RU2265255C2 - Способ получения структур кремний-на-изоляторе - Google Patents
Способ получения структур кремний-на-изоляторе Download PDFInfo
- Publication number
- RU2265255C2 RU2265255C2 RU2003136457/28A RU2003136457A RU2265255C2 RU 2265255 C2 RU2265255 C2 RU 2265255C2 RU 2003136457/28 A RU2003136457/28 A RU 2003136457/28A RU 2003136457 A RU2003136457 A RU 2003136457A RU 2265255 C2 RU2265255 C2 RU 2265255C2
- Authority
- RU
- Russia
- Prior art keywords
- substrate
- silicon wafer
- carried out
- silicon
- wafer
- Prior art date
Links
- 239000012212 insulator Substances 0.000 title claims abstract description 11
- 238000004519 manufacturing process Methods 0.000 title abstract description 7
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 147
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 147
- 239000010703 silicon Substances 0.000 claims abstract description 147
- 239000000758 substrate Substances 0.000 claims abstract description 134
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 95
- 239000001301 oxygen Substances 0.000 claims abstract description 95
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 95
- 238000000137 annealing Methods 0.000 claims abstract description 61
- 239000002244 precipitate Substances 0.000 claims abstract description 60
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 45
- 229910052814 silicon oxide Inorganic materials 0.000 claims abstract description 45
- 238000000034 method Methods 0.000 claims abstract description 44
- 230000007547 defect Effects 0.000 claims abstract description 35
- 239000000463 material Substances 0.000 claims abstract description 33
- 238000004090 dissolution Methods 0.000 claims abstract description 30
- 230000005855 radiation Effects 0.000 claims abstract description 27
- 239000001257 hydrogen Substances 0.000 claims abstract description 23
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 23
- 239000012298 atmosphere Substances 0.000 claims abstract description 22
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 17
- 238000002513 implantation Methods 0.000 claims abstract description 17
- 239000012299 nitrogen atmosphere Substances 0.000 claims abstract description 10
- -1 hydrogen ions Chemical class 0.000 claims abstract description 6
- 238000010438 heat treatment Methods 0.000 claims description 28
- 230000032798 delamination Effects 0.000 claims description 13
- 230000004927 fusion Effects 0.000 claims description 5
- 238000000926 separation method Methods 0.000 abstract description 9
- 238000011282 treatment Methods 0.000 abstract description 8
- 230000000694 effects Effects 0.000 abstract description 4
- 238000004377 microelectronic Methods 0.000 abstract description 3
- 239000004065 semiconductor Substances 0.000 abstract description 3
- 239000000126 substance Substances 0.000 abstract 2
- 238000009997 thermal pre-treatment Methods 0.000 abstract 2
- 238000004140 cleaning Methods 0.000 description 28
- 239000002253 acid Substances 0.000 description 18
- 239000000243 solution Substances 0.000 description 17
- 150000002500 ions Chemical class 0.000 description 15
- 101000580353 Rhea americana Rheacalcin-1 Proteins 0.000 description 14
- 101000580354 Rhea americana Rheacalcin-2 Proteins 0.000 description 14
- 229910004298 SiO 2 Inorganic materials 0.000 description 14
- 229910021529 ammonia Inorganic materials 0.000 description 14
- 238000012993 chemical processing Methods 0.000 description 14
- 239000008367 deionised water Substances 0.000 description 14
- 229910021641 deionized water Inorganic materials 0.000 description 14
- 238000005406 washing Methods 0.000 description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 14
- 230000015572 biosynthetic process Effects 0.000 description 9
- 239000013256 coordination polymer Substances 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 4
- 238000000354 decomposition reaction Methods 0.000 description 4
- 230000008030 elimination Effects 0.000 description 4
- 238000003379 elimination reaction Methods 0.000 description 4
- 239000006104 solid solution Substances 0.000 description 4
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 238000000399 optical microscopy Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 238000012800 visualization Methods 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000013590 bulk material Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000010849 ion bombardment Methods 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Landscapes
- Formation Of Insulating Films (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Element Separation (AREA)
Abstract
Изобретение относится к полупроводниковой технологии и может быть использовано для создания современных материалов микроэлектроники. Техническим результатом изобретения является устранение преципитатов кислорода в КНИ структурах. Сущность изобретения: в способе получения структур кремний-на-изоляторе в пластину кремния осуществляют имплантацию водорода, затем проводят химическую обработку пластины кремния и подложки, затем пластину кремния соединяют с подложкой, сращивают и расслаивают по имплантированному слою пластины, перенося отсеченный слой кремния на подложку, после расслоения по имплантированному слою пластины проводят отжиг, который необходим для удаления радиационных дефектов, а также проводят дополнительный отжиг, который приводит к растворению кислородных преципитатов, введенных в материал предварительными термообработками. В способе отжиг, который необходим для удаления радиационных дефектов, проводят при 1100°С длительностью 0,5÷1 часа. В способе имплантацию водорода в пластину кремния осуществляют через предварительно выращенный тонкий слой (20÷50 нм) окисла кремния, который затем убирают. В способе для имплантации используют ионы водорода Н2 + дозой (2,5÷5)×1016 см-2. В способе сращивание и расслоение по имплантированному слою пластины кремния осуществляют в температурном интервале 300÷600°С длительностью 0,5÷2 часа. В способе соединение и сращивание пластины кремния и подложки осуществляют в вакууме 10÷105 Па, дальнейшее сращивание и расслоение по имплантированному слою пластины кремния осуществляют в температурном интервале 300÷600°С длительностью 0,5÷2 часа. В способе дополнительный отжиг, который приводит к растворению кислородных преципитатов, введенных в материал предварительными термообработками, проводят в атмосфере сухого кислорода при температуре 1100°С в течение 0,5÷2 часов. В способе дополнительный отжиг, который приводит к растворению кислородных преципитатов, введенных в материал предварительными термообработками, проводят в атмосфере влажного кислорода при температуре 1200°С в течение 0,5÷2 часов. В способе дополнительный отжиг, который приводит к растворению кислородных преципитатов, введенных в материал предварительными термообработками, проводят в атмосфере азота при температуре 1200°С в течение 0,5÷2 часов. 14 з.п. ф-лы, 2 ил.
Description
Изобретение относится к полупроводниковой технологии и может быть использовано для создания современных материалов микроэлектроники, в частности бездефектных структур кремний-на-изоляторе (КНИ).
Переход от использования объемного материала к структурам КНИ при производстве сверхбольших интегральных схем и других изделий микроэлектроники позволяет увеличить производительность, снизить потребляемую мощность, упростить технологию производства, повысить радиационную стойкость и рабочий температурный диапазон (до 400°С) изготавливаемых изделий. Другим применением КНИ структур является использование их в качестве основы для создания наноразмерных приборов. В связи с этим, основным требованием к отсеченному слою кремния КНИ структур, где собственно и формируются приборы, является высокое структурное совершенство и отсутствие дефектов. Однако в процессе создания КНИ структур, например, методом сращивания с последующим водородно-индуцированным расслоением (патент РФ №2164719) из-за высоких концентраций кислорода в кремнии Чохральского, а также водорода и радиационных дефектов происходит формирование в отсеченном слое кремния кислородных преципитатов (КП), визуализируемых травлением в плавиковой кислоте.
Плотность кислородных преципитатов, определенная методом оптической микроскопии, в пластинах КНИ, полученных методом сращивания с последующим водородно-индуцированным расслоением, может составлять 3×103÷1×104 см-2. Наличие дефектов в такой концентрации при толщине отсеченного слоя кремния 300÷500 нм будет слабо сказываться на работе приборных структур. Однако их наличие становится критичным при уменьшении толщины отсеченного слоя кремния менее 100 нм, тем более что при приближении к границе сращивания концентрация КП возрастает (Н.Aga, М.Nakano, К.Mitani, Jpn. J. Appl. Phys., 38, 1999, p.p.2694-2698).
В качестве решения проблемы устранения негативного влияния присутствия кислородных преципитатов в КНИ структурах можно рассматривать попытку создания бездефектных структур кремний-на-изоляторе (заявка США №20020153563, МПК: 7 Н 01 L 29/04), заключающуюся в том, что при формировании структуры для создания отсеченного слоя кремния используют пластину кремния с приповерхностной областью с величиной концентрации кислорода достаточно низкой, чтобы не происходило формирования преципитатов кислорода. При этом величина концентрации кислорода должна составлять менее 1×1016 см3. К недостаткам данного метода можно отнести то, что решение проблемы получения бездефектных КНИ структур сводится к использованию специального исходного материала. Такое решение обеспечивает отсутствие дефектов, а именно преципитатов кислорода, только при условии, что величина концентрации кислорода в приповерхностной области исходной пластины кремния меньше критической. Это значительно ограничивает применимость данного метода. Кроме этого реализация на практике данного метода, требующего использования специального и, соответственно, более дорогого исходного материала, увеличивает стоимость КНИ структур.
Известен способ получения структур кремний-на-изоляторе (патент США №5374564, МПК: 5 H 01 L 21/265), заключающийся в том, что в пластину кремния осуществляют имплантацию водорода, пластину кремния соединяют с подложкой и расслаивают по имплантированному слою пластины, перенося отсеченный слой кремния на подложку. При этом имплантацию осуществляют ионной бомбардировкой таким образом, чтобы ионы создавали в пластине кремния на глубине их проникновения слой, содержащий газонаполненные микропоры и выделяющий отсеченный слой кремния, а температуру пластины кремния поддерживают ниже температуры, при которой газ, образованный вследствие имплантации ионов, начинает диффундировать и выходит из объема полупроводника. Температурный интервал для имплантации ионов водорода составляет 20÷450°С, а расслоение проводят при высокой температуре, выше 500°С. Причем имплантацию осуществляют через слой окисла кремния, предварительно выращенный на пластине кремния термически, который в изготовленной КНИ структуре играет роль захороненного диэлектрика. В качестве подложки используют кремниевую пластину.
К недостаткам данного способа получения структур кремний-на-изоляторе относится введение высокой концентрации кислородных преципитатов (103÷104 см-2) в отсеченный слой кремния. Причина этого негативного эффекта заключается в следующем. Любые высокотемпературные обработки, в частности отжиги, кислородосодержащего кремния (кремния, выращенного методом Чохральского), начиная с температур, когда кислород становится подвижным (при температуре выше 350°С), и до температур порядка 1200°С, сопровождаются распадом пересыщенного твердого раствора кислорода в кремнии из-за превышения концентрации кислорода в кристалле над концентрацией, соответствующей равновесной растворимости. Результатом распада пересыщенного твердого раствора кислорода в кремнии и является формирование кислородных преципитатов. В процессе изготовления КНИ структур методом водородно-индуцированного расслоения имеет место наиболее оптимальный режим формирования КП, а именно на начальном этапе создания КНИ используется высокотемпературная обработка при относительно низкой температуре (400÷600°С), что приводит к возникновению зародышей КП. При этом процесс формирования КП дополнительно стимулирует присутствие в кремнии водорода и дефектов. На стадии финального отжига КНИ структур при температурах 1000÷1100°С, который необходим для удаления радиационных дефектов, происходит разращивание КП. В итоге имеем КНИ структуру с высокой плотностью КП в отсеченном слое кремния.
Наиболее близким способом к заявляемому является способ получения структур кремний-на-изоляторе (патент РФ №2164719, МПК: 6 Н 01 L 21/324), заключающийся в том, что в пластину кремния осуществляют имплантацию водорода, затем проводят химическую обработку пластины кремния и подложки, затем пластину кремния соединяют с подложкой, сращивают и расслаивают по имплантированному слою пластины, перенося отсеченный слой кремния на подложку. После расслоения по имплантированному слою пластины проводят отжиг, который необходим для удаления радиационных дефектов, при 1100°С длительностью 0,5÷1 часа. Имплантацию водорода в пластину кремния осуществляют через предварительно выращенный тонкий слой (20÷50 нм) окисла кремния, который затем убирают. Для имплантации используют ионы водорода H2 + дозой (2,5÷5)×1016 см-2. В качестве подложки используют пластину кремния с выращенным термическим окислом кремния толщиной 0,2÷0,5 мкм. Сращивание пластины кремния с подложкой проводят в температурном интервале 150÷250°С длительностью 1÷2 часа. Расслоение по имплантированному слою пластины кремния осуществляют в температурном интервале 350÷450°С длительностью 0,5÷2 часа.
Данный способ обладает теми же недостатками, а именно введением высокой концентрации кислородных преципитатов (103÷104 см-2) в отсеченный слой кремния. Причина этого негативного эффекта заключается в следующем. Любые высокотемпературные обработки, в частности отжиги, кислородосодержащего кремния (кремния, выращенного методом Чохральского), начиная с температур, когда кислород становится подвижным (при температуре выше 350°С), и до температур порядка 1200°С, сопровождаются распадом пересыщенного твердого раствора кислорода в кремнии из-за превышения концентрации кислорода в кристалле над концентрацией, соответствующей равновесной растворимости. Результатом распада пересыщенного твердого раствора кислорода в кремнии и является формирование кислородных преципитатов. В процессе изготовления КНИ структур методом водородно-индуцированного расслоения имеет место наиболее оптимальный режим формирования КП, а именно на начальном этапе создания КНИ используется высокотемпературная обработка при относительно низкой температуре (350÷450°С), что приводит к возникновению зародышей КП. При этом процесс формирования КП дополнительно стимулирует присутствие в кремнии водорода и дефектов. На стадии финального отжига КНИ структур при температурах 1100°С, который необходим для удаления радиационных дефектов, происходит разращивание КП. В итоге имеем КНИ структуру с высокой плотностью КП в отсеченном слое кремния.
Техническим результатом изобретения является:
- устранение преципитатов кислорода в КНИ структурах.
Технический результат достигается тем, что в способе получения структур кремний-на-изоляторе, заключающемся в том, что в пластину кремния осуществляют имплантацию водорода, затем проводят химическую обработку пластины кремния и подложки, затем пластину кремния соединяют с подложкой, сращивают и расслаивают по имплантированному слою пластины, перенося отсеченный слой кремния на подложку, после расслоения по имплантированному слою пластины проводят отжиг, который необходим для удаления радиационных дефектов, а также проводят дополнительный отжиг, который приводит к растворению кислородных преципитатов, введенных в материал предварительными термообработками.
В способе отжиг, который необходим для удаления радиационных дефектов, проводят при 1100°С длительностью 0,5÷1 часа.
В способе имплантацию водорода в пластину кремния осуществляют через предварительно выращенный тонкий слой (20÷50 нм) окисла кремния, который затем убирают.
В способе для имплантации используют ионы водорода H2 + дозой (2,5÷5)×1016 см-2.
В способе в качестве подложки используют пластину кремния с выращенным термическим окислом кремния толщиной 0,2÷0,5 мкм.
В способе сращивание и расслоение по имплантированному слою пластины кремния осуществляют в температурном интервале 300÷600°С длительностью 0,5÷2 часа.
В способе соединение и сращивание пластины кремния и подложки осуществляют в вакууме 10÷105 Па, дальнейшее сращивание и расслоение по имплантированному слою пластины кремния осуществляют в температурном интервале 300÷600°С длительностью 0,5÷2 часа.
В способе дополнительный отжиг, который приводит к растворению кислородных преципитатов, введенных в материал предварительными термообработками, проводят в атмосфере сухого кислорода при температуре 1100°С в течение 0,5÷2 часов.
В способе дополнительный отжиг, который приводит к растворению кислородных преципитатов, введенных в материал предварительными термообработками, проводят в атмосфере влажного кислорода при температуре 1200°С в течение 0,5÷2 часов.
В способе дополнительный отжиг, который приводит к растворению кислородных преципитатов, введенных в материал предварительными термообработками, проводят в атмосфере азота при температуре 1200°С в течение 0,5÷2 часов.
Сущность изобретения поясняется нижеследующим описанием и прилагаемыми чертежами, где на фиг.1 дано изображение поверхности структуры КНИ после визуализации дефектов (обработки в HF кислоте в течение 10 минут) при размере видимого поля 460 мкм × 340 мкм, на фиг.2 - изображение поверхности структуры КНИ, подвергшейся дополнительному отжигу, который приводит к растворению кислородных преципитатов, введенных в материал предварительными термообработками, в атмосфере сухого кислорода, после визуализации дефектов (обработки в HF кислоте в течение 10 минут) при размере видимого поля 460 мкм × 340 мкм.
Известно, что отжиги кремния при температурах выше 1200°С приводят к растворению кислородных преципитатов, введенных в материал предварительными термообработками, благодаря достаточно высокой растворимости кислорода в кремнии при таких температурах. Отсеченный слой кремния в КНИ структурах, лежащий на слое диэлектрика, при термообработках испытывает еще и механические напряжения со стороны диэлектрика в силу большого различия в величинах коэффициентов термического расширения кремния и окисла кремния. В результате термообработки отсеченного слоя кремния могут приводить к существенному изменению в процессах растворения кислородных преципитатов в нем.
Было обнаружено, что отжиги в инертной атмосфере (азот, аргон 1000÷1100°С), посредством которых осуществляют устранение радиационных дефектов, не приводят к устранению КП из отсеченного слоя кремния. Дополнительные отжиги в атмосфере влажного кислорода в том же температурном интервале также не устраняют кислородных преципитатов. Увеличение температуры отжига до 1200°С в атмосфере влажного кислорода при его времени 0,5 часа и более приводит к устранению кислородных преципитатов. Увеличение температуры отжига до 1200°С в атмосфере азота уже приводит к устранению КП при времени отжига 0,5 часа и более. Отжиг в атмосфере сухого кислорода в течение 0,5 часа и более позволяет устранять КП, причем при более низкой температуре, 1100°С.
Контроль за наличием или отсутствием кислородных преципитатов осуществлялся посредством оптической микроскопии после обработки КНИ структур в плавиковой кислоте. Тестирование проводили после отжига, который необходим для удаления радиационных дефектов, в инертной атмосфере при 1100°С при продолжительности 0,5÷1 часа и после дополнительного отжига, который приводит к растворению кислородных преципитатов, введенных в материал предварительными термообработками, осуществляемого в атмосфере влажного кислорода при 1200°С, или в атмосфере азота при 1200°С, или сухого кислорода при 1100°С, при его продолжительности 0,5÷2 часа. Характерные изображения поверхности КНИ структур приведены на фиг.1 - до проведения дополнительного отжига и фиг.2 - после проведения дополнительного отжига.
В качестве сведений, подтверждающих возможность реализации способа, приводим нижеследующие примеры.
Пример 1.
В пластину кремния осуществляют имплантацию ионов Н2 + с энергией 130 кэВ и дозой 4×1016 см-2 через предварительно выращенный тонкий слой окисла кремния 40 нм, который затем убирают.
В качестве подложки используют пластину кремния с выращенным термическим окислом кремния толщиной 280 нм.
Проводят химическую обработку пластины кремния и подложки, представляющую собой очистку пластины и подложки, гидрофилизацию их поверхностей, последующую отмывку пластины и подложки в деионизованной воде. При этом очистку и гидрофилизацию пластины и подложки проводят обработкой в перекисно-кислотных и перекисно-аммиачных растворах соотношения NH4OH:H2О2:H2О=1:1:5÷1:2:7 и HCl:H2O2:H2O=1:1:6÷1:2:8 (RCA-1 и RCA-2 соответственно).
Пластину и подложку сушат и соединяют.
Пластину и подложку сращивают и расслаивают пластину кремния по имплантированному слою, толщина которого составляет порядка 0,5 мкм, при температуре 300°С в течение 2 часов.
Затем проводят отжиг, который необходим для удаления радиационных дефектов, при 1100°С в течение 1 часа.
В завершение проводят дополнительный отжиг, который приводит к растворению кислородных преципитатов, введенных в материал предварительными термообработками, в атмосфере сухого кислорода при температуре Т=1100°С длительностью 0,5 часа.
В результате получаем структуру 0,5 мкм Si/0,28 мкм SiO2/Si, не содержащую кислородных преципитатов, изображение поверхности которой после визуализации дефектов (обработки в HF кислоте в течение 10 минут) при размере видимого поля 460 мкм × 340 мкм показано на фиг.2. Для сравнения на фиг.1 представлено изображение поверхности этой же КНИ структуры после визуализации дефектов (обработки в HF кислоте в течение 10 минут) при размере видимого поля 460 мкм × 340 мкм до проведения дополнительного отжига, который приводит к растворению кислородных преципитатов, введенных в материал предварительными термообработками, в атмосфере сухого кислорода, на которой видно наличие кислородных преципитатов.
Пример 2.
В пластину кремния осуществляют имплантацию ионов H2 + с энергией 130 кэВ и дозой 2,5×1016 см-2 через предварительно выращенный тонкий слой окисла кремния 20 нм, который затем убирают.
В качестве подложки используют пластину кремния с выращенным термическим окислом кремния толщиной 200 нм.
Проводят химическую обработку пластины кремния и подложки, представляющую собой очистку пластины и подложки, гидрофилизацию их поверхностей, последующую отмывку пластины и подложки в деионизованной воде. При этом очистку и гидрофилизацию пластины и подложки проводят обработкой в перекисно-кислотных и перекисно-аммиачных растворах соотношения NH4OH:H2O2:H2O=1:1:5÷1:2:7 и HCl:Н2O2:Н2O=1:1:6÷1:2:8 (RCA-1 и RCA-2 соответственно).
Пластину и подложку сушат и соединяют.
Пластину и подложку сращивают и расслаивают пластину кремния по имплантированному слою, толщина которого составляет порядка 0,5 мкм, при температуре 450°С в течение 1 часа.
Затем проводят отжиг, который необходим для удаления радиационных дефектов, при 1100°С в течение 45 минут.
В завершение проводят дополнительный отжиг, который приводит к растворению кислородных преципитатов, введенных в материал предварительными термообработками, в атмосфере сухого кислорода при температуре Т=1100°С длительностью 0,5 часа.
В результате получаем структуру 0,5 мкм Si/0,2 мкм SiO2/Si, не содержащую кислородных преципитатов.
Пример 3.
В пластину кремния осуществляют имплантацию ионов H2 + с энергией 130 кэВ и дозой 5×1016 см-2 через предварительно выращенный тонкий слой окисла кремния 50 нм, который затем убирают.
В качестве подложки используют пластину кремния с выращенным термическим окислом кремния толщиной 500 нм.
Проводят химическую обработку пластины кремния и подложки, представляющую собой очистку пластины и подложки, гидрофилизацию их поверхностей, последующую отмывку пластины и подложки в деионизованной воде. При этом очистку и гидрофилизацию пластины и подложки проводят обработкой в перекисно-кислотных и перекисно-аммиачных растворах соотношения NH4OH:H2O2:H2O=1:1:5÷1:2:7 и HCl:H2O2:H2O=1:1:6÷1:2:8 (RCA-1 и RCA-2 соответственно).
Пластину и подложку сушат и соединяют.
Пластину и подложку сращивают и расслаивают пластину кремния по имплантированному слою, толщина которого составляет порядка 0,5 мкм, при температуре 600°С в течение 0,5 часов.
Затем проводят отжиг, который необходим для удаления радиационных дефектов, при 1100°С в течение 0,5 часа.
В завершение проводят дополнительный отжиг, который приводит к растворению кислородных преципитатов, введенных в материал предварительными термообработками, в атмосфере сухого кислорода при температуре Т=1100°С длительностью 0,5 часа.
В результате получаем структуру 0,5 мкм Si/0,5 мкм SiO2/Si, не содержащую кислородных преципитатов.
Пример 4.
В пластину кремния осуществляют имплантацию ионов Н2 + с энергией 130 кэВ и дозой 4×1016 см-2 через предварительно выращенный тонкий слой окисла кремния 40 нм, который затем убирают.
В качестве подложки используют пластину кремния с выращенным термическим окислом кремния толщиной 280 нм.
Проводят химическую обработку пластины кремния и подложки, представляющую собой очистку пластины и подложки, гидрофилизацию их поверхностей, последующую отмывку пластины и подложки в деионизованной воде. При этом очистку и гидрофилизацию пластины и подложки проводят обработкой в перекисно-кислотных и перекисно-аммиачных растворах соотношения NH4OH:H2O2:H2O=1:1:5÷1:2:7 и HCl:H2O2:H2O=1:1:6÷1:2:8 (RCA-1 и RCA-2 соответственно).
Пластину и подложку сушат, соединяют и сращивают в вакууме при давлении 10 Па.
Пластину и подложку сращивают и расслаивают пластину кремния по имплантированному слою, толщина которого составляет порядка 0,5 мкм, при температуре 600°С в течение 0,5 часа.
Затем проводят отжиг, который необходим для удаления радиационных дефектов, при 1100°С в течение 1 часа.
В завершение проводят дополнительный отжиг, который приводит к растворению кислородных преципитатов, введенных в материал предварительными термообработками, в атмосфере влажного кислорода при температуре Т=1200°С длительностью 0,5 часа.
В результате получаем структуру 0,5 мкм Si/0,28 мкм SiO2/Si, не содержащую кислородных преципитатов.
Пример 5.
В пластину кремния осуществляют имплантацию ионов H2 + с энергией 130 кэВ и дозой 2,5×1016 см-2 через предварительно выращенный тонкий слой окисла кремния 20 нм, который затем убирают.
В качестве подложки используют пластину кремния с выращенным термическим окислом кремния толщиной 200 нм.
Проводят химическую обработку пластины кремния и подложки, представляющую собой очистку пластины и подложки, гидрофилизацию их поверхностей, последующую отмывку пластины и подложки в деионизованной воде. При этом очистку и гидрофилизацию пластины и подложки проводят обработкой в перекисно-кислотных и перекисно-аммиачных растворах соотношения NH4OH:H2O2:H2O=1:1:5÷1:2:7 и HCl:Н2O2:Н2O=1:1:6÷1:2:8 (RCA-1 и RCA-2 соответственно).
Пластину и подложку сушат, соединяют и сращивают в вакууме при давлении 105 Па.
Пластину и подложку сращивают и расслаивают пластину кремния по имплантированному слою, толщина которого составляет порядка 0,5 мкм при температуре 300°С в течение 2 часов.
Затем проводят отжиг, который необходим для удаления радиационных дефектов, при 1100°С в течение 45 минут.
В завершение проводят дополнительный отжиг, который приводит к растворению кислородных преципитатов, введенных в материал предварительными термообработками, в атмосфере влажного кислорода при температуре Т=1200°С длительностью 2 часа.
В результате получаем структуру 0,5 мкм Si/0,2 мкм SiO2/Si, не содержащую кислородных преципитатов.
Пример 6.
В пластину кремния осуществляют имплантацию ионов Н2 + с энергией 130 кэВ и дозой 5×1016 см-2 через предварительно выращенный тонкий слой окисла кремния 50 нм, который затем убирают.
В качестве подложки используют пластину кремния с выращенным термическим окислом кремния толщиной 500 нм.
Проводят химическую обработку пластины кремния и подложки, представляющую собой очистку пластины и подложки, гидрофилизацию их поверхностей, последующую отмывку пластины и подложки в деионизованной воде. При этом очистку и гидрофилизацию пластины и подложки проводят обработкой в перекисно-кислотных и перекисно-аммиачных растворах соотношения NH4OH:H2O2:H2O=1:1:5÷1:2:7 и HCl:H2O2:H2O=1:1:6÷1:2:8 (RCA-1 и RCA-2 соответственно).
Пластину и подложку сушат, соединяют и сращивают в вакууме при давлении 102 Па.
Пластину и подложку сращивают и расслаивают пластину кремния по имплантированному слою, толщина которого составляет порядка 0,5 мкм, при температуре 450°С в течение 1 часа.
Затем проводят отжиг, который необходим для удаления радиационных дефектов, при 1100°С в течение 0,5 часа.
В завершение проводят дополнительный отжиг, который приводит к растворению кислородных преципитатов, введенных в материал предварительными термообработками, в атмосфере влажного кислорода при температуре Т=1200°С длительностью 1 час.
В результате получаем структуру 0,5 мкм Si/0,5 мкм SiO2/Si, не содержащую кислородных преципитатов.
Пример 7.
В пластину кремния осуществляют имплантацию ионов H2 + с энергией 130 кэВ и дозой 4×1016 см-2 через предварительно выращенный тонкий слой окисла кремния 40 нм, который затем убирают.
В качестве подложки используют пластину кремния с выращенным термическим окислом кремния толщиной 280 нм.
Проводят химическую обработку пластины кремния и подложки, представляющую собой очистку пластины и подложки, гидрофилизацию их поверхностей, последующую отмывку пластины и подложки в деионизованной воде. При этом очистку и гидрофилизацию пластины и подложки проводят обработкой в перекисно-кислотных и перекисно-аммиачных растворах соотношения NH4OH:H2O2:H2O=1:1:5÷1:2:7 и HCl:H2O2:H2O=1:1:6÷1:2:8 (RCA-1 и RCA-2 соответственно).
Пластину и подложку сушат, соединяют и сращивают в вакууме при давлении 10 Па.
Пластину и подложку сращивают и расслаивают пластину кремния по имплантированному слою, толщина которого составляет порядка 0,5 мкм, при температуре 600°С в течение 0,5 часа.
Затем проводят отжиг, который необходим для удаления радиационных дефектов, при 1100°С в течение 1 часа.
В завершение проводят дополнительный отжиг, который приводит к растворению кислородных преципитатов, введенных в материал предварительными термообработками, в атмосфере азота при температуре T=1200°C длительностью 0,5 часа.
В результате получаем структуру 0,5 мкм Si/0,28 мкм SiO2/Si, не содержащую кислородных преципитатов.
Пример 8.
В пластину кремния осуществляют имплантацию ионов Н2 + с энергией 130 кэВ и дозой 2,5×1016 см-2 через предварительно выращенный тонкий слой окисла кремния 20 нм, который затем убирают.
В качестве подложки используют пластину кремния с выращенным термическим окислом кремния толщиной 200 нм.
Проводят химическую обработку пластины кремния и подложки, представляющую собой очистку пластины и подложки, гидрофилизацию их поверхностей, последующую отмывку пластины и подложки в деионизованной воде. При этом очистку и гидрофилизацию пластины и подложки проводят обработкой в перекисно-кислотных и перекисно-аммиачных растворах соотношения NH4OH:H2O2:H2O=1:1:5÷1:2:7 и HCl:Н2O2:Н2O=1:1:6÷1:2:8 (RCA-1 и RCA-2 соответственно).
Пластину и подложку сушат и соединяют.
Пластину и подложку сращивают и расслаивают пластину кремния по имплантированному слою, толщина которого составляет порядка 0,5 мкм, при температуре 300°С в течение 2 часов.
Затем проводят отжиг, который необходим для удаления радиационных дефектов, при 1100°С в течение 45 минут.
В завершение проводят дополнительный отжиг, который приводит к растворению кислородных преципитатов, введенных в материал предварительными термообработками, в атмосфере азота при температуре Т=1200°С длительностью 2 часа.
В результате получаем структуру 0,5 мкм Si/0,2 мкм SiO2/Si, не содержащую кислородных преципитатов.
Пример 9.
В пластину кремния осуществляют имплантацию ионов H2 + с энергией 130 кэВ и дозой 5×1016 см-2 через предварительно выращенный тонкий слой окисла кремния 50 нм, который затем убирают.
В качестве подложки используют пластину кремния с выращенным термическим окислом кремния толщиной 500 нм.
Проводят химическую обработку пластины кремния и подложки, представляющую собой очистку пластины и подложки, гидрофилизацию их поверхностей, последующую отмывку пластины и подложки в деионизованной воде. При этом очистку и гидрофилизацию пластины и подложки проводят обработкой в перекисно-кислотных и перекисно-аммиачных растворах соотношения NH4OH:H2O2:H2O=1:1:5÷1:2:7 и HCl:H2O2:H2O=1:1:6÷1:2:8 (RCA-1 и RCA-2 соответственно).
Пластину и подложку сушат, соединяют и сращивают стадию в вакууме при давлении 102 Па.
Пластину и подложку сращивают и расслаивают пластину кремния по имплантированному слою, толщина которого составляет порядка 0,5 мкм, при температуре 450°С в течение 1 часа.
Затем проводят отжиг, который необходим для удаления радиационных дефектов, при 1100°С в течение 0,5 часа.
В завершение проводят дополнительный отжиг, который приводит к растворению кислородных преципитатов, введенных в материал предварительными термообработками, в атмосфере азота при температуре Т=1200°С длительностью 1 час.
В результате получаем структуру 0,5 мкм Si/0,5 мкм SiO2/Si, не содержащую кислородных преципитатов.
Пример 10.
В пластину кремния осуществляют имплантацию ионов H2 + с энергией 130 кэВ и дозой 4×1016 см-2 через предварительно выращенный тонкий слой окисла кремния 40 нм, который затем убирают.
В качестве подложки используют пластину кремния с выращенным термическим окислом кремния толщиной 280 нм.
Проводят химическую обработку пластины кремния и подложки, представляющую собой очистку пластины и подложки, гидрофилизацию их поверхностей, последующую отмывку пластины и подложки в деионизованной воде. При этом очистку и гидрофилизацию пластины и подложки проводят обработкой в перекисно-кислотных и перекисно-аммиачных растворах соотношения NH4OH:H2O2:H2O=1:1:5÷1:2:7 и HCl:H2O2:H2O=1:1:6÷1:2:8 (RCA-1 и RCA-2 соответственно).
Пластину и подложку сушат, соединяют и сращивают в вакууме при давлении 10 Па.
Пластину и подложку сращивают и расслаивают пластину кремния по имплантированному слою, толщина которого составляет порядка 0,5 мкм, при температуре 600°С в течение 0,5 часа.
Затем проводят отжиг, который необходим для удаления радиационных дефектов, при 1100°С в течение 1 часа.
В завершение проводят дополнительный отжиг, который приводит к растворению кислородных преципитатов, введенных в материал предварительными термообработками, в атмосфере сухого кислорода при температуре Т=1100°С длительностью 0,5 часа.
В результате получаем структуру 0,5 мкм Si/0,28 мкм SiO2/Si, не содержащую кислородных преципитатов.
Пример 11.
В пластину кремния осуществляют имплантацию ионов H2 + с энергией 140 кэВ и дозой 3×1016 см-2 через предварительно выращенный тонкий слой окисла кремния 80 нм, который затем убирают.
В качестве подложки используют пластину кремния с выращенным термическим окислом кремния толщиной 200 нм.
Проводят химическую обработку пластины кремния и подложки, представляющую собой очистку пластины и подложки, гидрофилизацию их поверхностей, последующую отмывку пластины и подложки в деионизованной воде. При этом очистку и гидрофилизацию пластины и подложки проводят обработкой в перекисно-кислотных и перекисно-аммиачных растворах соотношения NH4OH:H2O2:H2O=1:1:5÷1:2:7 и HCl:Н2O2:Н2O=1:1:6÷1:2:8 (RCA-1 и RCA-2 соответственно).
Пластину и подложку сушат и соединяют.
Пластину и подложку сращивают и расслаивают пластину кремния по имплантированному слою, толщина которого составляет порядка 0,5 мкм, при температуре 300°С в течение 2 часов.
Затем проводят отжиг, который необходим для удаления радиационных дефектов, при 1100°С в течение 45 минут.
В завершение проводят дополнительный отжиг, который приводит к растворению кислородных преципитатов, введенных в материал предварительными термообработками, в атмосфере азота при температуре Т=1200°С длительностью 2 часа.
В результате получаем структуру 0,48 мкм Si/0,2 мкм SiO2/Si, не содержащую кислородных преципитатов.
Пример 12.
В пластину кремния осуществляют имплантацию ионов Н2 + с энергией 80 кэВ и дозой 7×1016 см-2 через предварительно выращенный тонкий слой окисла кремния 20 нм, который затем убирают.
В качестве подложки используют пластину кремния с выращенным термическим окислом кремния толщиной 200 нм.
Проводят химическую обработку пластины кремния и подложки, представляющую собой очистку пластины и подложки, гидрофилизацию их поверхностей, последующую отмывку пластины и подложки в деионизованной воде. При этом очистку и гидрофилизацию пластины и подложки проводят обработкой в перекисно-кислотных и перекисно-аммиачных растворах соотношения NH4OH:H2O2:H2O=1:1:5÷1:2:7 и HCl:Н2O2:Н2O=1:1:6÷1:2:8 (RCA-1 и RCA-2 соответственно).
Пластину и подложку сушат и соединяют.
Пластину и подложку сращивают и расслаивают пластину кремния по имплантированному слою, толщина которого составляет порядка 0,5 мкм, при температуре 300°С в течение 2 часов.
Затем проводят отжиг, который необходим для удаления радиационных дефектов, при 1100°С в течение 45 минут.
В завершение проводят дополнительный отжиг, который приводит к растворению кислородных преципитатов, введенных в материал предварительными термообработками, в атмосфере азота при температуре Т=1200°С длительностью 2 часа.
В результате получаем структуру 0,3 мкм Si/0,2 мкм SiO2/Si, не содержащую кислородных преципитатов.
Пример 13.
В пластину кремния осуществляют имплантацию ионов Н2 + с энергией 130 кэВ и дозой 3×1016 см-2 через предварительно выращенный тонкий слой окисла кремния 20 нм, который затем убирают.
В качестве подложки используют пластину кремния с выращенным термическим окислом кремния толщиной 200 нм.
Проводят химическую обработку пластины кремния и подложки, представляющую собой очистку пластины и подложки, гидрофилизацию их поверхностей, последующую отмывку пластины и подложки в деионизованной воде. При этом очистку и гидрофилизацию пластины и подложки проводят обработкой в перекисно-кислотных и перекисно-аммиачных растворах соотношения NH4OH:H2O2:H2O=1:1:5÷1:2:7 и HCl:Н2O2:Н2O=1:1:6÷1:2:8 (RCA-1 и RCA-2 соответственно).
Пластину и подложку сушат и соединяют.
Пластину и подложку сращивают и расслаивают пластину кремния по имплантированному слою, толщина которого составляет порядка 0,5 мкм, при температуре 250°С в течение 2 часов.
Затем проводят отжиг, который необходим для удаления радиационных дефектов, при 1100°С в течение 45 минут.
В завершение проводят дополнительный отжиг, который приводит к растворению кислородных преципитатов, введенных в материал предварительными термообработками, в атмосфере азота при температуре Т=1200°С длительностью 2 часа.
В результате получаем структуру 0,5 мкм Si/0,2 мкм SiO2/Si, не содержащую кислородных преципитатов.
Пример 14.
В пластину кремния осуществляют имплантацию ионов Н2 + с энергией 130 кэВ и дозой 5×1016 см-2 через предварительно выращенный тонкий слой окисла кремния 50 нм, который затем убирают.
В качестве подложки используют пластину кремния с выращенным термическим окислом кремния толщиной 500 нм.
Проводят химическую обработку пластины кремния и подложки, представляющую собой очистку пластины и подложки, гидрофилизацию их поверхностей, последующую отмывку пластины и подложки в деионизованной воде. При этом очистку и гидрофилизацию пластины и подложки проводят обработкой в перекисно-кислотных и перекисно-аммиачных растворах соотношения NH4OH:H2O2:H2O=1:1:5÷1:2:7 и HCl:H2O2:H2O=1:1:6÷1:2:8 (RCA-1 и RCA-2 соответственно).
Пластину и подложку сушат, соединяют и сращивают в вакууме при давлении 102 Па.
Пластину и подложку сращивают при температуре 300°С в течение 10 часов, после чего удаляют из вакуумной камеры и механически расслаивают пластину кремния по имплантированному слою, толщина которого составляет порядка 0,5 мкм, на воздухе при комнатной температуре.
Затем проводят отжиг, который необходим для удаления радиационных дефектов, при 1100°С в течение 0,5 часа.
В завершение проводят дополнительный отжиг, который приводит к растворению кислородных преципитатов, введенных в материал предварительными термообработками, в атмосфере влажного кислорода при температуре Т=1200°С длительностью 1 час.
В результате получаем структуру 0,5 мкм Si/0,5 мкм SiO2/Si, не содержащую кислородных преципитатов.
Предлагаемый способ получения структур кремний-на-изоляторе позволяет получать бездефектные структуры, не содержащие кислородных преципитатов, при этом реализация данного способа на практике не требует специального дорогостоящего оборудования, а также специального и, соответственно, более дорогого исходного материала, что является фактором, снижающим стоимость КНИ структур.
В заключение авторы хотят отметить, что работа выполнена при частичной поддержке гранта РФФИ №03-02-06537, за что авторы и выносят благодарность.
Claims (15)
1. Способ получения структур кремний-на-изоляторе, заключающийся в том, что в пластину кремния осуществляют имплантацию водорода, затем проводят химическую обработку пластины кремния и подложки, затем пластину кремния соединяют с подложкой, сращивают и расслаивают по имплантированному слою пластины, перенося отсеченный слой кремния на подложку, после расслоения по имплантированному слою пластины проводят отжиг, который необходим для удаления радиационных дефектов, отличающийся тем, что проводят дополнительный отжиг, который приводит к растворению кислородных преципитатов, введенных в материал предварительными термообработками.
2. Способ по п.1, отличающийся тем, что отжиг, который необходим для удаления радиационных дефектов, проводят при 1100°С длительностью 0,5÷1 ч.
3. Способ по п.1, отличающийся тем, что имплантацию водорода в пластину кремния осуществляют через предварительно выращенный тонкий слой (20÷50 нм) окисла кремния, который затем убирают, при этом для имплантации используют ионы водорода Н2 + дозой (2,5÷5)·1016 см-2.
4. Способ по п.2, отличающийся тем, что имплантацию водорода в пластину кремния осуществляют через предварительно выращенный тонкий слой (20÷50 нм) окисла кремния, который затем убирают, при этом для имплантации используют ионы водорода Н2 + дозой (2,5÷5)·1016 см-2.
5. Способ по п.1, отличающийся тем, что сращивание пластины кремния и подложки, расслоение по имплантированному слою пластины кремния осуществляют в температурном интервале 300÷600°С длительностью 0,5÷2 ч, при этом в качестве подложки используют пластину кремния с выращенным термическим окислом кремния толщиной 0,2÷0,5 мкм.
6. Способ по п.2, отличающийся тем, что сращивание пластины кремния и подложки, расслоение по имплантированному слою пластины кремния осуществляют в температурном интервале 300÷600°С длительностью 0,5÷2 ч, при этом в качестве подложки используют пластину кремния с выращенным термическим окислом кремния толщиной 0,2÷0,5 мкм.
7. Способ по п.3, отличающийся тем, что сращивание пластины кремния и подложки, расслоение по имплантированному слою пластины кремния осуществляют в температурном интервале 300÷600°С длительностью 0,5÷2 ч, при этом в качестве подложки используют пластину кремния с выращенным термическим окислом кремния толщиной 0,2÷0,5 мкм.
8. Способ по п.4, отличающийся тем, что сращивание пластины кремния и подложки, расслоение по имплантированному слою пластины кремния осуществляют в температурном интервале 300÷600°С длительностью 0,5÷2 ч, при этом в качестве подложки используют пластину кремния с выращенным термическим окислом кремния толщиной 0,2÷0,5 мкм.
9. Способ по п.1, отличающийся тем, что соединение и сращивание пластины кремния и подложки осуществляют в вакууме при давлении 10÷105 Па, дальнейшее сращивание и расслоение по имплантированному слою пластины кремния осуществляют в температурном интервале 300÷600°С длительностью 0,5÷2 ч, при этом в качестве подложки используют пластину кремния с выращенным термическим окислом кремния толщиной 0,2÷0,5 мкм.
10. Способ по п.2, отличающийся тем, что соединение и сращивание пластины кремния и подложки осуществляют в вакууме при давлении 10÷105 Па, дальнейшее сращивание и расслоение по имплантированному слою пластины кремния осуществляют в температурном интервале 300÷600°С длительностью 0,5÷2 ч, при этом в качестве подложки используют пластину кремния с выращенным термическим окислом кремния толщиной 0,2÷0,5 мкм.
11. Способ по п.3, отличающийся тем, что соединение и сращивание пластины кремния и подложки осуществляют в вакууме при давлении 10÷105 Па, дальнейшее сращивание и расслоение по имплантированному слою пластины кремния осуществляют в температурном интервале 300÷600°С длительностью 0,5÷2 ч, при этом в качестве подложки используют пластину кремния с выращенным термическим окислом кремния толщиной 0,2÷0,5 мкм.
12. Способ по п.4, отличающийся тем, что соединение и сращивание пластины кремния и подложки осуществляют в вакууме при давлении 10÷105 Па, дальнейшее сращивание и расслоение по имплантированному слою пластины кремния осуществляют в температурном интервале 300÷600°С длительностью 0,5÷2 ч, при этом в качестве подложки используют пластину кремния с выращенным термическим окислом кремния толщиной 0,2÷0,5 мкм.
13. Способ по любому из пп.1-12, отличающийся тем, что дополнительный отжиг, который приводит к растворению кислородных преципитатов, введенных в материал предварительными термообработками, проводят в атмосфере сухого кислорода при температуре 1100°С в течение 0,5÷2 ч.
14. Способ по любому из пп.1-12, отличающийся тем, что дополнительный отжиг, который приводит к растворению кислородных преципитатов, введенных в материал предварительными термообработками, проводят в атмосфере влажного кислорода при температуре 1200°С в течение 0,5÷2 ч.
15. Способ по любому из пп.1-12, отличающийся тем, что дополнительный отжиг, который приводит к растворению кислородных преципитатов, введенных в материал предварительными термообработками, проводят в атмосфере азота при температуре 1200°С в течение 0,5÷2 ч.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2003136457/28A RU2265255C2 (ru) | 2003-12-16 | 2003-12-16 | Способ получения структур кремний-на-изоляторе |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2003136457/28A RU2265255C2 (ru) | 2003-12-16 | 2003-12-16 | Способ получения структур кремний-на-изоляторе |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2003136457A RU2003136457A (ru) | 2005-05-20 |
RU2265255C2 true RU2265255C2 (ru) | 2005-11-27 |
Family
ID=35820357
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2003136457/28A RU2265255C2 (ru) | 2003-12-16 | 2003-12-16 | Способ получения структур кремний-на-изоляторе |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2265255C2 (ru) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2497231C1 (ru) * | 2012-04-19 | 2013-10-27 | Федеральное государственное бюджетное учреждение науки Институт физики полупроводников им. А.В. Ржанова Сибирского отделения Российской академии наук (ИФП СО РАН) | Способ изготовления структуры кремний-на-изоляторе |
RU2498450C1 (ru) * | 2012-04-26 | 2013-11-10 | Федеральное государственное бюджетное учреждение науки Институт физики полупроводников им. А.В. Ржанова Сибирского отделения Российской академии наук (ИФП СО РАН) | Способ изготовления структуры полупроводник-на-изоляторе |
RU2581443C1 (ru) * | 2015-03-30 | 2016-04-20 | Федеральное государственное бюджетное учреждение "Национальный исследовательский центр "Курчатовский институт" | Структура полупроводник-на-изоляторе и способ ее получения |
RU2633437C1 (ru) * | 2016-08-01 | 2017-10-12 | Федеральное государственное бюджетное учреждение "Национальный исследовательский центр "Курчатовский институт" | Структура полупроводник-на-изоляторе и способ ее изготовления |
-
2003
- 2003-12-16 RU RU2003136457/28A patent/RU2265255C2/ru not_active IP Right Cessation
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2497231C1 (ru) * | 2012-04-19 | 2013-10-27 | Федеральное государственное бюджетное учреждение науки Институт физики полупроводников им. А.В. Ржанова Сибирского отделения Российской академии наук (ИФП СО РАН) | Способ изготовления структуры кремний-на-изоляторе |
RU2498450C1 (ru) * | 2012-04-26 | 2013-11-10 | Федеральное государственное бюджетное учреждение науки Институт физики полупроводников им. А.В. Ржанова Сибирского отделения Российской академии наук (ИФП СО РАН) | Способ изготовления структуры полупроводник-на-изоляторе |
RU2581443C1 (ru) * | 2015-03-30 | 2016-04-20 | Федеральное государственное бюджетное учреждение "Национальный исследовательский центр "Курчатовский институт" | Структура полупроводник-на-изоляторе и способ ее получения |
RU2633437C1 (ru) * | 2016-08-01 | 2017-10-12 | Федеральное государственное бюджетное учреждение "Национальный исследовательский центр "Курчатовский институт" | Структура полупроводник-на-изоляторе и способ ее изготовления |
Also Published As
Publication number | Publication date |
---|---|
RU2003136457A (ru) | 2005-05-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4331593B2 (ja) | 半導体材料からなるフィルムまたは層およびフィルムまたは層の製造方法 | |
KR100607186B1 (ko) | 수소이온 주입 박리법에 의한 soi 웨이퍼 제조방법 및그 방법으로 제조된 soi 웨이퍼 | |
KR100362311B1 (ko) | 반도체물품의에칭방법과장치및이것을사용한반도체물품의제조방법 | |
KR101462397B1 (ko) | 접합 웨이퍼의 제조 방법 | |
JP2003506883A (ja) | 低打ち込みドーズ量を用いて多層基板を製造するための劈開プロセス | |
JP4442560B2 (ja) | Soiウエーハの製造方法 | |
KR19980046273A (ko) | Soi기판의 제조방법 및 제조장치 | |
KR100890792B1 (ko) | 결합 계면 안정화를 위한 열처리 | |
US7947571B2 (en) | Method for fabricating a semiconductor on insulator substrate with reduced Secco defect density | |
EP1981064B1 (en) | Process for producing a soi wafer | |
JP2005311199A (ja) | 基板の製造方法 | |
KR19990023856A (ko) | 에스 오 아이 층위에의 산화막 형성방법 및 결합 웨이퍼 제조방법 | |
TWI450366B (zh) | Semiconductor substrate manufacturing method | |
KR20090042139A (ko) | 반도체 기판의 제조 방법 | |
RU2265255C2 (ru) | Способ получения структур кремний-на-изоляторе | |
JP5320954B2 (ja) | Soiウェーハの製造方法 | |
JP2010098167A (ja) | 貼り合わせウェーハの製造方法 | |
RU2368034C1 (ru) | Способ изготовления структуры кремний на изоляторе | |
JP4529036B2 (ja) | 半導体用薄膜ウェハの製造方法 | |
JP5572914B2 (ja) | 直接接合ウェーハの製造方法 | |
RU2240630C1 (ru) | Способ изготовления кремниевых пленок | |
JPH10335617A (ja) | 半導体基板の製造方法 | |
RU2260874C2 (ru) | Способ изготовления тонких пленок полупроводникового материала на диэлектрике (варианты) | |
JPH11145074A (ja) | 半導体基板の製造方法 | |
RU2151446C1 (ru) | Способ изготовления кремниевых структур со скрытым диэлектрическим слоем |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20101217 |