме первой (11) и второй выпуклой линзы (13), и к форме элемента (15) стенки отражающего коллиматора (3), причем способ содержит этапы, на которых:
- определяют (S100) начальные значения параметров на основании теоретической модели коллимационной оптической системы (2),
- оптимизируют (S102) функцию качества по отношению к параметрам коллимационной оптической системы (2) с использованием определенных начальных значений в качестве начальных значений, причем функция качества содержит первую целевую функцию, относящуюся к желаемому углу раствора пучка, соответствующему полной ширине на полумаксимуме (FWHM), и вторую целевую функцию, относящуюся к максимальной интенсивности света в центре светового пучка, выводимого из коллимационной оптической системы (1).
13. Способ по п. 12, в котором функция качества дополнительно содержит третью целевую функцию, относящуюся к желаемому профилю пучка.
14. Способ по п. 12, в котором форма элемента стенки моделируется посредством набора кривых Безье, имеющих соответствующий набор параметров Безье, причем параметры коллимационной оптической системы содержат радиус кривизны первой выпуклой линзы, радиус кривизны второй выпуклой линзы и набор параметров Безье.
RU2014128527A 2011-12-13 2012-12-04 Оптический коллиматор для светодиодных источников света RU2670177C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CNPCT/CN2011/083883 2011-12-13
CN2011083883 2011-12-13
PCT/IB2012/056937 WO2013088299A1 (en) 2011-12-13 2012-12-04 Optical collimator for led lights

Publications (2)

Publication Number Publication Date
RU2014128527A RU2014128527A (ru) 2016-02-10
RU2670177C2 true RU2670177C2 (ru) 2018-10-18

Family

ID=47628403

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014128527A RU2670177C2 (ru) 2011-12-13 2012-12-04 Оптический коллиматор для светодиодных источников света

Country Status (6)

Country Link
US (1) US10254521B2 (ru)
EP (2) EP4273443A3 (ru)
JP (1) JP6198748B2 (ru)
IN (1) IN2014CN04756A (ru)
RU (1) RU2670177C2 (ru)
WO (1) WO2013088299A1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2706219C1 (ru) * 2019-03-19 2019-11-15 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом") Коллиматор для жесткого рентгеновского излучения

Families Citing this family (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8118447B2 (en) 2007-12-20 2012-02-21 Altair Engineering, Inc. LED lighting apparatus with swivel connection
US8360599B2 (en) 2008-05-23 2013-01-29 Ilumisys, Inc. Electric shock resistant L.E.D. based light
US8653984B2 (en) 2008-10-24 2014-02-18 Ilumisys, Inc. Integration of LED lighting control with emergency notification systems
US8214084B2 (en) 2008-10-24 2012-07-03 Ilumisys, Inc. Integration of LED lighting with building controls
US8324817B2 (en) 2008-10-24 2012-12-04 Ilumisys, Inc. Light and light sensor
US7938562B2 (en) 2008-10-24 2011-05-10 Altair Engineering, Inc. Lighting including integral communication apparatus
US8901823B2 (en) 2008-10-24 2014-12-02 Ilumisys, Inc. Light and light sensor
WO2011119921A2 (en) 2010-03-26 2011-09-29 Altair Engineering, Inc. Led light with thermoelectric generator
CA2794541C (en) 2010-03-26 2018-05-01 David L. Simon Inside-out led bulb
GB2484713A (en) 2010-10-21 2012-04-25 Optovate Ltd Illumination apparatus
EP2633227B1 (en) 2010-10-29 2018-08-29 iLumisys, Inc. Mechanisms for reducing risk of shock during installation of light tube
WO2013131002A1 (en) 2012-03-02 2013-09-06 Ilumisys, Inc. Electrical connector header for an led-based light
WO2014008463A1 (en) 2012-07-06 2014-01-09 Ilumisys, Inc. Power supply assembly for led-based light tube
US9271367B2 (en) 2012-07-09 2016-02-23 Ilumisys, Inc. System and method for controlling operation of an LED-based light
US9285084B2 (en) 2013-03-14 2016-03-15 Ilumisys, Inc. Diffusers for LED-based lights
AT514121B1 (de) * 2013-04-12 2015-06-15 Zizala Lichtsysteme Gmbh Leuchteinheit für einen Fahrzeugscheinwerfer sowie Fahrzeugscheinwerfer
CN104214547B (zh) * 2013-05-31 2016-09-07 深圳市海洋王照明工程有限公司 透镜及使用该透镜的照明装置
EP3004728A1 (en) * 2013-06-07 2016-04-13 Koninklijke Philips N.V. Lens and lighting device
FR3008777B1 (fr) * 2013-07-22 2017-12-29 Renault Sas Systeme d'eclairage, notamment pour un organe d'eclairage de vehicule automobile, a led integrees
US9267650B2 (en) 2013-10-09 2016-02-23 Ilumisys, Inc. Lens for an LED-based light
KR20160111975A (ko) 2014-01-22 2016-09-27 일루미시스, 인크. 어드레스된 led들을 갖는 led 기반 조명
EP3105500A1 (en) * 2014-01-27 2016-12-21 Philips Lighting Holding B.V. Optical device and luminaire
US9435515B2 (en) * 2014-01-31 2016-09-06 Energizer Brands, Llc Near-field lens with convex hyperbolic surface
FR3019314B1 (fr) * 2014-03-28 2017-08-11 Gaggione Sas Collimateur de lumiere
US9510400B2 (en) 2014-05-13 2016-11-29 Ilumisys, Inc. User input systems for an LED-based light
CN106104147B (zh) * 2014-06-02 2019-11-15 飞利浦照明控股有限公司 用于准直光的光学系统
KR101622095B1 (ko) * 2014-06-02 2016-05-18 현대모비스 주식회사 자동차의 조명 장치
EP2955430B1 (en) * 2014-06-12 2019-07-31 Harman Professional Denmark ApS Illumination device with uniform light beams
JP6606832B2 (ja) * 2015-02-26 2019-11-20 三菱電機株式会社 照明器具
KR101697212B1 (ko) * 2015-04-28 2017-02-01 동부라이텍 주식회사 조명장치
JP6094623B2 (ja) * 2015-05-18 2017-03-15 株式会社遠藤照明 照明器具用フレネルレンズおよびそれを有する照明器具
CN104864360B (zh) * 2015-05-27 2023-05-02 漳州立达信光电子科技有限公司 透镜结构
US10161568B2 (en) 2015-06-01 2018-12-25 Ilumisys, Inc. LED-based light with canted outer walls
KR20180048910A (ko) * 2015-09-02 2018-05-10 루미리즈 홀딩 비.브이. Led 모듈 및 조명 모듈
DE102015011714A1 (de) * 2015-09-07 2017-03-09 Bartenbach Holding Gmbh Beleuchtungsvorrichtung
JP2017067970A (ja) * 2015-09-30 2017-04-06 日本電産サンキョー株式会社 光学ユニットおよび集光レンズ
KR101764821B1 (ko) * 2015-10-12 2017-08-04 동부라이텍 주식회사 조명장치
JP2017108020A (ja) * 2015-12-10 2017-06-15 パナソニックIpマネジメント株式会社 レンズユニット、ledモジュールおよびそれを用いた照明器具
KR102659369B1 (ko) * 2016-03-23 2024-04-22 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 광학 모듈
JP6861538B2 (ja) * 2016-06-22 2021-04-21 三菱電機株式会社 光源装置
NL2018334B1 (nl) * 2017-02-06 2018-09-03 Jozef Horvath Gusztav Uv-afdeklaaguithardinrichting
JP2018147702A (ja) * 2017-03-06 2018-09-20 三菱電機株式会社 照明装置
GB201705364D0 (en) 2017-04-03 2017-05-17 Optovate Ltd Illumination apparatus
GB201705365D0 (en) 2017-04-03 2017-05-17 Optovate Ltd Illumination apparatus
US11199306B2 (en) 2017-08-02 2021-12-14 Erco Gmbh Lamp
KR101940921B1 (ko) 2017-08-18 2019-01-22 주식회사 포스코 패턴글라스 및 이를 포함하는 태양광 발전모듈
GB201718307D0 (en) 2017-11-05 2017-12-20 Optovate Ltd Display apparatus
WO2019137909A1 (en) * 2018-01-10 2019-07-18 Signify Holding B.V. A led lamp and a method of controlling a led lamp
GB201800574D0 (en) * 2018-01-14 2018-02-28 Optovate Ltd Illumination apparatus
GB201803767D0 (en) 2018-03-09 2018-04-25 Optovate Ltd Illumination apparatus
US11236888B2 (en) * 2018-04-19 2022-02-01 Signify Holding B.V. Lighting device having light mixing optics and ring-shaped collimating structure
DE202018102205U1 (de) * 2018-04-20 2019-07-24 Zumtobel Lighting Gmbh Linsenanordnung zum Richten des von einem Leuchtmittel emittierten Lichts
GB201807747D0 (en) 2018-05-13 2018-06-27 Optovate Ltd Colour micro-LED display apparatus
JP6912732B2 (ja) 2018-08-31 2021-08-04 日亜化学工業株式会社 発光装置およびその製造方法
TW202102883A (zh) 2019-07-02 2021-01-16 美商瑞爾D斯帕克有限責任公司 定向顯示設備
WO2021041202A1 (en) 2019-08-23 2021-03-04 Reald Spark, Llc Directional illumination apparatus and privacy display
WO2021050967A1 (en) 2019-09-11 2021-03-18 Reald Spark, Llc Directional illumination apparatus and privacy display
CN114631046A (zh) 2019-09-11 2022-06-14 瑞尔D斯帕克有限责任公司 可切换照明设备和防窥显示器
CN114730851A (zh) 2019-10-03 2022-07-08 瑞尔D斯帕克有限责任公司 包括无源光学纳米结构的照明设备
EP4038313A4 (en) 2019-10-03 2023-11-22 RealD Spark, LLC LIGHTING APPARATUS COMPRISING PASSIVE OPTICAL NANOSTRUCTURES
US11774063B2 (en) * 2019-10-28 2023-10-03 Signify Holding B.V. Color mixing with total internal reflector and center reflector
JP7231831B2 (ja) * 2019-10-30 2023-03-02 日亜化学工業株式会社 光源装置
JP7148813B2 (ja) * 2019-10-30 2022-10-06 日亜化学工業株式会社 光源装置
FR3103258B1 (fr) * 2019-11-20 2021-11-05 Valeo Vision Dispositif lumineux pour vehicule automobile comportant un collimateur
JP7291086B2 (ja) * 2020-01-29 2023-06-14 スタンレー電気株式会社 照明装置
WO2021168090A1 (en) 2020-02-20 2021-08-26 Reald Spark, Llc Illumination and display apparatus
JP6867533B1 (ja) 2020-05-20 2021-04-28 株式会社アルス 光源装置
US11782205B2 (en) 2021-04-28 2023-10-10 Nichia Corporation Light-emitting device including movement mechanism
EP4359862A1 (en) 2021-06-22 2024-05-01 RealD Spark, LLC Illumination apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070047232A1 (en) * 2005-08-30 2007-03-01 Samsung Electro-Mechanics Co., Ltd. Led lens for backlight
US20080030974A1 (en) * 2006-08-02 2008-02-07 Abu-Ageel Nayef M LED-Based Illumination System
US20080037116A1 (en) * 2006-04-18 2008-02-14 Upstream Engineering Oy Illuminator method and device
US20080225528A1 (en) * 2005-07-22 2008-09-18 Illumination Mangement Solutions, Inc. Light-Conducting Pedestal Configuration for an Led Apparatus Which Collects Almost All and Distributes Subtantially All of the Light From the Led
US20090128921A1 (en) * 2007-11-15 2009-05-21 Philips Solid-State Lighting Solutions Led collimator having spline surfaces and related methods

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2224178A (en) * 1940-05-08 1940-12-10 Ralph E Bitner Catadioptrical lens system
JPS59143117A (ja) 1983-02-04 1984-08-16 Saibishiya:Kk 集光器
CN1037573A (zh) 1988-05-09 1989-11-29 汽车电子、汽车拖拉机电器装置科研生产联合企业 整体压制的光准直器
DE4315393C2 (de) * 1993-05-08 2002-10-31 Bosch Gmbh Robert Kraftfahrzeugscheinwerfer mit einem Reflektor und einer Streulinse
JPH07287226A (ja) 1994-04-18 1995-10-31 Hitachi Ltd 液晶表示装置
TW512214B (en) 2000-01-07 2002-12-01 Koninkl Philips Electronics Nv Luminaire
US6547423B2 (en) * 2000-12-22 2003-04-15 Koninklijke Phillips Electronics N.V. LED collimation optics with improved performance and reduced size
US6632004B2 (en) * 2000-12-27 2003-10-14 Canon Kabushiki Kaisha Lighting device
DE10256365A1 (de) * 2001-12-04 2003-07-17 Ccs Inc Lichtabstrahlungsvorrichtung, Lichtquellenvorrichtung, Beleuchtungseinheit und Lichtverbindungsmechanismus
DE10392669T5 (de) * 2002-05-17 2005-07-07 Ccs Inc. Lichtemissionsdiodeneinheit und Verfahren zum Herstellen einer Lichtemissionsdiodeneinheit
JP2004259541A (ja) * 2003-02-25 2004-09-16 Cateye Co Ltd 照明器具
JP4661149B2 (ja) 2003-12-22 2011-03-30 セイコーエプソン株式会社 照明装置及びプロジェクタ
JP4497348B2 (ja) * 2004-01-13 2010-07-07 株式会社小糸製作所 車両用灯具
EP1596125B1 (en) 2004-05-14 2008-01-09 C.R.F. Società Consortile per Azioni A module for projecting a light beam, an optical device for the module, and a vehicle front light assembly
EP1648037B1 (en) * 2004-10-14 2009-12-30 C.R.F. Società Consortile per Azioni Optical element and module for the projection of a light beam, and motor vehicle lamp including a plurality of such modules
JP4993434B2 (ja) * 2005-11-18 2012-08-08 スタンレー電気株式会社 白色led照明装置
US7461960B2 (en) * 2006-05-05 2008-12-09 Zweibruder Optoelectronics LED illumination module
JP4355958B2 (ja) * 2006-11-21 2009-11-04 いすゞ自動車株式会社 車両のドア構造
ATE508108T1 (de) * 2007-02-06 2011-05-15 Chelsea Therapeutics Inc Neue verbindungen, verfahren zu deren herstellung und deren verwendung
US8310685B2 (en) * 2007-08-17 2012-11-13 Dimitrov-Kuhl Klaus-Peter Parameterized optical system and method
JP2010067439A (ja) 2008-09-10 2010-03-25 Harison Toshiba Lighting Corp 面発光装置および表示装置
US8068288B1 (en) * 2008-09-15 2011-11-29 Triformix, Inc. Thin stepped tulip lens
CN101750643B (zh) * 2008-12-05 2012-12-19 鸿富锦精密工业(深圳)有限公司 透镜及采用该透镜的光源模组
JP2010224089A (ja) * 2009-03-23 2010-10-07 Brother Ind Ltd プリズム
CN201680286U (zh) 2009-11-24 2010-12-22 帝欧(上海)光电科技有限公司 高效led透镜以及发光模组
CN102102850A (zh) * 2009-12-16 2011-06-22 富准精密工业(深圳)有限公司 透镜及其应用的发光二极管模组
TW201122560A (en) * 2009-12-30 2011-07-01 Genius Electronic Optical Co Ltd Light guide lens and bicycle headlight using the same.
US8858022B2 (en) * 2011-05-05 2014-10-14 Ledengin, Inc. Spot TIR lens system for small high-power emitter
TW201139935A (en) * 2010-05-05 2011-11-16 Shun-Wei Yang An LED lighting device and the asymmetric lamp cup thereof
US8649094B2 (en) 2010-05-21 2014-02-11 Eastman Kodak Company Low thermal stress birefringence imaging lens
JP5608048B2 (ja) * 2010-11-04 2014-10-15 日東光学株式会社 照明用レンズ
US20130135358A1 (en) * 2011-11-30 2013-05-30 Qualcomm Mems Technologies, Inc. Light collimating manifold for producing multiple virtual light sources

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080225528A1 (en) * 2005-07-22 2008-09-18 Illumination Mangement Solutions, Inc. Light-Conducting Pedestal Configuration for an Led Apparatus Which Collects Almost All and Distributes Subtantially All of the Light From the Led
US20070047232A1 (en) * 2005-08-30 2007-03-01 Samsung Electro-Mechanics Co., Ltd. Led lens for backlight
US20080037116A1 (en) * 2006-04-18 2008-02-14 Upstream Engineering Oy Illuminator method and device
US20080030974A1 (en) * 2006-08-02 2008-02-07 Abu-Ageel Nayef M LED-Based Illumination System
US20090128921A1 (en) * 2007-11-15 2009-05-21 Philips Solid-State Lighting Solutions Led collimator having spline surfaces and related methods

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2706219C1 (ru) * 2019-03-19 2019-11-15 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом") Коллиматор для жесткого рентгеновского излучения

Also Published As

Publication number Publication date
EP4273443A2 (en) 2023-11-08
JP2015507817A (ja) 2015-03-12
IN2014CN04756A (ru) 2015-09-18
EP4273443A3 (en) 2023-12-20
JP6198748B2 (ja) 2017-09-20
US10254521B2 (en) 2019-04-09
RU2014128527A (ru) 2016-02-10
WO2013088299A1 (en) 2013-06-20
US20140316742A1 (en) 2014-10-23
EP2791724A1 (en) 2014-10-22

Similar Documents

Publication Publication Date Title
RU2670177C2 (ru) Оптический коллиматор для светодиодных источников света
US10295153B2 (en) Optical system for producing uniform illumination
JP5415539B2 (ja) 均一コリメート光を生成するための小型光学システム
US8979347B2 (en) Illumination systems and methods
US9383076B2 (en) LED homogenizer
JP2010500735A (ja) 照明装置
US9759402B2 (en) Optical system
US20100091492A1 (en) Luminaires using multiple quasi-point sources for unified radially distributed illumination
JP2015529849A (ja) 低プロファイル複数レンズのtir
US8668351B2 (en) LED traffic signal and optical element therefor
JP2017509117A (ja) ビーム成形システム、及び当該ビーム成形システムを用いた照明システム
JP2004516684A (ja) Ledモジュール
CN103988110B (zh) 用于led灯的光学准直器
JP2014517489A (ja) 発光ダイオード光源
JP2013214449A (ja) トロイダルレンズおよび照明装置
US8746936B2 (en) Luminaire and optical component
JP5931079B2 (ja) 照明装置、照明器具及び照明システム
EP2881654A2 (en) Lighting device
WO2013035036A1 (en) A collimator structure and lighting device
EP3588147A1 (en) A lens and a lighting unit using the lens
JP2021005040A (ja) 光学素子および照明装置

Legal Events

Date Code Title Description
HZ9A Changing address for correspondence with an applicant