RU2141489C1 - Термоперерабатываемый сополимер тетрафторэтилена - Google Patents
Термоперерабатываемый сополимер тетрафторэтилена Download PDFInfo
- Publication number
- RU2141489C1 RU2141489C1 RU94022752A RU94022752A RU2141489C1 RU 2141489 C1 RU2141489 C1 RU 2141489C1 RU 94022752 A RU94022752 A RU 94022752A RU 94022752 A RU94022752 A RU 94022752A RU 2141489 C1 RU2141489 C1 RU 2141489C1
- Authority
- RU
- Russia
- Prior art keywords
- tfe
- copolymers
- fluorine
- weight
- tetrafluoroethylene copolymer
- Prior art date
Links
- 229920001577 copolymer Polymers 0.000 title claims abstract description 32
- 239000000178 monomer Substances 0.000 claims abstract description 29
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 claims abstract description 29
- 229910052731 fluorine Inorganic materials 0.000 claims abstract description 12
- 239000011737 fluorine Substances 0.000 claims abstract description 11
- 238000001125 extrusion Methods 0.000 claims abstract description 7
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 claims abstract description 6
- 125000001153 fluoro group Chemical group F* 0.000 claims abstract description 6
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical group [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 claims abstract description 4
- 239000000460 chlorine Chemical group 0.000 claims abstract description 4
- 229910052801 chlorine Inorganic materials 0.000 claims abstract description 4
- 239000001257 hydrogen Chemical group 0.000 claims abstract description 4
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical group [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 3
- BZPCMSSQHRAJCC-UHFFFAOYSA-N 1,2,3,3,4,4,5,5,5-nonafluoro-1-(1,2,3,3,4,4,5,5,5-nonafluoropent-1-enoxy)pent-1-ene Chemical compound FC(F)(F)C(F)(F)C(F)(F)C(F)=C(F)OC(F)=C(F)C(F)(F)C(F)(F)C(F)(F)F BZPCMSSQHRAJCC-UHFFFAOYSA-N 0.000 claims description 10
- 125000004432 carbon atom Chemical group C* 0.000 claims description 9
- BLTXWCKMNMYXEA-UHFFFAOYSA-N 1,1,2-trifluoro-2-(trifluoromethoxy)ethene Chemical compound FC(F)=C(F)OC(F)(F)F BLTXWCKMNMYXEA-UHFFFAOYSA-N 0.000 claims description 8
- 229920000642 polymer Polymers 0.000 abstract description 14
- 239000011248 coating agent Substances 0.000 abstract description 5
- 238000000576 coating method Methods 0.000 abstract description 5
- 239000000155 melt Substances 0.000 abstract description 3
- 239000000126 substance Substances 0.000 abstract description 3
- 230000000694 effects Effects 0.000 abstract description 2
- WZEOZJQLTRFNCU-UHFFFAOYSA-N trifluoro(trifluoromethoxy)methane Chemical compound FC(F)(F)OC(F)(F)F WZEOZJQLTRFNCU-UHFFFAOYSA-N 0.000 abstract 1
- 238000006243 chemical reaction Methods 0.000 description 21
- 239000000203 mixture Substances 0.000 description 15
- 238000000034 method Methods 0.000 description 12
- 238000006116 polymerization reaction Methods 0.000 description 8
- 239000008246 gaseous mixture Substances 0.000 description 7
- HCDGVLDPFQMKDK-UHFFFAOYSA-N hexafluoropropylene Chemical group FC(F)=C(F)C(F)(F)F HCDGVLDPFQMKDK-UHFFFAOYSA-N 0.000 description 7
- 239000003999 initiator Substances 0.000 description 7
- 238000005259 measurement Methods 0.000 description 5
- 238000002844 melting Methods 0.000 description 5
- 230000008018 melting Effects 0.000 description 5
- -1 perfluoroalkyl vinyl ethers Chemical class 0.000 description 5
- 229920001897 terpolymer Polymers 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 239000007792 gaseous phase Substances 0.000 description 4
- 125000005010 perfluoroalkyl group Chemical group 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 3
- 239000002609 medium Substances 0.000 description 3
- WUMVZXWBOFOYAW-UHFFFAOYSA-N 1,2,3,3,4,4,4-heptafluoro-1-(1,2,3,3,4,4,4-heptafluorobut-1-enoxy)but-1-ene Chemical compound FC(F)(F)C(F)(F)C(F)=C(F)OC(F)=C(F)C(F)(F)C(F)(F)F WUMVZXWBOFOYAW-UHFFFAOYSA-N 0.000 description 2
- 239000004809 Teflon Substances 0.000 description 2
- 229920006362 Teflon® Polymers 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 125000000217 alkyl group Chemical group 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000004530 micro-emulsion Substances 0.000 description 2
- 239000010702 perfluoropolyether Substances 0.000 description 2
- 150000002978 peroxides Chemical class 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- AJDIZQLSFPQPEY-UHFFFAOYSA-N 1,1,2-Trichlorotrifluoroethane Chemical compound FC(F)(Cl)C(F)(Cl)Cl AJDIZQLSFPQPEY-UHFFFAOYSA-N 0.000 description 1
- RRZIJNVZMJUGTK-UHFFFAOYSA-N 1,1,2-trifluoro-2-(1,2,2-trifluoroethenoxy)ethene Chemical class FC(F)=C(F)OC(F)=C(F)F RRZIJNVZMJUGTK-UHFFFAOYSA-N 0.000 description 1
- DDMOUSALMHHKOS-UHFFFAOYSA-N 1,2-dichloro-1,1,2,2-tetrafluoroethane Chemical compound FC(F)(Cl)C(F)(F)Cl DDMOUSALMHHKOS-UHFFFAOYSA-N 0.000 description 1
- FXPHNQAHHHWMAV-UHFFFAOYSA-N 1-ethenoxy-1,1,2,2,3,3,4,4,4-nonafluorobutane Chemical compound FC(F)(F)C(F)(F)C(F)(F)C(F)(F)OC=C FXPHNQAHHHWMAV-UHFFFAOYSA-N 0.000 description 1
- GVEUEBXMTMZVSD-UHFFFAOYSA-N 3,3,4,4,5,5,6,6,6-nonafluorohex-1-ene Chemical group FC(F)(F)C(F)(F)C(F)(F)C(F)(F)C=C GVEUEBXMTMZVSD-UHFFFAOYSA-N 0.000 description 1
- FYQFWFHDPNXORA-UHFFFAOYSA-N 3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooct-1-ene Chemical group FC(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C=C FYQFWFHDPNXORA-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 239000004338 Dichlorodifluoromethane Substances 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 239000012736 aqueous medium Substances 0.000 description 1
- 239000008346 aqueous phase Substances 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- YOALFLHFSFEMLP-UHFFFAOYSA-N azane;2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-pentadecafluorooctanoic acid Chemical compound [NH4+].[O-]C(=O)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F YOALFLHFSFEMLP-UHFFFAOYSA-N 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000007810 chemical reaction solvent Substances 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- KYKAJFCTULSVSH-UHFFFAOYSA-N chloro(fluoro)methane Chemical compound F[C]Cl KYKAJFCTULSVSH-UHFFFAOYSA-N 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 238000006298 dechlorination reaction Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- PXBRQCKWGAHEHS-UHFFFAOYSA-N dichlorodifluoromethane Chemical compound FC(F)(Cl)Cl PXBRQCKWGAHEHS-UHFFFAOYSA-N 0.000 description 1
- 235000019404 dichlorodifluoromethane Nutrition 0.000 description 1
- 238000000113 differential scanning calorimetry Methods 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 159000000014 iron salts Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- BCCOBQSFUDVTJQ-UHFFFAOYSA-N octafluorocyclobutane Chemical compound FC1(F)C(F)(F)C(F)(F)C1(F)F BCCOBQSFUDVTJQ-UHFFFAOYSA-N 0.000 description 1
- 235000019407 octafluorocyclobutane Nutrition 0.000 description 1
- JRKICGRDRMAZLK-UHFFFAOYSA-L peroxydisulfate Chemical compound [O-]S(=O)(=O)OOS([O-])(=O)=O JRKICGRDRMAZLK-UHFFFAOYSA-L 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- USHAGKDGDHPEEY-UHFFFAOYSA-L potassium persulfate Chemical compound [K+].[K+].[O-]S(=O)(=O)OOS([O-])(=O)=O USHAGKDGDHPEEY-UHFFFAOYSA-L 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000010526 radical polymerization reaction Methods 0.000 description 1
- 239000012429 reaction media Substances 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- MWNQXXOSWHCCOZ-UHFFFAOYSA-L sodium;oxido carbonate Chemical compound [Na+].[O-]OC([O-])=O MWNQXXOSWHCCOZ-UHFFFAOYSA-L 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000007655 standard test method Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 229920006029 tetra-polymer Polymers 0.000 description 1
- 238000002411 thermogravimetry Methods 0.000 description 1
- CYRMSUTZVYGINF-UHFFFAOYSA-N trichlorofluoromethane Chemical compound FC(Cl)(Cl)Cl CYRMSUTZVYGINF-UHFFFAOYSA-N 0.000 description 1
- 229940029284 trichlorofluoromethane Drugs 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F214/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
- C08F214/18—Monomers containing fluorine
- C08F214/26—Tetrafluoroethene
- C08F214/262—Tetrafluoroethene with fluorinated vinyl ethers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B13/00—Apparatus or processes specially adapted for manufacturing conductors or cables
- H01B13/06—Insulating conductors or cables
- H01B13/14—Insulating conductors or cables by extrusion
- H01B13/148—Selection of the insulating material therefor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B3/00—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
- H01B3/18—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
- H01B3/30—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
- H01B3/44—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
- H01B3/443—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from vinylhalogenides or other halogenoethylenic compounds
- H01B3/445—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from vinylhalogenides or other halogenoethylenic compounds from vinylfluorides or other fluoroethylenic compounds
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Organic Insulating Materials (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Insulated Conductors (AREA)
- Treatments Of Macromolecular Shaped Articles (AREA)
Abstract
Изобретение относится к новым термоперерабатываемым сополимерам тетрафторэтилена (ТФЭ), применяемым для покрытия электрического кабеля экструзией из расплавов. Сополимер ТФЭ состоит из звеньев: а) перфторметилового эфира, b) фторсодержащего мономера формулы T-Rf-O-CF2-CF2, где Rf - перфторалкиленовый радикал с С2-С12, Т - фтор, хлор, водород и с) тетрафторэтилена при определенном массовом соотношении звеньев. Сополимеры отличаются хорошим сочетанием термических и механических свойств при высоких температурах и повышенным сопротивлением напряжению. 4 з.п. ф-лы, 2 табл.
Description
Настоящее изобретение относится к новым термоперерабатываемым сополимерам тетрафторэтилена (TFE), в особенности подходящим для покрытия электрического кабеля путем экструзии из расплава.
Известны сополимеры FEP (тетрафторэтилена и гексафторпропилена), имеющие температуру плавления около 260-265oC и наделенные относительно хорошими механическими свойствами при температуре 200oC, которые описаны, например, в патенте США N 2946763. Известно, что для переработки термоперерабатываемых полимеров экструзией необходима низкая вязкость расплава, т.е. высокий индекс течения расплава.
Уменьшение вязкости приводит к ухудшению механических свойств. Для ослабления этого воздействия получают сополимеры, имеющие повышенное процентное содержание гексафторпропилена (HFP).
Однако использование повышенного процентного содержания этого сополимера означает резкое уменьшение температуры плавления и, следовательно, нижнего допустимого значения температуры.
В патенте США N 4029868 представлен другой вид сополимеров FEP, содержащих, кроме TFE и HFP, от 0,5 до 3% по весу третьего мономера, состоящего из перфторпропилвинилового эфира или перфторэтилвинилового эфира. Эти терполимеры обладают более низкой вязкостью, чем сополимеры FEP, содержащие только TFE и HFP.
Тем не менее, механические свойства при высокой температуре (200oC) остаются все же приемлемыми. Согласно вышеприведенному патенту перфторметилвиниловый эфир не является пригодным в качестве третьего мономера (смотри, в частности, колонку 3, строки 38-39 и сравнительный пример А).
Патент США N 4587316 предлагает использование в качестве третьего мономера перфторалкилвиниловых эфиров, в которых перфторалкильная группа содержит даже более высокое количество углеродных атомов: от 4-х до 10-ти.
Обычно терполимер FEP, содержащий около 6 мол.% гексафторпропилена и около 0,4 мол.% перфторпропилвинилового эфира и имеющий индекс расплава около 18-20, проявляет следующие свойства:
- температура плавления: около 260oC;
- разрушающее напряжение при 200oC: около 4 МРа;
- напряжение пластического течения при 200oC: около 3 МРа;
- выносливость при многократных деформациях: около 2200;
- деформация ползучести при 150oC в течение 10-ти часов при нагрузке 2,4 МРа: около 11.
- температура плавления: около 260oC;
- разрушающее напряжение при 200oC: около 4 МРа;
- напряжение пластического течения при 200oC: около 3 МРа;
- выносливость при многократных деформациях: около 2200;
- деформация ползучести при 150oC в течение 10-ти часов при нагрузке 2,4 МРа: около 11.
Способы определения этих свойств будут описаны в дальнейшем. Обычно превосходные механические свойства получают у сополимеров TFE и перфторалкилвинилового эфира, в частности у сополимеров перфторпропилвинилового эфира, которые описаны в патенте США N 3635926, независимо от вязкости расплава.
Характеристики этого класса сополимеров улучшаются по мере возрастания числа углеродных атомов в алкильных группах перфторалкилвинилового эфира, даже если реакционная способность уменьшается с возрастанием длины перфторалкильного сегмента, однако перфторалкилвиниловый эфир остается все же более реакционноспособным, чем соответствующие α-алкилперфторолефины.
Низкая реакционная способность перфторпропилвинилового эфира приводит к уменьшению производительности реактора полимеризации, что приводит к отрицательному воздействию на стоимость продукции, и необходимости извлечения непрореагировавшего мономера, когда реакция завершена (смотри, например, патент Великобритании N 1514700).
Этот недостаток также делает способ получения сополимеров TFE с перфторпропилвиниловым эфиром и другими перфторвиниловыми эфирами с даже более длинной перфторалкильной цепью более дорогостоящим.
Следовательно, в особенности чувствуется необходимость в нахождении новых сочетаний фторсодержащих мономеров, которые, с одной стороны, могут быть усовершенствованием в отношении сополимеров и терполимеров FEP, а с другой стороны, могут сохранять ряд свойств, сравнимых, например, со свойствами сополимеров тетрафторэтилена с перфторпропилвиниловым эфиром, исправляющих в то же самое время недостатки, описанные выше.
К удивлению было обнаружено, что термообрабатываемые сополимеры TFE с определенными количествами перфторметилвинилового эфира и с одним или несколькими фторсодержащими сомономерами, которые будут описаны впоследствии, неожиданно наделены очень хорошим сочетанием термических и механических свойств при высоких температурах (даже при 250oC) и сопротивлением напряжению, что делает их в особенности подходящими для покрытия электрического кабеля экструзией из расплава.
Превосходные свойства этих сополимеров являются в особенности неожиданными, так как характеристики термообрабатываемых сополимеров тетрафторэтилена (TFE) только с перфторметилвиниловым эфиром являются несомненно плохими по сравнению с характеристиками сополимеров TFE и перфторпропилвинилового эфира.
Особое преимущество этих сополимеров, цель настоящего изобретения, исходит из того факта, что перфторметилвиниловый эфир является при сополимеризации с TFE значительно более реакционноспособным, чем перфторалкилвиниловые эфиры с перфторалкильной цепью, имеющей более высокое количество углеродных атомов и гексафторпропилен.
При описании настоящего изобретения слово "сополимер" используют для обозначения зависимости от обстоятельств - продуктов сополимеризации 2-х, 3-х, 4-х или более мономеров.
Первой целью настоящего изобретения, следовательно, является обеспечение новых термообрабатываемых сополимеров TFE, которые преодолевают недостатки, встречающиеся при получении и использовании сополимеров TFE предшествующей области.
Еще одной целью изобретения является обеспечение новых термообрабатываемых сополимеров TFE, в особенности подходящих для покрытия электрического кабеля экструзией из расплава.
Эти и другие цели достигаются посредством термообрабатываемых сополимеров тетрафторэтилена (TFE), которые состоят из:
a) перфторметилвинилового эфира в количестве от 0,5 до 13% по весу;
b) одного или нескольких фторсодержащих мономеров в количестве от 0,05 до 3% по весу, выбранных из группы, состоящей из:
(I) R1O-CF=CF2 (I)
в которой R1 выбирают из:
(i) -RF-T, где RF является перфторалкиленовым радикалом, имеющим от 2 до 12 углеродных атомов, а T является фтором, хлором или водородом,
где n - число от 1 до 4, a m - число от 0 до 3;
где звенья и
неупорядоченно распределены по цепи;
X и Y независимо друг от друга являются -F или -CF3;
Z является -(CFX) или -(CF2-CFY)-,
p и q - числа от 0 до 10, одинаковые или отличающиеся друг от друга;
среднечисленная молекулярная масса мономера составляет от 200 до 2000;
где W является -Cl, -F, или -CF3, а l и t - числа от 0 до 5;
в которой r - число от 0 до 4;
(2) R2-CH=CH2
в которой R2 является группой RF-T, где RF является перфторалкиленовым радикалом, имеющим от 2 до 12 углеродных атомов, а T является фтором, хлором или водородом;
(c) тетрафторэтилена, взятого в таком количестве, что сумма процентных содержаний различных мономеров равна 100% по весу.
a) перфторметилвинилового эфира в количестве от 0,5 до 13% по весу;
b) одного или нескольких фторсодержащих мономеров в количестве от 0,05 до 3% по весу, выбранных из группы, состоящей из:
(I) R1O-CF=CF2 (I)
в которой R1 выбирают из:
(i) -RF-T, где RF является перфторалкиленовым радикалом, имеющим от 2 до 12 углеродных атомов, а T является фтором, хлором или водородом,
где n - число от 1 до 4, a m - число от 0 до 3;
где звенья и
неупорядоченно распределены по цепи;
X и Y независимо друг от друга являются -F или -CF3;
Z является -(CFX) или -(CF2-CFY)-,
p и q - числа от 0 до 10, одинаковые или отличающиеся друг от друга;
среднечисленная молекулярная масса мономера составляет от 200 до 2000;
где W является -Cl, -F, или -CF3, а l и t - числа от 0 до 5;
в которой r - число от 0 до 4;
(2) R2-CH=CH2
в которой R2 является группой RF-T, где RF является перфторалкиленовым радикалом, имеющим от 2 до 12 углеродных атомов, а T является фтором, хлором или водородом;
(c) тетрафторэтилена, взятого в таком количестве, что сумма процентных содержаний различных мономеров равна 100% по весу.
Предпочтительные процентные содержания по весу трех видов мономеров являются следующими:
- перфторметилвиниловый эфир: 2 - 9%;
- один или несколько фторированных мономеров (b): 0,1 - 1,5%;
- тетрафторэтилен: остальное до 100%.
- перфторметилвиниловый эфир: 2 - 9%;
- один или несколько фторированных мономеров (b): 0,1 - 1,5%;
- тетрафторэтилен: остальное до 100%.
В сомономерах типа (1) (i) перфторалкиленовый радикал предпочтительно содержит от 2-х до 6-ти углеродных атомов, а атом Т предпочтительно является атомом фтора.
Среди сомономеров типа (1) (i) в качестве примеров могут быть упомянуты перфторэтилвиниловый эфир, перфторпропилвиниловый эфир и перфторбутилвиниловый эфир. Предпочтительным сомономером этого класса является перфторпропилвиниловый эфир.
Сомономеры типа (1) (ii) описаны, например, в Европейской заявке на патент N 75312. Примерами этих сомономеров являются такие, в которых n равно 1 или 2, а m равно 2.
Сомономеры типа (1) (iii) получают дехлорированием соединений формулы
которые можно получить как описано в примере II патента США N 4906770.
которые можно получить как описано в примере II патента США N 4906770.
Сомономеры типа (1) (iv) можно получить в соответствии со способом, описанным в патенте Великобритании N 1106344. Среди этих сомономеров можно сослаться на соединение:
CF2=CF-O-(CF2-CF2)-O-CF=CF2 (VI)
Сомономеры типа (1) (v) можно получить в соответствии со способом, описанным в патенте США N 4013689.
CF2=CF-O-(CF2-CF2)-O-CF=CF2 (VI)
Сомономеры типа (1) (v) можно получить в соответствии со способом, описанным в патенте США N 4013689.
В сомономерах формулы R2 - CH = CH2R2 имеет предпочтительно от 2 до 6-ти углеродных атомов. Примерами этих сомономеров являются перфторбутилэтилен и перфторгексилэтилен.
Вышеописанные сомономеры могут быть сополимеризованы только с TFE и перфторметилвиниловым эфиром для получения терполимеров или в сочетании друг с другом для получения тетраполимеров или сополимеров более сложных составов.
Термообрабатываемые сополимеры, являющиеся объектом настоящего изобретения, могут быть получены радикальной полимеризацией либо в водной, либо в органической среде.
Полимеризацию в водной среде можно выполнить следующим образом. Инициатором полимеризации может быть любое вещество, способное к созданию радикалов, например пероксид, перкарбонат, персульфат или азосоединение. Обычно эти соединения имеют в условиях реакции средний срок службы, достаточный для поддержания реакции и получения желаемой молекулярной массы.
Возможно добавление восстановителя в качестве промотора для разложения инициатора, например соли железа.
Количество используемого инициатора зависит, как известно, от температуры реакции, от возможного присутствия переносчиков кинетической цепи, от желаемого значения молекулярной массы и обычно от реакционных условий.
Более того, полимеризация в водной среде нуждается в присутствии поверхностно-активного вещества, например соли перфторалкилкарбоновой кислоты (например, перфторкаприлата аммония).
Другими подходящими соединениями являются соли перфторалкоксибензолсульфоновой кислоты, которые описаны, например, в Европейской заявке на патент N 184459.
К водной среде необязательно добавляют вещества, которые способны растворять мономеры и, возможно, инициатор. Этими растворителями могут быть, например, 1,1,2-трихлор-1,2,2-трифторэтан, 1,2-дихлор-1,1,2,2-тетрафторэтан, трихлорфторметан, дихлордифторметан, CClF2H и перфторциклобутан.
В особенности выгодным является проведение полимеризации в водной фазе в присутствии перфторполиэфиров. Их можно добавить к реакционной среде в виде водной эмульсии в присутствии подходящего диспергатора, который описан в Европейской заявке на патент N 2247379, или предпочтительно в виде водной микроэмульсии, которая описана в патенте США N 4864006.
Альтернативно полимеризацию можно проводить в жидкой органической среде, которая описана, например, в патенте США N 3642742. Для полимеризации TFE в органической среде может быть использован любой инициатор. Предпочтительно инициатор растворим в реакционном растворителе. Примерами подходящих инициаторов являются алкилперкарбонаты и перфторацилпероксиды.
Сомономеры обычно вводят в реактор в виде газообразной смеси. Преимущественный способ проведения полимеризации состоит в введении в реактор третьего мономера (т.е. сомономера (b) в газообразной реакционной смеси) только в начале реакции, поддерживая постоянным реакционное давление путем дальнейшего добавления газообразной смеси TFE-перфторметилвинилового эфира.
Преимущество этой методики состоит в том, что третий мономер, добавленный в начале реакции, реагирует полностью, когда достигают желательной концентрации полимера. Это в особенности является выгодным как по техническим, так и по экономическим причинам. В действительности, третий мономер, используемый в способе, является обычно очень дорогостоящим, следовательно, непрореагировавший мономер необходимо извлечь, когда реакция закончена.
Особенность методики, выбранной в настоящем изобретении, делает, с одной стороны, излишним процесс извлечения мономера, а с другой стороны, увеличивает до предела эффективность включения такого мономера в полимерную цепь.
Характеристики и эксплуатационные свойства сополимеров настоящего изобретения определены следующим образом.
Вязкость расплава измеряли в соответствии со стандартом ASTMD-1238-52T (с Американским стандартным методом испытаний), используя модифицированное оборудование, в котором цилиндр, фильера и поршень выполнены из коррозионностойкой стали. 5 г пробы помещали в цилиндр, имеющий внутренний диаметр 9,53 мм, и держали при температуре 372 ± 1oC. Через 5 минут расплавленный полимер экструдировали через капилляр, имеющий диаметр 2,10 мм и длину 8,0 мм при приложении нагрузки 5,0 кг (поршень + вес), которая соответствует сдвиговому напряжению 0,457 кг/см2. Вязкость расплава, выраженную в пуазах, вычисляли с учетом конфигурации формы оборудования и получали путем деления 53150 на наблюдаемую скорость экструзии, выраженную в г/мин. Состав сополимера определяли с помощью материального баланса.
Температуру плавления определяли дифференциальной сканирующей калориметрией (DSC), используя калориметр Perkin - Elmer Модели IV; около 10 мг анализируемой пробы нагревали от комнатной температуры до 350oC со скоростью 10oC/мин.
Пробу поддерживали при температуре 350oC в течение 5 минут, а затем охлаждали до комнатной температуры со скоростью 10oC/мин. Нагревание до 350oC повторяли при тех же самых модальностях. Во время этой стадии регистрировали температуру, соответствующую максимуму кривой ликвидуса, и ее указывали в качестве "второй температуры плавления" [Tm(II)].
Термостойкость полученных полимеров определяли термогравиметрическим анализом в аппаратуре Perkin-Elmer TGA 7-ой модели, работая в изотермических условиях при 380oC в воздушной атмосфере. Потеря веса, выраженная в виде процентного содержания, через 1 час является показателем термостойкости материала.
Для измерения прочностных свойств при растяжении (растягивающего напряжения и относительного удлинения при разрыве, предела текучести, предела удлинения и модуля Юнга) получали путем прямого прессования дисков, имеющих толщину 1,58 ± 0,08 мм, в соответствии со стандартом ASTMD-3307-81.
Для измерения механических свойств в соответствии со стандартом ASTMD-1708 из них получали микрообразцы. При всех этих измерениях скорость вытяжки составила 50 мм/мин. Обычно для пробы каждого полимера проводили 3 измерения: при комнатной температуре, при 200oC и при 250oC. Когда работали при высоких температурах, образец сохраняли перед измерением при температуре испытаний в течение 5 минут.
Чтобы определить сопротивление напряжению, использовали стандартное оборудование, описанное в ASTMD-2176-63T для MIT Flex Life (определения выносливости при многократном изгибе).
Измерения проводили на образцах, полученных из пленки толщиной 0,3 мм. Образец закрепляли в зажимах оборудования и, кроме того, прикладывали нагрузку весом 1 кг. Пленку изгибали под углом 135o направо по отношению к вертикальной линии и под тем же самым углом налево со скоростью 175 циклов в минуту.
Регистрировали количество циклов, необходимое для достижения поломки образца. На каждой пробе проводили 6 измерений и вычисляли среднее значение. Деформацию ползучести определяли при 150oC в течение 10-ти часов при нагрузке 2,4 МРа, в соответствии со стандартом ASTMD2990.
Пример 1.
Использовали 22 -литровый автоклав, выполненный из стали AlSl 316, снабженный механической мешалкой, работающей со скоростью 450 оборотов в минуту.
После откачивания воздуха вводили в следующей последовательности: 14,7 л деминерализованной воды, CHCl3 в качестве переносчика кинетической цепи в количестве 0,75 мл/л H2O, перфторпропилвиниловый эфир (FPVE) в количестве 4,1 г/л H2O и в конце водную микроэмульсию перфторполиэфира, приготовленную в соответствии с примером 1 патента США N 4864006 с тем, чтобы получить концентрацию поверхностно-активного вещества 2 г/л H2O.
Автоклав нагрели до 75oC. Газообразную смесь TFE-перфторметилвинилового эфира (FMVE) при молярном отношении TFE/FMPVE, равном 37,5/1, добавляли посредством компрессора до тех пор, пока было достигнуто давление 20 абсолютных бар. Состав газообразной смеси в автоклаве анализировали газовой хроматографией.
В начале она имела следующий состав (% по молям): 83,7 TFE, 11,6 FMVE и 4 FPVE; затем посредством дозирующего насоса непрерывно подавали 0,11 молярный раствор персульфата калия при скорости потока 170 мл/час.
Давление полимеризации поддерживали постоянным путем подачи вышеприведенной мономерной смеси, и когда было подано 6600 г (после протекания реакции в течение 240 мин) реакцию закончили. Состав конечной газообразной смеси был следующим (% по молям): 87,4 TFE, 12,3 FMVE, 0,3 FPVE.
Реактор охладили до комнатной температуры; эмульсию выгрузили и коагулировали добавлением HNO3 (65%). Отделили полимер, промыли водой, сушили при 220oC и гранулировали.
В табл.1 представлены данные, относящиеся к характеристикам полимера.
Пример 2.
Процесс осуществляли как в примере 1, за исключением того, что количество переносчика кинетической цепи, вводимое в реактор, составило 0,95 мл/л H2O и что мономерная газообразная смесь, подаваемая в течение всей реакции, имела молярное отношение TFE/FMVE, равное 27,6/1.
Перед началом реакции газообразная фаза имела следующий состав (% по молям): 77,8 TFE, 17,2 FMVE, 5,0 FPVE. Когда было подано 6600 г вышеприведенной мономерной смеси (после протекания реакции в течение 280 мин), реакцию закончили. Конечная газообразная фаза имела следующий состав (% по молям): 82,5 TFE, 17,2 MVE, 0,3 EPVE.
В табл. 1 приведены данные, относящиеся к характеристикам полимера.
Пример 3.
Процесс осуществляли, как в примере 1, за исключением того, что в начале количество переносчика кинетической цепи, вводимое в реактор, составило 0,95 мл/л H2O, количество FPVE составило 4,76 г/л H2O, а мономерная газообразная смесь, подаваемая в течение всей реакции, имела молярное отношение TFE/FMVE 21,22/1.
Перед началом реакции газообразная фаза имела следующий состав (% по молям): 74,5 TFE, 20,5 FMVE, 5,0 FPVE.
Когда было подано 6600 г вышеприведенной мономерной смеси (после протекания реакции в течение 287 мин), реакцию закончили.
Конечная газообразная фаза имела следующий состав (% по молям): 79,7 TFE, 20 MVE, 0,3 FPVE.
В табл. 1 приведены данные, относящиеся к характеристикам полимера.
Пример 4 (сравнительный).
Процесс осуществляли, как и в примере 1, за исключением того, что FPVE не вводили в реактор.
Начальная газовая фаза в автоклаве имела следующий состав (% по молям): 87,5 TFE, 12,5 FMVE. Когда было подано 6600 г вышеуказанной мономерной смеси (после протекания реакции в течение 240 мин), реакцию закончили. Конечная газовая фаза имела следующий состав (% по молям): 87,6 TFE, 12,4 MVE.
В табл. 1 представлены данные, относящиеся к характеристикам полимера.
Пример 5.
Следуя методике примера 2, получили 12 кг того же самого терполимера TFE(FMVE)FPVE, имеющего MF1 (индекс течения расплава) = 14 г/10 мин. Этот полимер использовали для покрытия медной проволоки, имеющей диаметр 1 мм, в соответствии со следующей методикой.
Полимер гранулировали и затем подавали на линию покрытия проволоки Davis Electric(R), снабженную экструдером APV Sterling(R), имеющим диаметр 38 мм и отношение длины к диаметру 30.
В результате получили изолированный кабель, классифицированный как AGW20, имеющий толщину стенки 0,25 мм. Кабель испытывали в соответствии со стандартом ASTMD-03032 (испытание на порез) при радиусе лезвия 0,25 мм, при 200oC и 250oC. Результаты представлены в табл. 2, которые выражены с точки зрения силы (в ньютонах), необходимой для разреза кабеля.
Примеры 6-7 (сравнительные).
Получили тот же самый кабель, покрытый как в примере 5, используя коммерческие сополимеры FEP фирмы Du Pont, известные под фабричной маркой Teflon(R) FEP 100/MF1 = 6,6 г/10 мин, пример 6) и Teflon(R) FEP 115/MF1 = 15,3 г/10 мин, пример 7).
Результаты испытания на порез представлены в табл. 2.
Claims (5)
1. Термоперерабатываемый сополимер тетрафторэтилена, состоящий из а) перфторметилвинилового эфира в количестве от 0,5 до 13% по весу; в) от 0,05 до 3% по весу одного или нескольких фторсодержащих мономеров формулы
T-Rf-O-CF=CF2 /I/
где Rf является перфторалкиленовым радикалом, имеющим от 2 до 12 углеродных атомов, а Т является фтором, хлором или водородом;
с) тетрафторэтилена, взятого в таком количестве, что сумма процентного содержания различных мономеров равна 100% по весу.
T-Rf-O-CF=CF2 /I/
где Rf является перфторалкиленовым радикалом, имеющим от 2 до 12 углеродных атомов, а Т является фтором, хлором или водородом;
с) тетрафторэтилена, взятого в таком количестве, что сумма процентного содержания различных мономеров равна 100% по весу.
2. Термоперерабатываемый сополимер тетрафторэтилена по п.1, отличающийся тем, что он состоит из а) перфторметилвинилового эфира в количестве от 2 до 9% по весу; в) одного или нескольких фторсодержащих мономеров (в) по п.1, в количестве от 0,1 до 1,5% по весу; с) тетрафторэтилена в таком количестве, что сумма процентного содержания различных мономеров равна 100% по весу.
3. Термоперерабатываемый сополимер тетрафторэтилена по п.1 или 2, отличающийся тем, что в мономере формулы (I) Rf является перфторалкиленовым радикалом, имеющим от 2 до 6 углеродных атомов, а Т является фтором.
4. Термоперерабатываемый сополимер тетрафторэтилена по п.3, отличающийся тем, что в мономере формулы (I) Rf является перфторпропилвиниловым эфиром.
5. Термоперерабатываемый сополимер тетрафторэтилена по любому из пп.1 - 4, отличающийся тем, что он применяется для покрытия электрического кабеля экструзией из расплава.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ITMI93A001444 | 1993-07-05 | ||
IT93MI001444A IT1264661B1 (it) | 1993-07-05 | 1993-07-05 | Copolimeri termoprocessabilin del tetrafluoroetilene |
ITM193A001444 | 1993-07-05 |
Publications (2)
Publication Number | Publication Date |
---|---|
RU94022752A RU94022752A (ru) | 1996-05-10 |
RU2141489C1 true RU2141489C1 (ru) | 1999-11-20 |
Family
ID=11366527
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU94022752A RU2141489C1 (ru) | 1993-07-05 | 1994-07-01 | Термоперерабатываемый сополимер тетрафторэтилена |
Country Status (14)
Country | Link |
---|---|
US (1) | US5463006A (ru) |
EP (1) | EP0633274B1 (ru) |
JP (1) | JP3531974B2 (ru) |
KR (1) | KR100333841B1 (ru) |
AT (1) | ATE148474T1 (ru) |
CA (1) | CA2127296C (ru) |
DE (1) | DE69401621T2 (ru) |
DK (1) | DK0633274T3 (ru) |
ES (1) | ES2097579T3 (ru) |
GR (1) | GR3022893T3 (ru) |
IT (1) | IT1264661B1 (ru) |
MX (1) | MX9405089A (ru) |
RU (1) | RU2141489C1 (ru) |
TW (1) | TW272201B (ru) |
Families Citing this family (44)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IT1266647B1 (it) * | 1993-10-29 | 1997-01-09 | Ausimont Spa | Processo di (co)polimerizzazione di monomeri olefinici fluorurati in emulsione acquosa |
IT1270703B (it) | 1994-11-17 | 1997-05-07 | Ausimont Spa | Microemulsioni di fluoropoliossialchileni in miscela con idrocarburi, e loro uso in processi di (co)polimerizzazione di monomeri fluorurati |
US5834564A (en) * | 1996-04-30 | 1998-11-10 | Hewlett-Packard Company | Photoconductor coating having perfluoro copolymer and composition for making same |
US5922425A (en) * | 1996-05-28 | 1999-07-13 | Minnesota Mining And Manufacturing Company | Multi-layer compositions and articles comprising fluorine-containing polymer |
IT1283136B1 (it) * | 1996-07-09 | 1998-04-07 | Ausimont Spa | Lattici acquosi a base di fluoropolimeri |
IT1290428B1 (it) * | 1997-03-21 | 1998-12-03 | Ausimont Spa | Grassi fluorurati |
IT1293516B1 (it) * | 1997-07-31 | 1999-03-01 | Ausimont Spa | Dispersione di perfluoropolimeri |
IT1293515B1 (it) * | 1997-07-31 | 1999-03-01 | Ausimont Spa | Dispersioni di fluoropolimeri |
EP1063245A4 (en) * | 1998-03-10 | 2002-02-27 | Daikin Ind Ltd | PERFLUOROCHEMICAL MOLDING MATERIAL AND BLOW-MOLD CONTAINER |
ITMI981519A1 (it) * | 1998-07-02 | 2000-01-02 | Ausimont Spa | Processodi polimerizzazione del tfe |
US7049380B1 (en) * | 1999-01-19 | 2006-05-23 | Gore Enterprise Holdings, Inc. | Thermoplastic copolymer of tetrafluoroethylene and perfluoromethyl vinyl ether and medical devices employing the copolymer |
DE19964006A1 (de) * | 1999-12-30 | 2001-07-12 | Dyneon Gmbh | Tetrafluorethylen-Copolymere |
US6686426B2 (en) | 1999-12-30 | 2004-02-03 | 3M Innovative Properties Company | Perfluoro copolymers of tetrafluoroethylene and perflouro alkyl vinyl ethers |
IT1318388B1 (it) | 2000-03-14 | 2003-08-25 | Ausimont Spa | Composizioni lubrificanti a base di ptfe. |
IT1318488B1 (it) | 2000-04-21 | 2003-08-25 | Ausimont Spa | Fluorovinileteri e polimeri da essi ottenibili. |
US7534845B2 (en) | 2000-04-21 | 2009-05-19 | Solvay Solexis S.P.A. | Fluorovinyl ethers and polymers obtainable therefrom |
IT1318487B1 (it) | 2000-04-21 | 2003-08-25 | Ausimont Spa | Fluoroelastomeri. |
IT1318595B1 (it) * | 2000-06-23 | 2003-08-27 | Ausimont Spa | Microsfere di copolimeri termoprocessabili del tetrafluoroetilene. |
IT1318596B1 (it) * | 2000-06-23 | 2003-08-27 | Ausimont Spa | Copolimeri termoprocessbili del tfe. |
JP2002047315A (ja) * | 2000-08-03 | 2002-02-12 | Daikin Ind Ltd | 高周波電気特性に優れたテトラフルオロエチレン系樹脂成形用材料 |
US6279408B1 (en) * | 2000-09-28 | 2001-08-28 | Horiba Instruments, Inc. | Sample bag |
JP3888232B2 (ja) * | 2001-12-18 | 2007-02-28 | ユニマテック株式会社 | 含フッ素三元共重合体 |
ITMI20012745A1 (it) | 2001-12-21 | 2003-06-21 | Ausimont Spa | Copolimeri termoprocessabili del tfe |
JP4498748B2 (ja) * | 2002-03-19 | 2010-07-07 | インテグリス・インコーポレーテッド | 中空糸膜接触装置およびプロセス |
ITMI20021561A1 (it) | 2002-07-16 | 2004-01-16 | Ausimont Spa | Copolimeri di tfe |
US20040024448A1 (en) | 2002-08-05 | 2004-02-05 | Chang James W. | Thermoplastic fluoropolymer-coated medical devices |
US7384149B2 (en) | 2003-07-21 | 2008-06-10 | Asml Netherlands B.V. | Lithographic projection apparatus, gas purging method and device manufacturing method and purge gas supply system |
US20050090617A1 (en) * | 2003-10-22 | 2005-04-28 | Shinichi Namura | Melt processible copolymer composition |
US7030191B2 (en) * | 2003-10-22 | 2006-04-18 | Dupont Mitsui Fluorochemicals Co., Ltd. | Melt processible copolymer composition |
DE602005003074T2 (de) | 2004-08-25 | 2008-08-14 | Asahi Glass Co., Ltd. | Fluorocopolymer |
JP4640021B2 (ja) * | 2004-08-25 | 2011-03-02 | 旭硝子株式会社 | 含フッ素共重合体 |
GB0427913D0 (en) * | 2004-12-21 | 2005-01-19 | 3M Innovative Properties Co | Fluoropolymer for making a fluoroelastomer |
CN103254345A (zh) * | 2006-02-23 | 2013-08-21 | 索尔维索莱克西斯公司 | Lan电缆 |
ATE451432T1 (de) * | 2006-10-03 | 2009-12-15 | 3M Innovative Properties Co | Mehrschichtige artikel und verfahren zur erhöhung ihrer ablöselebensdauer |
ITMI20062308A1 (it) * | 2006-11-30 | 2008-06-01 | Solvay Solexis Spa | Additivi per alo-polimeri |
CN102099416B (zh) | 2008-05-30 | 2014-03-12 | 华福涂料公司 | 共混含氟聚合物组合物 |
TWI496796B (zh) * | 2009-02-13 | 2015-08-21 | Solvay Solexis Spa | 全氟彈性體 |
TWI482784B (zh) * | 2009-02-13 | 2015-05-01 | Solvay Solexis Spa | 全氟彈性體 |
DE102010034136A1 (de) * | 2010-08-12 | 2012-02-16 | Norbert Harthauß | Verfahren zur Reparatur eines beschädigten Bereiches einer elektrischen Leitung |
US9688786B2 (en) * | 2011-06-09 | 2017-06-27 | Solvay Specialty Polymers Italy S.P.A. | Hyperbranched fluoroelastomer additive |
CN106832694A (zh) * | 2016-12-30 | 2017-06-13 | 安徽凌宇电缆科技有限公司 | 一种耐用阻燃电缆护套配方 |
CN114380935B (zh) * | 2020-10-20 | 2022-12-06 | 中昊晨光化工研究院有限公司 | 一种可熔性含氟树脂及其制备方法 |
CN116761832A (zh) | 2021-01-20 | 2023-09-15 | 索尔维特殊聚合物意大利有限公司 | 含氟聚合物组合物 |
US20240182695A1 (en) | 2021-03-10 | 2024-06-06 | Solvay Specialty Polymersitaly S.P.A. | Fluoropolymer composition |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE560454A (ru) * | 1957-03-29 | |||
DE1595119B2 (de) * | 1965-03-29 | 1971-03-04 | E I Du Pont de Nemours and Co , Wilmington, Del (V St A ) | Verfahren zur herstellung von im wesentlichen gesaettig ten cyclischen perfluoraetherpolymerisaten |
US3635926A (en) * | 1969-10-27 | 1972-01-18 | Du Pont | Aqueous process for making improved tetrafluoroethylene / fluoroalkyl perfluorovinyl ether copolymers |
DE2517357C3 (de) * | 1975-04-19 | 1980-10-02 | Hoechst Ag, 6000 Frankfurt | Perfluorierte Vinylether und Verfahren zu deren Herstellung |
US4029868A (en) * | 1976-03-10 | 1977-06-14 | E. I. Du Pont De Nemours And Company | Tetrafluoroethylene terpolymers |
US4042634A (en) * | 1976-03-15 | 1977-08-16 | E. I. Du Pont De Nemours And Company | Fluorocarbon separation process |
JPS5869213A (ja) * | 1981-09-21 | 1983-04-25 | Daikin Ind Ltd | 含フツ素共重合体 |
JPS59166516A (ja) * | 1983-02-01 | 1984-09-19 | Daikin Ind Ltd | 含フツ素共重合体 |
US4513128A (en) * | 1983-06-23 | 1985-04-23 | E. I. Du Pont De Nemours And Company | Fluorinated vinyl ether copolymers having low glass transition temperatures |
US4621116A (en) * | 1984-12-07 | 1986-11-04 | E. I. Du Pont De Nemours And Company | Process for copolymerization of tetrafluoroethylene in the presence of a dispersing agent comprising a perfluoroalkoxybenzene sulfonic acid or salt |
IT1189092B (it) * | 1986-04-29 | 1988-01-28 | Ausimont Spa | Processo di polimerizzazione in dispersione acquosa di monomeri fluorurati |
IT1204903B (it) * | 1986-06-26 | 1989-03-10 | Ausimont Spa | Processo di polimerizzazione in dispersione acquosa di monomeri florati |
IT1223304B (it) * | 1987-09-22 | 1990-09-19 | Ausimont Spa | Perfloropolieteri a terminale mono e bis ipofluorito e processo per la loro preparazione |
-
1993
- 1993-07-05 IT IT93MI001444A patent/IT1264661B1/it active IP Right Grant
-
1994
- 1994-06-24 ES ES94109780T patent/ES2097579T3/es not_active Expired - Lifetime
- 1994-06-24 DK DK94109780.0T patent/DK0633274T3/da active
- 1994-06-24 DE DE69401621T patent/DE69401621T2/de not_active Expired - Lifetime
- 1994-06-24 EP EP94109780A patent/EP0633274B1/en not_active Expired - Lifetime
- 1994-06-24 AT AT94109780T patent/ATE148474T1/de not_active IP Right Cessation
- 1994-07-01 US US08/273,266 patent/US5463006A/en not_active Expired - Lifetime
- 1994-07-01 RU RU94022752A patent/RU2141489C1/ru active
- 1994-07-04 MX MX9405089A patent/MX9405089A/es not_active IP Right Cessation
- 1994-07-04 JP JP15246194A patent/JP3531974B2/ja not_active Expired - Lifetime
- 1994-07-04 TW TW083106081A patent/TW272201B/zh active
- 1994-07-04 CA CA002127296A patent/CA2127296C/en not_active Expired - Fee Related
- 1994-07-05 KR KR1019940016034A patent/KR100333841B1/ko not_active IP Right Cessation
-
1997
- 1997-03-24 GR GR970400575T patent/GR3022893T3/el unknown
Non-Patent Citations (1)
Title |
---|
Паншин Ю.А. и др. Фторопласты. - Л.: Химия, Ленинградское отд., 1978, с.96-139. * |
Also Published As
Publication number | Publication date |
---|---|
US5463006A (en) | 1995-10-31 |
KR100333841B1 (ko) | 2002-11-20 |
ITMI931444A0 (it) | 1993-07-05 |
ITMI931444A1 (it) | 1995-01-05 |
CA2127296C (en) | 2005-08-30 |
ATE148474T1 (de) | 1997-02-15 |
IT1264661B1 (it) | 1996-10-04 |
CA2127296A1 (en) | 1995-01-06 |
EP0633274B1 (en) | 1997-01-29 |
RU94022752A (ru) | 1996-05-10 |
KR950003332A (ko) | 1995-02-16 |
DE69401621T2 (de) | 1997-07-10 |
GR3022893T3 (en) | 1997-06-30 |
MX9405089A (es) | 1995-01-31 |
DE69401621D1 (de) | 1997-03-13 |
JPH07304832A (ja) | 1995-11-21 |
DK0633274T3 (da) | 1997-02-17 |
EP0633274A1 (en) | 1995-01-11 |
ES2097579T3 (es) | 1997-04-01 |
TW272201B (ru) | 1996-03-11 |
JP3531974B2 (ja) | 2004-05-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2141489C1 (ru) | Термоперерабатываемый сополимер тетрафторэтилена | |
EP0123306B1 (en) | Ethylene/tetrafluoroethylene or chlorotrifluoroethylene copolymer | |
RU2139866C1 (ru) | Перфтордиоксолы, способ их получения (варианты), гомополимеры и сополимеры перфтордиоксолов, термоперерабатываемые сополимеры тетрафторэтилена | |
US3635926A (en) | Aqueous process for making improved tetrafluoroethylene / fluoroalkyl perfluorovinyl ether copolymers | |
EP0271243B1 (en) | Tetrafluoroethylene polymerization process | |
US20020151664A1 (en) | Fluoromonomer polymerization | |
US4522995A (en) | Fluorinated alkyl ether-containing ethylenes, precursors thereto, and copolymers thereof with tetrafluoroethylene | |
US5597880A (en) | Ethylene copolymers with tetrafluoroethylene and/or chlorotrifluorethylene having improved mechanical properties at high temperatures | |
JP3719749B2 (ja) | 熱加工性テトラフルオロエチレンコポリマー | |
JPS61152710A (ja) | クロルトリフルオルエチレン、エチレンおよびペルフルオルアルキルエチレンのコポリマー | |
JP3028964B2 (ja) | 高強度・伸度を有する四フッ化エチレン―エチレン系共重合体の製造方法 | |
JP2001040015A (ja) | 熱可塑性パーハロゲン化クロロトリフルオロエチレン(共)重合体の合成方法 | |
CA1249695A (en) | Terpolymers of chlorotrifluoroethylene, or tetrafluoroethylene, ethylene and perfluoroisoalkoxy perfluoroalkyl ethylenes | |
JPH0741522A (ja) | エチレン/テトラフルオロエチレン系共重合体 | |
JPH06345824A (ja) | 含フッ素共重合体の製造方法 | |
CA1220597A (en) | Copolymer of tetrafluoroethylene and fluorinated alkyl substituted ethylene | |
JP2881837B2 (ja) | 含フッ素共重合体 | |
JPH03243607A (ja) | エチレン―四弗化エチレン系共重合体の製造方法 | |
JP3252472B2 (ja) | 含フッ素共重合体 | |
JPH0813861B2 (ja) | フッ化ビニリデン―トリフルオロメチルエチレン共重合体 | |
JPH10231323A (ja) | フッ化ビニリデン系樹脂の製造方法 | |
JPS61138609A (ja) | テトラフルオロエチレンの共重合方法 | |
JPS6234322B2 (ru) | ||
JPS61228008A (ja) | テトラフルオロエチレンの共重合方法 | |
JPH11116635A (ja) | 含フッ素ランダム共重合体の製造方法 |