RU2180930C1 - Сплав на основе алюминия и способ изготовления полуфабрикатов из этого сплава - Google Patents
Сплав на основе алюминия и способ изготовления полуфабрикатов из этого сплава Download PDFInfo
- Publication number
- RU2180930C1 RU2180930C1 RU2000120272/02A RU2000120272A RU2180930C1 RU 2180930 C1 RU2180930 C1 RU 2180930C1 RU 2000120272/02 A RU2000120272/02 A RU 2000120272/02A RU 2000120272 A RU2000120272 A RU 2000120272A RU 2180930 C1 RU2180930 C1 RU 2180930C1
- Authority
- RU
- Russia
- Prior art keywords
- copper
- lithium
- aluminum
- temperature
- hours
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/12—Alloys based on aluminium with copper as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/04—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
- C22F1/057—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with copper as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/12—Alloys based on aluminium with copper as the next major constituent
- C22C21/14—Alloys based on aluminium with copper as the next major constituent with silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/12—Alloys based on aluminium with copper as the next major constituent
- C22C21/16—Alloys based on aluminium with copper as the next major constituent with magnesium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/12—Alloys based on aluminium with copper as the next major constituent
- C22C21/18—Alloys based on aluminium with copper as the next major constituent with zinc
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Metal Rolling (AREA)
- Heat Treatment Of Steel (AREA)
Abstract
Изобретение относится к области металлургии, в частности к высокопрочным свариваемым сплавам пониженной плотности системы алюминий - медь - литий, и может быть использовано в авиакосмической технике. Предлагается сплав на основе алюминия, включающий следующие компоненты в мас.%: медь 3,0-3,5, литий 1,5-1,8, цирконий 0,05-0,12, скандий 0,06-0,12, кремний 0,02-0,15, железо 0,02-0,2, бериллий 0,0001-0,02, по крайней мере один элемент из группы, содержащей магний 0,1-0,6, цинк 0,02-1,0, марганец 0,05-0,5, германий 0,02-0,2, церий 0,05-0,2, иттрий 0,005-0,02, титан 0,005-0,05, алюминий остальное при соотношении содержания меди к содержанию лития 1,9-2,3. Предлагается также способ изготовления полуфабрикатов, включающий нагрев литой заготовки под прокатку, горячую прокатку, закалку, правку растяжением и трехступенчатое искусственное старение. Техническим результатом от реализации изобретения является повышение пластичности, трещиностойкости, в том числе сопротивления ударным нагрузкам, увеличение стабильности механических свойств при длительных, низкотемпературных нагревах. 2 с.п. ф-лы, 4 табл.
Description
Изобретение относится к области металлургии, в частности к высокопрочным свариваемым сплавам пониженной плотности системы алюминий - медь - литий, и может быть использовано в авиакосмической технике.
Известен сплав на основе алюминия состава (мас.%):
Медь - 2,6-3,3
Литий - 1,8-2,3
Цирконий - 0,09-0,14
Магний - ≤0,1
Марганец - ≤0,1
Хром - ≤0,05
Никель - ≤0,003
Церий - ≤0,005
Титан - ≤0,02-0,06
Кремний - ≤0,1
Железо - ≤0,15
Бериллий - 0,008-0,1
Алюминий - Остальное
(ОСТ 1-90048-77).
Медь - 2,6-3,3
Литий - 1,8-2,3
Цирконий - 0,09-0,14
Магний - ≤0,1
Марганец - ≤0,1
Хром - ≤0,05
Никель - ≤0,003
Церий - ≤0,005
Титан - ≤0,02-0,06
Кремний - ≤0,1
Железо - ≤0,15
Бериллий - 0,008-0,1
Алюминий - Остальное
(ОСТ 1-90048-77).
Недостатком этого сплава является его низкая свариваемость, пониженное сопротивление ударным нагрузкам и низкая стабильность механических свойств в случае длительных низкотемпературных нагревов.
За прототип принят сплав на основе алюминия следующего химического состава (мас.%):
Медь - 1,4-6,0
Литий - 1,0-4,0
Цирконий - 0,02-0,3
Титан - 0,01-0,15
Бор - 0,0002-0,07
Церий - 0,005-0,15
Железо - 0,03-0,25
По крайней мере, один элемент из группы:
ниодим - 0,0002-0,1
скандий - 0,01-0,35
ванадий - 0,01-0,15
марганец - 0,05-0,6
магний - 0,6-2,0
алюминий - остальное
(Патент РФ 1584414, С 22 С 21/12, 1988).
Медь - 1,4-6,0
Литий - 1,0-4,0
Цирконий - 0,02-0,3
Титан - 0,01-0,15
Бор - 0,0002-0,07
Церий - 0,005-0,15
Железо - 0,03-0,25
По крайней мере, один элемент из группы:
ниодим - 0,0002-0,1
скандий - 0,01-0,35
ванадий - 0,01-0,15
марганец - 0,05-0,6
магний - 0,6-2,0
алюминий - остальное
(Патент РФ 1584414, С 22 С 21/12, 1988).
Недостатком этого сплава является пониженная термическая стабильность, недостаточно высокие характеристики трещиностойкости, высокая анизотропия свойств, особенно по относительному удлинению.
Известен способ изготовления полуфабрикатов из сплавов системы алюминий-медь-литий, включающий нагрев заготовки при 470-537oС, горячую прокатку (температура металла в конце прокатки не оговаривается), закалку от 549oС, правку растяжением (ε = 2-8%) и искусственное старение при 149oС, 8-24 ч или при 162oС, 36-72 ч, или при 190oС, 18-36 ч.
(Патент США 4806174, C 22 F 1/04, 1989).
Недостатком этого способа является низкая термическая стабильность свойств полуфабрикатов из-за остаточного пересыщения твердого раствора и последующего его распада с выделением мелких частиц упрочняющих фаз, а также низкие относительное удлинение и трещиностойкость, что повышает опасность разрушения при эксплуатации.
За прототип принят известный способ изготовления изделий из сплава системы алюминий-медь-литий, включающий нагрев литой заготовки под деформацию при температуре 430-480oС, деформацию при температуре окончания прокатки не менее 375oС, закалку от температуры 525±5oС, правку растяжением (ε = 1,5-3,0%) и искусственное старение по режиму: 150±5oС, 20-30 ч.
(Технологическая рекомендация по изготовлению плит из сплавов 1440 и 1450, ТР 456-2/31-88. ВИЛС, М., 1988г.).
Недостатком этого способа является существенный разброс значений механических свойств из-за широкого интервала температур деформации и низкая термическая стабильность из-за остаточного пересыщения твердого раствора после старения.
Предлагается сплав на основе алюминия состава (мас.%):
Медь - 3,0-3,5
Литий - 1,5-1,8
Цирконий - 0,05-0,12
Скандий - 0,06-0,12
Кремний - 0,02-0,15
Железо - 0,02-0,2
Бериллий - 0,0001-0,02
По крайней мере, один элемент из группы:
магний - 0,1-0,6
цинк - 0,01-1,0
марганец - 0,05-0,5
германий - 0,02-0,2
церий - 0,05-0,2
иттрий - 0,005-0,02
титан - 0,005-0,05
алюминий - остальное
при соотношении меди и лития Cu/Li - 1,9-2,3.
Медь - 3,0-3,5
Литий - 1,5-1,8
Цирконий - 0,05-0,12
Скандий - 0,06-0,12
Кремний - 0,02-0,15
Железо - 0,02-0,2
Бериллий - 0,0001-0,02
По крайней мере, один элемент из группы:
магний - 0,1-0,6
цинк - 0,01-1,0
марганец - 0,05-0,5
германий - 0,02-0,2
церий - 0,05-0,2
иттрий - 0,005-0,02
титан - 0,005-0,05
алюминий - остальное
при соотношении меди и лития Cu/Li - 1,9-2,3.
Предлагаемый сплав отличается от прототипа тем, что он дополнительно содержит бериллий и кремний при соотношении компонентов (мас.%):
Медь - 3,0-3,5
Литий - 1,5-1,8
Цирконий - 0,05-0,12
Скандий - 0,06-0,12
Кремний - 0,02-0,15
Железо - 0,02-0,2
Бериллий - 0,0001-0.02
По крайней мере, один элемент из группы:
магний - 0,1-0,6
цинк - 0,01-1,0
марганец - 0,05-0,5
германий - 0,02-0,2
церий - 0,05-0,2
иттрий - 0,005-0,02
титан - 0,005-0,05
алюминий - остальное
при соотношении меди и лития Cu/Li - 1,9-2,3.
Медь - 3,0-3,5
Литий - 1,5-1,8
Цирконий - 0,05-0,12
Скандий - 0,06-0,12
Кремний - 0,02-0,15
Железо - 0,02-0,2
Бериллий - 0,0001-0.02
По крайней мере, один элемент из группы:
магний - 0,1-0,6
цинк - 0,01-1,0
марганец - 0,05-0,5
германий - 0,02-0,2
церий - 0,05-0,2
иттрий - 0,005-0,02
титан - 0,005-0,05
алюминий - остальное
при соотношении меди и лития Cu/Li - 1,9-2,3.
Предлагается способ изготовления полуфабрикатов, который включает нагрев литой заготовки до температуры 460-500oС, деформацию при температуре ≥400oС, закалку в воде от температуры 525o±5oС, правку растяжением (ε = 1,5-3,0%), искусственное старение в три стадии:
I - при температуре 155-165oС с выдержкой 10-12 ч;
II - при температуре 180-190oС с выдержкой 2-5 ч;
III - при температуре 155-165oС с выдержкой 8-10 ч,
с последующим охлаждением в печи до температуры 90-100oС со скоростью 2-5oС/ч и охлаждением на воздухе до комнатной температуры.
I - при температуре 155-165oС с выдержкой 10-12 ч;
II - при температуре 180-190oС с выдержкой 2-5 ч;
III - при температуре 155-165oС с выдержкой 8-10 ч,
с последующим охлаждением в печи до температуры 90-100oС со скоростью 2-5oС/ч и охлаждением на воздухе до комнатной температуры.
Предложенный способ отличается от прототипа тем, что заготовку перед деформацией нагревают до температуры 460-500oС, деформацию проводят при температуре не ниже 400oС, а искусственное старение ведут в три стадии: сначала при температуре 155-165oС с выдержкой 10-12 ч, затем при температуре 180-190oС с выдержкой 2-5 ч и на последней стадии - при температуре 155-165oС с выдержкой 8-10 ч; затем осуществляют охлаждение до температуры 90-100oС со скоростью 2-5oС/ч с последующим охлаждением на воздухе до комнатной температуры.
Задачей данного изобретения является снижение веса конструкций авиакосмической техники, повышение их надежности и ресурса.
Технический результат - повышение пластичности, трещиностойкости, в том числе сопротивления ударным нагрузкам, увеличение стабильности механических свойств при длительных, низкотемпературных нагревах.
Заявляемые состав сплава и способ получения полуфабрикатов из него обеспечивают необходимую и достаточную легированность твердого раствора, позволяющую достичь высокого упрочнения за счет преимущественного выделения упрочняющих частиц Т1 фазы (Al2CuLi) без остаточного пересыщения твердого раствора литием, что приводит к практически полной термической стабильности сплава при эксплуатации в условиях длительных, низкотемпературных нагревов.
При этом плотность и морфология выделений упрочняющих частиц на границах и в зерне такова, что позволяет наряду с высокими пределами прочности и текучести получать высокие характеристики пластичности, трещиностойкости, сопротивления ударным нагрузкам.
Предлагаемый состав сплава за счет выделений дисперсных частиц фазы Al3(Zr, Sc) обеспечивает формирование однородной мелкозернистой структуры в слитке и в сварном шве, отсутствие рекристаллизации (в том числе в околошовной зоне) и, следовательно, хорошее сопротивление сварочным трещинам.
Таким образом, предлагаемые состав сплава и способ изготовления полуфабрикатов из него позволяют получать комплекс высоких механических и конструкционных характеристик (в том числе сопротивление ударным нагрузкам) за счет благоприятной морфологии упрочняющих выделений Т1 фазы при минимальном остаточном пересыщении твердого раствора, с чем связана его повышенная термическая стабильность. Сплав имеет низкую плотность и высокий модуль упругости. Сочетание этих свойств приводит к повышению весовой отдачи (не менее чем на 15%) и не менее чем на 25% увеличивается надежность и ресурс изделий.
Пример осуществления.
Плоские слитки сечением 90 х 220 мм 4-х сплавов, химический состав которых приведен в табл. 1, были отлиты полунепрерывным методом.
Гомогенизированные слитки нагревали перед прокаткой в электропечи, затем раскатывали на листы толщиной 7 мм. Режимы прокатки указаны в табл. 2. Листы закаливали с температуры 525oС в воде, затем правили растяжением со степенью остаточной деформации 2,5-3%. Правленные листы старили по режиму:
I ст. - 160oС, 10-12 ч;
II ст. - 180oС, 3-4 ч;
III ст. - 160oС, 8-10 ч.
I ст. - 160oС, 10-12 ч;
II ст. - 180oС, 3-4 ч;
III ст. - 160oС, 8-10 ч.
Листы из сплава-прототипа старили по предлагаемому режиму и по режиму - прототипу (150oС, 24 ч).
Часть листов после старения подвергали дополнительному нагреву при 115oС, 254 ч, что по степени структурных изменений и изменений свойств соответствует нагреву при 90oС в течение 4000 ч.
Результаты испытаний механических свойств приведены в табл. 3-4.
Из данных табл. 3-4 следует, что предложенные сплав и способ изготовления из него полуфабрикатов по сравнению с прототипами обеспечивают превосходство свойств горячекатаных листов по относительному удлинению - на 10%, вязкости разрушения - на 15%, удельной энергии разрушения при ударе - на 10% при близких значениях пределов прочности и текучести.
Наибольший выигрыш получен в термической стабильности свойств после длительных низкотемпературных нагревов.
Так, практически полностью отсутствуют изменения свойств листов из предложенного сплава, полученных по предложенному способу. Почти для всех свойств изменения после нагревов не превышают 2-5%.
В сплаве-прототипе, напротив, имеют место: прирост пределов прочности и текучести на 6%, уменьшение относительного удлинения на 30%, снижение вязкости разрушения на 7%, увеличение скорости роста трещин усталости на 10%, снижение сопротивления удару на 5%.
Сопоставление полученных свойств показывает, что предложенные сплав и способ изготовления полуфабрикатов могут обеспечить снижение веса конструкций (за счет более высоких характеристик прочности и трещиностойкости) не менее чем на 15% и увеличение надежности и ресурса изделий не менее чем на 20%.
Claims (2)
1. Сплав на основе алюминия, содержащий медь, литий, цирконий, скандий, железо, отличающийся тем, что он дополнительно содержит кремний, бериллий и по крайней мере один элемент из группы, содержащей магний, марганец, цинк, германий, иттрий, церий, титан при следующем соотношении компонентов, мас. %:
Медь - 3,0-3,5
Литий - 1,5-1,8
Цирконий - 0,05-0,12
Скандий - 0,06-0,12
Кремний - 0,02-0,15
Железо - 0,02-0,2
Бериллий - 0,0001-0,02
По крайней мере один элемент из группы:
магний - 0,1-0,6
цинк - 0,02-1,0
марганец - 0,05-0,5
германий - 0,02-0,2
церий - 0,05-0,2
иттрий - 0,005-0,02
титан - 0,005-0,05
алюминий - остальное
при соотношении содержания меди к содержанию лития 1,9-2,3.
Медь - 3,0-3,5
Литий - 1,5-1,8
Цирконий - 0,05-0,12
Скандий - 0,06-0,12
Кремний - 0,02-0,15
Железо - 0,02-0,2
Бериллий - 0,0001-0,02
По крайней мере один элемент из группы:
магний - 0,1-0,6
цинк - 0,02-1,0
марганец - 0,05-0,5
германий - 0,02-0,2
церий - 0,05-0,2
иттрий - 0,005-0,02
титан - 0,005-0,05
алюминий - остальное
при соотношении содержания меди к содержанию лития 1,9-2,3.
2. Способ изготовления полуфабрикатов из сплава по п. 1, отличающийся тем, что литую заготовку нагревают до 460-500oС, затем проводят деформацию при температуре не ниже 400oС, закалку, правку растяжением, искусственное старение в три стадии: на первой стадии при 155-165oС с выдержкой 10-12 ч, на второй - при 180-190oС с выдержкой 2-5 ч и на третьей - при 155-165oС с выдержкой 8-10 ч; после чего осуществляют охлаждение до температуры 90-100oС со скоростью 2-5oС/ч и последующее охлаждение до комнатной температуры на воздухе.
Priority Applications (12)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2000120272/02A RU2180930C1 (ru) | 2000-08-01 | 2000-08-01 | Сплав на основе алюминия и способ изготовления полуфабрикатов из этого сплава |
CNB018135846A CN1234892C (zh) | 2000-08-01 | 2001-07-30 | 铝基合金及制造其半成品的方法 |
EP01960589A EP1307601B1 (en) | 2000-08-01 | 2001-07-30 | Aluminium-based alloy and method of fabrication of semiproducts thereof |
KR1020037001508A KR100798567B1 (ko) | 2000-08-01 | 2001-07-30 | 알루미늄 기초 합금과 이의 반제품 제조방법 |
AU2001282045A AU2001282045B2 (en) | 2000-08-01 | 2001-07-30 | Aluminium-based alloy and method of fabrication of semiproducts thereof |
JP2002516382A JP5031971B2 (ja) | 2000-08-01 | 2001-07-30 | アルミニウムベース合金とその加工物の生成方法 |
US10/343,712 US20050271543A1 (en) | 2000-08-01 | 2001-07-30 | Aluminum-based alloy and method of fabrication of semiproducts thereof |
CA2417567A CA2417567C (en) | 2000-08-01 | 2001-07-30 | Aluminium-based alloy and method of fabrication of semiproducts thereof |
AU8204501A AU8204501A (en) | 2000-08-01 | 2001-07-30 | Aluminium-based alloy and method of fabrication of semiproducts thereof |
PCT/EP2001/008807 WO2002010466A2 (en) | 2000-08-01 | 2001-07-30 | Aluminium-based alloy and method of fabrication of semiproducts thereof |
BRPI0112842-6A BR0112842B1 (pt) | 2000-08-01 | 2001-07-30 | liga com base em alumÍnio e mÉtodo para a fabricaÇço de semiprodutos da mesma. |
US12/010,326 US7597770B2 (en) | 2000-08-01 | 2008-01-23 | Aluminum-based alloy and method of fabrication of semiproducts thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2000120272/02A RU2180930C1 (ru) | 2000-08-01 | 2000-08-01 | Сплав на основе алюминия и способ изготовления полуфабрикатов из этого сплава |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2180930C1 true RU2180930C1 (ru) | 2002-03-27 |
Family
ID=20238585
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2000120272/02A RU2180930C1 (ru) | 2000-08-01 | 2000-08-01 | Сплав на основе алюминия и способ изготовления полуфабрикатов из этого сплава |
Country Status (10)
Country | Link |
---|---|
US (2) | US20050271543A1 (ru) |
EP (1) | EP1307601B1 (ru) |
JP (1) | JP5031971B2 (ru) |
KR (1) | KR100798567B1 (ru) |
CN (1) | CN1234892C (ru) |
AU (2) | AU8204501A (ru) |
BR (1) | BR0112842B1 (ru) |
CA (1) | CA2417567C (ru) |
RU (1) | RU2180930C1 (ru) |
WO (1) | WO2002010466A2 (ru) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2461643C1 (ru) * | 2011-06-20 | 2012-09-20 | Открытое акционерное общество "Раменское приборостроительное конструкторское бюро" (ОАО "РПКБ") | Способ термической стабилизации размеров деталей прецизионных приборов из закаленного алюминиевого сплава д20 |
RU2551721C1 (ru) * | 2014-01-20 | 2015-05-27 | Открытое акционерное общество "Композит" (ОАО "Композит") | Сплав на основе алюминия для паяных конструкций |
RU2674789C1 (ru) * | 2013-12-13 | 2018-12-13 | Констеллиум Иссуар | Изделия из алюминиево-медно-литиевого сплава с улучшенными усталостными свойствами |
RU2749073C1 (ru) * | 2020-10-30 | 2021-06-03 | Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС" | Жаропрочные литейные и деформируемые алюминиевые сплавы на основе систем Al-Cu-Y и Al-Cu-Er (варианты) |
Families Citing this family (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE01998021T1 (de) | 2000-10-20 | 2005-02-10 | Pechiney Rolled Products, LLC, Ravenswood | Hochfeste aluminiumlegierung |
BRPI0408432B1 (pt) * | 2003-03-17 | 2015-07-21 | Corus Aluminium Walzprod Gmbh | Método para produção de uma estrutura integrada de alumínio monolítico e produto de alumínio usinado daquela estrutura |
WO2009156283A1 (en) | 2008-06-24 | 2009-12-30 | Aleris Aluminum Koblenz Gmbh | Al-zn-mg alloy product with reduced quench sensitivity |
CN102021418B (zh) * | 2009-09-18 | 2012-10-03 | 贵州华科铝材料工程技术研究有限公司 | 以C变质的Sc-Cr-RE高强耐热铝合金材料及其制备方法 |
CN101838763B (zh) * | 2010-03-15 | 2011-06-01 | 江苏大学 | 锶微合金化的高锌2099型铝合金及其制备方法 |
FR2960002B1 (fr) * | 2010-05-12 | 2013-12-20 | Alcan Rhenalu | Alliage aluminium-cuivre-lithium pour element d'intrados. |
CN101967588B (zh) * | 2010-10-27 | 2012-08-29 | 中国航空工业集团公司北京航空材料研究院 | 一种耐损伤铝锂合金及其制备方法 |
CN102021457B (zh) * | 2010-10-27 | 2012-06-27 | 中国航空工业集团公司北京航空材料研究院 | 一种高强韧铝锂合金及其制备方法 |
CN102758107B (zh) * | 2012-06-11 | 2015-01-21 | 上海交通大学 | 高强高导耐热铝合金导线及其制备方法 |
RU2514748C1 (ru) * | 2013-03-29 | 2014-05-10 | Открытое акционерное общество "Всероссийский институт легких сплавов" (ОАО "ВИЛС") | ВЫСОКОПРОЧНЫЙ ДЕФОРМИРУЕМЫЙ СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ СИСТЕМЫ Al-Zn-Mg-Cu ПОНИЖЕННОЙ ПЛОТНОСТИ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО |
CN103225049A (zh) * | 2013-04-23 | 2013-07-31 | 天津锐新昌轻合金股份有限公司 | 一种改善中强铝合金导电率的处理工艺 |
RU2556179C2 (ru) * | 2013-06-18 | 2015-07-10 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Самарский государственный аэрокосмический университет имени академика С.П. Королева (национальный исследовательский университет)" (СГАУ) | Термостойкий электропроводный сплав на основе алюминия (варианты) и способ получения деформированного полуфабриката из сплава на основе алюминия |
EP3181711B1 (de) * | 2015-12-14 | 2020-02-26 | Apworks GmbH | Scandiumhaltige aluminiumlegierung für pulvermetallurgische technologien |
FR3047253B1 (fr) * | 2016-02-03 | 2018-01-12 | Constellium Issoire | Toles epaisses en alliage al - cu - li a proprietes en fatigue ameliorees |
FR3065011B1 (fr) | 2017-04-10 | 2019-04-12 | Constellium Issoire | Produits en alliage aluminium-cuivre-lithium |
US20180291489A1 (en) * | 2017-04-11 | 2018-10-11 | The Boeing Company | Aluminum alloy with additions of copper, lithium and at least one alkali or rare earth metal, and method of manufacturing the same |
US11761061B2 (en) | 2017-09-15 | 2023-09-19 | Ut-Battelle, Llc | Aluminum alloys with improved intergranular corrosion resistance properties and methods of making and using the same |
CN108103372A (zh) * | 2018-02-23 | 2018-06-01 | 北京工业大学 | Al-Zn-Mg-Cu-Mn-Er-Zr铝合金三级时效工艺 |
US20200232071A1 (en) * | 2019-01-18 | 2020-07-23 | Divergent Technologies, Inc. | Aluminum alloys |
US11986904B2 (en) | 2019-10-30 | 2024-05-21 | Ut-Battelle, Llc | Aluminum-cerium-nickel alloys for additive manufacturing |
US11608546B2 (en) | 2020-01-10 | 2023-03-21 | Ut-Battelle Llc | Aluminum-cerium-manganese alloy embodiments for metal additive manufacturing |
CN112030085B (zh) * | 2020-08-06 | 2022-05-06 | 中南大学 | 一种Al-Cu-Mg-Si系合金形变热处理工艺 |
CN112853172B (zh) * | 2020-12-28 | 2022-04-15 | 郑州轻研合金科技有限公司 | 一种超低密度铝锂合金及其制备方法 |
CN114033591A (zh) * | 2021-11-16 | 2022-02-11 | 苏州星波动力科技有限公司 | 铝合金油轨及其成型方法和制造方法、发动机、汽车 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4806174A (en) * | 1984-03-29 | 1989-02-21 | Aluminum Company Of America | Aluminum-lithium alloys and method of making the same |
JPS62297433A (ja) * | 1986-06-18 | 1987-12-24 | Sumitomo Light Metal Ind Ltd | 構造用Al―Cu―Mg―Li系アルミニウム合金材料の製造方法 |
US5066342A (en) * | 1988-01-28 | 1991-11-19 | Aluminum Company Of America | Aluminum-lithium alloys and method of making the same |
US5076859A (en) * | 1989-12-26 | 1991-12-31 | Aluminum Company Of America | Heat treatment of aluminum-lithium alloys |
US5211910A (en) * | 1990-01-26 | 1993-05-18 | Martin Marietta Corporation | Ultra high strength aluminum-base alloys |
SU1785286A1 (ru) * | 1991-01-18 | 1994-08-15 | Научно-производственное объединение "Всесоюзный институт авиационных материалов" | Сплав на основе алюминия |
GB9424970D0 (en) * | 1994-12-10 | 1995-02-08 | British Aerospace | Thermal stabilisation of Al-Li alloy |
US5882449A (en) * | 1997-07-11 | 1999-03-16 | Mcdonnell Douglas Corporation | Process for preparing aluminum/lithium/scandium rolled sheet products |
-
2000
- 2000-08-01 RU RU2000120272/02A patent/RU2180930C1/ru active
-
2001
- 2001-07-30 US US10/343,712 patent/US20050271543A1/en not_active Abandoned
- 2001-07-30 KR KR1020037001508A patent/KR100798567B1/ko active IP Right Grant
- 2001-07-30 JP JP2002516382A patent/JP5031971B2/ja not_active Expired - Lifetime
- 2001-07-30 WO PCT/EP2001/008807 patent/WO2002010466A2/en active IP Right Grant
- 2001-07-30 AU AU8204501A patent/AU8204501A/xx active Pending
- 2001-07-30 CN CNB018135846A patent/CN1234892C/zh not_active Expired - Lifetime
- 2001-07-30 BR BRPI0112842-6A patent/BR0112842B1/pt not_active IP Right Cessation
- 2001-07-30 CA CA2417567A patent/CA2417567C/en not_active Expired - Lifetime
- 2001-07-30 EP EP01960589A patent/EP1307601B1/en not_active Expired - Lifetime
- 2001-07-30 AU AU2001282045A patent/AU2001282045B2/en not_active Expired
-
2008
- 2008-01-23 US US12/010,326 patent/US7597770B2/en not_active Expired - Lifetime
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2461643C1 (ru) * | 2011-06-20 | 2012-09-20 | Открытое акционерное общество "Раменское приборостроительное конструкторское бюро" (ОАО "РПКБ") | Способ термической стабилизации размеров деталей прецизионных приборов из закаленного алюминиевого сплава д20 |
RU2674789C1 (ru) * | 2013-12-13 | 2018-12-13 | Констеллиум Иссуар | Изделия из алюминиево-медно-литиевого сплава с улучшенными усталостными свойствами |
RU2551721C1 (ru) * | 2014-01-20 | 2015-05-27 | Открытое акционерное общество "Композит" (ОАО "Композит") | Сплав на основе алюминия для паяных конструкций |
RU2749073C1 (ru) * | 2020-10-30 | 2021-06-03 | Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС" | Жаропрочные литейные и деформируемые алюминиевые сплавы на основе систем Al-Cu-Y и Al-Cu-Er (варианты) |
Also Published As
Publication number | Publication date |
---|---|
EP1307601B1 (en) | 2012-09-26 |
KR20030031141A (ko) | 2003-04-18 |
AU2001282045B2 (en) | 2005-04-28 |
US20080115865A1 (en) | 2008-05-22 |
BR0112842B1 (pt) | 2009-01-13 |
US7597770B2 (en) | 2009-10-06 |
EP1307601A2 (en) | 2003-05-07 |
CN1444665A (zh) | 2003-09-24 |
WO2002010466A3 (en) | 2002-05-30 |
WO2002010466A2 (en) | 2002-02-07 |
JP5031971B2 (ja) | 2012-09-26 |
KR100798567B1 (ko) | 2008-01-28 |
BR0112842A (pt) | 2003-04-22 |
US20050271543A1 (en) | 2005-12-08 |
AU8204501A (en) | 2002-02-13 |
CN1234892C (zh) | 2006-01-04 |
JP2004505176A (ja) | 2004-02-19 |
CA2417567C (en) | 2013-06-25 |
CA2417567A1 (en) | 2002-02-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2180930C1 (ru) | Сплав на основе алюминия и способ изготовления полуфабрикатов из этого сплава | |
US9869008B2 (en) | High-temperature efficient aluminum copper magnesium alloys | |
AU2001282045A1 (en) | Aluminium-based alloy and method of fabrication of semiproducts thereof | |
US8771441B2 (en) | High fracture toughness aluminum-copper-lithium sheet or light-gauge plates suitable for fuselage panels | |
KR102565183B1 (ko) | 7xxx-시리즈 알루미늄 합금 제품 | |
JP7619098B2 (ja) | アルミニウム合金鍛造材の製造方法 | |
KR20210046733A (ko) | 7xxx-시리즈 알루미늄 합금 제품 | |
CN101243196A (zh) | 形变铝aa7000-系列合金产品和制造所述产品的方法 | |
JP2008516079A5 (ru) | ||
US20050191204A1 (en) | Aluminum alloy for producing high performance shaped castings | |
CN106795592A (zh) | 铝合金产品和制备方法 | |
US6461566B2 (en) | Aluminum-based alloy and procedure for its heat treatment | |
RU2542183C2 (ru) | Способ производства прессованных изделий из алюминиевого сплава серии 6000 | |
JPH10183287A (ja) | 冷間鍛造用アルミニウム合金とその製造方法 | |
JP3853021B2 (ja) | 強度と耐食性に優れたAl−Cu−Mg−Si系合金中空押出材の製造方法 | |
US20240200172A1 (en) | Aluminum Casting Alloy for Near Net Shaped Casting of Structural or Non-structural Components | |
RU2238997C1 (ru) | Способ изготовления полуфабрикатов из алюминиевого сплава и изделие, полученное этим способом | |
RU2296176C1 (ru) | Сплав на основе алюминия и способ его термической обработки | |
EP4083242A1 (en) | Aluminum casting alloy for near net shaped casting of structural or non-structural components | |
RU2560481C1 (ru) | СПЛАВ НА ОСНОВЕ СИСТЕМЫ Al-Cu-Li И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО | |
JPH1068054A (ja) | 靭性の優れたAl−Li系合金板材の製造方法 | |
JP7126915B2 (ja) | アルミニウム合金押出材及びその製造方法 | |
JP2953617B2 (ja) | アルミニウム合金押出材からなる軸圧壊特性に優れたエネルギー吸収部材 | |
JP3071058B2 (ja) | 溶接構造用高強度アルミニウム合金厚板の製造方法 | |
JPH0689439B2 (ja) | 構造用Al―Cu―Mg―Li系アルミニウム合金材料の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
QB4A | Licence on use of patent |
Effective date: 20070419 |
|
QB4A | Licence on use of patent |
Effective date: 20090428 |