RU2361900C2 - Переработка природного газа для образования углеводородов с более длинными цепями - Google Patents
Переработка природного газа для образования углеводородов с более длинными цепями Download PDFInfo
- Publication number
- RU2361900C2 RU2361900C2 RU2006136143/04A RU2006136143A RU2361900C2 RU 2361900 C2 RU2361900 C2 RU 2361900C2 RU 2006136143/04 A RU2006136143/04 A RU 2006136143/04A RU 2006136143 A RU2006136143 A RU 2006136143A RU 2361900 C2 RU2361900 C2 RU 2361900C2
- Authority
- RU
- Russia
- Prior art keywords
- fischer
- gas
- mixture
- tropsch synthesis
- natural gas
- Prior art date
Links
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 title claims abstract description 86
- 229930195733 hydrocarbon Natural products 0.000 title claims abstract description 22
- 150000002430 hydrocarbons Chemical class 0.000 title claims abstract description 22
- 239000003345 natural gas Substances 0.000 title claims abstract description 21
- 238000004519 manufacturing process Methods 0.000 title abstract 3
- 239000007789 gas Substances 0.000 claims abstract description 59
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 35
- 238000002407 reforming Methods 0.000 claims abstract description 32
- 239000000203 mixture Substances 0.000 claims abstract description 28
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 27
- 238000003786 synthesis reaction Methods 0.000 claims abstract description 25
- 238000000034 method Methods 0.000 claims abstract description 20
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 17
- 239000001257 hydrogen Substances 0.000 claims abstract description 17
- 230000006835 compression Effects 0.000 claims abstract description 11
- 238000007906 compression Methods 0.000 claims abstract description 11
- 238000001816 cooling Methods 0.000 claims abstract description 7
- 238000009434 installation Methods 0.000 claims abstract description 6
- 239000007791 liquid phase Substances 0.000 claims abstract 4
- 238000009833 condensation Methods 0.000 claims abstract 3
- 230000005494 condensation Effects 0.000 claims abstract 3
- 125000004435 hydrogen atom Chemical class [H]* 0.000 claims abstract 3
- 238000006243 chemical reaction Methods 0.000 claims description 21
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 18
- 230000003197 catalytic effect Effects 0.000 claims description 15
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims description 12
- 229910002091 carbon monoxide Inorganic materials 0.000 claims description 12
- 229910052751 metal Inorganic materials 0.000 claims description 11
- 239000002184 metal Substances 0.000 claims description 11
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 9
- 239000001569 carbon dioxide Substances 0.000 claims description 9
- 238000006057 reforming reaction Methods 0.000 claims description 5
- 239000000758 substrate Substances 0.000 claims description 4
- 239000012530 fluid Substances 0.000 claims description 3
- 238000005292 vacuum distillation Methods 0.000 claims description 3
- 239000003245 coal Substances 0.000 claims 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 abstract description 3
- 229910052799 carbon Inorganic materials 0.000 abstract description 3
- 239000000126 substance Substances 0.000 abstract description 2
- 238000005065 mining Methods 0.000 abstract 1
- 239000003054 catalyst Substances 0.000 description 15
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 12
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 6
- 238000002485 combustion reaction Methods 0.000 description 6
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 6
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical compound [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 4
- 238000007084 catalytic combustion reaction Methods 0.000 description 4
- 229910017052 cobalt Inorganic materials 0.000 description 4
- 239000010941 cobalt Substances 0.000 description 4
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 4
- 230000005611 electricity Effects 0.000 description 4
- 239000011888 foil Substances 0.000 description 4
- 150000002431 hydrogen Chemical class 0.000 description 4
- 238000000629 steam reforming Methods 0.000 description 4
- 238000001311 chemical methods and process Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 229910052763 palladium Inorganic materials 0.000 description 3
- 229910052697 platinum Inorganic materials 0.000 description 3
- PXXKQOPKNFECSZ-UHFFFAOYSA-N platinum rhodium Chemical compound [Rh].[Pt] PXXKQOPKNFECSZ-UHFFFAOYSA-N 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- 102000010410 Nogo Proteins Human genes 0.000 description 1
- 108010077641 Nogo Proteins Proteins 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 150000001335 aliphatic alkanes Chemical class 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000000567 combustion gas Substances 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000006477 desulfuration reaction Methods 0.000 description 1
- 230000023556 desulfurization Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000003651 drinking water Substances 0.000 description 1
- 235000020188 drinking water Nutrition 0.000 description 1
- UIWYJDYFSGRHKR-UHFFFAOYSA-N gadolinium atom Chemical compound [Gd] UIWYJDYFSGRHKR-UHFFFAOYSA-N 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- SZVJSHCCFOBDDC-UHFFFAOYSA-N iron(II,III) oxide Inorganic materials O=[Fe]O[Fe]O[Fe]=O SZVJSHCCFOBDDC-UHFFFAOYSA-N 0.000 description 1
- 239000008239 natural water Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- -1 paraffins Chemical class 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2/00—Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
- C10G2/30—Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
- C10G2/32—Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/24—Stationary reactors without moving elements inside
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/24—Stationary reactors without moving elements inside
- B01J19/248—Reactors comprising multiple separated flow channels
- B01J19/249—Plate-type reactors
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/02—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
- C01B3/32—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
- C01B3/34—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
- C01B3/38—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/02—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
- C01B3/32—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
- C01B3/34—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
- C01B3/38—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
- C01B3/384—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts the catalyst being continuously externally heated
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C27/00—Processes involving the simultaneous production of more than one class of oxygen-containing compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/24—Stationary reactors without moving elements inside
- B01J2219/2401—Reactors comprising multiple separate flow channels
- B01J2219/245—Plate-type reactors
- B01J2219/2451—Geometry of the reactor
- B01J2219/2453—Plates arranged in parallel
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/24—Stationary reactors without moving elements inside
- B01J2219/2401—Reactors comprising multiple separate flow channels
- B01J2219/245—Plate-type reactors
- B01J2219/2451—Geometry of the reactor
- B01J2219/2456—Geometry of the plates
- B01J2219/2458—Flat plates, i.e. plates which are not corrugated or otherwise structured, e.g. plates with cylindrical shape
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/24—Stationary reactors without moving elements inside
- B01J2219/2401—Reactors comprising multiple separate flow channels
- B01J2219/245—Plate-type reactors
- B01J2219/2461—Heat exchange aspects
- B01J2219/2465—Two reactions in indirect heat exchange with each other
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/24—Stationary reactors without moving elements inside
- B01J2219/2401—Reactors comprising multiple separate flow channels
- B01J2219/245—Plate-type reactors
- B01J2219/2476—Construction materials
- B01J2219/2477—Construction materials of the catalysts
- B01J2219/2479—Catalysts coated on the surface of plates or inserts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/24—Stationary reactors without moving elements inside
- B01J2219/2401—Reactors comprising multiple separate flow channels
- B01J2219/245—Plate-type reactors
- B01J2219/2476—Construction materials
- B01J2219/2477—Construction materials of the catalysts
- B01J2219/2482—Catalytically active foils; Plates having catalytically activity on their own
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/24—Stationary reactors without moving elements inside
- B01J2219/2401—Reactors comprising multiple separate flow channels
- B01J2219/245—Plate-type reactors
- B01J2219/2476—Construction materials
- B01J2219/2483—Construction materials of the plates
- B01J2219/2485—Metals or alloys
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/02—Processes for making hydrogen or synthesis gas
- C01B2203/0205—Processes for making hydrogen or synthesis gas containing a reforming step
- C01B2203/0227—Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
- C01B2203/0233—Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/06—Integration with other chemical processes
- C01B2203/062—Hydrocarbon production, e.g. Fischer-Tropsch process
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/08—Methods of heating or cooling
- C01B2203/0805—Methods of heating the process for making hydrogen or synthesis gas
- C01B2203/0811—Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/08—Methods of heating or cooling
- C01B2203/0805—Methods of heating the process for making hydrogen or synthesis gas
- C01B2203/0811—Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
- C01B2203/0822—Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel the fuel containing hydrogen
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/08—Methods of heating or cooling
- C01B2203/0805—Methods of heating the process for making hydrogen or synthesis gas
- C01B2203/0811—Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
- C01B2203/0827—Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel at least part of the fuel being a recycle stream
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/10—Catalysts for performing the hydrogen forming reactions
- C01B2203/1041—Composition of the catalyst
- C01B2203/1047—Group VIII metal catalysts
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/12—Feeding the process for making hydrogen or synthesis gas
- C01B2203/1205—Composition of the feed
- C01B2203/1211—Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
- C01B2203/1235—Hydrocarbons
- C01B2203/1241—Natural gas or methane
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/12—Feeding the process for making hydrogen or synthesis gas
- C01B2203/1258—Pre-treatment of the feed
- C01B2203/1264—Catalytic pre-treatment of the feed
- C01B2203/127—Catalytic desulfurisation
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/80—Aspect of integrated processes for the production of hydrogen or synthesis gas not covered by groups C01B2203/02 - C01B2203/1695
- C01B2203/84—Energy production
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/10—Feedstock materials
- C10G2300/1025—Natural gas
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/40—Characteristics of the process deviating from typical ways of processing
- C10G2300/4012—Pressure
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/80—Additives
- C10G2300/805—Water
- C10G2300/807—Steam
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/32—Hydrogen storage
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/10—Process efficiency
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Inorganic Chemistry (AREA)
- Combustion & Propulsion (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Hydrogen, Water And Hydrids (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
Abstract
Настоящее изобретение относится к способу переработки природного газа для образования углеводородов с более длинными цепями, включающий реформинг природного газа с водяным паром под давлением в интервале от 0,4 до 0,6 МПа для образования смеси окиси углерода и водорода, охлаждение смеси, компремирование этой смеси с использованием двух последовательных ступеней сжатия с охлаждением между двумя ступенями до давления в интервале от 1,8 до 2,2 МПа, так что степень сжатия на каждой ступени не превышает 2,5:1 и затем проведение с этой смесью синтеза Фишера-Тропша для образования углеводородов с более длинными цепями, причем продукт синтеза Фишера-Тропша разделяют конденсацией на жидкую фазу и остаточный газ и по меньшей мере часть этого остаточного газа используют для генерирования электрической энергии для проведения двух ступеней компрессии. Применение данного способа позволяет снизить эксплуатационные и капитальные затраты на установку. Также изобретение относится к установке для осуществления предложенного способа. 2 н. и 6 з.п. ф-лы, 1 ил.
Description
Данное изобретение относится к химическому способу превращения природного газа в углеводороды с более длинными цепями и к установке, включающей каталитические реакторы, пригодные для использования при осуществлении способа.
В заявках WO 01/51194 и WO 03/048034 (Accentus plc) описан способ, по которому метан реагирует с водяным паром с образованием окиси углерода и водорода в первом каталитическом реакторе; полученную газовую смесь затем используют для проведения синтеза Фишера-Тропша во втором каталитическом реакторе. Суммарным результатом является превращение метана в углеводороды с более высоким молекулярным весом, которые обычно являются жидкими в условиях окружающей среды. Две ступени процесса, реформинг метан/водяной пар и синтез Фишера-Тропша, требуют различных катализаторов, и для каждой ступени описаны каталитические реакторы. Каталитические реакторы дают возможность передачи тепла к реакционным газам или от них, соответственно, так как реакции являются, соответственно, эндотермической и экзотермической; тепло, требуемое для реформинга метан/водяной пар, может быть обеспечено горением. Две ступени работают наиболее эффективно под различным давлением, но подъем давления между двумя ступенями дорог и использует энергию. Согласно настоящему изобретению предложен способ переработки природного газа для образования углеводородов с более длинными цепями, который включает реформинг природного газа с водяным паром под давлением в интервале от 0,4 до 0,6 МПа (от 4 до 6 атм) с образованием смеси окиси углерода и водорода, охлаждение смеси, сжатие этой смеси с использованием двух последовательных ступеней компрессии с охлаждением между двумя ступенями до давления в интервале от 1,8 до 2,2 МПа (от 18 до 22 атм), и затем проведение с этой смесью синтеза Фишера-Тропша для получения углеводородов с более длинными цепями.
Обычно должно быть необходимо довести давление природного газа до подходящего давления (например, между 0,4 и 0,6 МПа) до того, как природный газ смешивают с водяным паром перед реформингом. Предпочтительно синтез Фишера-Тропша проводят под давлением в интервале 1,9-2,2 МПа (19-21 атм). (В любом случае величина давления представляет абсолютное давление.)
В процессе образуется также остаточный газ, который содержит водород и часть газообразных углеводородов. Предпочтительно по меньшей мере часть этого остаточного газа используют для генерирования электроэнергии, например, в качестве топлива для турбины, используемой для того, чтобы приводить в движение генератор. Это не только обеспечивает электроэнергию для осуществления процесса, например, для работы компрессоров, но также и дает избыточную электроэнергию для других целей.
Остаточный газ может быть также использован для превращения всей двуокиси углерода в природном газе в окись углерода путем осуществления обратной реакции конверсии водяного газа после синтеза Фишера-Тропша.
Предпочтительно и реакцию реформинга метан/водяной пар, и синтез Фишера-Тропша проводят, используя компактные каталитические реакторы. Такой каталитический реактор предпочтительно включает множество металлических пластин в пакете, сформованных и расположенных так, чтобы разграничить первый и второй каналы потока жидкости, причем каналы расположены в пакете поочередно, чтобы обеспечить хороший термический контакт между средами в них. Там, где необходимо, должны быть соответствующие катализаторы в зависимости от желаемой реакции. Для того чтобы гарантировать требуемый хороший термический контакт в случае реактора, осуществляющего реформинг водяной пар/метан, каналы и первого, и второго потоков могут быть глубиной между 2 мм и 10 мм, предпочтительно, менее 6 мм в направлении, нормальном пластинам, более предпочтительно, глубиной в интервале от 5 мм до 3 мм; в случае реактора Фишера-Тропша реакционные каналы предпочтительно имеют глубину меньше 10 мм. Волнистая металлическая фольга, фольга с выдавленными углублениями, металлические сетки или волнистые или гофрированные листы металлического картона могут быть использованы в качестве подложки для каталитической структуры внутри каналов, чтобы улучшить теплопередачу и площадь поверхности катализатора. Эти каталитические структуры предпочтительно являются удаляемыми из прорезей в пакете, так что они могут быть заменены, после отработки катализатора.
Реакторы такого типа обеспечивают короткую длину диффузионного пути, так что коэффициенты тепло- и массопередачи могут быть высокими, и, следовательно, могут быть высокими скорости химических реакций. Поэтому такой реактор может обеспечить высокую плотность мощности.
Изобретение будет теперь описано дополнительно и более конкретно посредством только примера и с обращением к прилагаемому чертежу, на котором изображена схема химического процесса по изобретению.
Изобретение относится к химическому процессу для превращения природного газа (в основном метана) в углеводороды с более длинными цепями. Первая стадия включает реформинг с водяным паром, то есть природный газ смешивают с водяным паром и затем подвергают реакции:
Н2О + СН4 → СО + 3 Н2
Эта реакция является эндотермической и может быть катализирована родиевым или платинородиевым катализатором в первом канале протока газа. Тепло, требуемое для того, чтобы вызвать эту реакцию, может быть обеспечено сжиганием такого горючего газа, как метан или водород, которое является экзотермическим и может быть катализировано палладиевым катализатором в смежном втором канале протока газа. В обоих случаях катализатор предпочтительно находится на стабилизированном кремнеземом носителе, который образует на металлической подложке покрытие, обычно менее 100 мкм толщиной. Реакция горения может происходить при атмосферном давлении, но реакция реформинга должна протекать под давлением между 4 и 5 атм. Тепло, генерируемое при горении, должно быть передано через металлическую пластину, отделяющую смежные каналы.
Газовую смесь, полученную реформингом водяной пар/метан, затем используют для осуществления синтеза Фишера-Тропша для образования углеводородов с более длинными цепями, то есть:
n CO + 2n H2 → (CH2)n + n H2O,
которая является экзотермической реакцией, происходящей при повышенной температуре, обычно между 190°С и 280°С, например при 210°С, и под повышенным давлением, обычно между 1,8 МПа и 2,1 МПа (абсолютные значения), например, 2,0 МПа, в присутствии такого катализатора, как железо, кобальт или магнетит, сплавленный с калиевым промотором. Предпочтительный катализатор для синтеза Фишера-Тропша включает покрытие из гамма окиси алюминия с удельной площадью поверхности 140-230 м2/г с примерно 10-40% кобальта (по массе по сравнению с окисью алюминия) и с таким промотором, как рутений, платина или гадолиний, который составляет менее 10% от массы кобальта. Кобальт, несущий слой гамма окиси алюминия на поверхности металлической фольги, обычно имеет толщину 120-180 мкм.
Обращаясь теперь к чертежу, химический процесс в целом показан на схеме, где показаны составляющие установки. Исходный природный газ 5 состоит, главным образом, из метана, в данном примере с примесью высших углеводородов от С2 до С11. Обычно эти высшие углеводороды присутствуют в количестве до 10 об.% в зависимости от источника природного газа. Газовое сырье 5 может быть, например, под давлением 1 МПа (10 атм).
Давление газа регулируют клапаном 8 до 0,6 МПа и затем газ 5 предварительно нагревают до примерно 400°С в теплообменнике 10, используя горячий отходящий газ каталитического сжигания, и затем подают в систему обессеривания 12 с твердой насадкой, которая снижает содержание серы в газе до 0,1 ч/млн или ниже. Обессеренный природный газ 5 смешивают с водяным паром, например, в жидкостном вихревом смесителе 14. Газопаровую смесь нагревают в теплообменнике 16, используя горячий отходящий газ каталитического сжигания так, чтобы газовая смесь была при температуре 500°С. Смесь поступает в адиабатический реактор предреформинга 18 с неподвижным слоем, где он контактирует с катализатором метанирования на никелевой или платинородиевой основе. Высшие углеводороды реагируют с водяным паром, образуя метан и СО.
Газовая смесь, состоящая, главным образом, из метана, водяного пара и небольшой доли окиси углерода, выходит из реактора предреформинга при более низкой температуре, обычно 450°С. Затем давление снижают клапаном 19 до 0,45 МПа (абсолютное давление) перед входом в реактор реформинга 20. Реактор 20 является компактным каталитическим реактором описанного выше типа, изготовленным из пакета пластин, которые разделяют пути движения потоков для эндотермических и экзотермических реакций, которые находятся в хорошем термическом контакте и которые содержат соответствующие катализаторы, например, на подложках из волнистой металлической фольги. Каналы реформинга в реакторе реформинга 20 содержат платинородиевый катализатор, и водяной пар и метан реагируют, образуя окись углерода и водород. Температура в реакторе реформинга возрастает с 450°С на входе до примерно 800-850°С на выходе. Скорости потоков водяного пара и газа, подаваемых в смеситель 14, являются такими, что мольное соотношение водяной пар : углерод, подаваемое в реактор реформинга 20, находится между 1,2-1,6 и, предпочтительно, между 1,3 и 1,5. В зависимости от содержания высших углеводородов в газе 5 соотношение водяной пар : углерод на входе в реактор предреформинга должно быть, следовательно, выше чем это.
Тепло для эндотермических реакций в реакторе реформинга 20 обеспечивается каталитическим сжиганием смеси углеводородов с короткой цепью и водорода, которая представляет собой остаточные газы 22 от синтеза Фишера-Тропша; этот остаточный газ 22 объединяют с потоком воздуха, обеспечиваемым воздуходувкой 24. Горение происходит на катализаторе палладий/платина внутри смежных проточных каналов в реакторе реформинга 20. Маршрут газов горения, по меньшей мере почти, идет противотоком относительно маршрута газа реформинга. Катализатор может включать в качестве носителя гамма окись алюминия, покрытую смесью палладий/платина 3:1, которая является эффективным катализатором в широком интервале температур. Горючая газовая смесь может подаваться ступенчато вдоль реактора 20, чтобы гарантировать, что горение происходит по всей длине каналов горения.
Смесь окиси углерода и водорода при температуре выше 800°С выводят из реактора реформинга 20 и резко охлаждают до температуры ниже 400°С пропусканием ее через парогенерирующий теплообменник 26. Воду в этот теплообменник подают насосом 28, и водяной пар для процесса реформинга подают отсюда через регулирующий клапан 30 в смеситель 14. Газовую смесь затем дополнительно охлаждают в теплообменнике 32 охлаждающей водой до температуры около 60°С, так что избыточная вода конденсируется, и разделяют, пропуская через циклон 33 и разделительный сосуд 34. Затем компрессором 36 повышают давление газовой смеси примерно в 2,5 раза, и снова охлаждают газовую смесь в теплообменнике 40 перед пропусканием через второй циклон 41 и разделительный сосуд 42, для удаления всей сконденсировавшейся воды. Сепарированную воду возвращают в цикл в контур генерирования пара. Газ затем компремируют до 20 атм во втором компрессоре 44.
Поток высокого давления окиси углерода и водорода подают затем в каталитический реактор Фишера-Тропша 50, который опять является компактным каталитическим реактором, образованным из пакета пластин, как описано выше; реакционная смесь протекает по одному набору каналов, тогда как хладоноситель протекает через другой набор.
Продукты реакции с синтеза Фишера-Тропша, преимущественно вода и углеводороды, такие как парафины, охлаждают, чтобы сконденсировать жидкости, пропусканием через теплообменник 54 и циклонный сепаратор 56, после чего следует сепарационная камера 58, в которой разделяют три фазы: воду, углеводороды и остаточные газы, и углеводородный продукт стабилизируют под атмосферным давлением. Углеводороды, которые остались в газовой фазе, и избыточный водородный газ (остаточные газы синтеза Фишера-Тропша 22) отбирают и делят на части. Одна часть проходит через понижающий давление клапан 60 на обеспечение топливом процесса каталитического горения в реакторе реформинга 20 (как описано выше). Оставшиеся остаточные газы 62 подают на газовую турбину 63, которая приводит в действие генератор электрической энергии 64.
Газовая турбина 64 генерирует всю энергию для установки и имеет достаточную мощность для экспорта избытка. Главными потребителями электроэнергии установки являются компрессоры 34 и 44 и насосы 24 и 28; электроэнергия может быть также использована для работы вакуумной дистилляционной установки для обеспечения технологической водой для генерирования водяного пара и для обеспечения питьевой водой.
Из приведенных выше уравнений должно быть ясно, что стадия реформинга с водяным паром производит больше водорода, чем требуется для синтеза Фишера-Тропша. Соответственно, остаточные газы 22 содержат значительное количество водорода, а также низших алканов (скажем, от С1 до С5). Однако остаточные газы 22 содержат также значительное количество окиси углерода. Они могут быть поэтому подвергнуты второму синтезу Фишера-Тропша проходом через второй такой реактор (не показан) так, чтобы повысить общую конверсию окиси углерода и получить несколько больше целевого продукта.
Фактическая степень сжатия для компрессоров 36 и 44 составляет примерно 2,5:1. Работа компрессоров при более высокой степени сжатия будет повышать температуру газа до такого высокого уровня, что требование мощности на валу станет избыточным. Если синтез Фишера-Тропша проводят при примерно 2,0 МПа, двух компрессоров 36 и 44 достаточно до тех пор, пока реактор реформинга 20 находится под давлением выше примерно 0,4 МПа. Работа реактора реформинга водяной пар/метан 20 при таком повышенном давлении имеет тот недостаток, что конверсия метана понижается, обычно примерно на 5-10%, но это более чем компенсируется снижением капитальных и эксплуатационных затрат. Напротив, для того, чтобы работать с одним компрессором, было бы необходимо проводить реформинг под давлением около 0,8 МПа, и это могло бы понизить конверсию метана примерно на 15%. И, с другой стороны, если реакцию реформинга проводить при 0,1 МПа (1 атм), это могло бы потребовать четырех последовательных ступеней компрессии и примерно удвоило требуемую мощность.
Дополнительное преимущество осуществления реформинга при таком повышенном давлении сказывается на требуемом размере трубопроводов. Скорость газа обычно не превышает 18 м·с-1, так что для заданного массового расхода требуемый диаметр трубы значительно возрастает, когда понижается давление и плотность газа. Например, для установки производительностью 1000 баррелей продукта в сутки при давлении 0,5 МПа объемный расход смеси водород/окись углерода (синтез-газ) составит примерно 48000 м3·ч-1, что потребует трубопровода диаметром около 1,0 м. В противоположность этому, если давление будет атмосферным, объем газа будет в 5 раз больше, и трубопровод должен будет иметь диаметр около 2,2 м.
Имеется несколько ситуаций, при которых природный газ содержит также двуокись углерода. При модификации описанного выше процесса часть остаточного газа 22 (который богат водородом) возвращают в смесь природный газ/водяной пар в смесителе 14 так, чтобы он протекал через реактор предреформинга 18. Остаточный газ 22 содержит углеводороды с короткой цепью, но они превращаются в метан в реакторе предреформинга 18. Газовая смесь, входящая в реактор реформинга 20, содержит следовательно метан, водяной пар, водород и двуокись углерода. Водород может реагировать с двуокисью углерода по обратной реакции конверсии водяного газа:
CO2 + H2 → CO + H2O
Эта реакция может протекать в реакторе реформинга 20 и позволяет снизить концентрацию двуокиси углерода до равновесного уровня при условиях давления и температуры в реакторе реформинга 20. (Даже если природный газ 5 не содержит двуокись углерода, при соотношении водяной пар/метан 1,5 будет иметься небольшая доля, около 5%, двуокиси углерода, образовавшейся в реакторе реформинга 20.) Любое дополнительное количество двуокиси углерода в газе питания может поэтому превращаться в окись углерода при условии, что имеется достаточно доступного свободного водорода. Водяной пар, присутствующий в остаточном газе 22, и вода, образовавшаяся по этой обратной реакции конверсии водяного газа, должна быть принята в расчет при выборе начального соотношения водяной пар/метан в смесителе 14.
Claims (8)
1. Способ переработки природного газа для образования углеводородов с более длинными цепями, включающий реформинг природного газа с водяным паром под давлением в интервале от 0,4 до 0,6 МПа для образования смеси окиси углерода и водорода, охлаждение смеси, компремирование этой смеси с использованием двух последовательных ступеней сжатия с охлаждением между двумя ступенями до давления в интервале от 1,8 до 2,2 МПа, так что степень сжатия на каждой ступени не превышает 2,5:1 и затем проведение с этой смесью синтеза Фишера-Тропша для образования углеводородов с более длинными цепями, причем продукт синтеза Фишера-Тропша разделяют конденсацией на жидкую фазу и остаточный газ и по меньшей мере часть этого остаточного газа используют для генерирования электрической энергии для проведения двух ступеней компрессии.
2. Способ по п.1, в котором синтез Фишера-Тропша проводят под давлением в интервале от 1,9 до 2,1 МПа.
3. Способ по п.1 или 2, в котором воду для реакции реформинга с водяным паром получают, по меньшей мере частично, с установки вакуумной дистилляции.
4. Способ по п.3, в котором воду для реакции реформинга с водяным паром получают, по меньшей мере частично, с установки вакуумной дистилляции, снабжаемой электрической энергией, генерированной от остаточного газа.
5. Способ по п.1 или 2, в котором и реакцию реформинга метан/водяной пар, и реакцию синтеза Фишера-Тропша проводят, используя соответствующие компактные каталитические реакторы, каждый из которых включает множество металлических пластин, образующих пакет и разграничивающих первый и второй каналы потока жидкости, причем каналы расположены в пакете поочередно, чтобы обеспечить хороший термический контакт.
6. Способ по п.1 или 2, в котором природный газ содержит некоторое количество двуокиси углерода; и способ включает также разделение продукта синтеза Фишера-Тропша на жидкую фазу и остаточный газ, и использование этого остаточного газа для проведения обратной реакции конверсии водяного газа после синтеза Фишера-Тропша.
7. Установка для переработки природного газа для образования углеводородов с более длинными цепями, где установка включает первый реактор для реформинга метан/водяной пар и второй реактор для синтеза Фишера-Тропша и два последовательные компрессора между первым и вторым реакторами, причем каждый компрессор обеспечивает степень сжатия не более чем 2,5:1, и теплообменник для охлаждения компремированных газов между двумя компрессорами, и в которой каждый реактор включает множество металлических пластин, образующих пакет и разграничивающих первый и второй каналы потока жидкости, причем каналы расположены в пакете поочередно, чтобы обеспечить хороший термический контакт между потоками в них, и устройство, в котором продукт синтеза Фишера-Тропша разделяют конденсацией на жидкую фазу и остаточный газ, и генератор, питаемый по меньшей мере частью остаточного газа для генерирования электрической энергии для обеспечения реакторов.
8. Устройство по п.7, где каждый проточный канал, в котором происходит реакция, содержит каталитическую структуру на металлической подложке, причем эта каталитическая структура является удаляемой.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB0405786.5 | 2004-03-16 | ||
GBGB0405786.5A GB0405786D0 (en) | 2004-03-16 | 2004-03-16 | Processing natural gas to form longer-chain hydrocarbons |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2006136143A RU2006136143A (ru) | 2008-04-27 |
RU2361900C2 true RU2361900C2 (ru) | 2009-07-20 |
Family
ID=32117705
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2006136143/04A RU2361900C2 (ru) | 2004-03-16 | 2005-03-04 | Переработка природного газа для образования углеводородов с более длинными цепями |
Country Status (16)
Country | Link |
---|---|
US (1) | US7067560B2 (ru) |
EP (1) | EP1725634A1 (ru) |
JP (1) | JP2007529594A (ru) |
KR (1) | KR20060126604A (ru) |
CN (1) | CN1934225B (ru) |
AP (1) | AP2006003736A0 (ru) |
AU (1) | AU2005223463A1 (ru) |
BR (1) | BRPI0508723A (ru) |
CA (1) | CA2559793C (ru) |
GB (1) | GB0405786D0 (ru) |
MX (1) | MXPA06010430A (ru) |
MY (1) | MY139077A (ru) |
NO (1) | NO20064658L (ru) |
RU (1) | RU2361900C2 (ru) |
TW (1) | TW200536931A (ru) |
WO (1) | WO2005090522A1 (ru) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2603961C2 (ru) * | 2012-09-21 | 2016-12-10 | Мицубиси Хеви Индастриз, Лтд. | Способ и установка для получения жидкого топлива и выработки энергии |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2904832B1 (fr) * | 2006-08-08 | 2012-10-19 | Inst Francais Du Petrole | Procede de production de gaz de synthese avec conversion de co2 a l'hydrogene |
EP2447339A1 (en) | 2007-01-19 | 2012-05-02 | Velocys Inc. | Process and apparatus for converting natural gas to higher molecular weight hydrocarbons using microchannel process technology |
US20080260631A1 (en) | 2007-04-18 | 2008-10-23 | H2Gen Innovations, Inc. | Hydrogen production process |
US8100996B2 (en) | 2008-04-09 | 2012-01-24 | Velocys, Inc. | Process for upgrading a carbonaceous material using microchannel process technology |
US9908093B2 (en) | 2008-04-09 | 2018-03-06 | Velocys, Inc. | Process for converting a carbonaceous material to methane, methanol and/or dimethyl ether using microchannel process technology |
WO2010042794A2 (en) | 2008-10-10 | 2010-04-15 | Velocys Inc. | Process and apparatus employing microchannel process technology |
WO2011044549A1 (en) * | 2009-10-09 | 2011-04-14 | Velocys Inc. | Process for treating heavy oil |
JP5695837B2 (ja) * | 2010-04-01 | 2015-04-08 | 株式会社東芝 | 改質ガスあるいは水素の製造システム |
US8168686B2 (en) | 2010-12-22 | 2012-05-01 | Rentech, Inc. | Integrated biorefinery for production of liquid fuels |
JP5767497B2 (ja) * | 2011-03-31 | 2015-08-19 | 独立行政法人石油天然ガス・金属鉱物資源機構 | 重質炭化水素の除去方法 |
GB201120327D0 (en) * | 2011-11-24 | 2012-01-04 | Compactgtl Plc | Oil well product treatment |
US9676623B2 (en) | 2013-03-14 | 2017-06-13 | Velocys, Inc. | Process and apparatus for conducting simultaneous endothermic and exothermic reactions |
CN105189344A (zh) * | 2013-05-06 | 2015-12-23 | 沙特基础工业公司 | 使气体再循环加热加氢脱硫部分 |
EP3027716A2 (en) | 2013-07-31 | 2016-06-08 | Saudi Basic Industries Corporation | A process for the production of olefins through fischer-tropsch based synthesis |
US9695365B2 (en) | 2013-07-31 | 2017-07-04 | Saudi Basic Industries Corporation | Process for the production of olefins through FT based synthesis |
RU2555043C1 (ru) * | 2013-09-11 | 2015-07-10 | Общество с ограниченной ответственностью "Газохим Техно" | Способ очистки воды, образующейся на стадии синтеза углеводородов в процессе gtl, и способ ее использования |
EA033831B1 (ru) | 2013-12-02 | 2019-11-29 | Haldor Topsoe As | Способ конверсии природного газа в углеводородные продукты и установка для осуществления способа |
CA3186898A1 (en) * | 2020-08-21 | 2022-02-24 | Peter Molgaard MORTENSEN | Off-gas utilization in electrically heated reforming plant |
JP7577556B2 (ja) | 2021-02-10 | 2024-11-05 | 株式会社神鋼環境ソリューション | 水素ガス製造装置および水素ガス製造方法 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2568953A (en) | 1947-10-31 | 1951-09-25 | Kellogg M W Co | Process for the synthesis of organic compounds |
US3986349A (en) * | 1975-09-15 | 1976-10-19 | Chevron Research Company | Method of power generation via coal gasification and liquid hydrocarbon synthesis |
US4098339A (en) * | 1976-06-21 | 1978-07-04 | Mobil Oil Corporation | Utilization of low BTU natural gas |
US5733941A (en) * | 1996-02-13 | 1998-03-31 | Marathon Oil Company | Hydrocarbon gas conversion system and process for producing a synthetic hydrocarbon liquid |
US6306917B1 (en) * | 1998-12-16 | 2001-10-23 | Rentech, Inc. | Processes for the production of hydrocarbons, power and carbon dioxide from carbon-containing materials |
NO311081B1 (no) * | 1999-12-09 | 2001-10-08 | Norske Stats Oljeselskap | Optimalisert FT-syntese ved reformering og resirkulering av tail-gass fra FT-syntesen |
EP1559475B1 (en) * | 2000-01-11 | 2008-06-11 | CompactGTL plc | Catalytic reactor |
GB0116894D0 (en) | 2001-07-11 | 2001-09-05 | Accentus Plc | Catalytic reactor |
WO2003033131A1 (en) * | 2001-10-12 | 2003-04-24 | Gtl Microsystems Ag | Catalytic reactor |
GB0125035D0 (en) | 2001-10-18 | 2001-12-12 | Accentus Plc | Catalytic reactor |
BR0206966A (pt) | 2001-12-05 | 2004-03-09 | Accentus Plc | Processo para realizar reforma de vapor/metano para gerar monóxido de carbono e hidrogênio, e, planta para processar metano |
-
2004
- 2004-03-16 GB GBGB0405786.5A patent/GB0405786D0/en not_active Ceased
-
2005
- 2005-03-04 MX MXPA06010430A patent/MXPA06010430A/es not_active Application Discontinuation
- 2005-03-04 AU AU2005223463A patent/AU2005223463A1/en not_active Abandoned
- 2005-03-04 BR BRPI0508723-6A patent/BRPI0508723A/pt not_active IP Right Cessation
- 2005-03-04 EP EP05718013A patent/EP1725634A1/en not_active Withdrawn
- 2005-03-04 CN CN2005800084576A patent/CN1934225B/zh not_active Expired - Fee Related
- 2005-03-04 WO PCT/GB2005/000955 patent/WO2005090522A1/en active Application Filing
- 2005-03-04 JP JP2007503397A patent/JP2007529594A/ja active Pending
- 2005-03-04 CA CA2559793A patent/CA2559793C/en not_active Expired - Fee Related
- 2005-03-04 KR KR1020067019004A patent/KR20060126604A/ko not_active Application Discontinuation
- 2005-03-04 RU RU2006136143/04A patent/RU2361900C2/ru not_active IP Right Cessation
- 2005-03-11 MY MYPI20051042A patent/MY139077A/en unknown
- 2005-03-14 TW TW094107636A patent/TW200536931A/zh unknown
- 2005-03-14 US US11/078,359 patent/US7067560B2/en not_active Expired - Fee Related
- 2005-04-05 AP AP2006003736A patent/AP2006003736A0/xx unknown
-
2006
- 2006-10-13 NO NO20064658A patent/NO20064658L/no not_active Application Discontinuation
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2603961C2 (ru) * | 2012-09-21 | 2016-12-10 | Мицубиси Хеви Индастриз, Лтд. | Способ и установка для получения жидкого топлива и выработки энергии |
US9611438B2 (en) | 2012-09-21 | 2017-04-04 | Mitsubishi Heavy Industries, Ltd. | Method and system for producing liquid fuel and generating power |
Also Published As
Publication number | Publication date |
---|---|
EP1725634A1 (en) | 2006-11-29 |
CN1934225A (zh) | 2007-03-21 |
AP2006003736A0 (en) | 2006-10-31 |
RU2006136143A (ru) | 2008-04-27 |
TW200536931A (en) | 2005-11-16 |
MXPA06010430A (es) | 2007-02-16 |
JP2007529594A (ja) | 2007-10-25 |
BRPI0508723A (pt) | 2007-08-14 |
GB0405786D0 (en) | 2004-04-21 |
US7067560B2 (en) | 2006-06-27 |
CA2559793A1 (en) | 2005-09-29 |
CA2559793C (en) | 2012-10-23 |
WO2005090522A1 (en) | 2005-09-29 |
MY139077A (en) | 2009-08-28 |
KR20060126604A (ko) | 2006-12-07 |
AU2005223463A1 (en) | 2005-09-29 |
CN1934225B (zh) | 2011-06-08 |
NO20064658L (no) | 2006-12-15 |
US20050209347A1 (en) | 2005-09-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2361900C2 (ru) | Переработка природного газа для образования углеводородов с более длинными цепями | |
KR101258222B1 (ko) | 촉매 반응기 | |
US7109248B2 (en) | Converting natural gas to longer-chain hydrocarbons | |
RU2375406C2 (ru) | Установка и способ каталитического синтеза фишера-тропша | |
US20080058434A1 (en) | Integrated microchannel synthesis and separation | |
TW200300703A (en) | Catalytic reactor and process | |
EP1599414B1 (en) | Method for producing long-chain hydrocarbons from natural gas | |
US20060135630A1 (en) | Producing longer-chain hydrocarbons from natural gas | |
JP2008526501A (ja) | 触媒反応器 | |
WO2014041332A1 (en) | Operation of catalytic process plant |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20140305 |